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Abstract
In this work, we study asymptotic zero distribution of random multi-variable polynomials
which are random linear combinations

∑
j ajPj(z) with i.i.d coefficients relative to a basis

of orthonormal polynomials {Pj}j induced by a multi-circular weight function Q defined on
Cm satisfying suitable smoothness and growth conditions. In complex dimension m ≥ 3,
we prove that E[(log(1+|aj |))m] < ∞ is a necessary and sufficient condition for normalized
zero currents of random polynomials to be almost surely asymptotic to the (deterministic)
extremal current i

π∂∂VQ. In addition, in complex dimension one, we consider random
linear combinations of orthonormal polynomials with respect to a regular measure in the
sense of Stahl & Totik and we prove analogous results in this setting.
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1. Introduction
A random Kac polynomial is of the form

fn(z) =
n∑

j=0
ajz

j

where coefficients aj are independent complex Gaussian random variables of mean zero and
variance one. A classical result due to Kac and Hammersley [16,19] asserts that normalized
zeros of Kac random polynomials of large degree tend to accumulate on the unit circle
S1 = {|z| = 1}. This ensemble of random polynomials has been extensively studied (see eg.
[17, 18, 22, 30] and references therein). Recently, Ibragimov and Zaporozhets [18] proved
that for independent and identically distributed (i.i.d.) real or complex random variables
aj

E[log(1 + |aj |)] < ∞ (1.1)
is a necessary and sufficient condition for zeros of random Kac polynomials to accumulate
near the unit circle. In particular, under the condition (1.1) asymptotic zero distribution of
Kac polynomials is independent of the choice of the probability law of random coefficients.
We refer to this phenomenon as global universality for zeros of Kac polynomials.

In [32], Shiffman and Zelditch remarked that it was an implicit choice of an inner product
that produced the concentration of zeros of Kac polynomials around the unit circle S1.
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More generally, for a simply connected domain Ω b C with real analytic boundary ∂Ω and
a fixed orthonormal basis (ONB) {Pj}n+1

j=1 induced by a measure ρ(z)|dz| where ρ ∈ Cω(∂Ω)
and |dz| denote arc-length, Shiffman and Zelditch proved that zeros of random polynomials

fn(z) =
n+1∑
j=1

ajPj(z) where aj i.i.d standard complex Gaussians

concentrate near the boundary ∂Ω as n → ∞. Furthermore, the empirical measures of
zeros

1
n

∑
{z:fn(z)=0}

δz

converge weakly to the equilibrium measure µΩ. Recall that for a non-polar compact set
K ⊂ C the equilibrium measure µK is the unique minimizer of the logarithmic energy
functional

ν →
∫ ∫

log 1
|z − w|

dν(z)dν(w)

over all probability measures supported on K. Later, Bloom [10] observed that Ω can be
replaced by a regular compact set K ⊂ C, the inner product can be defined in terms of
any Bernstein Markov measure (see also [11] for a generalization of this result to Cm for
Gaussian random pluricomplex polynomials). More recently, Pritsker and Ramachandran
[23] observed that (1.1) is a necessary and sufficient condition for zeros of random linear
combinations of Szegö, Bergman, or Faber polynomials (associated with Jordan domains
bounded with analytic curves) to accumulate near the support of the corresponding equi-
librium measure.

The purpose of this work is to study global universality for normalized zero currents of
random multi-variable complex polynomials. Asymptotic zero distribution of multivariate
random polynomials has been studied by several authors (see eg. [1–3,5,8,11,13,31]). We
remark that randomization of the space of polynomials in these papers is different than
that of [18,21,23]. Namely, in the former ones each Pn are endowed with a dn := dim(Pn)
fold product probability measure which leads to a sequence of polynomials (with nth co-
ordinate has total degree at most n) chosen independently at random according to the
dn-fold product measure. On the other hand, the papers [18,21,23] fix a random sequence
of scalars for which one considers random linear combinations of a fixed basis for Pn. We
adopt the approach of [18,21,23] in the present note.

The setting is as follows: let Q : Cm → R be a weight function satisfying
Q(z) ≥ (1 + ϵ) log ∥z∥ for ∥z∥ ≫ 1 (1.2)

for some fixed ϵ > 0. Throughout this note (unless otherwise stated), we assume that the
function Q : Cm → [0,∞) is of class C 2 and it is invariant under the action of the real
torus Sm, the latter means that

Q(z1, . . . , zm) = Q(|z1|, . . . , |zm|) for all (z1, . . . , zm) ∈ Cm. (1.3)
One can define an associated weighted extremal function

VQ(z) := sup{u(z) : u ∈ L(Cm), u ≤ Q on Cm}
where L(Cm) denotes the Lelong class of pluri-subharmonic (psh) functions u that satisfies
u(z) − log+ ∥z∥ = O(1). We also denote by

L+(Cm) := {u ∈ L(Cm) : u(z) ≥ log+ ∥z∥ + Cu for some Cu ∈ R}.
Seminal results of Siciak and Zakharyuta (see [29] and references therein) imply that
VQ ∈ L+(Cm) and that VQ verifies

VQ(z) = sup{ 1
deg p

log |p(z)| : p is a polynomial and max
z∈Cm

|p(z)|e−deg(p)Q(z) ≤ 1}. (1.4)
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Moreover, a result of Berman [7, Proposition 2.1] implies that VQ is of class C 1,1.
Next, we define an inner product on the space Pn of multi-variable polynomials of degree

at most n by setting

⟨fn, gn⟩n :=
∫
Cm

fn(z)gn(z)e−2nQ(z)dVm(z) (1.5)

where dVm denotes the Lebesgue measure on Cm. We also let {Pn
j }dn

j=1 be the orthonormal
basis (ONB) for Pn obtained by applying Gram-Schmidt algorithm in the Hilbert space
(Pn, ⟨·, ⟩n) to the monomials {zJ}|J |≤n where J = (j1, . . . , jm) is m multi-index and we
assume that the monomials {zJ}|J |≤n are ordered with respect to lexicographical ordering.
Note that since Q is m−circular we have Pn

j (z) = cn
Jz

J for some deterministic constant
cn

J for J ∈ Nm.
Let a1, a2, . . . be a sequence of i.i.d. real or complex random variables whose probability

law denoted by P. Throughout this note, we assume that aj are non-degenerate, roughly
speaking this means that P[aj = z] < 1 for every z ∈ C (see §2.1.) A random polynomial
is of the form

fn(z) =
dn∑

j=1
ajP

n
j (z)

where dn := dim(Pn) =
(n+m

n

)
. We also let H := ∪∞

n=1Pn and denote the corresponding
probability space of polynomials by (H,P).

Theorem 1.1. Let aj be i.i.d. non-degenerate real or complex random variables satisfying
E[
(

log(1 + |aj |)
)m] < ∞. (1.6)

If the dimension of complex Euclidean space m ≥ 3 then almost surely in H

1
n

log |fn(z)| −−−→
n→∞

VQ(z)

in L1
loc(Cm). In particular, almost surely in H

i

π
∂∂( 1

n
log |fn(z)|) −→ i

π
∂∂VQ(z)

in the sense of currents as n → ∞.
Furthermore, for all dimensions m ≥ 1, we have convergence in probability

i

π
∂∂( 1

n
log |fn(z)|) −→ i

π
∂∂VQ(z)

in the sense of currents as n → ∞.

Note that Theorem 1.1 provides an optimal condition on random coefficients for a
random version of Siciak-Zakharyuta theorem in this context (cf. [1, 3, 8, 9]). In the
univariate case we have i

π∂∂ = 1
2π ∆ where ∆ denotes the Laplacian and we denote the

corresponding equilibrium measure by µQ := i
π∂∂VQ. An important example is Q(z) = |z|2

2
and µQ = 1

π 1Ddz where D denotes closed the unit disc in the complex plane [29, pp 245].
Then a routine calculation shows that

Pn
j (z) =

√
nj

2πj!
zj for j = 0, 1, . . . , n

form an ONB for Pn. A random Weyl polynomial is of the form

Wn(z) =
n∑

j=0
aj

√
nj

j!
zj .

In particular, Theorem 1.1 generalizes a special case of [21, Theorem 2.5] to the several
complex variables.
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Let us denote the Euclidean volume in Cm by V ol2m and for an open set U ⊂ Cm, we
define

VU := 1
(m− 1)!

∫
U

i

π
∂∂VQ ∧ ( i

π
∂∂∥z∥2)m−1.

Next result indicates that in higher dimensions the condition (1.6) is also necessary for
zero divisors of random polynomials to be almost surely equidistributed with the extremal
current i

π∂∂VQ.
Theorem 1.2. Let aj be i.i.d. non-degenerate real or complex valued random variables and
assume that the dimension of complex Euclidean space m ≥ 3. The logarithmic moment

E[
(

log(1 + |aj |)
)m] < ∞

if and only if
P
{

{fn}n≥0 : lim
n→∞

1
n
V ol2m−2(Zfn ∩ U) = VU

}
= 1 (1.7)

for every open set U b (C∗)m such that ∂U has zero Lebesgue measure.
Note that when m = 1 the volume V ol2m−2(Zfn ∩ U) becomes the number of zeros of

fn in U which we denote by
Nn(U, fn) := #{z ∈ U : fn(z) = 0}.

The following result is an immediate consequence of Theorem 1.1 together with Theorem
1.2 and provides a weak universality result for zeros of univariate random polynomials:
Corollary 1.3. Let aj be i.i.d. non-degenerate real or complex valued random variables.
If the logarithmic moment

E[log(1 + |aj |)] < ∞
then for every ϵ > 0

lim
n→∞

Probn

{
fn : | 1

n
Nn(U, fn) − µQ(U)

∣∣∣ ≥ ϵ} = 0 (1.8)

for every open set U b C∗ such that ∂U has zero Lebesgue measure.
We remark that the condition (1.8) is called convergence in probability in the context

of probability theory. Moreover, (1.8) is equivalent to the following statement: for ev-
ery subsequence nk of positive integers there exists a further subsequence nkj

such that
1

nkj
Nnkj

(U, fnkj
) → µQ(U) with probability one in H.

Next, we consider random elliptic polynomials which are of the form

Gn(z) =
∑

|J |=n

aJ

(
n

J

) 1
2

zJ

where
(n

J

)
= n!

(n−|J |)!j1!...jm! and aJ are non-degenerate i.i.d. random variables.
Let us denote by

MU := 1
(m− 1)!

∫
U

i

2π
∂∂(log(1 + ∥z∥2)) ∧ ( i

π
∂∂∥z∥2)m−1.

The following result is an analogue of Theorem 1.2 in the present setting (see §4.1 for
details):
Theorem 1.4. Let aj be i.i.d. non-degenerate real or complex valued random variables and
assume that the dimension of complex Euclidean space m ≥ 3. The logarithmic moment

E[
(

log(1 + |aj |)
)m] < ∞

if and only if the zero loci of elliptic polynomials satisfy

P
{

{Gn}n≥0 : lim
n→∞

1
n
V ol2m−2(ZGn ∩ U) = MU

}
= 1 (1.9)
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for every open set U b (C∗)m such that ∂U has zero Lebesgue measure.

Finally, we consider random linear combinations of univariate orthonormal polynomials
of regular asymptotic behavior (cf. [28, §3]). Orthogonal polynomials of regular nth

root asymptotic behavior are natural generalizations of classical orthogonal polynomials
on the real line. More precisely, let µ be a measure Borel measure with compact support
Sµ ⊂ C. We assume that the support Sµ contains infinitely many points and its logarithmic
capacity Cap(Sµ) > 0. We let Ω := C \ Sµ and gΩ(z,∞) denotes the Green function with
logarithmic pole at infinity. Then the equilibrium measure of the support Sµ is given by
νSµ := ∆gΩ(z,∞). We say that Ω is regular if g(z,∞) ≡ 0 on Sµ. It is well know that if
Ω is regular then g(z,∞) is continuous on C. Next, we define the inner product induced
by µ :

⟨f, g⟩ :=
∫
C
f(z)g(z)dµ

on the space of polynomials Pn. Then one can find uniquely defined orthonormal polyno-
mials

Pµ
n (z) = γn(µ)zn + · · · , where γn(µ) > 0 and n ∈ N.

We say that µ is regular, denoted by µ ∈ Reg, if

lim
n→∞

γn(µ)1/n = 1
Cap(Sµ)

. (1.10)

For a fixed µ ∈ Reg, we consider random linear combinations of orthonormal polynomials

fn(z) =
n∑

j=0
ajP

µ
j (z)

and we obtain the following generalization:

Theorem 1.5. Let µ ∈ Reg such that Ω := C \Sµ is connected and regular. Assume that
the convex hull Co(Sµ) has Lebesgue measure zero (hence, Co(Sµ) is a line segment). If
the logarithmic moment

E[log(1 + |aj |)] < ∞
then for every ϵ > 0

lim
n→∞

Probn

{
fn : | 1

n
Nn(U, fn) − νSµ(U)

∣∣∣ ≥ ϵ} = 0

for every open set U b C∗ such that ∂U has zero Lebesgue measure.

We remark that if µ is a Bernstein-Markov measure with compact support in C then
µ ∈ Reg ([9, Proposition 3.4]). In particular, any Bernstein-Markov measure µ supported
on an interval of the real line falls in the framework of Theorem 1.5. The latter class
contains classical orthogonal polynomials such as Chebyshev or Jacobi polynomials.

2. Background
2.1. Probabilistic preliminaries

For a complex (respectively real) random variable η we let P denote its probability law
and denote its concentration function by

Q(η, r) := sup
z∈C

P[η ∈ B(z, r)]

where B(z, r) denotes the Euclidean ball (respectively interval) centered at z and of radius
r > 0. We say that η is non-degenerate if Q(η, r) < 1 for some r > 0. If η and ξ are
independent complex random variables and r, c > 0 then we have

Q(η + ξ, r) ≤ min{Q(η, r),Q(ξ, r)} and Q(cζ, r) = Q(ζ, r
c

). (2.1)
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Let a1, a2, . . . be independent and identically distributed (real or complex valued) ran-
dom variables. The following lemma is standard in the literature and it will be useful in
the sequel.

Lemma 2.1. Let aj be a sequence of i.i.d. real or complex valued random variables for
j = 1, 2, . . .

(i) If E[
(

log(1 + |aj |)
)m] < ∞ then for each ϵ > 0 almost surely

|aj | < e
m√ϵj (2.2)

for sufficiently large j.
(ii) If E[(log(1 + |aj |))m] = ∞ then almost surely

lim sup
j→∞

|aj |
1
j = ∞.

Proof. For a non-negative random variable X we have
∞∑

j=1
P[X ≥ j] ≤ E[X] ≤ 1 +

∞∑
j=1

P[X ≥ j]. (2.3)

Letting X = 1
ϵ (log(1+|a1|))m and using the assumption that aj are identically distributed,

we obtain
∞∑

j=1
P[aj ∈ C : |aj | ≥ e

m√jϵ] < ∞.

Hence, by independence of aj ’s and Borel-Cantelli lemma we have almost surely

|aj | < e
m√jϵ

for sufficiently large j.
For (ii), we define the event AM

j := {aj ∈ C : |aj |
m
j ≥ M} where M > 1 is fixed. Then

by (2.3)
∞∑

j=1
Pn[AM

j ] = ∞

and second Borel-Cantelli lemma implies that almost surely |aj |
m
j ≥ M for infinitely

many values of j. Now, we let Mn > 0 be a sequence such that Mn ↑ ∞. Then by previous
argument the event

Fn := {|aj |
m
j ≥ Mn for infinitely many j}

has probability one. Thus letting F = ∩∞
n=1Fn has also probability one and (ii) follows. �

2.2. Pluripotential theory
2.2.1. Global extremal function. Let Σ ⊂ Cm be a closed set. Recall that an admis-
sible weight function Q : Cm → R is a lower semi-continuous function that satisfies

(1) {z ∈ Σ : Q(z) < ∞} is not pluripolar
(2) lim

∥z∥→∞
(Q(z) − log ∥z∥) = ∞ if Σ is unbounded.

The weighted extremal function associated to the pair (Σ, Q) is defined by

VΣ,Q = sup{u(z) : u ∈ L(Cm), u ≤ Q on Σ}. (2.4)

If Σ = Cm and Q is an admissible weight function we write VQ for short. We also let V ∗
Σ,Q

denote the upper semi-continuous regularization of VΣ,Q that is V ∗
Σ,Q(z) := lim sup

ζ→z
VΣ,Q(ζ).
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It is well known that V ∗
Σ,Q ∈ L+(Cm) (see [29, Appendix B]). Moreover, for an admissible

weight function Q the set

{z ∈ Cm : VΣ,Q(z) < V ∗
Σ,Q(z)}

is pluripolar. We also remark that when Q ≡ 0 and Σ is a non-pluripolar compact set the
function V ∗

Σ is nothing but the pluricomplex Green function of Σ (see [20, §5]). We let
B(r) denote the ball in Cm centered at the origin and with radius r > 0. Then it is well
known [29, Appendix B] that for sufficiently large r

VQ = VB(r),Q on Cm (2.5)

for every admissible weight function Q. It also follows from a result of Siciak [27, Propo-
sition 2.16] that if Q is a continuous admissible weight function then VQ = V ∗

Q on Cm. We
refer the reader to the manuscript [29, Appendix B] for further properties of the weighted
global extremal function.

2.2.2. Bergman kernel asymptotics. In the sequel we will assume that Q : Cm → R
is a C 2 weight function satisfying (1.2) and (1.3). The Bergman kernel for the Hilbert
space of weighted polynomials Pn may be defined as

Sn(z, w) :=
dn∑

j=1
Pn

j (z)Pn
j (w)

where {Pn
j }dn

j=1 is an ONB for Pn as in the introduction. The restriction of the Bergman
kernel over the diagonal is given by

Sn(z, z) =
dn∑

j=1
|Pn

j (z)|2.

It is well known [8, §6] (cf. [2, 7]) that
1

2n
logSn(z, z) → VQ(z) locally uniformly on Cm. (2.6)

3. Proofs
Proof of Theorem 1.1. By [8, Proposition 4.4] it is enough to prove that almost surely
in H, for any subsequence I of positive integers

(lim sup
n∈I

1
n

log |fn(z)|)∗ = VQ(z)

for all z ∈ Cm. To this end we fix a subsequence I of positive integers.
Step 1: Proof of upper bound. Note that by Lemma 2.1 for each ϵ > 0 there exists

j0 ∈ N such that almost surely
dn∑

j=j0

|aj |2 ≤ dne
2 m√ϵdn .

Then using dn = O(nm) and by Cauchy-Schwarz inequality almost surely in H

lim sup
n∈I

1
n

log |fn(z)| = lim sup
n∈I

( 1
n

log |fn(z)|√
Sn(z, z)

+ 1
2n

logSn(z, z)
)

≤ lim sup
n→∞

( 1
2n

log(
dn∑

j=1
|aj |2) + 1

2n
logSn(z, z)

)
≤ ϵ+ VQ(z)
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on Cm. Thus, it follows from [9, Lemma 2.1] that (lim sup
n∈I

1
n

log |fn(z)|)∗ ∈ L(Cm) and

F (z) := (lim sup
n∈I

1
n

log |fn(z)|)∗ ≤ VQ(z) (3.1)

holds on Cm almost surely in H.

Step 2: Proof of lower bound. In order to get the lower bound first we prove the
following lemma which is a generalization of [4, Proposition 2.1]:

Lemma 3.1. For every ϵ > 0 and z ∈ (C∗)m there exists δ > 0 such that for sufficiently
large n ∈ N

#{j ∈ {1, . . . , dn} : Pn
j (z) > en(VQ(z)−3ϵ)} ≥ δdn.

Proof. We denote the probability measures µn := 1
bn
e−2nQ(z)dVm where the normaliz-

ing constants bn :=
∫
Cm e−2nQ(z)dVm. It follows that the sequence of measures {µn}∞

n=1
satisfies large deviation principle (LDP) on Cm with the rate function I(z) = 2[Q(z) −
inf

w∈Cm
Q(w)] (see e.g. [12, 1.1.5]). More precisely, for A ⊂ Cm letting

I(A) := inf
z∈A

I(z)

we have
lim sup

n→∞

1
n

logµn(K) ≤ −I(K) and lim inf
n→∞

1
n

logµn(U) ≥ −I(U)

for every closed set K ⊂ Cm and every open set U ⊂ Cm.
Next, we define

cn
nT := (

∫
Cm

|zT |2ne−2nQ(z)dVm)− 1
2

where T ∈ [0, 1]m is a multi-index and zT = zt1
1 · · · ztm

m . Then by Varadhan’s lemma
[12, Theorem 2.1.10] and (1.2), for every such T = (t1, . . . , tm)

− lim
n→∞

1
n

log cn
nT = sup

r∈Rm
+

(
m∑

j=1
tj log rj −Q(r1, . . . , rm))

= sup
S∈Rm

(⟨S, T ⟩ −Q(es1 , . . . , esm))

=: u(T ).

Let us denote by
Φ(S) := Q(es1 , . . . , esm)

where S = (s1, . . . , sm) ∈ Rm and Legendre-Fenchel transform of Φ is by definition given
by

Φ⋆(T ) : = sup
S∈Rm

(⟨S, T ⟩ − Φ(S))

= sup
S∈Rm

≥0

(⟨S, T ⟩ − Φ(S)).

where the second equality follows from Q ≥ 0. Since u(T ) = Φ⋆(T ) for T ∈ [0, 1]m the
function u(T ) is lower-semicontinuous and convex on [0, 1]m.

On the other hand, denoting by Ψ(S) := VQ(es1 , . . . , esm) since Ψ is a C1,1 convex
function we have

Ψ(S) = Ψ⋆⋆(S).
Thus, for every ϵ > 0 and S ∈ Rm there exists T0 ∈ Rm

≥0 such that

Ψ(S) − ϵ < ⟨S, T0⟩ − Ψ⋆(T0) ≤ ⟨S, T0⟩ − Φ⋆(T0)
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where the latter inequality follows from the inequality VQ ≤ Q on Cm. Moreover, it follows
from [24, Theorem 23.5] and VQ ∈ C1,1(Cm) that T0 = ∇Ψ(S) and hence by using VQ ∈ L

we conclude that T0 ∈ [0, 1]m. Thus, for every ϵ > 0 and S ∈ Rm there exists T0 ∈ [0, 1]m
such that

⟨S, T0⟩ − u(T0) > VQ(es1 , . . . , esm) − ϵ

and by lower-semicontinuity of u there exists a product of intervals J ⊂ [0, 1]m containing
T0 such that the Lebesgue measure |J| > 0 and

⟨S, T ⟩ − u(T ) > VQ(es1 , . . . , esm) − 2ϵ for every T ∈ J.

Now, for fixed z ∈ (C∗)m letting S = (log |z1|, . . . , log |zm|) then for sufficiently large n we
have

1
n

log(cn
T n|zT |n) > VQ(z) − 3ϵ

for every T ∈ J. Finally, letting Jn := {J ∈ Nm : |J | ≤ n and 1
nJ ∈ J} where 1

nJ :=
( j1

n , . . . ,
jm

n ) we see that for sufficiently large n we have

#Jn ≥ dn

2
|J|

where |J| denotes Lebesgue measure of J ⊂ Rm. �
Now, we turn back to proof of the lower bound. For fixed z ∈ (C∗)m and for every ϵ > 0

by Lemma 3.1 there exists a product interval J ⊂ [0, 1]m such that

Pn
j (z) > en(VQ(z)−ϵ)

where Pn
j (z) = Cn

J z
J and J ∈ Jn := {|J | ≤ n : 1

nJ ∈ J}. Next, we define the random
variables

Xn :=
∑
j∈Jn

ajαj and Yn :=
∑
j ̸∈Jn

ajαj

where
αj := e−n(VQ(z)−ϵ)Pn

j (z).
Then by (2.1) and sufficiently large n we have

Probn[fn : |fn(z)| < en(VQ(z)−2ϵ)] ≤ Q(Xn + Yn, e
−ϵn) ≤ Q(Xn, e

−ϵn). (3.2)
Now, it follows from Kolmogorov-Rogozin inequality [14] and αj > 1 that

Q(Xn, e
−ϵn) ≤ C1(

∑
J∈Jn

(1 − Q(ajαj , e
−ϵn))− 1

2 ≤ C2|Jn|−
1
2 ≤ C3(dn)− 1

2 . (3.3)

Hence combining (3.2) and (3.3) we obtain: for every z ∈ (C∗)m there exists Cϵ > 0 such
that

Probn[fn : 1
n

log |fn(z)| < VQ(z) − ϵ] ≤ Cϵ√
nm

. (3.4)

Since m ≥ 3, it follows from Borel-Cantelli lemma and (3.4) that with probability one in
H

lim inf
n→∞

1
n

log |fn(z)| ≥ VQ(z). (3.5)

Thus, we conclude that for each z ∈ (C∗)m there exits a subset Cz ⊂ H of probability one
such that that for every sequence {fn}n∈N ∈ Cz

F (z) = (lim sup
n∈I

1
n

log |fn(z)|)∗ = VQ(z) (3.6)

Next, we fix a countable dense subset D := {zj}j∈N in Cm such that zj ∈ (C∗)m and (3.6)
holds. Then, we define

C := ∩∞
j=1Czj .
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Note that C ⊂ H is also of probability one. Since VQ(z) is continuous on Cm we have
VQ(z) = lim

zj∈D,zj→z
VQ(zj) ≤ lim sup

zj∈D,zj→z
F (zj) ≤ F (z)

where the second inequality follows from (3.5) and the last one follows from upper-
semicontinuity of F (z). We deduce that for every {fn}n∈N ∈ C

F (z) = VQ(z)
for every z ∈ (C∗)m. Since {z ∈ Cm : z1 · · · zm = 0} has Lebesgue measure zero, by a
well-known property of psh functions we conclude that

F (z) = VQ(z)
for every z ∈ Cm. This completes the proof for dimensions m ≥ 3.

On the other hand, it follows from [8, Proposition 4.4], Step 1, (3.4) and the preceding
argument that for every ϵ > 0, open set U b Cm and sufficiently large n

Probn[fn ∈ Pn : ∥ 1
n

log |fn| − VQ∥L1(U) ≥ ϵ] ≤ Cϵ√
nm

which gives the second assertion. �

Proof of Theorem 1.2. First, we prove that (1.6) is a sufficient condition for (1.7). We
fix an open set U b (C∗)m such that ∂U has zero Lebesgue measure. Let us denote by

Θ := 1
(m− 1)!

i

π
∂∂VQ ∧ ( i

2
∂∂̄∥z∥2)m−1.

For δ > 0 arbitrary, we fix real valued smooth functions φ1, φ2 such that 0 ≤ φ1 ≤ χU ≤
φ2 ≤ 1 and ∫

U
Θ − δ ≤

∫
Cm

φ1Θ ≤
∫
Cm

φ2Θ ≤
∫

U
Θ + δ.

Now, letting

ψj := φj

(m− 1)!
( i
2
∂∂̄∥z∥2)m−1

for j = 1, 2 by Wirtinger’s theorem we have

V ol2m−2(Zfn ∩ U) ≤
∫

Zfn

ψ2.

Then by Theorem 1.1

lim sup
n→∞

1
n
V ol2m−2(Zfn ∩ U) ≤

∫
Cm

φ2Θ

≤
∫

U
Θ + δ.

Similarly one can obtain

lim inf
n→∞

1
n
V ol2m−2(Zfn ∩ U) ≥

∫
U

Θ − δ.

Since δ > 0 is arbitrary the assertion follows.
Next, we prove that (1.6) is a necessary condition for (1.7). We will prove the assertion

by contradiction. Assume that
E[
(

log(1 + |aj |)
)m] = ∞.

By assumption U b (C∗)m so we have 0 < bn := minj=1,...,dn infz∈U |Pn
j (z)|. For ϵ > 0

small we let

tn :=
(en(MQ+ϵ)

bn

)m
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where MQ := supU VQ. Then by the argument in the proof of Lemma 2.1 (ii) for each
n ∈ N+ the set

Fn := {|aj |m/j ≥ tn for infinitely many j}
has probability one. This implies that

F := ∩∞
n=1Fn

has also probability one. Thus, we may assume that for infinitely many values of n there
exists jn ∈ {1, . . . , dn} such that

max
j=1,...,dn

|aj |
1
j = |ajn |

1
jn and |ajn | ≥ tjn/m

n . (3.7)

For simplicity of notation let us assume jn = dn. Now, we will show that the random poly-
nomial fn(z) =

∑dn
j=1 ajP

n
j (z) has no zeros in U for infinitely many values of n. Denoting

a′ := (aj)dn−1
j=1 , by Cauchy-Schwarz inequality, uniform convergence of the Bergman kernel

on U and (3.7) we have

|
dn−1∑
j=1

ajP
n
j (z)| ≤ ∥a′∥Sn(z, z)

1
2

≤
√
dn|adn |

dn−1
dn exp(n(VQ(z) + ϵ

2
))

≤ |adn |
dn−1

dn exp(n(MQ + ϵ))

= exp(n(MQ + ϵ))
|adn |

1
dn

|adn |

< bn|adn |

for infinitely many values of n. Hence,

sup
z∈U

|
dn−1∑
j=1

ajP
n
j (z)| < inf

z∈U
|adnP

n
dn

(z)|.

�

4. Generalizations and concluding remarks
4.1. Elliptic polynomials

Recall that a random elliptic polynomial in Cm is of the form

Gn(z) =
∑

|J |≤n

aJ

(
n

J

) 1
2

zJ

where
(n

J

)
= n!

(n−|J |)!j1!...jm! and aJ are non-degenerate i.i.d. random variables. These
polynomials induced by taking Q(z) = 1

2 log(1 + ∥z∥2) i.e. the potential of the standard
Fubini-Study Kähler metric on the complex projective space CPm. In this case, the scaled
monomials

(N
J

) 1
2 zJ form an ONB with respect to the inner product

⟨Fn, Gn⟩n :=
∫
Cm

Fn(z)Gn(z) dVm(z)
(1 + ∥z∥2)n+m+1

Moreover, since Q(z) is itself a Lelong class of psh function the weighted extremal function
in this setting is given by

VQ(z) = Q(z) = 1
2

log(1 + ∥z∥2).
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Specializing further, if the coefficients aJ are standard i.i.d. complex Gaussians this ensem-
ble is known as SU(m+1) polynomials and their zero distribution was studied extensively
among others by [6, 31].

Proof of Theorem 1.4. Since the proof is very similar to that of Theorems 1.1 and 1.2
we explain the modifications in the present setting.

By [8, Proposition 4.4] it is enough to prove that almost surely in H, for any subsequence
I of positive integers

F (z) := (lim sup
n∈I

1
n

log |fn(z)|)∗ = VQ(z) for all z ∈ Cm

In order to prove the upper bound F (z) ≤ VQ(z), we use the same argument as in
Thorem 1.1 together with the Bergman kernel asymptotics. Namely, letting Sn(z, z) :=∑

|J |≤n

(n
J

)
|z2J | a routine calculation gives

1
2n

logSn(z, z) → 1
2

log(1 + ∥z∥2)

locally uniformly on Cm (see eg. [31]). On the other hand, for the lower bound (3.5),
we need an analogue of Lemma 3.1. Note that Q(z) = 1

2 log(1 + ∥z∥2) is a multi-circular
weight function whose infimum is 0 attained at z = 0. Then proceeding as in the proof
Lemma 3.1, one can show that the sequence of measures µn := 1

an
e−2nQ(z)dVm verifies

a LDP with rate function I(z) = 2Q(z). This result and Kolmogorov-Rogozin inequality
allow us to prove an analogue of (3.4) in the present setting. This together with the
argument in the first part of the proof of Theorem 1.2 finish the proof of sufficiency of
(1.6). In order to prove necessity, we use the Bergman kernel asymptotics and we apply
the same argument as in the second part of the proof of Theorem 1.2. �

4.2. Regular orthonormal polynomials
Proof of Theorem 1.5. We proceed as in the proof of Theorems 1.1 and 1.2. To this
end we fix a subsequence nk of positive integers. It follows from [28, Theorem 3.1(ii) ] that

lim
n→∞

1
n

log |Pµ
n (z)| = gΩ(z,∞) (4.1)

holds locally uniformly on C \ Co(Sµ). Denoting the Bergman kernel by

Sn(z, z) :=
n∑

j=0
|Pµ

j (z)|2

we infer that
1

2n
logSn(z, z) → gΩ(z,∞)

locally uniformly on C \ Co(Sµ). Thus, by Lemma 2.1 and Cauchy-Schwarz inequality
almost surely in H we have

lim sup
nk→∞

1
nk

log |fnk
(z)| ≤ gΩ(z,∞)

for every z ∈ C \ Co(Sµ).
In order to prove the lower bound, we use the local uniform convergence (4.1) which

replaces Lemma 3.1. This in turn together with Kolmogorov-Rogozin inequality give

Probn[fn : 1
n

log |fn(z)| < gΩ(z,∞) − ϵ] ≤ Cϵ√
n

for every z ∈ C∗ \Co(Sµ). Then applying the argument in Theorem 1.2 using the assump-
tion Co(Sµ) has Lebesgue measure zero we obtain the assertion. �
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4.3. Almost sure convergence in lower dimensions
In order to get almost sure convergence in Theorems 1.1 and 1.2 for complex dimensions

m ≤ 2 we need a stronger form of Kolmogorov-Rogozin inequality. More precisely, for a
fixed unit vector u(n) ∈ Cn, i.i.d. real or complex random variables aj for j = 1, . . . , n and
ϵ ≥ 0 we consider the small ball probability

pϵ(u(n)) := Pn[{a(n) : |⟨a(n), u(n)⟩| ≤ ϵ}]

where Pn is the product probability measure induced by the law of a′
js and ⟨a(n), u(n)⟩ :=∑n

j=1 aju
(n)
j . In order to obtain the lower bound in Theorem 1.1 we need for every ϵ > 0∑

n≥1
pe−ϵn(u(dn)) < ∞ (4.2)

for every unit vector u(dn) ∈ Cdn .
We remark that if the random variables aj are standard (real or complex) Gaussians

then the probability pϵ(u(n)) ∼ ϵ. In particular, pϵ(u(n)) does not depend on the direction
of the vector u(n). However, for most other distributions, pϵ(u(n)) does depend on the
direction of u(n). For instance if aj are Bernoulli random variables (i.e. taking values ±1
with probability 1

2) then p0((1, 1, 0, . . . , 0)) = 1
2 on the other hand, p0((1, 1, . . . , 1)) ∼ n− 1

2 .
Determining small ball probabilities is a classical theme in probability theory. We refer
the reader to the manuscripts [15,25,26,33] and references therein for more details.

Another interesting problem is to find a necessary and sufficient condition for almost
sure convergence of normalized zero currents when the space of polynomials Pn is endowed
with dn-fold product probability measure. A sufficient condition was obtained in [1].
Namely, let an

j be iid random variables whose probability P has a bounded density and
logarithmically decaying tails i.e.

P{aj ∈ C : log |aj | > R} = O(R−ρ) as R → ∞ for some ρ > m+ 1. (4.3)

We consider random polynomials of the form fn(z) =
∑dn

j=1 a
n
j P

n
j (z). If (4.3) holds then

almost surely normalized zero currents 1
n [Zfn ] converges weakly to the extremal current

i
π∂∂VQ.

4.3.1. Higher codimensions. In [1, Theorem 1.2] (see also [3]) it is proved that if the
coefficients of random polynomials fn(z) =

∑dn
j=1 a

n
j P

n
j (z) are i.i.d random variables whose

distribution law verifies (4.3) then almost surely normalized empirical measure of zeros

1
nm

∑
{z∈Cm:f1

n(z)=···=fm
n (z)=0}

δz

of m i.i.d. random polynomials f1
n, . . . , f

m
n converges weakly to the weighted equilibrium

measure ( i
π∂∂V

∗
Σ,Q)m. In the present paper, we have observed that for codimension one

we no longer need aj to have a density with respect to Lebesgue measure. For instance,
aj can be discrete such as Bernoulli random variables. It would be interesting to know
if [1, Theorem 1.2] or a weaker form of it (eg. convergence with high probability) also
generalizes to the setting of discrete random variables.
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