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Abstract—Fractional interpolation in Versatile Video 
Coding (VVC) standard has much higher computational 
complexity than fractional interpolation in previous video 
compression standards. In this paper, a low power VVC 
fractional interpolation hardware is designed and implemented 
using Verilog HDL. The proposed hardware is the first VVC 
fractional interpolation hardware in the literature. It 
interpolates necessary fractional pixels for 1/16 pixel accuracy 
for all prediction unit sizes. The proposed VVC fractional 
interpolation hardware, in the worst case, can process 40 full 
HD (1920x1080) frames per second. It has up to 17% less power 
consumption than original VVC fractional interpolation 
hardware. 
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I. INTRODUCTION 

ITU and ISO are developing a new international video 
compression standard called Versatile Video Coding (VVC) 
[1]-[6]. VVC will have higher compression efficiency than 
High Efficiency Video Coding (HEVC) standard at the 
expense of much higher computational complexity [7]-[11]. 

HEVC standard uses 3 different 8-tap FIR filters for 
fractional interpolations (FI) and provides 1/4 fractional pixel 
accuracy. However, VVC standard uses 15 different 8-tap FIR 
filters for fractional interpolations and provides 1/16 fractional 
pixel accuracy. Therefore, VVC fractional interpolation has 
much higher computational complexity than HEVC fractional 
interpolation. 

In this paper, a low power VVC fractional interpolation 
hardware for all prediction unit (PU) sizes is proposed. The 
proposed hardware interpolates all necessary fractional pixels 
for an 8x8 PU. For larger PU sizes, the PU is divided into 8x8 
blocks, and the blocks are interpolated separately.  

The proposed hardware calculates a common offset for 15 
different FIR filter equations using the same input pixels in 
order to reduce number of constant coefficient 
multiplications necessary for fractional interpolation. It also 
calculates common sub-expressions in different FIR filter 
equations once and uses the results in necessary equations. 
Hcub multiplierless constant multiplication (MCM) 
algorithm [12] is also used in the proposed hardware in order 
to reduce number and size of the adders. 

The proposed VVC fractional interpolation hardware is 
implemented in Verilog HDL. The Verilog RTL code is 
verified to work at 200 MHz in a Xilinx Virtex 7 FPGA. The 
proposed VVC fractional interpolation hardware, in the worst 
case, can process 40 full HD (1920x1080) frames per second. 
It has up to 17% less power consumption than original VVC 
fractional interpolation hardware. 

The proposed hardware is the first VVC fractional 
interpolation hardware in the literature. Several HEVC 
fractional interpolation hardware implementations are 
proposed in the literature [13]-[15]. In [13], common sub-
expressions in FIR filters are calculated once and used in all 
equations. It also uses Hcub MCM algorithm to implement 
constant multiplications. The implementation in [14] uses 
coarse-grained reconfigurable datapaths to implement filter 
equations. A high-throughput FI hardware is proposed for 
HEVC encoder in [15]. In Section III, VVC fractional 
interpolation hardware proposed in this paper is compared 
with them.  

The rest of the paper is organized as follows. In Section II, 
VVC fractional interpolation algorithm is explained. In 
Section III, the proposed low power VVC fractional 
interpolation hardware is presented, and its implementation 
results are given. Finally, Section IV presents the conclusions.  

II. VVC FRACTIONAL INTERPOLATION ALGORITHM 

VVC standard uses 15 different 8-tap FIR filters for 
fractional pixel interpolations. The coefficients of these 15 
FIR filters are shown in Table I. A-3 – A4 show input pixels 
for a filter where sub-indices represent the indices of 
coefficients. The F5 8-tap FIR filter equation is shown in (1) 
as an example. ܨହ = ሺ−ିܣଷ + 4 ∗ ଶିܣ − 11 ∗ ଵିܣ + 52 ∗ ܣ +26 ∗ ଵܣ − 8 ∗ ଶܣ + 3 ∗ ଷܣ − ସሻܣ ≫ 6  (1) 

Integer pixels, fractional pixels and FIR filters used to 
interpolate these fractional pixels are shown in Fig. 1. There 
are 255 fractional (half and quarter) pixels for one integer 
pixel. There are 15 half-pixels between two neighboring 
horizontal integer pixels called horizontal half-pixels. There 
are 15 half-pixels between two neighboring vertical integer 
pixels called vertical half-pixels. These 15 horizontal and 15 
vertical half-pixels are interpolated from nearest integer 
pixels in horizontal and vertical directions, respectively, 
using 15 different 8-tap FIR filters. There are 15x15=225 
quarter-pixels between 15 horizontal and 15 vertical half-
pixels. These quarter-pixels are interpolated from nearest 
horizontal half-pixels using 15 different 8-tap FIR filters. 

 Table II shows the number of addition and shift operations 
required for interpolating fractional pixels by using the filters F1 to F8. Since the filters F9 to F15 are symmetric of the filters F1 to F7, the number of addition and shift operations required 
for F9 to F15 are the same as F1 to F7. The number of addition 
and shift operations required for interpolating fractional pixels 
in HEVC by using F1 and F2 are also shown in Table II. Since F3 is symmetric of F1, the number of addition and shift 
operations required for F3 are the same as F1. The number of 
addition and shift operations shows that VVC FI has much 
higher computational complexity than HEVC FI. 
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TABLE I. VVC FI FILTER COEFFICIENTS 

Filters 
Coefficients 

A-3 A-2 A-1 A0 A1 A2 A3 A4 

1 0 1 -3 63 4 -2 1 0 

2 -1 2 -5 62 8 -3 1 0 

3 -1 3 -8 60 13 -4 1 0 

4 -1 4 -10 58 17 -5 1 0 

5 -1 4 -11 52 26 -8 3 -1 
6 -1 3 -9 47 31 -10 4 -1 
7 -1 4 -11 45 34 -10 4 -1 
8 -1 4 -11 40 40 -11 4 -1 
9 -1 4 -10 34 45 -11 4 -1 

10 -1 4 -10 31 47 -9 3 -1 
11 -1 3 -8 26 52 -11 4 -1 
12 0 1 -5 17 58 -10 4 -1 
13 0 1 -4 13 60 -8 3 -1 
14 0 1 -3 8 62 -5 2 -1 
15 0 1 -2 4 63 -3 1 0 

 

 
Fig. 1. Integer, half and quarter pixels. 

 The total number of addition and shift operations required 
for interpolating all fractional pixels for an 8x8 PU in HEVC 
and VVC are shown in Table III. Since VVC fractional 
interpolation calculates more fractional pixels than HEVC 
fractional interpolation, it has much higher computational 
complexity than HEVC fractional interpolation. 

III. PROPOSED VVC FRACTIONAL INTERPOLATION 

HARDWARE 

The proposed VVC fractional interpolation hardware for 
all PU sizes is shown in Fig. 2. The proposed hardware 
interpolates all fractional pixels for luma component of a PU 
using integer or horizontal half-pixels. The proposed hardware 
interpolates all necessary fractional pixels for an 8x8 PU. For 
larger PU sizes, the PU is divided into 8x8 blocks, and the 
blocks are interpolated separately. For example, a 16x16 PU 
is divided into four 8x8 blocks and each 8x8 block is 
interpolated separately. 

TABLE II. ADDITION AND SHIFT AMOUNTS FOR FI FILTERS 

Filters Addition Shift 

VVC 

1 7 4 
2 9 6 
3 10 7 
4 11 8 
5 14 11
6 13 8 
7 14 11
8 13 10

HEVC 1 11 8 
2 13 10

TABLE III. ADDITION AND SHIFT AMOUNTS FOR 8X8 PU 

 Interpolated Pixels Addition Shift 

VVC 1128 13912 10528 
HEVC 17160 227656 171600 

 
In the proposed hardware, 8x15 fractional pixels are 

interpolated in parallel using 15 different FIR filters in each 
clock cycle. The proposed hardware uses 15 pixels, integer 
pixels or horizontal half-pixels, to interpolate 8x15 fractional 
pixels in each clock cycle. The proposed hardware calculates 
a common offset, as shown in Table IV, for 15 different FIR 
filter equations in order to reduce number of constant 
coefficient multiplications necessary for fractional 
interpolation. Offset values are calculated in Offset datapath 
using input pixels as shown in (2).  

Since common offset value is calculated, each FIR filter 
equation should be calculated using the filter coefficients in 
Table IV. Then, the resulting value should be added with 
common offset value. The F5 filter equation with offset value 
is shown in (3) as an example. Since filters F1 to F7 are 
symmetric of filters F9 to F15, only the coefficients for filters 
F1 to F8 are shown in Table IV for simplicity.  ݐ݁ݏ݂݂ = ሺ−ିܣଷ + 4 ∗ ଶିܣ − 8 ∗ ଵିܣ + 32 ∗ ܣ +32 ∗ ଵܣ − 8 ∗ ଶܣ + 4 ∗ ଷܣ −   ସሻܣ

ହܨ (2) = ሺ−3 ∗ ଵିܣ + 20 ∗ ܣ − 6 ∗ ଵܣ − ଷܣ ሻݐ݁ݏ݂݂+ ≫ 6  (3) 

Each one of 15 input pixels, integer pixel or horizontal 
half-pixel, should be multiplied with multiple constant 
coefficients as explained in [13]. Table V shows constant 
coefficient multiplications necessary for each pixel when FIR 
filter equations are calculated with and without using common 
offset value. In Table V, A-6 to A8 show 15 input pixels for 
filters where sub-indices represent the indices of coefficients. 
As shown in Table V, since constant coefficients of input 
pixels (A-4, A6) and (A-3 … A5) are different, two different 
datapaths, M1 and M2, are used. When common offset value 
is used, number of calculated products in M1 is reduced from 
4 to 2 and number of calculated products in M2 is reduced 
from 12 to 7. M1, M2 and Offset datapaths are shown in Fig. 
3. Pixels A-6, A-5, A7 and A8 are used to calculate common sub-
expressions in different equations. 

Multiplications with constant coefficients are performed 
using adders and shifters in M1 and M2 datapaths. In order to 
reduce number and size of the adders, Hcub MCM algorithm  
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Filter 8
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Filter 12
Filter 13
Filter 14
Filter 15
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Fig. 2. Proposed VVC fractional interpolation hardware. 

TABLE IV. VVC FI FILTER COEFFICIENTS WITH OFFSET 

Filters 
Coefficients 

A-3 A-2 A-1 A0 A1 A2 A3 A4 

Offset -1 4 -8 32 32 -8 4 -1 

1 1 -3 5 31 -28 6 -3 1
2 0 -2 3 30 -24 5 -3 1 
3 0 -1 0 28 -19 4 -3 1 
4 0 0 -2 26 -15 3 -3 1 
5 0 0 -3 20 -6 0 -1 0 
6 0 -1 -1 15 -1 -2 0 0 
7 0 0 -3 13 2 -2 0 0 
8 0 0 -3 8 8 -3 0 0 

TABLE V. CONSTANT COEFFICIENTS 

 Input 
Pixel 

Constant 
Coefficients 

Datapath 
Calculated 
Products 

W
it

ho
ut

 
O

F
F

SE
T

 A-4, A6 1,2,3,4,5,8,9,10,11 M1 3,5,9,11 

A-3 ... A5 

1,2,3,4,5,8,9,10, 
11,13,17,26,31, 
34,40,45,47,52, 

58,60,62,63 

M2 
3,5,9,11,13,1

5,17,29,31, 
45,47,63 

W
it

h 
O

F
F

SE
T

 A-4, A6 1,2,3,4,5,6 M1 3,5 

A-3 … A5 
1,2,3,4,5,6,8,13, 
15,19,20,24,26, 

28,30,31 
M2 

3,5,7,13,15, 
19,31 

 
[12] is used. It minimizes number and size of the adders in a 
multiplier block which multiplies a single input with multiple 
constants using addition and shift operations. M1 datapath 
takes pixel A as input and calculates 3xA and 5xA using adders 
and shifters. M2 datapath takes pixel A as input and calculates 
3xA, 5xA, 7xA, 13xA, 15xA, 19xA and 31xA using adders and 
shifters. Offset datapath calculates eight common offset 
values using adders and shifters. Since 8x15 fractional pixels 
are calculated in parallel, eight common offset values are 
calculated in Offset datapath. One offset value is used for 
calculating 15 fractional pixels. After constant coefficient 
multiplications and common offset calculations are 
performed, fractional pixels are calculated using adder trees.   

 
Fig. 3. M1, M2 and Offset datapaths. 

As shown in Table IV, there are common sub-expressions 
in different equations. The expression (A-3 - 3∗A-2) is common 
for FIR filters 1, 12, 13, 14 and 15. The expression (A4 - 3∗A3) 
is common for FIR filters 1, 2, 3, 4 and 15. These common 
sub-expressions in different equations are calculated once in 
C1 datapath, and the results are used in necessary equations.  

As shown in Fig. 4, 30 block RAMs (BRAM) are used in 
the proposed hardware. 15 BRAMs are used as output 
memories to store fractional pixels. 15 BRAMs are used as a 
transpose memory to store horizontal half-pixels necessary for 
interpolating quarter-pixels. Each BRAM address can store 
eight pixels. Horizontal half-pixels are interpolated in 15 clock 
cycles. In each clock cycle, 8x15 horizontal half-pixels are 
interpolated and each 8 horizontal half-pixels are stored in 15 
different BRAMs as shown in Fig. 4. 

The transpose memory uses a rotating addressing scheme 
and the boxes with the same colors show the horizontal half- 
pixels stored in the same clock cycle. After all horizontal half- 
pixels are stored in the transpose memory in 15 clock cycles,  
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Fig. 4. Proposed transpose memory. 

 

Fig. 5. Implementation of proposed VVC fractional interpolation hardware 
on an FPGA board. 

15 pixels necessary for interpolating quarter-pixels can always 
be read in one clock cycle from 15 different BRAMs. 

Since 255 fractional pixels should be interpolated for each 
integer pixel, 64x255 fractional pixels should be interpolated 
for an 8x8 PU. 8x7x15 extra horizontal half-pixels are 
necessary for interpolating quarter-pixels.  

First, 8x15x15 horizontal half-pixels necessary for 
interpolating quarter-pixels are interpolated in 15 clock 
cycles, and stored in the transpose memory. Then, 8x8x15 
vertical half-pixels are interpolated in 8 clock cycles. Finally, 
8x8x255 quarter-pixels are interpolated in 8x15 clock cycles 
using horizontal half-pixels. There are four pipeline stages in 
the proposed hardware. Therefore, the proposed hardware 
interpolates the fractional pixels for an 8x8 PU in 147 clock 
cycles. 

In this paper, an original VVC fractional interpolation 
hardware is also designed for comparison. This hardware 
implements 15 different FIR filter equations separately.  

The original and proposed VVC fractional interpolation 
hardware for all PU sizes are implemented using Verilog 
HDL. The Verilog RTL codes are verified with RTL 
simulations. RTL simulation results matched the results of a 
software implementation of VVC fractional interpolation 
algorithm. The Verilog RTL codes are synthesized and 
mapped to a Xilinx VC7VX330T-3FFG1157 FPGA using 
Xilinx ISE 14.7. The FPGA implementations are verified with 
post place and route simulations. As shown in Fig. 5, FPGA 
implementations are also verified to work correctly on an 
FPGA board which includes an FPGA, dual-core 
microprocessor, 1 GB DRAM and interfaces such as UART 
and HDMI. 

TABLE VI. IMPLEMENTATION RESULTS 

 Original Proposed 

Tech. 
Virtex 7 
FPGA 

90 nm  
ASIC 

Virtex 7 
FPGA 

90 nm  
ASIC 

Slice/Gate  
Count 

5205 64.2 K 3718 37.6 K 

DFF 6408 --- 3461 --- 

LUT 16334 --- 11599 --- 

Memory 18 KB 18 KB 18 KB 18 KB 

Max. Freq. 
(MHz) 

208 333 200 435 

Frames per 
Second  

42 
1920x1080 

67 
1920x1080 

40 
1920x1080 

88 
1920x1080 

TABLE VII. POWER CONSUMPTION RESULTS 

 Original Proposed 

Video Tennis Kimono Tennis Kimono 

Clock (mW) 52.39 52.39 27.43 27.43 

Signal (mW) 162.02 218.08 144.41 193.96 

Logic (mW) 141.24 194.2 109.63 151.56 

BRAM (mW) 93.88 95.15 93.83 94.98 

Total (mW) 449.53 559.82 375.3 467.93 

Power 
Reduction  

--- --- 16.51 % 16.41 % 

 
FPGA implementation of the original VVC fractional 

interpolation hardware uses 16334 LUTs, 6408 DFFs and 30 
BRAMs. It can work at 208 MHz, and it can process 42 full 
HD (1920x1080) frames per second. FPGA implementation 
of the proposed VVC fractional interpolation hardware uses 
11599 LUTs, 3461 DFFs and 30 BRAMs. It can work at 200 
MHz, and it can process 40 full HD frames per second. 

Verilog RTL codes of the original and proposed VVC 
fractional interpolation hardware are also synthesized to 
TSMC 90 nm standard cell library, and the resulting netlists 
are placed and routed. ASIC implementations of the original 
and proposed hardware use 64.2K and 37.6K gates, 
respectively, based on NAND (2x1) gate area excluding on-
chip memory. ASIC implementations of the original and 
proposed hardware can work at 333 and 435 MHz, 
respectively, and they can process 67 and 88 full HD frames 
per second, respectively. The implementation results are 
shown in Table VI. 

Power consumptions of the original and proposed 
hardware are estimated using Xilinx XPower Analyzer tool. 
Post place and route timing simulations are performed for 
Tennis and Kimono (1920x1080) video frames at 100 MHz 
[16].  The signal activities of timing simulations are stored in 
VCD files, and they are used for estimating the power 
consumptions of FPGA implementations. The power 
consumption results for one frame of each video are shown in 
Table VII. The proposed VVC fractional interpolation 
hardware has up to 17% less power consumption than original 
VVC fractional interpolation hardware. 
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TABLE VIII. HARDWARE COMPARISON 

 [13] [14] [15] Proposed 

Tech. 90 nm 150 nm 90 nm 90 nm  

Gate  
Count 

28.5 K 16.6 K 224 K 37.6 K 

Memory --- 1.2 KB --- 18 KB 

Max. Freq. 
(MHz) 

200 312 333 435 

Frames per 
Second  

30 
3840x2160 

30 
3840x2160 

30 
1920x1080 

88 
1920x1080 

Standard HEVC HEVC HEVC VVC 

 
Comparison of the proposed VVC fractional interpolation 

hardware with HEVC fractional interpolation hardware in the 
literature is shown in Table VIII. Since VVC fractional 
interpolation has much higher computational complexity than 
HEVC fractional interpolation, the proposed hardware has 
larger area and lower performance than HEVC fractional 
interpolation hardware.  

IV. CONCLUSION 

In this paper, a low power VVC fractional interpolation 
hardware for all PU sizes is proposed. It is the first VVC 
fractional interpolation hardware in the literature. The 
proposed VVC fractional interpolation hardware can process 
40 full HD (1920x1080) frames per second on a Xilinx Virtex 
7 FPGA. It has up to 17% less power consumption than 
original VVC fractional interpolation hardware on the same 
FPGA. 
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