
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Low Power Versatile Video Coding (VVC)
Fractional Interpolation Hardware

Ahmet Can Mert, Ercan Kalali, Ilker Hamzaoglu
Faculty of Engineering and Natural Sciences

Sabanci University
Istanbul, Turkey

{ahmetcanmert, ercankalali, hamzaoglu}@sabanciuniv.edu

Abstract—Fractional interpolation in Versatile Video
Coding (VVC) standard has much higher computational
complexity than fractional interpolation in previous video
compression standards. In this paper, a low power VVC
fractional interpolation hardware is designed and implemented
using Verilog HDL. The proposed hardware is the first VVC
fractional interpolation hardware in the literature. It
interpolates necessary fractional pixels for 1/16 pixel accuracy
for all prediction unit sizes. The proposed VVC fractional
interpolation hardware, in the worst case, can process 40 full
HD (1920x1080) frames per second. It has up to 17% less power
consumption than original VVC fractional interpolation
hardware.

Keywords—VVC, Fractional Interpolation, Hardware
Implementation, FPGA, Low Power

I. INTRODUCTION

ITU and ISO are developing a new international video
compression standard called Versatile Video Coding (VVC)
[1]-[6]. VVC will have higher compression efficiency than
High Efficiency Video Coding (HEVC) standard at the
expense of much higher computational complexity [7]-[11].

HEVC standard uses 3 different 8-tap FIR filters for
fractional interpolations (FI) and provides 1/4 fractional pixel
accuracy. However, VVC standard uses 15 different 8-tap FIR
filters for fractional interpolations and provides 1/16 fractional
pixel accuracy. Therefore, VVC fractional interpolation has
much higher computational complexity than HEVC fractional
interpolation.

In this paper, a low power VVC fractional interpolation
hardware for all prediction unit (PU) sizes is proposed. The
proposed hardware interpolates all necessary fractional pixels
for an 8x8 PU. For larger PU sizes, the PU is divided into 8x8
blocks, and the blocks are interpolated separately.

The proposed hardware calculates a common offset for 15
different FIR filter equations using the same input pixels in
order to reduce number of constant coefficient
multiplications necessary for fractional interpolation. It also
calculates common sub-expressions in different FIR filter
equations once and uses the results in necessary equations.
Hcub multiplierless constant multiplication (MCM)
algorithm [12] is also used in the proposed hardware in order
to reduce number and size of the adders.

The proposed VVC fractional interpolation hardware is
implemented in Verilog HDL. The Verilog RTL code is
verified to work at 200 MHz in a Xilinx Virtex 7 FPGA. The
proposed VVC fractional interpolation hardware, in the worst
case, can process 40 full HD (1920x1080) frames per second.
It has up to 17% less power consumption than original VVC
fractional interpolation hardware.

The proposed hardware is the first VVC fractional
interpolation hardware in the literature. Several HEVC
fractional interpolation hardware implementations are
proposed in the literature [13]-[15]. In [13], common sub-
expressions in FIR filters are calculated once and used in all
equations. It also uses Hcub MCM algorithm to implement
constant multiplications. The implementation in [14] uses
coarse-grained reconfigurable datapaths to implement filter
equations. A high-throughput FI hardware is proposed for
HEVC encoder in [15]. In Section III, VVC fractional
interpolation hardware proposed in this paper is compared
with them.

The rest of the paper is organized as follows. In Section II,
VVC fractional interpolation algorithm is explained. In
Section III, the proposed low power VVC fractional
interpolation hardware is presented, and its implementation
results are given. Finally, Section IV presents the conclusions.

II. VVC FRACTIONAL INTERPOLATION ALGORITHM

VVC standard uses 15 different 8-tap FIR filters for
fractional pixel interpolations. The coefficients of these 15
FIR filters are shown in Table I. A-3 – A4 show input pixels
for a filter where sub-indices represent the indices of
coefficients. The F5 8-tap FIR filter equation is shown in (1)
as an example. ܨହ = ሺ−ିܣଷ + 4 ∗ ଶିܣ − 11 ∗ ଵିܣ + 52 ∗ ܣ +26 ∗ ଵܣ − 8 ∗ ଶܣ + 3 ∗ ଷܣ − ସሻܣ ≫ 6 (1)

Integer pixels, fractional pixels and FIR filters used to
interpolate these fractional pixels are shown in Fig. 1. There
are 255 fractional (half and quarter) pixels for one integer
pixel. There are 15 half-pixels between two neighboring
horizontal integer pixels called horizontal half-pixels. There
are 15 half-pixels between two neighboring vertical integer
pixels called vertical half-pixels. These 15 horizontal and 15
vertical half-pixels are interpolated from nearest integer
pixels in horizontal and vertical directions, respectively,
using 15 different 8-tap FIR filters. There are 15x15=225
quarter-pixels between 15 horizontal and 15 vertical half-
pixels. These quarter-pixels are interpolated from nearest
horizontal half-pixels using 15 different 8-tap FIR filters.

 Table II shows the number of addition and shift operations
required for interpolating fractional pixels by using the filters F1 to F8. Since the filters F9 to F15 are symmetric of the filters F1 to F7, the number of addition and shift operations required
for F9 to F15 are the same as F1 to F7. The number of addition
and shift operations required for interpolating fractional pixels
in HEVC by using F1 and F2 are also shown in Table II. Since F3 is symmetric of F1, the number of addition and shift
operations required for F3 are the same as F1. The number of
addition and shift operations shows that VVC FI has much
higher computational complexity than HEVC FI.

978-1-5386-8237-1/18/$31.00 c©2018 IEEE
43

TABLE I. VVC FI FILTER COEFFICIENTS

Filters
Coefficients

A-3 A-2 A-1 A0 A1 A2 A3 A4

1 0 1 -3 63 4 -2 1 0

2 -1 2 -5 62 8 -3 1 0

3 -1 3 -8 60 13 -4 1 0

4 -1 4 -10 58 17 -5 1 0

5 -1 4 -11 52 26 -8 3 -1
6 -1 3 -9 47 31 -10 4 -1
7 -1 4 -11 45 34 -10 4 -1
8 -1 4 -11 40 40 -11 4 -1
9 -1 4 -10 34 45 -11 4 -1

10 -1 4 -10 31 47 -9 3 -1
11 -1 3 -8 26 52 -11 4 -1
12 0 1 -5 17 58 -10 4 -1
13 0 1 -4 13 60 -8 3 -1
14 0 1 -3 8 62 -5 2 -1
15 0 1 -2 4 63 -3 1 0

Fig. 1. Integer, half and quarter pixels.

 The total number of addition and shift operations required
for interpolating all fractional pixels for an 8x8 PU in HEVC
and VVC are shown in Table III. Since VVC fractional
interpolation calculates more fractional pixels than HEVC
fractional interpolation, it has much higher computational
complexity than HEVC fractional interpolation.

III. PROPOSED VVC FRACTIONAL INTERPOLATION

HARDWARE

The proposed VVC fractional interpolation hardware for
all PU sizes is shown in Fig. 2. The proposed hardware
interpolates all fractional pixels for luma component of a PU
using integer or horizontal half-pixels. The proposed hardware
interpolates all necessary fractional pixels for an 8x8 PU. For
larger PU sizes, the PU is divided into 8x8 blocks, and the
blocks are interpolated separately. For example, a 16x16 PU
is divided into four 8x8 blocks and each 8x8 block is
interpolated separately.

TABLE II. ADDITION AND SHIFT AMOUNTS FOR FI FILTERS

Filters Addition Shift

VVC

1 7 4
2 9 6
3 10 7
4 11 8
5 14 11
6 13 8
7 14 11
8 13 10

HEVC 1 11 8
2 13 10

TABLE III. ADDITION AND SHIFT AMOUNTS FOR 8X8 PU

 Interpolated Pixels Addition Shift

VVC 1128 13912 10528
HEVC 17160 227656 171600

In the proposed hardware, 8x15 fractional pixels are

interpolated in parallel using 15 different FIR filters in each
clock cycle. The proposed hardware uses 15 pixels, integer
pixels or horizontal half-pixels, to interpolate 8x15 fractional
pixels in each clock cycle. The proposed hardware calculates
a common offset, as shown in Table IV, for 15 different FIR
filter equations in order to reduce number of constant
coefficient multiplications necessary for fractional
interpolation. Offset values are calculated in Offset datapath
using input pixels as shown in (2).

Since common offset value is calculated, each FIR filter
equation should be calculated using the filter coefficients in
Table IV. Then, the resulting value should be added with
common offset value. The F5 filter equation with offset value
is shown in (3) as an example. Since filters F1 to F7 are
symmetric of filters F9 to F15, only the coefficients for filters
F1 to F8 are shown in Table IV for simplicity. ݐ݁ݏ݂݂ = ሺ−ିܣଷ + 4 ∗ ଶିܣ − 8 ∗ ଵିܣ + 32 ∗ ܣ +32 ∗ ଵܣ − 8 ∗ ଶܣ + 4 ∗ ଷܣ − ସሻܣ

ହܨ (2) = ሺ−3 ∗ ଵିܣ + 20 ∗ ܣ − 6 ∗ ଵܣ − ଷܣ ሻݐ݁ݏ݂݂+ ≫ 6 (3)

Each one of 15 input pixels, integer pixel or horizontal
half-pixel, should be multiplied with multiple constant
coefficients as explained in [13]. Table V shows constant
coefficient multiplications necessary for each pixel when FIR
filter equations are calculated with and without using common
offset value. In Table V, A-6 to A8 show 15 input pixels for
filters where sub-indices represent the indices of coefficients.
As shown in Table V, since constant coefficients of input
pixels (A-4, A6) and (A-3 … A5) are different, two different
datapaths, M1 and M2, are used. When common offset value
is used, number of calculated products in M1 is reduced from
4 to 2 and number of calculated products in M2 is reduced
from 12 to 7. M1, M2 and Offset datapaths are shown in Fig.
3. Pixels A-6, A-5, A7 and A8 are used to calculate common sub-
expressions in different equations.

Multiplications with constant coefficients are performed
using adders and shifters in M1 and M2 datapaths. In order to
reduce number and size of the adders, Hcub MCM algorithm

Filter 1
Filter 2
Filter 3
Filter 4
Filter 5
Filter 6
Filter 7
Filter 8
Filter 9
Filter 10
Filter 11
Filter 12
Filter 13
Filter 14
Filter 15

Integer Pixel Quarter PixelHorizontal Half Pixel Vertical Half Pixel

44

Fig. 2. Proposed VVC fractional interpolation hardware.

TABLE IV. VVC FI FILTER COEFFICIENTS WITH OFFSET

Filters
Coefficients

A-3 A-2 A-1 A0 A1 A2 A3 A4

Offset -1 4 -8 32 32 -8 4 -1

1 1 -3 5 31 -28 6 -3 1
2 0 -2 3 30 -24 5 -3 1
3 0 -1 0 28 -19 4 -3 1
4 0 0 -2 26 -15 3 -3 1
5 0 0 -3 20 -6 0 -1 0
6 0 -1 -1 15 -1 -2 0 0
7 0 0 -3 13 2 -2 0 0
8 0 0 -3 8 8 -3 0 0

TABLE V. CONSTANT COEFFICIENTS

 Input
Pixel

Constant
Coefficients

Datapath
Calculated
Products

W
it

ho
ut

O

F
F

SE
T

 A-4, A6 1,2,3,4,5,8,9,10,11 M1 3,5,9,11

A-3 ... A5

1,2,3,4,5,8,9,10,
11,13,17,26,31,
34,40,45,47,52,

58,60,62,63

M2
3,5,9,11,13,1

5,17,29,31,
45,47,63

W
it

h
O

F
F

SE
T

 A-4, A6 1,2,3,4,5,6 M1 3,5

A-3 … A5
1,2,3,4,5,6,8,13,
15,19,20,24,26,

28,30,31
M2

3,5,7,13,15,
19,31

[12] is used. It minimizes number and size of the adders in a
multiplier block which multiplies a single input with multiple
constants using addition and shift operations. M1 datapath
takes pixel A as input and calculates 3xA and 5xA using adders
and shifters. M2 datapath takes pixel A as input and calculates
3xA, 5xA, 7xA, 13xA, 15xA, 19xA and 31xA using adders and
shifters. Offset datapath calculates eight common offset
values using adders and shifters. Since 8x15 fractional pixels
are calculated in parallel, eight common offset values are
calculated in Offset datapath. One offset value is used for
calculating 15 fractional pixels. After constant coefficient
multiplications and common offset calculations are
performed, fractional pixels are calculated using adder trees.

Fig. 3. M1, M2 and Offset datapaths.

As shown in Table IV, there are common sub-expressions
in different equations. The expression (A-3 - 3∗A-2) is common
for FIR filters 1, 12, 13, 14 and 15. The expression (A4 - 3∗A3)
is common for FIR filters 1, 2, 3, 4 and 15. These common
sub-expressions in different equations are calculated once in
C1 datapath, and the results are used in necessary equations.

As shown in Fig. 4, 30 block RAMs (BRAM) are used in
the proposed hardware. 15 BRAMs are used as output
memories to store fractional pixels. 15 BRAMs are used as a
transpose memory to store horizontal half-pixels necessary for
interpolating quarter-pixels. Each BRAM address can store
eight pixels. Horizontal half-pixels are interpolated in 15 clock
cycles. In each clock cycle, 8x15 horizontal half-pixels are
interpolated and each 8 horizontal half-pixels are stored in 15
different BRAMs as shown in Fig. 4.

The transpose memory uses a rotating addressing scheme
and the boxes with the same colors show the horizontal half-
pixels stored in the same clock cycle. After all horizontal half-
pixels are stored in the transpose memory in 15 clock cycles,

TR
MEM

#1

TR
MEM

#2

TR
MEM

#3

TR
MEM

#4

TR
MEM

#5

TR
MEM

#6

TR
MEM

#7

TR
MEM

#9

TR
MEM
#10

TR
MEM
#11

TR
MEM
#12

TR
MEM
#13

TR
MEM
#14

TR
MEM
#15

TR
MEM

#8

M2 M2M1 M2 M2 M2 M2 M2 M2 M2 M1

Splitter #1

C1 Offset

Integer Pixels
Registers

OUT
MEM

#1

OUT
MEM

#2

OUT
MEM

#3

OUT
MEM

#4

OUT
MEM

#5

OUT
MEM

#6

OUT
MEM

#7

OUT
MEM

#8

OUT
MEM

#9

OUT
MEM
#10

OUT
MEM
#11

OUT
MEM
#12

OUT
MEM
#13

OUT
MEM
#14

OUT
MEM
#15

Adder
Tree #1

Adder
 Tree #2

Adder
Tree #3

Adder
Tree #4

Adder
Tree #5

Adder
Tree #6

Adder
Tree #7

Adder
Tree #8

Splitter #2

Sp
lit

te
r

#3

OffsetM1

3

Ax

-
<<2

5
+

M2

<<2

+
3

Ax

<<2<<4

-
-

13

<<4

19
+

5

<<3

-
7

<<5

-
31

-

15

+

+

A11-x A10-x

+

A14-x A7-x

+

A13-x A8-x

-
<<2

+

A12-x A9-x

-
<<5 <<3

Offset_Out
x = 0...7

45

Fig. 4. Proposed transpose memory.

Fig. 5. Implementation of proposed VVC fractional interpolation hardware
on an FPGA board.

15 pixels necessary for interpolating quarter-pixels can always
be read in one clock cycle from 15 different BRAMs.

Since 255 fractional pixels should be interpolated for each
integer pixel, 64x255 fractional pixels should be interpolated
for an 8x8 PU. 8x7x15 extra horizontal half-pixels are
necessary for interpolating quarter-pixels.

First, 8x15x15 horizontal half-pixels necessary for
interpolating quarter-pixels are interpolated in 15 clock
cycles, and stored in the transpose memory. Then, 8x8x15
vertical half-pixels are interpolated in 8 clock cycles. Finally,
8x8x255 quarter-pixels are interpolated in 8x15 clock cycles
using horizontal half-pixels. There are four pipeline stages in
the proposed hardware. Therefore, the proposed hardware
interpolates the fractional pixels for an 8x8 PU in 147 clock
cycles.

In this paper, an original VVC fractional interpolation
hardware is also designed for comparison. This hardware
implements 15 different FIR filter equations separately.

The original and proposed VVC fractional interpolation
hardware for all PU sizes are implemented using Verilog
HDL. The Verilog RTL codes are verified with RTL
simulations. RTL simulation results matched the results of a
software implementation of VVC fractional interpolation
algorithm. The Verilog RTL codes are synthesized and
mapped to a Xilinx VC7VX330T-3FFG1157 FPGA using
Xilinx ISE 14.7. The FPGA implementations are verified with
post place and route simulations. As shown in Fig. 5, FPGA
implementations are also verified to work correctly on an
FPGA board which includes an FPGA, dual-core
microprocessor, 1 GB DRAM and interfaces such as UART
and HDMI.

TABLE VI. IMPLEMENTATION RESULTS

 Original Proposed

Tech.
Virtex 7
FPGA

90 nm
ASIC

Virtex 7
FPGA

90 nm
ASIC

Slice/Gate
Count

5205 64.2 K 3718 37.6 K

DFF 6408 --- 3461 ---

LUT 16334 --- 11599 ---

Memory 18 KB 18 KB 18 KB 18 KB

Max. Freq.
(MHz)

208 333 200 435

Frames per
Second

42
1920x1080

67
1920x1080

40
1920x1080

88
1920x1080

TABLE VII. POWER CONSUMPTION RESULTS

 Original Proposed

Video Tennis Kimono Tennis Kimono

Clock (mW) 52.39 52.39 27.43 27.43

Signal (mW) 162.02 218.08 144.41 193.96

Logic (mW) 141.24 194.2 109.63 151.56

BRAM (mW) 93.88 95.15 93.83 94.98

Total (mW) 449.53 559.82 375.3 467.93

Power
Reduction

--- --- 16.51 % 16.41 %

FPGA implementation of the original VVC fractional

interpolation hardware uses 16334 LUTs, 6408 DFFs and 30
BRAMs. It can work at 208 MHz, and it can process 42 full
HD (1920x1080) frames per second. FPGA implementation
of the proposed VVC fractional interpolation hardware uses
11599 LUTs, 3461 DFFs and 30 BRAMs. It can work at 200
MHz, and it can process 40 full HD frames per second.

Verilog RTL codes of the original and proposed VVC
fractional interpolation hardware are also synthesized to
TSMC 90 nm standard cell library, and the resulting netlists
are placed and routed. ASIC implementations of the original
and proposed hardware use 64.2K and 37.6K gates,
respectively, based on NAND (2x1) gate area excluding on-
chip memory. ASIC implementations of the original and
proposed hardware can work at 333 and 435 MHz,
respectively, and they can process 67 and 88 full HD frames
per second, respectively. The implementation results are
shown in Table VI.

Power consumptions of the original and proposed
hardware are estimated using Xilinx XPower Analyzer tool.
Post place and route timing simulations are performed for
Tennis and Kimono (1920x1080) video frames at 100 MHz
[16]. The signal activities of timing simulations are stored in
VCD files, and they are used for estimating the power
consumptions of FPGA implementations. The power
consumption results for one frame of each video are shown in
Table VII. The proposed VVC fractional interpolation
hardware has up to 17% less power consumption than original
VVC fractional interpolation hardware.

MICROPROCESSOR

D
D

R
3

FPGA

SD
Card

HDMI
Display

HIGH SPEED BUS

46

TABLE VIII. HARDWARE COMPARISON

 [13] [14] [15] Proposed

Tech. 90 nm 150 nm 90 nm 90 nm

Gate
Count

28.5 K 16.6 K 224 K 37.6 K

Memory --- 1.2 KB --- 18 KB

Max. Freq.
(MHz)

200 312 333 435

Frames per
Second

30
3840x2160

30
3840x2160

30
1920x1080

88
1920x1080

Standard HEVC HEVC HEVC VVC

Comparison of the proposed VVC fractional interpolation

hardware with HEVC fractional interpolation hardware in the
literature is shown in Table VIII. Since VVC fractional
interpolation has much higher computational complexity than
HEVC fractional interpolation, the proposed hardware has
larger area and lower performance than HEVC fractional
interpolation hardware.

IV. CONCLUSION

In this paper, a low power VVC fractional interpolation
hardware for all PU sizes is proposed. It is the first VVC
fractional interpolation hardware in the literature. The
proposed VVC fractional interpolation hardware can process
40 full HD (1920x1080) frames per second on a Xilinx Virtex
7 FPGA. It has up to 17% less power consumption than
original VVC fractional interpolation hardware on the same
FPGA.

REFERENCES
[1] J. Chen, Y. Chen, M. Karczewiz, X. Li, H. Liu, L. Zhang, and X. Zhao,

“Coding tools investigation for next generation video coding,” ITU-T
SG16 COM16-C806, Feb. 2015.

[2] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, and J. Boyce, “Algorithm
Description of Joint Exploration Model 7,” JVET-G1001, July 2017.

[3] H. Azgin, A. C. Mert, E. Kalali, and I. Hamzaoglu, “Reconfigurable
intra prediction hardware for future video coding,” IEEE Trans. on
Consumer Electronics, vol. 63, no. 4., pp. 419-425, Nov. 2017.

[4] A. C. Mert, E. Kalali, and I. Hamzaoglu, “High performance 2D
transform hardware for future video coding,” IEEE Trans. on
Consumer Electronics, vol. 63, no. 2., pp. 117-125, May. 2017.

[5] A. C. Mert, E. Kalali, and I. Hamzaoglu, “An FPGA implementation
of future video coding 2D transform,” IEEE Int. Conf. on Consumer
Electronics – Berlin (ICCE-Berlin), pp. 31-36, Sep. 2017.

[6] M. J. Garrido, F. Pescador, M. Chavarrias, P. J. Lobo, and C. Sanz, “A
high performance FPGA-based architecture for the future video coding
adaptive multiple core transform,” IEEE Trans. on Consumer
Electronics, vol. 64, no. 1., pp. 53-60, Feb. 2018.

[7] J. Vanne, M. Viitanen, T.D. Hämäläinen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1885-1898, Dec. 2012.

[8] E. Kalali, Y. Adibelli, and I. Hamzaoglu, “A high performance and low
energy intra prediction hardware for high efficiency video coding,” Int.
Conf. on Field Programmable Logic and Applications (FPL), pp. 719-
722, Aug. 2012.

[9] E. Kalali, E. Ozcan, O. M. Yalcinkaya, and I. Hamzaoglu, “A low
energy HEVC inverse transform,” IEEE Trans. on Consumer
Electronics, vol. 60, no. 4, pp. 754-761, Nov. 2014.

[10] E. Kalali, A. C. Mert, and I Hamzaoglu, “A computation and energy
reduction technique for HEVC discrete cosine transform,” IEEE Trans.
on Consumer Electronics, vol. 62, no. 2, pp. 166-174, May 2016.

[11] B. Stabernack, J. Möller, J. Hahlbeck, and J. Brandenburg,
“Demonstrating and FPGA implementation of a full HD real-time
HEVC decoder with memory optimizations for range extensions
support,” Int. Conference on Design and Architectures for Signal and
Image Processing (DASIP), Sep. 2015.

[12] Y. Voronenko and M. Püschel, “Multiplierless constant
multiplication,” ACM Trans. on Algorithms, vol. 3, no. 2, May. 2007.

[13] E. Kalali and I. Hamzaoglu, “A low energy HEVC sub-pixel
interpolation hardware,” IEEE Int. Conference on Image Processing
(ICIP), pp. 1218-1222, Oct.2014.

[14] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “High throughput
interpolation hardware architecture with coarse-grained reconfigurable
datapaths for HEVC,” IEEE Int. Conference on Image Processing
(ICIP), pp. 2091-2095, Sep. 2013.

[15] G. Pastuszak and M. Trochimiuk, “Architecture design and efficiency
evaluation for the high-throughput interpolation in the HEVC
encoder,” Euromicro Int. Conference on Digital System Design, Sep.
2013.

[16] F. Bossen, “Common test conditions and software reference
configurations,” JCTVC-I1100, May 2012.

47

