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      Abstract   

Deregulated electricity markets allow competition over the electricity price among the power 

companies. However, in an oligopolistic environment, the strategic behavior of the power 

companies in the electricity market may lead to collusive opportunities.  The independent 

system operator (ISO) is an authorized entity which is responsible for administrating the 

electricity market. Therefore, ISO shall be able to detect and avoid collusive opportunities 

among generators. In this study, we propose a metaheuristics approach to assist ISO in the 

decision-making process to prevent collusions. We develop a method, based on principles of 

genetic algorithm to detect the collusive opportunities in deregulated electricity markets. We 

test our algorithm on three problems of varying size. Our results are promising in terms of both 

speed and accuracy. For the large-scale problem, our algorithm works much faster than the 

existing alternatives in the literature.  
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gizli anlaşma olasılıkları, bağımsız sistem yöneticisi      

      Özet   

Serbestleşmiş elektrik piyasaları, elektrik şirketleri arasındaki elektrik fiyatı rekabetine olanak 

sağlar. Ancak, az sayıda elektrik şirketinden oluşan bir piyasada, şirketlerin stratejik 

yaklaşımları gizli anlaşmalara yol açabilir. Bağımsız bir sistem işletmecisi, elektrik piyasasını 

idare etmekten sorumlu yetkili bir kuruluştur. Bu nedenle, elektrik şirketleri arasında 

oluşabilecek gizli anlaşmaları tespit edip önleyebilecek niteliğe sahip olmalıdır. Bu çalışmada, 

gizli anlaşmaların önlenmesi için karar alma sürecinde bağımsız sistem işletmecisine yardımcı 

olacak meta-sezgisel bir yaklaşım öneriyoruz. Oluşturduğumuz meta-sezgisel yöntem, genetik 

algoritma prensiplerine dayanmaktadır. Algoritmamızı değişken büyüklükteki üç örnek 

problem üzerinde test ediyoruz. Sonuçlarımız, hem hız hem de doğruluk açısından umut 

vericidir. Büyük ölçekli bir problem karşısında, algoritmamız literatürdeki mevcut 

alternatifinden çok daha hızlı çalışmaktadır.  
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Chapter 1 

1. Introduction 

The electricity price is one of the major concerns of every individual and organization on a 

daily basis. Electricity consumers expect fair and stabilized electricity prices to manage their 

electricity consumption according to their economic incentives. To meet these expectations of 

electricity consumers, the proper electricity pricing is crucial. The electricity pricing 

(sometimes referred to as electricity tariff) is the process of determining the electricity price. 

The electricity price is determined in a system called the electricity market. The electricity 

market enables the trading of electricity purchases through bids to buy and sales through offers 

to sell. The power companies compete in the electricity market to obtain market share to make 

profits. On the other hand, governments play role in the regulation of the electricity market. 

The electricity markets are divided into two sections in terms of regulation: (i) regulated 

electricity markets and (ii) deregulated electricity markets. Regulated electricity markets 

contain a utility company that establishes a monopoly with complete control over the market. 

The utility company that owns the regulated electricity market, have the right to set electricity 

prices for consumers. The consumers have no other option to choose and they need to abide by 

the designated electricity prices. 

Deregulated electricity markets, however, allows competition over the electricity price which 

benefits consumers by allowing them to compare prices of each power company. Power 

companies compete to obtain partial or complete control over the deregulated electricity market 

with an auction mechanism. In the auction, each company declares their power generation 

capacity and also bid a unit price for the electricity production.  

The decision maker of the auction mechanism is the Independent System Operator (ISO). ISO 

is an organization that maximizes the social welfare through the electricity markets. In 

electricity pricing auction, ISO solves a decision-making problem to allocate a share of the 
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market demand to each company based on bid-offers and the production capacities. According 

to obtained results from the decision-making problem, ISO distributes the market share of each 

power company. The process of solving the decision-making problem and the distribution of 

the market share is called the market clearing process.  

The strategic behavior of the power companies in auctions of the deregulated electricity market 

may lead to collusion opportunities. The collusion among power companies can be defined as 

explicit or implicit (tacit) non-competitive agreement to increase the bids to obtain higher 

market shares and also to increase prices. Sweeting (2007) showed that power companies might 

be engaged in tacit collusion in the UK. Similarly, Fabra and Toro (2005) studied on collusion 

in the Spanish electricity market and showed the collusive situations may exist. 

If there exists some type of collusion in the market, the ISO should be able to identify. 

However, this task is not easy hence the effect of the collusion is hard to recognize without 

knowing any previous agreements among the power companies.  

Aliabadi et al. (2016) showed that identification of collusion in the deregulated electricity 

market can be achieved when sufficient conditions exist. In order to identify the collusion 

opportunities, they proposed an algorithm based on a mathematical programming problem 

formulation of the market clearing process and the behavior of the power companies. However, 

the proposed algorithm is not computationally efficient to obtain exact solutions. Therefore, 

we attempted to attack this problem to find better alternatives to obtain solutions faster. 

Contribution of thesis study can be summarized as follows: 

• We develop an algorithm to show that the collusive behavior of power producers can 

be identified with a metaheuristic approach. 

• We compare our algorithm with the existing exact algorithm in the literature in terms 

of accuracy and speed. 

• We work with three different problems to measure the performance of the algorithm. 
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The remainder of the thesis is organized as follows: Chapter 2 presents the problem 

environment with a literature review, problem definition, and related mathematical notation, 

respectively. In Chapter 3, we explain our metaheuristic approach. We present our case studies 

and computational results in Chapter 4. Finally, in Chapter 5, we conclude the thesis with 

ultimate remarks and future research directions.  
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Chapter 2 

2. Problem Environment 

In this chapter, the problem environment is discussed. First, we present a literature review on 

collusive opportunities in the deregulated electricity markets. Next, we discuss our problem 

definition and our notation. Finally, we present the mathematical model in Aliabadi et al. 

(2016). 

2.1. Literature Review 

Collusion opportunities in the deregulated electricity markets have not been studied broadly in 

the literature. However, studies regarding the strategic behavior of the power companies may 

give insights about collusion opportunities. For example, such strategic behaviors are explained 

through Conjectural Variation models in Song (2004), Ruiz (2010), and Ruiz (2012).  As an 

alternative to these models, Wang (2009) and Botterud (2007) utilized simulation models to 

study strategic behaviors of the power companies in electricity markets. 

In recent years, with the enlightenment of studies conducted on behaviors of the power 

companies, researchers have developed mechanisms to detect and prevent collusion 

opportunities in the deregulated electricity markets. Liu and Hobbs (2013) are the first 

researchers who studied modeling tacit collusion in a repeated game setting.  

Aliabadi et al. (2016) presented an analytical model to determine collusion opportunities in 

deregulated electricity markets. To the best of our knowledge, this is the first study regarding 

the collusion opportunity detection in deregulated electricity markets. We discuss this work 

later in more detail. 

2.2. Problem Definition and Notation 

We consider that the ISO runs a day-ahead market for each hour of the next day. ISO regulates 

the transmission grid under a settlement system based on an auction mechanism. This auction 

mechanism is utilized to manage the deregulated electricity market. For each hour of the day-
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ahead market, power company-𝑖 offers its bid price (𝑏𝑖) and available production capacity to 

the ISO. The bid-offer options for each company vary between the upper and the lower bound 

on the electricity selling price to the market. Lower bound must be bigger than the production 

cost to make a profit. On the other hand, the upper bound must be reasonable to stay in the 

competition for the market share. For simplicity, we assume a single bid price for a company 

and neglect the flexible or block bid prices. Then ISO solves a decision-making problem for 

each hour of the day-ahead market to clear the market bids while maximizing the social welfare. 

The solution for market clearing process determines the power injected by each GenCo (𝑃𝑖), 

the voltage-angle (θ𝑖), and the unit price of electricity on each node of the network. The unit 

price at each node is known as locational marginal price (𝐿𝑀𝑃𝑖). 

The interconnected network for delivering the electricity from power companies to electricity 

consumers is called electricity grid. The electricity grid consists of many power companies 

connected to each other by transmission lines. For modelling purposes, the transmission grid 

is represented as a network.  

Figure 1 shows a graphical network representation of an example that we use in our 

experiments. Each node in the graph represents a power company with a maximum power 

generation level (𝑃𝑖
𝑚𝑎𝑥) and a demand center with required power injection level (𝐷𝑖).  The 

transmission line between two nodes, 𝑖 and 𝑗, could afford to transmit only up to a certain level 

of electricity (𝐹𝑖𝑗
𝑚𝑎𝑥).  
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Figure 1. Graphical representation of the transmission network. 

 

2.3. Mathematical Model of Market Clearing Process 

The mathematical model of our study is primarily based on electricity market clearing process. 

Alternating Current Optimal Power Flow (AC-OPF) problem and Direct Current Optimal 

Power Flow (DC-OPF) problem are the acknowledged formulation approaches that can be 

utilized for the market clearing process.  

AC-OPF problem is a non-convex mixed integer linear problem that is based on minimizing 

the total variable generation costs. AC-OPF problems are generally approximated by the DC-

OPF formulation in a linearized form. Hence DC-OPF is more tractable, we conducted our 

experiments with the DC-OPF formulation so that our collusion detection approach is also 

tractable. The DC-OPF problem formulation can be given as follows: 

Minimize Pi, θi 𝑧 = ∑ 𝑏𝑖𝑃𝑖 ,

𝑖

  (1) 

subject to 𝑃𝑖 –  𝐷𝑖 =  ∑ 𝑦𝑖𝑗

𝑖𝑗 ∈𝐵𝑅

(θ𝑖 − θ𝑗) (LMP𝑖)∀𝑖 (2) 

 𝑃𝑖 ≤ 𝑃𝑖
𝑚𝑎𝑥 (∅𝑖

ℎ𝑖𝑔ℎ
) ∀𝑖 (3) 
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 𝑃𝑖 ≥ 0 (∅𝑖
𝑙𝑜𝑤) ∀𝑖 (4) 

 |𝑦𝑖𝑗 (θ𝑖 − θ𝑗)| ≤ 𝐹𝑖𝑗
𝑚𝑎𝑥 ∀𝑖𝑗 ∈ 𝐵𝑅 (5) 

 𝜃1 = 0  (6) 

where decision variables are 𝑃𝑖   denoting power injection level and θ𝑖 denoting voltage angle. 

The parameters 𝐷𝑖, 𝑃𝑖
𝑚𝑎𝑥, and 𝐹𝑖𝑗

𝑚𝑎𝑥 are already defined in Section 2.2. The set of all available 

distinct transmission lines is denoted by 𝐵𝑅 while the susceptance of the line between node 𝑖 

and node 𝑗 is shown as 𝑦𝑖𝑗. 

In the mathematical formulation (1)-(6), the objective function in (1) minimizes the total cost 

of produced electricity for all power companies. Constraint (2) is the flow balance constraint 

which ensures the transmission of the excessive generated power in a node towards the other 

connected nodes. Constraint (3) limits the power injection level up to the capacity of the 

corresponding power producer at each node. Constraint (4) ensures that the amount of the 

power production should be nonnegative. Constraint (5) restricts the power transmission on 

each transmission line with a certain level of electricity. Constraint (6) sets the voltage angle 

at the first node arbitrarily as 0 to serve as an angular reference for the remaining nodes. 

According to an optimal solution of the model in (1)-(6), the profits of power companies (𝑟𝑖) 

are calculated as 

  𝑟𝑖 = 𝑃𝑖(𝐿𝑀𝑃𝑖 − 𝑐𝑖)  (7) 

where 𝑐𝑖 is the adjusted production cost of electricity by power company 𝑖 and (𝐿𝑀𝑃𝑖 − 𝑐𝑖) is 

the cost of producing a unit power ($/MW). 

2.4. Existing Work on Determining Collusion Opportunities 

Aliabadi et al. (2016) developed game-theoretic understanding of collusion among power 

generators in electricity markets. They defined the set of submitted bids by all power companies 
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(𝑏1 ∈  𝐵1, … , 𝑏𝑛 ∈  𝐵𝑛) as the “state” of the game and utilized DC-OPF to calculate the payoffs 

of the power companies. Thereon, they defined two types of collusive equilibrium state: 

• The strong collusive state is defined as the equilibrium state where all power companies 

have no incentive to deviate. Every power company has benefits to stay in this state 

which is similar to a Nash equilibrium state in game theory. However, the profits of all 

companies with strong collusion are greater than the Nash equilibrium without any 

collusion. 

• The weak collusive state is defined as the equilibrium state where a power company 

may have some incentive to leave the collusive state before the game reaches a Nash 

equilibrium. These short-term deviations in power company strategies may increase the 

short-term profit of the company choosing to move out of the collusive state. However, 

the game will eventually get to the Nash equilibrium when no such other equilibrium 

exists.  

Aliabadi et al. (2016) proposed an algorithm to detect weak and strong collusive equilibrium 

states. The algorithm is initiated by finding all Nash equilibria so that the Nash payoffs for all 

companies can be calculated. Thereon, they enumerate all distinct bid sets to detect those with 

collusive characteristics. Both finding all Nash equilibria and enumerating all possible auction 

states are computationally very expensive and indeed theoretically intractable since the 

computational complexity is 𝑂(2𝑛) while 𝑛 is the number of power companies. In this study, 

we attempt to reduce the number of calculated payoff profiles by utilizing a metaheuristic 

approach.   
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Chapter 3 

3. A Meta-Heuristic Approach 

In this chapter, we explain our meta heuristic approach to detect collusive states in an 

oligopolistic deregulated market structure. First, we present a literature review on the genetic 

algorithm. Next, we explain settings and finally the components of our version of the genetic 

algorithm. 

3.1. A Literature Review on Genetic Algorithm 

Genetic algorithm is well known and a commonly used metaheuristic in operations research 

and computer science. The idea of the algorithm was derived from mimicking the natural 

selection in biological environments. The origins of the genetic algorithm can be traced back 

to the early 1950s. Evolution computing was initially developed by Nils Aall Baricelli (1954) 

and Bremermann (1958). Bremermann showed that solving optimization problems with the 

genetic algorithm was possible. Subsequent necessary elements of the genetic algorithm were 

described in books by Fraser and Burnell (1970), and Crosby (1973). In their work, the concept 

of mutation, cross-over, and the selection was explicitly described. The genetic algorithm was 

popularized by John Holland’s work on the computer simulation of evolution. In late 1970’s 

he introduced “Schema Theorem” which also was called the fundamental theorem of the 

genetic algorithm and then extended by Goldberg (1989). The schema theorem claims that low 

order schemata with high fitness increase exponentially in frequency in successive generations. 

The concept of “fitness function” has drawn more attention after schema theorem was 

presented. Consequently, Schaffer (1985) has introduced the multi-objective evolution 

algorithm which created another area of focus. 

The following studies over the genetic algorithms have deemphasized the schema theory since 

it has failed to make predictions about the population composition and speed of population 

convergence. Vose and Liepins (1991) introduced the complete geometric picture of genetic 
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algorithm’s behavior with an exact model. Nix and Vose (1992) have attempted and failed to 

apply Markov Chain analysis on stochastic models due to high dimensions and non-linearities. 

John Koza (1992) has used a genetic algorithm to evolve programs to perform certain tasks 

thus he called “Genetic Programming (GP)”. In the late 1990s, self-adaptatively and multi-

objective genetic algorithms have studied by researches. Smith and Fogarty (1996) expanded 

this idea by dynamically changing mutation rates in a genetic algorithm.  

In recent years, many researchers have focused on using genetic algorithms as a tool. In this 

respect, studies focus on solving well-known problems such as the Traveling Salesman 

Problem and Flexible Job Shop Scheduling Problems. In our study, we develop a method, based 

on principles of the genetic algorithm to detect the collusive opportunities in deregulated 

electricity markets. 

3.2. Settings for Genetic Algorithm 

As explained in Section 2.4, the algorithm proposed in Aliabadi et al. (2016) cannot be utilized 

for the problems where many payoff profiles exist either due to the number of power companies 

or the size of the possible bid offers. Therefore, we develop an efficient search algorithm to 

detect collusive opportunities. We choose to perform this search by utilizing a genetic 

algorithm since the genetic algorithm is easy to implement and modify when the target is not 

well defined. 

The algorithm initializes the search with a population of randomly generated individuals. 

Subsequently, the algorithm selects the individuals to increase survivability. The survivability 

is measured by the fitness function. To converge the initial population to better-qualified 

individuals, we utilize cross-over operation. On the other hand, we utilize mutation operation 

in order to sustain divergence. To terminate the search procedure, we use the trivial maximum 

number of generations rule. A flow chart of our genetic algorithm is shown in Figure 2. We 

will explain these components later in detail. 
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Figure 2. Flow chart of the genetic algorithm. 

 

3.3. Components of Genetic Algorithm 

In this section, we describe the general search mechanism and each component of the genetic 

algorithm implementation in our study. In this respect, we explicitly define the components 

and the required parameters of the general search mechanism.  

3.3.1. Chromosome and Individual Representation 

To implement any genetic algorithm, we need to define the chromosome and individual 

representation of the solution. In the present work, power companies have their bid-offers for 

a unit megawatt price of power (MW/$). Each bid-offer corresponds to a chromosome in our 

representation. Consequently, the bid set is a set of bid-offers for all companies in the market 

Random Creation of 

the Initial Generation 
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Generation 
Selection 

(Elitism) 

Cross-over Mutation 
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which forms an individual representation. The individuals are defined as a string of integers.  

The example of an individual with 𝑛 power companies is shown in Figure 3. 

                                                       

Figure 3. Representation of an individual with 𝑛 chromosomes 

 

3.3.2. Initial Population 

To obtain the diversification in the first generation, we randomly select bid-offers between 

marginal cost and price cap of each power company. The size of the population corresponds to 

one of the parameters that we tune to obtain a better solution.  

3.3.3. Fitness Function 

The fitness function is the most important component of the genetic algorithm. It evaluates all 

the individuals inside the population then assigns a value to an individual which we called 

fitness score. If an individual has high fitness score then the survivability of this individual is 

high, if an individual has low fitness score, it is the other way around. Fitness functions are 

problem dependent. In this study, we make an extra diligent effort to define the most 

appropriate fitness function to obtain fast and concrete results.  

3.3.4. Selection 

Selection methods are utilized to randomly select individuals according to their fitness scores. 

Two most commonly used selection methods for the genetic algorithm are roulette wheel 

selection and tournament selection. In our setting, we utilize roulette wheel selection since it is 

the most common selection mechanism.  

The basis for the selection mechanisms dates back to the 1970s. In the aforementioned study 

of Holland (1975), the proportionate selection method was developed to examine the regions 

to find promising sections. According to their fitness score, each individual has survival 
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probabilities towards the next generation. If ƒi denotes fitness score corresponding to an 

individual 𝑖, then its selection probability is р𝑖=
ƒ𝑖

∑ ƒ𝑖
𝛮
𝑗=1

 where 𝛮 is the number of individuals.  

In the roulette wheel method, we divide all individuals in the population proportional to their 

fitness scores. For example, if an individual A has a fitness score of 10 and all other individuals 

in the population have a combined fitness score of 90, then we set this individual A’s fitness 

ratio as 0.1. Subsequently, we allocated each individual’s fitness ratio in the population by 

dividing a wheel into portions we spin the roulette wheel, if the wheel stops at 10 percent 

subsection which is allocated for individual A, then we select this individual to perform cross-

over and other mechanisms. Figure 4 illustrates the roulette wheel selection. 

 

Figure 4. Roulette wheel selection method. 

 

3.3.5. Elitism 

Elitism in the genetic algorithm is the concept of preventing the random destruction of good 

genetic information. In this strategy, a small proportion of individuals with the best fitness 

scores are chosen in the current generation to pass directly to the next generation avoiding 

crossover and mutation operations. These individuals are marked as an “elite”.  One of the 

parameters of the algorithm to tune designates the proportion of elite individuals. However, 
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this tuning effort could increase the complexity of our study drastically. Therefore, for 

simplicity, we select the 10 percent of the best-fitted individuals of each population as elitism 

proportion. 

3.3.6. Crossover Operation 

Cross-over is an operation to combine the genetic information of two chromosomes to generate 

new chromosomes. The combined chromosomes are called as parent chromosomes and 

offspring is called as child chromosome. Cross-over operations are utilized to increase genetic 

variations.  

The initial step of cross-over operation is to select individuals to pair. Each pair consists of two 

individuals. In our experiments, we use the roulette wheel selection method to select from the 

population, discarding the elite individuals. Subsequently, we utilize the roulette wheel 

selection method to select its pair from the remaining population.  

The second step involves determining the pairs to cross-over. Each pair has a chance of cross 

over with 𝑃𝑐. To determine the pairs to crossover, we randomly generate a random number 

between 0 and 1. If the generated random number is larger than the cross-over probability 

threshold, we do not perform the cross-over and we pass individuals of that particular pair to 

the very next generation. However, if the generated number is less than the cross-over 

probability we perform the cross-over for the corresponding pair. 

The third step performs the cross-over. The most common methods for cross-over operation 

are single-point and two-point crossover methods in the literature. In our setting, we use the 

two-point crossover. In this operation, parent chromosomes are divided into three parts by 

randomly selected two points. Then they exchange genetic information between these two 

points to generate child chromosomes as illustrated in Figure 5. 
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Figure 5. Cross-over operation. 

 

The final step is to replace the parents with the offspring to maintain the stability in the 

number of individuals in the population. 

3.3.7. Mutation Operation 

Mutation operation occurs after the cross-over terminates. If an individual is not marked as an 

elite in the current population it has a chance of mutating (𝑃𝑚). Mutation operation alters one 

or many chromosomes of the individual to maintain genetic diversity. A common method of 

implementing the mutation operation involves determining a single chromosome with 

generating the random number. This method is called single-point mutation. Other types are 

inversion and floating-point mutation. In our study, we use single-point mutation. 

The initial step of single-point mutation is to determine the chromosome to be selected. In our 

experiments, we index the chromosomes of individuals starting from 1. Then, we generate a 

random number in a range of the number of chromosomes. The generated random number 

indicates the index of chromosome to mutate.  

Once we determine the chromosome to mutate, we perform the mutation operation on a 

chromosome. Since the chromosome represents a single bid-offer of the particular power 

company, it can get values in bid-offer options to the corresponding power company. If the 

bid-offer option size is larger than a single bid-offer, we create a list of potential new values 

for that chromosome while discarding its initial value. Otherwise, we select another 
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chromosome to mutate. If the potential new values list for the corresponding chromosome is 

not empty, we randomly select a value from that list and assign to that chromosome. Therefore, 

we generate a mutated individual. Figure 6 illustrates the mutation operation according to our 

individual representation. 

  

Figure 6. Example for mutation operation on a single chromosome. 

 

3.3.8. Population Size 

Population size is a parameter that controls the number of individuals in each generation. We 

replace parent individuals with child individuals. Hence, the size of the population is constant 

throughout the generations. Tuning this parameter is crucial because having large population 

may increase computational burden while a small population may not be sufficient to obtain 

good results. 

3.3.9. Maximum number of Generations (Epoch)  

Epoch denotes the maximum number of generations to be created. It also provides the 

termination criterion. For instance, if the maximum number of generations is 5, then after 

generating 5 new population, our algorithm stops.  

3.3.10. Number of Replications 

In a genetic algorithm, the probability is an important factor. Therefore, conducting 

experiments in a single run are not sufficient to obtain all possible results from a parameter set. 
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In our study, we conduct many experiments with the same parameters to obtain as many as 

possible results. However, determining the number of replications while performing other 

experiments on parameters is difficult. This task increases the computational burden 

exponentially. In this respect, we set the number of replications as 20. Therefore, the results 

for each parameter set consists of distinct results obtained by 20 replications. 
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Chapter 4 

4. Computational Experiments 

In this chapter, we explain the computational experiments with our meta heuristic approach. 

First, we present problems used in the computational study. Next, we present and explain the 

results of computational experiments. 

4.1. Problems for Computational Study 

In order to test the accuracy and efficiency of our algorithmic approach, we generate test 

problems. However, the first and foremost challenge in this task is to ensure that problems 

demonstrate a collusive market structure. Yet, it is another challenging task itself to create such 

problem settings. In this respect, we work with two transmission grid settings that are created 

artificially based on characteristics of real-life settings. Using the second grid, we generated 

two problem instances where the second is a larger problem due to the larger number of bids 

from generators.  

4.1.1. Small Problem 

The small example is the case study in Aliabadi et al. (2016) for which the collusive states have 

been exactly identified already. The problem setting is shown in Table 1 and the Figure 7. 

𝑃𝑖
𝑚𝑎𝑥  refers to maximum power in megawatts (MW) that can be produced in GenCo-𝑖 with a 

cost of 𝑐𝑖. Finally, 𝐵𝑖 is the set of bid-offer options 𝑏𝑖 by each GenCo. 

 

ID Pi
max(MW) ci ($/MW) Bi ($/MW) 

GenCo-1 139 20 {20,25,30,35,40,45,50} 

GenCo-2 527 20 {20,25,30,35,40,45,50} 

GenCo-5 560 30 {30,35,40,45,50} 

Table 1. Small problem demand load data.  
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Figure 7. Small problem network structure. 

 

In this transmission grid network, there are five nodes with six transmission lines. Each node 

has one power company and one demand center. The first two power companies (GenCo-1 and 

GenCo-2) have seven distinct bid-offer options and fifth power company has five different bid-

offer options. In total, we have 7*7*5=245 bid-offer states in the market and this problem is 

relatively easy to solve with Aliabadi et al.’s algorithm to find collusive states. 

4.1.2. Medium Problem 

To increase the size of the problem, we add additional two more nodes to the network. The 

demand load data and the network structure of the problem are given in Table 2 and Figure 8, 

respectively. In this problem, there are 1225 bid-offer states in total in the market. 

 

ID Pi
max(MW) ci ($/MW) Bi ($/MW) 

GenCo-1 36 20 {21,26,31,36,41,46,51} 

GenCo-2 34 20 {22,27,32,37,42,47,52} 

GenCo-5 30 30 {33,38,43,48,53} 

GenCo-6 31 10 {14,24,34,44,54} 

Table 2. Medium problem demand load data. 
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Figure 8. Medium problem network structure. 

 

4.1.3. Big Problem 

To further increase the size of the problem, we utilize the network structure of the medium 

problem. However, we increase the number of bid options for every GenCo. The demand load 

data is given in Table 3. This problem has 45056 bid-offer states. We use this problem setting 

to compare our results only in terms of speed with the existing algorithm in Aliabadi et al. 

(2016). 

 

ID Pi
max(MW) ci ($/MW) Bi ($/MW) 

GenCo-1 36 20 {21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51} 

GenCo-2 34 20 {22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52} 

GenCo-5 30 30 {33,35,37,39,41,43,45,47,49,51,53} 

GenCo-6 31 10 {14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44} 

Table 3. Big problem demand load data. 
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4.2. Computational Results 

The implementation of the genetic algorithm comes with various parameter values to set. These 

parameters are the components of the genetic algorithm discussed in Chapter 3. The evaluation 

of each parameter is crucial to find the optimal or hopefully a good parameter set. Therefore, 

unlike the traditional algorithm evaluations, we evaluate our algorithm while setting the 

parameters. In this respect, we define a set of problem-specific performance measures to 

describe the accuracy of the algorithm. 

4.2.1. Performance Measures 

The developed genetic algorithm finds “suspicious” solutions instead of exact solutions. 

Therefore, to measure the performance of the algorithm, we compare our results with exact 

solutions in Aliabadi et al. (2016). In this respect, we utilize two performance measures; ratio 

of found collusive state and ratio of the collusive state coverage.  

The ratio of found collusive state is the number of real collusive states divided by the number 

of suspicious states found. This performance measure evaluates the precision of our algorithm; 

“real collusive bid states” demonstrates the true positive detection while “suspicious states 

found” illustrates the true positive detection and the false positive detection combined. 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐹𝑜𝑢𝑛𝑑 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒 =
# 𝑜𝑓 𝑅𝑒𝑎𝑙 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒𝑠 𝐹𝑜𝑢𝑛𝑑

# 𝑜𝑓 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑆𝑡𝑎𝑡𝑒𝑠 𝐹𝑜𝑢𝑛𝑑
 

The ratio of collusive state coverage is the number of collusive states found divided by the 

number of real collusive states. This performance measure evaluates the sensitivity or the hit 

ratio of the algorithm. 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
# 𝑜𝑓 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒𝑠 𝐹𝑜𝑢𝑛𝑑

# 𝑜𝑓 𝑅𝑒𝑎𝑙 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒𝑠
 

4.2.2. Parameter Setting 

In order to discuss the accuracy and efficiency of our approach, we need to ensure that 

parameter values associated with components of the algorithm are set to correct values. We 
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select the small problem to obtain “the best possible parameter settings” since it has the smallest 

number of possible bid states and the collusive states are known. In each subsection, we discuss 

the results of the preliminary experiments for one of the parameters that may play a crucial role 

on the performance of the algorithm. 

The algorithm is coded with Python 3.6. Optimization problems are solved by GUROBI 8.0. 

Computational experiments are conducted on an Intel Core i5 7600k quad-core processor with 

3.80 GHz speed and 12 Gb RAM, with 64-bit Windows 10 operating system. 

4.2.2.1. Fitness Function 

The fitness function is the most crucial parameter in the genetic algorithm. According to our 

problem setting, there is no obvious function to assume as the fitness function. Therefore, 

initially, we embed as many components as possible into the potential fitness function. Then, 

we determine the best fitness function according to the performance of the components. The 

payoff of each power producer (𝑟𝑖) is a crucial component that needs to be considered. Since 

the aim of this study is to detect the collusions, the minimum payoff of all active power 

companies can give some insight about the collusions. Therefore, we add 𝑚𝑖𝑛𝑟 = min
𝑖

{𝑟𝑖} as 

the possible component of the fitness function. 

As we mentioned in previous sections, 𝐿𝑀𝑃i, 𝑏𝑖, and 𝑃𝑖 are other components that play an 

important role in our problem definition. Since if there is collusion among power companies, 

they intend to increase the unit price of electricity for all companies in the collusion. Therefore, 

we need to consider 𝑚𝑖𝑛𝑏 = min
𝑖

{𝑏𝑖}  and 𝑚𝑖𝑛𝐿𝑀𝑃 = min
𝑖

{𝐿𝑀𝑃𝑖}  as other possible 

components of the fitness function. 

We also take into consideration the value of 𝑃𝑖(𝑏𝑖 − 𝑐𝑖) as a possible component of the fitness 

function. Hence 𝐿𝑀𝑃𝑖  shouldn’t be smaller than 𝑏𝑖 then  𝑃𝑖(𝑏𝑖 − 𝑐𝑖)  forms lower bound to 

payoffs of power generators. Similar to the discussion of 𝑚𝑖𝑛𝑟, we decide 𝑚𝑖𝑛𝑃𝑏𝑐 =
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min
𝑖

{𝑃𝑖 (𝑏𝑖 − 𝑐𝑖)} can give insight about collusion and we add this component into fitness 

function. Then the form of the fitness function is as following, 

𝑤1 ∗ 𝑚𝑖𝑛𝑟 +  𝑤2 ∗   𝑚𝑖𝑛𝑏 + 𝑤3 ∗ 𝑚𝑖𝑛𝐿𝑀𝑃 + 𝑤4 ∗ 𝑚𝑖𝑛𝑃𝑏𝑐 

where ∑ 𝑤𝑖
4
𝑖=1 = 1. To evaluate the fitness function, we constructed a test parameter set. In 

this set, we had 50 distinct parameters set option for all possible weight combinations 

corresponding to different values of the component parameters of genetic algorithm. We run 

the algorithm with each parameter option and calculate the “ratio of found collusive states” and 

the “ratio of the collusive state coverage” for each weight combination to determine the 

performance. The parameter options and results are presented in Appendix A and Appendix 

B, respectively. The ratio of found collusive states and ratio of collusive state coverage are 

maximized with 𝑤1 = 0, 𝑤2 = 0.3, 𝑤3 = 0, and 𝑤4 = 0.7. Therefore, our fitness function is 

formed as, 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  0.3 ∗  𝑚𝑖𝑛𝑏 + 0.7 ∗ 𝑚𝑖𝑛𝑃𝑏𝑐 

This fitness function is utilized in the parameter tuning experiments for all parameters. 

4.2.2.2. Mutation Rate (Pm) 

Possible values for mutation rate are between 0 and 1; we consider increment size of 0.1. For 

each mutation rate, we run the algorithm 50 times with the parameter values presented in 

Appendix C. In terms of mutation rates, we conclude that any value in the range of 0.2 to 0.8 

could be considered as a good rate. We decide to set the mutation rate as 0.2. The results are 

presented in Figure 9. 
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Figure 9. The ratio of collusive state coverages for different mutation rates. 

 

As in the mutation rate analysis, we run the algorithm 50 times with the parameter values 

presented in Appendix D. As results illustrates in Figure 10, the best-obtained parameter setting 

for cross-over is 0.4. 

 

Figure 10. The ratio of collusive state coverages for different crossover rates. 

 

4.2.2.3. Population Size 

For this parameter, we set the other parameters as their best-obtained value. Then, we run the 

algorithm for various values of the size of the population. We found that the collusive state 

coverage is directly proportionate to population size. The result of population size experiment 

is presented in Figure 11. 
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Figure 11. The ratio of collusive state coverage for different population size. 

 

4.2.2.4. Maximum Number of Generations (Epoch) 

As in the population size analysis, we found that as we increase the number of the maximum 

number of generations, the collusive state coverage ratio increases as well. The result of the 

maximum number of generations is presented in Figure 12. 

 

Figure 12. The ratio of collusive state coverage for different maximum number of generations. 

 

4.2.3. Medium Problem 

We found the exact solution corresponding to all collusive states for the medium problem with 

the algorithm in Aliabadi et al. (2016). Then, we measure the accuracy of our results according 
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to the exact solutions. The results for the medium size problem for different values of the 

population size are shown in Figure 13. 

 

Figure 13. The ratio of collusive state coverage for different maximum number of 

generations. 

4.2.4. Big Problem 

We compare our algorithm with the algorithm in Aliabadi et al. (2016) in terms of execution 

time. We conduct experiments on both algorithms with the same computing power as for the 

small problem and the medium problem. Their algorithm failed to obtain the exact solutions 

for big problem in more than two weeks since the number of states is too large. However, our 

algorithm finds the result in less than a hundred seconds. The suspicious bid-offers (𝑏𝑖) and 

corresponding payoffs for each power company are shown in Table 4. 

Suspicious States (𝒃𝟏, 𝒃𝟐, 𝒃𝟑, 𝒃𝟒, 𝒃𝟓, 𝒃𝟔, 𝒃𝟕) Payoffs 

(46, 47, 0, 0, 38, 39, 0) {52, 81, 0, 0, 300, 930, 0} 

(51, 52, 0, 0, 43, 29, 0) {62, 96, 0, 0, 450, 1085, 0} 

(46, 47, 0, 0, 33, 29, 0) {52, 81, 0, 0, 300, 930, 0} 

(51, 52, 0, 0, 38, 34, 0) {62, 96, 0, 0, 450, 1085, 0} 

(41, 42, 0, 0, 33, 29, 0) {43, 66, 0, 0, 150, 775, 0} 

(46, 47, 0, 0, 38, 24, 0) {52, 81, 0, 0, 300, 930, 0} 

(46, 47, 0, 0, 38, 34, 0) {52, 81, 0, 0, 300, 930, 0} 

Table 4. Suspicious states found for big problem.  
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Chapter 5 

5. Conclusion and Future Research 

We present a metaheuristic method to detect collusion opportunities in oligopolistic 

deregulated electricity markets. We created artificial problems representing real-life situations 

closely to test the performance of our method against the existing ones.  

The first problem is used to determine the most promising parameter setting for the algorithm, 

i.e. the parameter tuning study. This problem was taken from Aliabadi et. al (2016). According 

to the performance evaluations, the most promising values for each parameter were determined. 

Then using the obtained parameters, we conducted experiments on the other two larger 

problems. The experiments on the medium and the big problem were utilized to determine the 

performance of our algorithm in terms of speed and accuracy.  

This is the first study to use a heuristic approach to detect collusion in deregulated electricity 

markets. In the context of heuristic solution, we introduce the notion of “suspicious” collusive 

states in order to interpret the results obtained with the genetic algorithm. The quality of 

solutions and performance of the algorithm is measured by the closeness between the set of 

suspicious states and the actual collusive states as defined by Aliabadi et al. (2016). The 

performance of the search algorithm was found admissibly good according to the 

computational experiments. Moreover; hence, the algorithm narrows down the large size of the 

possible bid sets into the small set of suspicious states, this heuristic approach allowed us to 

solve the problem much faster than the algorithm in Aliabadi et al. (2016). Therefore, this 

approach may guide the decision maker (ISO) to detect the collusive opportunities and to 

counteract accordingly.  

This work can be extended with a utilization of the different methods to determine the best 

parameter settings for the genetic algorithm. Moreover, we considered simplified power 
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systems in this study. One may want to study this approach on more complex networks or more 

operational-level problems.  

Another future work area might be involved with consideration of the different metaheuristics. 

Therefore, the obtained results in this study can be compared with other metaheuristics in terms 

of accuracy and speed to determine the best approach for detecting collusion opportunities in 

the large-scale problems.  
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Appendix A: The Test Parameter Set for the Fitness Function 

Parameter 

Set ID 

Mutation 

Rate 

Crossover 

Rate 

Population 

Size Epoch 

1 0.44 0.75 100 30 

2 0.68 0.70 300 50 

3 0.72 0.74 500 40 

4 0.76 0.59 300 20 

5 0.63 0.41 400 30 

6 0.70 0.39 200 40 

7 0.17 0.67 300 60 

8 0.01 0.91 100 50 

9 0.14 0.06 300 70 

10 0.59 0.62 400 90 

11 0.93 0.22 500 20 

12 0.42 0.19 200 10 

13 0.26 0.86 200 30 

14 0.98 0.95 300 50 

15 0.16 0.12 400 10 

16 0.86 0.18 100 60 

17 0.23 0.80 500 40 

18 0.31 0.08 500 20 

19 0.88 0.65 300 30 

20 0.79 0.62 100 50 

21 0.94 0.66 200 10 

22 0.44 0.47 500 20 

23 0.37 0.95 400 60 

24 0.90 0.38 300 80 

25 0.27 0.77 100 90 

26 0.38 0.93 200 30 

27 0.99 0.11 300 80 

28 0.54 0.75 400 10 

29 0.46 0.35 300 20 

30 0.02 0.82 100 90 

31 0.76 0.60 300 30 

32 0.20 0.49 100 50 

33 0.42 0.60 500 10 

34 0.87 0.48 200 50 

35 0.80 0.32 400 60 

36 0.91 0.42 100 70 

37 0.26 0.93 400 20 

38 0.38 0.84 500 30 

39 0.49 0.95 200 80 

40 0.98 0.63 300 30 

41 0.24 0.32 100 50 
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42 0.09 0.97 500 40 

43 0.53 0.39 100 20 

44 0.15 0.22 400 40 

45 0.15 0.80 400 20 

46 0.24 0.48 300 90 

47 0.29 0.85 200 30 

48 0.05 0.77 500 40 

49 0.06 0.73 100 50 

50 0.46 0.74 200 90 
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Appendix B: The Test Results for the Fitness Function 

w1 w2 w3 w4 

Ratio of Found Collusive 

States 

Ratio of Collusive State 

Coverage 

0 0.3 0 0.7 0.552147239 0.77 

0 0.5 0 0.5 0.534375 0.76 

0 0.6 0 0.4 0.525 0.7 

0 0.9 0 0.1 0.535087719 0.677777778 

0 0.2 0 0.8 0.41322314 0.555555556 

0 0.4 0 0.6 0.49500998 0.551111111 

0 0.7 0 0.3 0.591687042 0.537777778 

0 0.8 0 0.2 0.404761905 0.453333333 

0 0 0 1 0.022891915 0.351111111 

0 0 0.1 0.9 0.503311258 0.337777778 

0 0 0.6 0.4 0.511864407 0.335555556 

0 0.1 0 0.9 0.332594235 0.333333333 

0 0.1 0.5 0.4 0.562264151 0.331111111 

0 0.7 0.1 0.2 0.42 0.326666667 

0 0.7 0.3 0 0.584 0.324444444 

0.1 0.4 0.3 0.2 0.478688525 0.324444444 

0.2 0 0 0.8 0.475409836 0.322222222 

0.2 0 0.2 0.6 0.478405316 0.32 

0.2 0.2 0.2 0.4 0.397222222 0.317777778 

0.2 0.2 0.4 0.2 0.552123552 0.317777778 

0.2 0.4 0.1 0.3 0.546153846 0.315555556 

0.2 0.4 0.2 0.2 0.321995465 0.315555556 

0.3 0 0.2 0.5 0.557312253 0.313333333 

0.3 0.2 0.5 0 0.532075472 0.313333333 

0.4 0 0.3 0.3 0.463576159 0.311111111 

0.4 0 0.6 0 0.454248366 0.308888889 

0.4 0.1 0.3 0.2 0.516981132 0.304444444 

0.4 0.2 0.4 0 0.54 0.3 

0.5 0 0.3 0.2 0.558333333 0.297777778 

0.5 0 0.4 0.1 0.532 0.295555556 

0.5 0.1 0 0.4 0.494339623 0.291111111 

0.6 0.4 0 0 0.437710438 0.288888889 

0.7 0 0 0.3 0.433333333 0.288888889 

0 0 0.2 0.8 0.437288136 0.286666667 

0 0 0.4 0.6 0.483018868 0.284444444 

0 0 0.5 0.5 0.350684932 0.284444444 

0 0.1 0.1 0.8 0.484732824 0.282222222 

0 0.1 0.6 0.3 0.390625 0.277777778 

0 0.1 0.8 0.1 0.625 0.277777778 

0 0.2 0.3 0.5 0.482625483 0.277777778 

0 0.3 0.1 0.6 0.46969697 0.275555556 
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0 0.3 0.7 0 0.60591133 0.273333333 

0 0.4 0.3 0.3 0.415540541 0.273333333 

0 0.4 0.4 0.2 0.495934959 0.271111111 

0 0.4 0.6 0 0.463601533 0.268888889 

0 0.5 0.5 0 0.5 0.266666667 

0 0.6 0.2 0.2 0.53125 0.264444444 

0 0.7 0.2 0.1 0.1973466 0.264444444 

0 0.8 0.1 0.1 0.292079208 0.262222222 

0 0.9 0.1 0 0.229862475 0.26 

0 1 0 0 0.291044776 0.26 

0.1 0 0 0.9 0.28606357 0.26 

0.1 0 0.2 0.7 0.504347826 0.257777778 

0.1 0.1 0.3 0.5 0.56 0.248888889 

0.1 0.1 0.6 0.2 0.482608696 0.246666667 

0.1 0.2 0.5 0.2 0.426923077 0.246666667 

0.1 0.2 0.6 0.1 0.313390313 0.244444444 

0.1 0.3 0.3 0.3 0.438247012 0.244444444 

0.1 0.3 0.6 0 0.5215311 0.242222222 

0.1 0.4 0.1 0.4 0.360927152 0.242222222 

0.1 0.5 0.3 0.1 0.355263158 0.24 

0.1 0.7 0.2 0 0.213572854 0.237777778 

0.1 0.8 0.1 0 0.177152318 0.237777778 

0.2 0 0.8 0 0.347402597 0.237777778 

0.2 0.1 0.3 0.4 0.351973684 0.237777778 

0.2 0.1 0.6 0.1 0.263681592 0.235555556 

0.2 0.1 0.7 0 0.339805825 0.233333333 

0.2 0.2 0.3 0.3 0.342105263 0.231111111 

0.2 0.3 0.4 0.1 0.341059603 0.228888889 

0.2 0.3 0.5 0 0.443478261 0.226666667 

0.2 0.4 0.3 0.1 0.280555556 0.224444444 

0.2 0.5 0.1 0.2 0.259067358 0.222222222 

0.2 0.6 0.1 0.1 0.220750552 0.222222222 

0.2 0.7 0.1 0 0.276243094 0.222222222 

0.2 0.8 0 0 0.31152648 0.222222222 

0.3 0 0 0.7 0.153609831 0.222222222 

0.3 0.1 0 0.6 0.160392799 0.217777778 

0.3 0.1 0.2 0.4 0.153724247 0.215555556 

0.3 0.1 0.3 0.3 0.389344262 0.211111111 

0.3 0.1 0.5 0.1 0.143730887 0.208888889 

0.3 0.1 0.6 0 0.366141732 0.206666667 

0.3 0.2 0.1 0.4 0.465 0.206666667 

0.3 0.2 0.2 0.3 0.62 0.206666667 

0.3 0.3 0.2 0.2 0.455 0.202222222 

0.3 0.4 0.1 0.2 0.347328244 0.202222222 

0.3 0.4 0.2 0.1 0.182186235 0.2 
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0.4 0 0.1 0.5 0.245856354 0.197777778 

0.4 0 0.4 0.2 0.586666667 0.195555556 

0.4 0.1 0.1 0.4 0.564102564 0.195555556 

0.4 0.1 0.2 0.3 0.286666667 0.191111111 

0.4 0.2 0.1 0.3 0.419512195 0.191111111 

0.4 0.2 0.2 0.2 0.416666667 0.188888889 

0.4 0.2 0.3 0.1 0.425 0.188888889 

0.4 0.3 0.2 0.1 0.418367347 0.182222222 

0.4 0.4 0.1 0.1 0.422680412 0.182222222 

0.4 0.4 0.2 0 0.26557377 0.18 

0.5 0 0.5 0 0.397058824 0.18 

0.5 0.1 0.2 0.2 0.5 0.177777778 

0.5 0.2 0 0.3 0.564285714 0.175555556 

0.5 0.2 0.1 0.2 0.545454545 0.173333333 

0.5 0.2 0.3 0 0.382352941 0.173333333 

0.5 0.3 0 0.2 0.37254902 0.168888889 

0.6 0 0 0.4 0.345454545 0.168888889 

0.6 0.1 0 0.3 0.5 0.166666667 

0.6 0.1 0.2 0.1 0.493333333 0.164444444 

0.6 0.2 0 0.2 0.365 0.162222222 

0.6 0.3 0 0.1 0.48 0.16 

0.8 0 0 0.2 0.473333333 0.157777778 

0.8 0 0.1 0.1 0.466666667 0.155555556 

0.8 0 0.2 0 0.34 0.151111111 

0.8 0.1 0.1 0 0.453333333 0.151111111 

0.8 0.2 0 0 0.453333333 0.151111111 

0 0 0.7 0.3 0.255725191 0.148888889 

0 0 0.8 0.2 0.253112033 0.135555556 

0 0 0.9 0.1 0.406666667 0.135555556 

0 0.1 0.3 0.6 0.393333333 0.131111111 

0 0.1 0.4 0.5 0.55 0.122222222 

0 0.1 0.9 0 0.2125 0.113333333 

0 0.2 0.1 0.7 0.121428571 0.113333333 

0 0.2 0.2 0.6 0.414634146 0.113333333 

0 0.2 0.4 0.4 0.099609375 0.113333333 

0 0.2 0.7 0.1 0.09922179 0.113333333 

0 0.3 0.3 0.4 0.212765957 0.111111111 

0 0.3 0.4 0.3 0.25 0.111111111 

0 0.3 0.5 0.2 0.298013245 0.1 

0 0.3 0.6 0.1 0.325925926 0.097777778 

0 0.4 0.2 0.4 0.162878788 0.095555556 

0 0.4 0.5 0.1 0.055555556 0.093333333 

0 0.5 0.1 0.4 0.048406139 0.091111111 

0 0.5 0.2 0.3 0.238095238 0.088888889 

0 0.5 0.3 0.2 0.045086705 0.086666667 
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0 0.5 0.4 0.1 0.045130641 0.084444444 

0 0.6 0.1 0.3 0.016135881 0.084444444 

0.1 0 0.1 0.8 0.066793893 0.077777778 

0.1 0 0.6 0.3 0.142276423 0.077777778 

0.1 0 0.7 0.2 0.00808946 0.075555556 

0.1 0 0.9 0 0.22962963 0.068888889 

0.1 0.1 0 0.8 0.055045872 0.066666667 

0.1 0.1 0.1 0.7 0.220588235 0.066666667 

0.1 0.1 0.4 0.4 0.183006536 0.062222222 

0.1 0.1 0.5 0.3 0.01752109 0.06 

0.1 0.1 0.7 0.1 0.211382114 0.057777778 

0.1 0.1 0.8 0 0.26 0.057777778 

0.1 0.2 0.1 0.6 0.103305785 0.055555556 

0.1 0.2 0.2 0.5 0.074766355 0.053333333 

0.1 0.2 0.3 0.4 0.195121951 0.053333333 

0.1 0.2 0.4 0.3 0.043071161 0.051111111 

0.1 0.3 0.2 0.4 0.22 0.048888889 

0.1 0.3 0.4 0.2 0.42 0.046666667 

0.1 0.3 0.5 0.1 0.034246575 0.044444444 

0.1 0.4 0 0.5 0.033500838 0.044444444 

0.1 0.4 0.2 0.3 0.38 0.042222222 

0.1 0.4 0.5 0 0.038356164 0.031111111 

0.1 0.5 0 0.4 0.029598309 0.031111111 

0.1 0.5 0.1 0.3 0.028508772 0.028888889 

0.1 0.5 0.2 0.2 0.015625 0.026666667 

0.1 0.5 0.4 0 0.11 0.024444444 

0.1 0.6 0 0.3 0.043103448 0.022222222 

0.1 0.6 0.1 0.2 0.086206897 0.022222222 

0.1 0.6 0.2 0.1 0.031578947 0.02 

0.1 0.6 0.3 0 0.050314465 0.017777778 

0.1 0.9 0 0 0.028985507 0.017777778 

0.2 0 0.1 0.7 0.077669903 0.017777778 

0.2 0 0.3 0.5 0.057553957 0.017777778 

0.2 0 0.4 0.4 0.064220183 0.015555556 

0.2 0 0.6 0.2 0.033653846 0.015555556 

0.2 0.1 0.1 0.6 0.026217228 0.015555556 

0.2 0.1 0.4 0.3 0.044025157 0.015555556 

0.2 0.1 0.5 0.2 0.030456853 0.013333333 

0.2 0.2 0 0.6 0.025773196 0.011111111 

0.2 0.2 0.5 0.1 0.015384615 0.008888889 

0.2 0.2 0.6 0 0.027027027 0.006666667 

0.2 0.3 0 0.5 0.012552301 0.006666667 

0.2 0.3 0.2 0.3 0.012096774 0.006666667 

0.2 0.4 0 0.4 0.007692308 0.004444444 

0.2 0.5 0 0.3 0.007142857 0.004444444 
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0.2 0.5 0.2 0.1 0.01980198 0.004444444 

0.2 0.5 0.3 0 0.003472222 0.002222222 

0.2 0.6 0 0.2 0.006711409 0.002222222 

0.2 0.6 0.2 0 0.009259259 0.002222222 

0.2 0.7 0 0.1 0.009174312 0.002222222 

0.3 0 0.1 0.6 0.007092199 0.002222222 

0.3 0 0.4 0.3 0 0 

0.3 0 0.5 0.2 0 0 

0.3 0 0.6 0.1 0 0 

0.3 0 0.7 0 0 0 

0.3 0.2 0 0.5 0 0 

0.3 0.2 0.4 0.1 0 0 

0.3 0.3 0.1 0.3 0 0 

0.3 0.3 0.3 0.1   0 

0.3 0.3 0.4 0 0 0 

0.3 0.4 0 0.3 0 0 

0.3 0.4 0.3 0 0 0 

0.3 0.5 0 0.2 0 0 

0.3 0.5 0.1 0.1 0 0 

0.3 0.5 0.2 0 0 0 

0.3 0.6 0 0.1 0 0 

0.3 0.6 0.1 0 0 0 

0.4 0 0.2 0.4 0 0 

0.4 0 0.5 0.1 0 0 

0.4 0.1 0 0.5 0 0 

0.4 0.1 0.4 0.1 0 0 

0.4 0.1 0.5 0 0 0 

0.4 0.3 0.1 0.2 0 0 

0.4 0.4 0 0.2 0 0 

0.4 0.5 0 0.1 0 0 

0.4 0.6 0 0 0 0 

0.5 0 0 0.5 0 0 

0.5 0 0.2 0.3 0 0 

0.5 0.1 0.1 0.3 0 0 

0.5 0.1 0.3 0.1 0 0 

0.5 0.1 0.4 0 0 0 

0.5 0.2 0.2 0.1 0 0 

0.5 0.3 0.1 0.1 0 0 

0.5 0.3 0.2 0 0 0 

0.5 0.4 0 0.1 0 0 

0.5 0.5 0 0 0 0 

0.6 0 0.1 0.3 0 0 

0.6 0 0.3 0.1 0 0 

0.6 0.2 0.1 0.1 0 0 

0.6 0.2 0.2 0 0 0 
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0.7 0 0.1 0.2 0 0 

0.7 0 0.2 0.1 0 0 

0.7 0.1 0.1 0.1 0 0 

0.7 0.1 0.2 0 0 0 

0.7 0.2 0 0.1 0 0 

0.7 0.2 0.1 0 0 0 

0.7 0.3 0 0 0 0 

0.8 0.1 0 0.1 0 0 

0.9 0 0.1 0 0 0 

0.9 0.1 0 0 0 0 

0 0 0.3 0.7 0 0 

0 0 1 0 0 0 

0 0.1 0.2 0.7 0 0 

0 0.1 0.7 0.2 0 0 

0 0.2 0.5 0.3 0 0 

0 0.2 0.6 0.2 0 0 

0 0.2 0.8 0 0 0 

0 0.3 0.2 0.5 0 0 

0 0.4 0.1 0.5 0 0 

0 0.6 0.3 0.1 0 0 

0 0.6 0.4 0 0 0 

0 0.8 0.2 0 0 0 

0.1 0 0.3 0.6 0 0 

0.1 0 0.4 0.5 0 0 

0.1 0 0.5 0.4 0 0 

0.1 0 0.8 0.1 0 0 

0.1 0.1 0.2 0.6 0 0 

0.1 0.2 0 0.7 0 0 

0.1 0.2 0.7 0 0 0 

0.1 0.3 0 0.6 0 0 

0.1 0.3 0.1 0.5 0 0 

0.1 0.4 0.4 0.1 0 0 

0.1 0.7 0 0.2 0 0 

0.1 0.7 0.1 0.1 0 0 

0.1 0.8 0 0.1 0 0 

0.2 0 0.5 0.3 0 0 

0.2 0 0.7 0.1 0 0 

0.2 0.1 0 0.7 0 0 

0.2 0.1 0.2 0.5 0 0 

0.2 0.2 0.1 0.5 0 0 

0.2 0.3 0.1 0.4 0 0 

0.2 0.3 0.3 0.2 0 0 

0.2 0.4 0.4 0 0 0 

0.3 0 0.3 0.4 0 0 

0.3 0.1 0.1 0.5 0 0 
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0.3 0.1 0.4 0.2 0 0 

0.3 0.2 0.3 0.2 0 0 

0.3 0.3 0 0.4 0 0 

0.3 0.7 0 0 0 0 

0.4 0 0 0.6 0 0 

0.4 0.2 0 0.4 0 0 

0.4 0.3 0 0.3 0 0 

0.4 0.3 0.3 0 0 0 

0.4 0.5 0.1 0 0 0 

0.5 0 0.1 0.4 0 0 

0.5 0.4 0.1 0 0 0 

0.6 0 0.2 0.2 0 0 

0.6 0 0.4 0 0 0 

0.6 0.1 0.1 0.2 0 0 

0.6 0.1 0.3 0 0 0 

0.6 0.3 0.1 0 0 0 

0.7 0 0.3 0 0 0 

0.7 0.1 0 0.2 0 0 

0.9 0 0 0.1 0 0 

1 0 0 0 0 0 
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Appendix C: The Test Parameter Set for the Mutation Operation 

Parameter 

Set ID 

Crossover 

Rate 

Population 

Size Epoch 

1 0.36 200 30 

2 0.92 300 50 

3 0.91 300 30 

4 0.19 300 30 

5 0.31 100 20 

6 0.41 300 50 

7 0.58 200 40 

8 0.48 500 20 

9 0.69 200 30 

10 0.02 400 10 

11 0.56 400 10 

12 0.92 100 40 

13 0.71 300 30 

14 0.86 200 40 

15 0.43 400 40 

16 0.19 200 20 

17 0.3 400 50 

18 0.92 500 10 

19 0.67 400 30 

20 0.58 500 10 

21 0.27 200 10 

22 0.8 100 40 

23 0.26 300 40 

24 0.65 200 20 

25 0.81 200 30 

26 0.95 100 10 

27 0.51 200 50 

28 0.07 500 40 

29 0.79 100 20 

30 0.04 300 10 

31 0.09 200 40 

32 0.82 200 10 

33 0.35 100 30 

34 0.97 400 30 

35 0.01 400 10 

36 0.61 300 30 

37 0.75 500 40 

38 0.51 200 50 

39 0.05 400 10 

40 0.71 300 20 

41 0.19 200 30 
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42 0 500 10 

43 0.92 300 10 

44 0 100 50 

45 0.74 100 50 

46 0.66 100 50 

47 0.13 100 50 

48 0.12 500 50 

49 0.33 400 50 

50 0.81 400 50 
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Appendix D: The Test Parameter Set for the Crossover Operation 

 

Parameter 

Set ID 

Mutation 

Rate 

Population 

Size Epoch 

1 0.82 400 20 

2 0.33 500 50 

3 0.73 400 30 

4 0.38 400 40 

5 0.79 300 40 

6 0.43 500 30 

7 0.53 500 10 

8 0.96 300 40 

9 0.70 500 10 

10 1.00 200 40 

11 0.49 400 30 

12 0.03 300 10 

13 0.63 100 30 

14 0.60 500 10 

15 0.26 400 50 

16 0.42 400 10 

17 0.50 300 10 

18 0.38 500 50 

19 0.06 100 50 

20 0.26 200 30 

21 0.95 500 30 

22 0.76 400 50 

23 0.72 300 40 

24 0.82 100 10 

25 0.37 300 20 

26 0.37 500 30 

27 0.43 400 40 

28 0.74 200 20 

29 0.23 500 10 

30 0.90 400 50 

31 0.98 100 20 

32 0.74 300 30 

33 0.47 500 20 

34 0.60 100 30 

35 0.73 300 20 

36 0.32 100 30 

37 0.99 400 40 

38 0.99 400 40 

39 0.15 300 10 

40 0.60 200 20 
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41 0.46 300 20 

42 0.13 500 30 

43 0.51 100 40 

44 0.13 500 30 

45 0.49 300 40 

46 0.11 200 20 

47 0.75 300 30 

48 0.41 300 30 

49 0.97 200 20 

50 0.17 200 30 

 

 


