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Lexicons help to make qualitative assessments in various application areas such as Multi Cri-

teria Decision Making (MCDM), intelligence analysis and human-machine teaming. In order

to make quantitative analysis, these qualitative assessments based on the lexicons need to be

quantified. During quantification, the linguistic descriptors involved in the lexicons that rep-

resent the judgments of the decision makers are mapped to a number. This is often achieved

by using a fixed numeric scale. However, for a variety of reasons, such as the vagueness of

the linguistic descriptors, the personal differences between the meanings associated to these

linguistic descriptors, and the difference between the usage habits of the decision makers, it

is not a realistic expectation to perform this mapping with a universal fixed numerical scale.

Thus, many researchers frequently criticize this practice. In our study, we focused on the quan-

tification of these linguistic descriptors. The performance of the different approaches used in

quantification phase are comparatively assessed and various new proposals are made in order

to improve the success of quantification process.

Although the quantification of qualitative assessments is a process that has been encountered

in many different applications, in this study we have targeted the Analytic Hierarchical Process

(AHP) framework, which is proposed by Thomas L. Saaty and widely used in MCDM. In

AHP, the relative weights of the criteria and/or the utility of the alternatives for a criterion

are determined from the qualitative assessments attained from the decision makers via pairwise

comparisons. These qualitative assessments are quantified (often by Saatys 1-9 universal scale)

in order to conduct further analysis. Thus, the quantification of the qualitative assessments,

which can also contain various rational and/or irrational elements, is naturally a critical step

for the success of the whole process.

In the scientific literature, various approaches are developed in order to improve the quantifica-

tion process. Fuzzy AHP (FAHP), which integrates fuzzy set theory to the original AHP, is one

of the most popular approach that is proposed for this purpose. Numerous FAHP algorithms

were developed, which used fuzzy numbers as a scale to quantify the qualitative assessments.

However, there is no numerical or empirical study available that assesses the contribution of

FAHP algorithms in MCDM. There is even no study, which evaluates the relative performances
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of the FAHP algorithms and provide guideline to the researchers that frequently utilize these

techniques as part of their analysis. Thus, in this study, firstly, the relative performances of

the five popular FAHP algorithms, which are determined by number of citations they received

in scientific literature, were measured by an experimental design study. In this context, four

new FAHP algorithms were also developed and included in the experimental analysis. In the

experimental analysis, three parameters, namely, the matrix size, the degree of inconsistency

and the fuzzification parameter, were considered and the performance of the nine algorithms

are assessed in various experimental conditions. This study revealed that the improved LLSM

and the FICSM algorithm proposed in this study generally outperform the other algorithms

significantly. To our surprise, the most popular algorithm in the literature, namely FEA, was

the worst performing algorithm in the experimental analysis. On the other hand, the improved

FEA significantly improved the performance of the original FEA.

In the second part of the study, the contribution of the FAHP algorithm in MCDM is discussed.

Thomas L. Saaty himself criticized fuzzification of AHP arguing that judgments provided by

experts are already fuzzy in nature and further fuzzifying them will add more inconsistency

in the pairwise comparison matrices. Other researchers have made similar remarks mostly

based on various theoretical arguments. However, these arguments are not supported by any

numerical or empirical study. In this research, we addressed this gap as well and the contribution

of FAHP to MCDM was investigated by means of numerical and empirical analysis. The FAHP

algorithms, which outperformed the others in the first part of the study, were compared with the

original AHP algorithms. The results revealed that the original AHP algorithms significantly

outperformed the existing FAHP algorithms. The results of numerical and empirical analysis

suggests that either the existing FAHP methods need to be improved or new ones should be

developed in order to benefit the researchers working in MCDM.

In addition to the FAHP algorithms, another approach that aims to improve the quantification

step is personalization of the numerical step instead of using a universal fixed scale. In the

last part of the study we addressed this approach and investigate its performance. Two simple

and intuitive heuristics are also developed as an alternative to the existing relatively com-

plex mathematical programming based personalization approach since most of the researchers

and practitioners utilizing MCDM techniques might not be familiar with optimization. Both

the numerical analysis and the empirical studies demonstrated that the heuristic approaches

outperformed the original AHP methods significantly.
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ÖZET

Sözcüklerle Hesaplama: Sözel Değerlendirmelerden Kararlara

Faran Ahmed

Endüstri Mühendisliği Doktora Programı

Tez Danışmanı: Dr. Kemal Kılıç

Anahtar Sözcükler: Sözcüklerle Hesaplama, Sözel Yargılar, Çift Yönlü Karşılatırmalar,

Analitik Hiyerarşik Süreci

Sözlükler, Çok Kriterli Karar Problemleri (ÇKKP), istihbarat analizi ve insan-makine takımları

gibi çeşitli uygulama alanlarında nitel değerlendirmelerin yapılmasına yardımcı olur. Daha ni-

cel analizlerin yapılması için sözcükler kullanılarak yapılan bu nitel değerlendirmelerin

sayısallaştırılmaları gerekmektedir. Sayısallaştırma aşamasında karar vericilerin yargılarını

ifade eden sözcükler bir sayıyla eşleştirilirler ve çoğu zaman bu sabit bir ölçek kullanılarak

gerçekleştirilir. Ancak, sözcüklerin muğlaklığı, kişilerin sözcüklere yüklediği anlamların farklılığı

ve kullanım alışkanlıkları gibi çeşitli nedenlerle, evrensel geçerliliği olan sabit bir sayısal ölçek

ile bu eşleştirmenin yapılması gerçekçi bir beklenti değildir. Nitekim pek çok araştırmacı

sıklıkla yapılan bu uygulamaya dönük eleştiriler dillendirilmektedir. Çalışmamızda sözcüklerin

sayısallaştırılması sürecine odaklanılmış, bu süreçte kullanılan yaklaşımlar mukayeseli bir şekilde

ele alınarak performansları değerlendirilmiş ve çeşitli iyileştirme önerileri geliştirilmiştir.

Nitel değerlendirmelerin sayısallaştırılması her ne kadar pek çok farklı uygulamada karşımıza

çıkan bir süreç ise de, bu araştırmada kendimize ÇKKP kapsamında yaygın olarak kullanılan

ve Thomas L. Saaty tarafından önerilen Analitik Hiyerarşik Süreç (AHP) çerçevesini hedef

aldık. AHP kapsamında uzmanlardan gerek kıstasların (kriterlerin) göreceli ağırlıklarının belir-

lenebilmesi, gerekse her bir kıstas bağlamında alternatiflerin göreceli faydasının belirlenebilmesi

amacıyla, nitel değerlendirmeleri ikili karşılaştırmalar şeklinde alınmaktadır. İçlerinde rasy-

onel veya irrasyonel ögeler de barındırabilen bu nitel değerlendirmelerin yapılacak analizlerde

kullanılabilmesinin sağlayacak olan sayısallaştırılma aşaması doğal olarak sürecin bütünü kap-

samında kritik önemdedir.

Bilimsel yazında bu aşamanın daha sağlıklı bir şekilde gerçekleştirilmesine yönelik çeşitli öneriler

bulunmaktadır. Bulanık küme teorisinin, orijinal AHP’ye entegrasyonu sonucunda geliştirilmiş

olan Bulanık AHP (FAHP), bu öneriler arasında yer alan ve oldukça sık karşımıza çıkan

yaklaşımlardan birisidir. Nitel değerlendirmelerin sayısallaştırılması aşamasında kullanılan

ölçeğin bulanık sayılardan oluşturulduğu, ardından bu bulanık sayılardan kıstasların ağırlığının

veya her bir kıstas bağlamında alternatiflerin göreceli faydasının hesaplandığı çok sayıda FAHP

algoritması geliştirilmiş ve bilimsel yazına sunulmuştur.
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Sayısallaştırma aşamasında bulanık sayıların kullanıldığı ölçeğin, sürecin bütününe yaptığı

katkının ölçülmesi bir yana, pek çok araştırmacının ÇKKP kapsamında kullandığı bu algo-

ritmaların göreceli performansları dahi ölçülmemiştir. Bu araştırma kapsamında ilk olarak,

bilimsel yazında yapılan atıflar gözetilerek belirlenen popüler beş FAHP algoritmasının göreceli

performansları, bir deneysel tasarım çalışmasıyla ölçülmüştür. Bu kapsamda dört yeni FAHP

algoritması da geliştirilmiş ve deneysel tasarım çalışmasına dâhil edilmiştir. Deneysel tasarım

çalışmasında matris büyüklüğü, tutarsızlık derecesi ve bulanıklaştırma derecesi parametre olarak

ele alınmış ve toplam dokuz algoritmanın farklı parametre seviyelerinde nasıl bir performans

gösterdikleri ölçülmüştür. Bu çalışma bize iyileştirilmiş LLSM ve yeni geliştirilen FICSM

algoritmalarının genellikle diğer algoritmalardan daha iyi çalıştığını göstermiştir. FEA gibi

literatürde en popüler olan yaklaşımın ise en kötü sonuçları verdiği gene bu analizin sonu-

cunda gözlemlenmiştir. İyileştirilmiş FEA ise orijinal FEA’in performansını önemli derecede

arttırmıştır.

Araştırmanın ikinci kısmında ise bulanık sayılardan oluşan ölçeğin sürece yaptığı katkı ele

alınmıştır. Thomas L. Saaty, bizzat kendisi bulanık sayılardan oluşacak olan ölçeğin faydasının

olmayacağını zaten uzmanların niteliksel değerlendirmelerinin muğlak olduğu ve bulanık bir

ölçeğin sürece daha da zarar vereceğini ifade etmiştir. Başka araştırmacılar da daha çok ku-

ramsal argümanlarla benzer eleştirilerde bulunmuştur. Ama bu argümanlar ne deneysel tasarım

çalışmalarıyla ne de gözlemsel çalışmalarla desteklenmemiştir. Bu çalışma kapsamında bu açığın

giderilmesi hedeflenmiş ve hem deneysel tasarım çalışmasıyla hem de gözlemsel çalışmalarla

FAHP’lerin sürece katkısının ölçülmüştür. Araştırmanın ilk kısmında belirlenen ve diğer FAHP

algoritmalarına göre daha iyi performans sergileyen FAHP algoritmaları, orijinal AHP algorit-

malarıyla kıyaslanmıştır. Sonuçlar, mevcut FAHP yöntemlerinin AHP yöntemlerinden daha

kötü sonuçlar verdiklerini göstermiştir. Bu durum ise FAHP yöntemlerinin geliştirilmeleri

gerektiğine, bu halleriyle kullanılmasının fayda değil zarar getirdiğine işaret etmektedir.

Nitel değerlendirmelerin sayısallaştırılmasında bulanık sayılardan oluşan bir ölçeği kullanan

FAHP algoritmalarının yanı sıra evrensel bir ölçeğin yerine kişiselleştirilmiş bir ölçeğin kul-

lanılmasına dayanan öneriler de bilimsel yazında yakın zamanda gündeme gelmiştir. Çalışmanın

son kısmında bu yaklaşımın performansının ölçülmesi hedeflenmiştir. Bilimsel yazında bulunan,

karmaşık ve pek çok araştırmacının üzerinde fazla bilgi sahibi olmadığı eniyileme yöntemlerine

dayanarak önerilen kişiselleştirilme yaklaşımına alternatif olarak iki adet kolay sezgisel yaklaşım

da bu kapsamda geliştirilmiştir. Gerek numerik deneysel tasarım çalışmasıyla, gerekse gözlemsel

deneylerle geliştirilen sezgisel yaklaşımların bilimsel yazında bulunan orijinal AHP

yöntemlerinden istatistiksel olarak ciddi derecede daha iyi bir performans gösterdiği gözlenmiştir.
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Chapter 1

Background and Motivation

Lexicons that consists of linguistic qualifiers are used by experts to evaluate various situations

(e.g., probabilities, significance etc.,) in business, academic, intelligence, medical, and political

environments. These lexicons provide weakly ordered preferential relationship, which are used

to evaluate alternatives and rank them accordingly. Elicitation of such linguistic qualifiers is of

critical importance as it provides data which influences outcome in terms of rank, preferences

scores or weights. Recent literature in neuroscience, especially in neuroeconomics, show that

human preferences can be considered as a representation of the population of neuron activity

[1]. There exists various psychological models of judgment and decision making which can be

regarded as means to measure such brain activity and correspondingly interpret preferential

relationships through real numbers.

First set of models are based on Value First View [2] [3] [4] [5] [6] and assume that preferences of

objects expressed by decision makers through lexicons are associated with an internal numerical

scale and brain compute values of available objects and chooses the one with higher values.

Second set of models are based on Comparison Based Theories [7] [8] [9] [10], according to

which, brain never computes anything in isolation, it rather computes how much it values

one object compared to another object. Third set of models are based on Comparison Based

Theories without Internal Scale [11] [12] [13] [14]. These models assume no values are computed

during the comparisons and the process only involved ordinal comparisons. Majority of the

models suggest that comparisons performed by the brain and resulting choices depend heavily

on the internal numerical scale, if it exists, and the context of available options.

These psychological models of judgment require elicitation of human preferences in some form.
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Review of relevant literature shows that, since uncertainty associated with human preferences is

better communicated using vague verbal terms which are more intuitive and natural [15], people

prefer to use linguistic qualifiers to express their opinions. Furthermore, precise numerical values

are generally avoided because they may imply a sense of precision which a decision maker does

not want due to uncertain nature of the whole decision problem [16]. For example, people

mostly think and talk about uncertainty in terms of verbal phrases (Extremely likely, not very

likely etc.,) and they are more skilled in using the rules of language as compared to the rules of

probability [17]. These linguistic qualifiers are used across different domains and the ones used

in multi-criteria decision making [18], intelligence [19], and medicine are tabulated in Table 1.1.

Table 1.1: Lexicons across different domains

Lexicons Numerical Equivalent

Equally Important 1

Moderately Important 3

Strongly Important 5

Very Strongly Important 7

Extremely Important 9

Almost Certain 93%

Probable 75%

Chances About Even 50%

Probably Not 30%

Almost Certainly Not 7%

Likely Expected to happen to more than 50 % of subjects

Frequent Will probably happen to 10-50 % of subjects

Occasional Will happen to 1-10 % of subjects

Rare Will happen to less than 1 % of subjects

Multi-Criteria Decision Making (MCDM)

Words of Estimative Probability in Intelligence

Words of Estimative Probability in Buisness

In this research we target lexicons that are used in Multi-Criteria Decision Making (MCDM)

models which refer to decisions making in the presence of multiple, usually conflicting criteria.

Analytic Hierarchy Process (AHP) proposed by Thomas L. Saaty [18] is one of the most popular

methods in MCDM in which expert opinions are elicited in the form of pairwise comparisons.

Making pairwise comparisons is the preferred way of eliciting such human preferences as it

deals with binary evaluations and is an easier cognitive task when compared to evaluating all

objects simultaneously [20].

In Pairwise comparisons, two objects are evaluated simultaneously and preference intensities

are provided in the form of linguistic qualifiers which are then stored in Linguistic Pairwise
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Comparison Matrices (LPCMs). Afterwards, the challenge is to compute with these LPCMs and

derive priority vectors. As of now, linguistic qualifiers are transformed into numbers through

a fixed numerical scale and the computations are carried out with these numbers. The most

common approach in the literature is to use a fixed scale [21] [22] [23] [24] [25]. These scales

are discussed in Section 2.1.

Two major criticisms associated with conventional fixed scales are; firstly, rather than quanti-

fying linguistic variables with crisp numbers, fuzzy numbers might represent reality better, and

secondly, a constant fixed scale for all individuals is not logical as words have different meaning

for different people. In order to address first criticism, various Fuzzy AHP (FAHP) methods

have been developed in which linguistic qualifiers are numerically represented through fuzzy

numbers and priority vectors are derived from fuzzy pairwise comparison matrices. Logarith-

mic least squares method [26], modified logarithmic least squares method [27], geometric mean

method [28] and fuzzy extent analysis [29] are the most commonly used FAHP methods in the

literature.

In order to address the second criticism, a novel approach is proposed to generate personalized

numerical scale, which utilizes a mathematical model to quantify linguistic qualifiers at an

individual level [30]. The objective function of this model minimizes the inconsistency of the

Numerical Pairwise Comparison Matrix (NPCM). However, efforts to reduce inconsistency in a

pairwise comparison matrix can distort the meaning of linguistic qualifiers to an extent that they

no longer represents decision makers preferences. Distinction should be made in the consistency

of the preferences and the validity of the underlying decision process. Improving consistency of

NPCM does not necessarily improves the validity of the results and thus consistency improving

methods could be misleading [31].

In light of aforementioned arguments, we first present different numerical scales in Chapter

2. Details of different methods to derive a weight vector from numerical pairwise comparison

matrices is discussed in Chapter 3 and 4. Various consistency measures are presented in Chapter

5. Based on the research methodology outlined in Chapter 6, a detailed performance analysis

of nine FAHP methods is discussed in Chapter 7. Results from the evaluation of the value of

fuzzifying human preferences is presented in Chapter 8. We propose two novel heuristics that

will be used for a particular expert to quantify his/her linguistic qualifiers. These heuristics

and their comparison with traditional methods are discussed in Chapter 9. We conclude this

dissertation by providing concluding remarks and future research areas in Chapter 10.
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Chapter 2

Numerical Scale

Eliciting human preferences in the form of pairwise comparisons is the preferred way of eliciting

human preferences as it deals with binary evaluations and it is an easier cognitive task when

compared to evaluating multiple objects simultaneously [20]. Eliciting preferences numerically

may seem beneficial as they are more precise, permit communication to be less ambiguous and

can be easily used in subsequent calculations [32]. However, review of relevant literature shows

that people prefer to use verbal statements to express their opinions, as uncertainty associated

with pairwise comparisons is better communicated using vague verbal terms which are more

intuitive and natural [15]. Furthermore, precise numerical values are generally avoided because

they may imply a sense of precision which a decision maker avoid due to uncertain nature of

the decision problem [16]. People mostly think and talk about uncertainty in terms of words,

i.e., linguistic labels and they are more skilled in using the rules of language as compared to

the rules of probability [17]. Therefore, it is fair to conclude that the best way to elicit expert

opinions is to use linguistic labels in the form of natural language verbal phrases.

Once decision makers and/or experts provide pairwise comparisons in the form of linguistic

variables, this information is stored in Linguistic Pairwise Comparison Matrices (LPCMs).

Next step in the process is to compute with these LPCMs in order to derive priority vectors

for available criteria and alternatives. As of now, rather than computing with words, these

linguistic variables are transformed into numbers and the computations are carried out with

these numbers. The most common approach in the literature is to use a fixed numerical scale.

There are two types of fixed scales, i.e., scale based on crisp numbers and scale based on fuzzy

numbers. Recently, research is being conducted on personalized scale in which each linguistic
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label has a numerical value optimized at an individual level. In the following sections, different

numerical scales to convert linguistic labels into numbers will be discussed in detail.

2.1 Fixed Scale

As stated above, one way of computing with linguistic labels is by transforming them into

numbers using a fixed numerical scale. It maps linguistic labels to numbers and correspondingly

LPCMs are converted into Numerical Pairwise Comparison Matrices (NPCMs). One such

example is tabulated in Table 2.1.

Table 2.1: Linguistic variables transformed into numbers using Saaty scale of 1-9

Linguistic scale
Linguistic Variable

Si

Numerical Value

f(si)

Equally Important S8 1

Weakly More Important S9 2

Moderately More Important S10 3

Moderately Plus More Important S11 4

Strongly More Important S12 5

Strongly Plus More Important S13 6

Demonstrated More Important S14 7

Very Strongly More Important S15 8

Extremely More Important S16 9

Where Si is a linguistic variable and it holds a value in the form of lexicons. For example, S8 =

Equally Important, S9 = Weakly More Important etc.,. Linguistic variables S0 to S7 represent

inverse of linguistic variables tabulated in Table 2.1. Function f transforms linguistic variables

into numbers and inverse of function (f−1) transform numbers into linguistic variables. For

clarity, an example of LPCM and its transformation to NPCM is given as follows;


S8 S9 S15

S7 S8 S11

S1 S5 S8

 =


f(S8) f(S9) f(S15)

f(S7) f(S8) f(S11)

f(S1) f(S5) f(S8)

 =


1 2 8

1/2 1 4

1/8 1/4 1


Besides the standard 1-9 scale, there are numerous other fixed scales proposed in the literature
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such as Linear Scale [18], Power Scale and scale based on Root Square [21], Geometric Scale

[22], Inverse Linear [33], Asymptotic Scale [23], Balanced Scale [24] and Logarithmic Scale [34]

etc.,. Details of these scales are tabulated in Table 2.2 and comprehensive review of these scales

in terms of sensitivity to consistency and variance of allocation of priority values is provided in

[35].

Table 2.2: Most common fixed scales used in AHP

Scale Type Mathematical Description Parameters

Linear s = x x = 1, 2, ..., 9

Power s = x2 x = 1, 2, ..., 9

Root Square s =
√
x x = 1, 2, ..., 9

Geometric s = 2x−1 x = 1, 2, ..., 9

Inverse Linear s = 9
10−x x = 1, 2, ..., 9

Asymptotical s = tanh−1
(√3(x−1)

14

)
x = 1, 2, ..., 9

Balanced s = x
1−x x = 0.5, 0.55, 0.6, ..., 9

Logarithmic s = log2(x+ 1) x = 1, 2, ..., 9

It has been argued in the literature that human preferences are vague in nature and representing

them with a constant fixed scale cannot incorporate the inherent uncertainty associated in

human observations. Furthermore, discreteness and finiteness of these scales is one of the

primary sources of inconsistency in NPCMs [36]. Different approaches have been proposed in

the literature that attempts to address these issues. One such approach is to represent human

preferences through fuzzy numbers, which is explained in Section 2.2 and Chapter 4. Another

approach is to use a personalized scale that construct numerical scales for each individual

separately. This approach will be discussed in Section 2.3.

2.2 Scale Based on Fuzzy Numbers

The main motivation behind using fuzzy set theory for mapping linguistic labels is based on

the argument that human judgment and preferences cannot be accurately represented by crisp

numbers due to the inherent uncertainty in human perception. Disregarding this fuzziness of

the human behavior in the decision making process may lead to wrong decisions [37]. In order

to address this issue of vagueness and uncertainty, fuzzy set theory introduced by Zadeh [38] has

been extensively incorporated into the original AHP in which the weighing scale is composed of
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fuzzy numbers. In this section, we present a brief overview of fuzzy numbers, fuzzy arithmetics

and fixed fuzzy scale and later in Chapter 4, various techniques associated with fuzzy scales

will be presented.

Instead of a single value, a fuzzy number represents a set of possible values each having its own

membership function varying between zero and one. A triangular fuzzy number is represented

by [lower value, mean value, upper value] or [l m u] and a trapezoidal number is represented

by [l m n u] with membership functions µM given by;

µM(x) =


x

m−l −
l

m−l , x ∈ [l m]

x
m−u −

u
m−u , x ∈ [m u]

0, otherwise

(2.1)

Note that the membership function defined in Equation 2.1 is for triangular fuzzy numbers.

For trapezoidal numbers, membership function in the interval [m n] is equal to one. The same

is graphically illustrated in Figure 2.1.

(a) Triangular Fuzzy Number (b) Trapezoidal Fuzzy Number

Figure 2.1: Membership function of fuzzy numbers

An example of fixed scale based on triangular fuzzy number (TFN) is illustrated in Table 2.3.

Let (l1 m1 u1) and (l2 m2 u2) be two triangular fuzzy numbers and (l1 m1 n1 u1) be a trapezoidal

fuzzy number, than the basic fuzzy arithmetic operations are tabulated in Table 2.4.
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Table 2.3: An example of fixed scale based on triangular fuzzy number

Linguistic scale Scale Based on TFN

Just Equal (1, 1, 1)

Equally Important, (1/2, 1, 3/2)

Weakly More Important, (1, 3/2, 2)

Strongly More Important (3/2, 2, 5/2)

Very Strongly More Important (2, 5/2, 3)

Absolutely More Important (5/2,3, 7/2)

Table 2.4: Fuzzy arithmetics

Operation Result 

Addition (l1  m1  u1) ⊕ (l2  m2  u2) = (l1+l2  m1+m2  u1+ u2) 

Multiplication (l1  m1  u1) ⊙ (l2  m2  u2) = (l1.l2  m1.m2  u1. u2) 

Scalar Multiplication  λ ⊙ (l  m  u) = (λ .l   λ .m   λ .u) 

Inverse (Triangular Fuzzy Number) (l  m  u)-1 = (1/u  1/m  1/l) 

Inverse (Trapezoidal Fuzzy Number) (l  m  n  u)-1 = (1/m  1/l  1/u  1/n) 

 

2.3 Personalized Scale

Transforming linguistic labels into numbers using any of the fixed scales discussed in the previ-

ous sections is based on the assumption that these linguistic variables have the same meaning

for all individuals which is not the case in reality, as words have different meaning for different

people [16]. A novel approach [30] is proposed to transform LPCMs into NPCMs which uti-

lizes a mathematical model to generate personalized scale for each decision maker separately.

The proposed mathematical model utilizes information provided by the decision maker through

LPCMs and transitivity rules of pairwise comparisons to generate personalized scales for each

individual. A brief overview of this mathematical formulation is provided as follows.

Suppose there are three criteria {C1, C2, C3} and pairwise comparisons provided by the decision

maker between criterion C1 and C2 is sr, between C2 and C3 is st and C1 and C3 is ert. Based

on these pairwise comparisons, corresponding LPCM can be formulated as follows;


Null Sr ert

Null Null St

Null Null Null
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Let { 1
fj
, f1, fj} for j = 2, 3, ..., 9 be the numerical scale used to transform above LPCM into

NPCM. As stated earlier, function f transforms linguistic variables into numbers and inverse of

function i.e., f−1 transform numbers into linguistic variables. Then, based on a selected scale,

the corresponding NPCM can be represented as follows;


Null f(Sr) f(ert)

Null Null f(St)

Null Null Null


ert is the preference provided by the decision maker, however, the same can be estimated

through the transitivity conditions for a perfectly consistent matrix i.e., f(Sr)×f(St) = f(ert).

Therefore, êrt can be estimated using Equation 2.2;

êrt = f−1(f(Sr)× f(St)) (2.2)

Selecting different numerical scales will yield different values for estimated êrt. For example, if

given preference intensities are S9 and S10 then using Saaty scale of 1-9, ê9,10 can be estimated

as follows;

ê9,10 = f−1(f(S9)× f(S10)) = f−1(2× 3) = S13

The main objective of the proposed model is to construct such a scale that minimizes the

deviation between ert provided by the decision maker and êrt estimated from a particular

numerical scale. Mathematical formulation of this model is given as follows;

minimize
f2, . . . , fg

16∑
r,t=0

d(ert, êrt)

subject to Li ≤ fi ≤ Ui, i = 1, 2, . . . , 9,

fi < fi+1, i = 1, 2, . . . , 8

(2.3)

Where ert represents linguistic information provided by the decision maker and êrt represents

9



estimated linguistic information based on transitivity rules. In this research, this mathematical

model to generate personalized scale for each individual will be investigated through a numerical

and empirical study.
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Chapter 3

Deriving a Weight Vector from Crisp

NPCMs

After constructing NPCM using one of the scales discussed in Chapter 2, the next step is

to identify the priority vector from NPCM. If crisp numbers are preferred in NPCM, then

conventional AHP methods will be utilized to derive a priority vector from NPCM. On the

other hand, if fuzzy numbers are preferred, FAHP methods will be used to derive the required

priority vector. Over the years various priority derivation techniques have been proposed for

both original AHP and FAHP methods. In this Chapter, we will discuss various priority

derivation techniques in original AHP methods.

3.1 Eigenvector

Saaty [18] proposed that the principal eigenvector of the NPCM accurately estimates the desired

priority vector. Provided we have a fully consistent comparison matrix and multiply it with

the column priority vector (which we are trying to identify) we end up with following:
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w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn





w1

w2

...

wn


= n



w1

w2

...

wn


(3.1)

Therefore, given a comparison matrix A, we can solve for the priority vector A × w = n × w.

In standard linear algebra, n in this equality is referred as eigenvalue and w is referred to as

the corresponding eigenvector. That is to say, the eigenvector of a fully consistent PCM is the

required priority vector. Note that as a general rule, sum of the eigenvalues of a n× n matrix

A is equal to the trace i.e., sum of the diagonal elements of A. Due to the special structure of

the fully consistent comparison matrix (i.e., the transitivity rule holds and as a result the rank

of such a matrix is 1), it has only one eigenvalue and its value is n (the sum of the diagonal

elements,
∑n

i=1 1 = n).

In reality, we do not encounter a fully consistent comparison matrix assessed from the decision

maker(s). Therefore, the comparison matrix yields multiple number of eigenvalues with values

that are not equal to n. Saaty proposes to use the maximum eigenvalue among the set of

the eigenvalues that would be obtained from a inconsistent comparison matrix, which would

be closer to the theoretical value of n obtained from a fully consistent comparison matrix.

Mathematical formulation for estimating maximum eigenvalues is given by following Equation.

A× w = λmax × w

where λmax ≈ n. As explained earlier, in case of a perfectly consistent matrix λmax = n. Once

the eigenvector corresponding to the maximum eigenvalue is calculated, it is then normalized

to estimate the final priority vector.

3.2 Logarithmic Least Squares Method

Let’s assume that wi and wj are weights to be estimated while aij is the comparison ratio

provided by the expert while comparing criterion i with criterion j. Due to the inherent
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inconsistency in human judgments, comparison ratio aij will differ from the corresponding set

of weights. Therefore, the goal is to estimate such a combination of weights that minimizes

the total deviation between comparison ratios provided by the expert and the ratio of the

corresponding weights which can be achieved by minimizing following equation.

min
∑
i<j

(ln aij − (lnwi/wj))
2 (3.2)

Crawford and Williams [39] shows that solution to above problem is unique and can be found

by taking geometric means of the rows of pairwise comparison matrix A.

3.3 Arithmetic and Geometric Mean Heuristic

Arithmetic and geometric mean approaches are among the most popular techniques used in

original AHP. These two techniques originate from the properties of a fully consistent com-

parison matrix. Suppose there are (n) criteria and the aim is to extract the weight vector,

i.e., w = w1, w2, · · · , wn whereas wi refers to the weight of the ith criteria. Recall that a fully

consistent comparison matrix is as follows:

W ′ =



w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn


(3.3)

In the first step, elements of each columns are added, which results in the following;

(
w1 + w2, · · · , wn

w1

,
w1 + w2, · · · , wn

w2

, · · · , w1 + w2, · · · , wn
wn

)
(3.4)

Note that AHP assumes additive utility, that is to say, the overall utility is weighted sum of

individual utilities i.e.,
∑
wi = 1. Therefore, the column sums provided by Equation 3.4 are
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equivalent to (
1

w1

,
1

w2

, · · · , 1

wn

)
(3.5)

Next, if each element of the comparison matrix is divided by its corresponding column sum, we

end up with the following matrix which is referred to as WN .

WN =



w1 w1 · · · w1

w2 w2 · · · w2

...
...

. . .
...

wn wn · · · wn


(3.6)

Hence, for a fully consistent matrix, if the above described normalization process is applied,

the resulting matrix WN will be composed of column vectors which are same with each other

and any one of them can be considered as the weight vector that we to be determined i.e.,

(w1, w2, · · · , wn). However, since in practice the comparison matrix obtained from the decision

makers are rarely consistent, the resulting normalized matrix would be composed of column

vectors that are different from each other. Since each column is a candidate for the weight

vector and the source of the inconsistency cannot be detected, the reasonable approach is to

average the columns of the normalized matrix WN . The average can either be obtained by

arithmetic means or geometric means. Equations 3.7 and 3.8 represent these two approaches,

where wJi denotes the candidate weight associated with the ith criteria based on the jth column

of WN .

A.M =

∑n
J=1w

J
i

n
for i = 1, 2, · · · , n (3.7)

G.M =

[
n∏
J=1

wJi

]1/n
for i = 1, 2, · · · , n (3.8)
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3.4 Row Sum Heuristic

Starting with the perfectly consistent comparison matrix given by Equation 3.3, we first take

sum of all elements in ith row and assign it to R.Si. The sum of each row is as follows;

R.S1 = w1

(
1

w1

+
1

w2

+ · · ·+ 1

wn

)

R.S2 = w2

(
1

w1

+
1

w2

+ · · ·+ 1

wn

)
...

R.Sn = wn

(
1

w1

+
1

w2

+ · · ·+ 1

wn

)

The sum of all R.Si is given as follows;

n∑
i=1

R.Si = (w1 + w2 + · · ·+ wn).

(
1

w1

+
1

w2

+ · · ·+ 1

wn

)

where (w1 + w2 + · · · + wn) = 1 due to additive utility. Priority vector can be calculated by

normalizing each R.Si by dividing it by
∑n

i=1R.Si. The priority vector is given as follows;

R.S1∑n
i=1R.Si

= w1,
R.S2∑n
i=1R.Si

= w2, · · ·
R.Sn∑n
i=1R.Si

= wn

3.5 Inverse of Column Sum

Another heuristic that is developed and included in this research is referred to as Inverse of

Column Sums. This intuitive heuristic requires very few arithmetic operations. For the fully

consistent comparison matrix, column sum of each column is calculated by Equation 2. Since

(due to additive utility assumption) w1 + w2 + · · ·+ wn = 1, the column sums are equivalent

to
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1

w1

,
1

w2

, · · · , 1

wn
(3.9)

Thus, the inverse of column sums will yield the weight vector w1, w2, · · · , wn for fully consistent

comparison matrix.

3.6 Comparison of the Original AHP Methods

Proposing algorithms to derive accurate priority vector from inconsistent NPCMs have always

been a fertile and popular research area for researchers working in this domain. Some of the

techniques in original AHP; in addition to those stated previously are; Additive Normalization

Method [40], Modified Eigenvector Method [41], Weighted Least-Squares Method [42], Loga-

rithmic Goal Programming [43] and many others which are not discussed in detail due to space

limitation. Although there exists numerous techniques to derive priority vector, Saaty argues

that when comparison matrices are inconsistent, their transitivity effects the final outcome,

and must be taken into account while deriving priority vector. As principal eigenvector (i.e.,

eigenvector associated with largest eigenvalue) captures transitivity uniquely, therefore, it is

the proper way of obtaining accurate priority vector [44, 45]. Furthermore, inconsistency is

an inevitable phenomenon in any NPCM elicited from decision maker and slight variations

caused in inconsistent NPCMs are accordingly represented in slight variations in eigenvector

and eigenvalues [31].

On the other hand, comparative analysis of 18 different techniques shows that distance-based

estimating methods, such as least squares and various extensions of least squares are preferred

as they minimize distance between matrix [wi/wj] to the original comparison matrix provided

by the decision maker [46]. Furthermore, it has been shown that the priority vector calculated

through eigenvector approach can violate conditions of order preservation [47] and thus caution

should be observed while using this technique to derive priority vector.

Golany and Kress [48] provide an analysis amongst six methods in which they use minimum

violation, total deviation, conformity and robustness as criteria for performance analysis and

concluded that Modified Eigenvalue (MEV) is the most ineffective method, while among the re-

maining five algorithms, each have their own weaknesses and advantages. Another comparative

analysis performed by Ishizaka and Lusti [49] used Monte Carlo simulations to compare and
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evaluate four priorities deviation techniques which includes right eigenvalue method, left eigen-

value method, geometric mean and the mean of normalized values and conclude that number

of contradictions increases with increase in the inconsistency as well as the size of the matrix.

Some other similar studies are also available in the literature [50] [51] [52] [53] [54].
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Chapter 4

Deriving a Weight Vector from Fuzzy

NPCMs

In this chapter, we will discuss various priority derivation techniques, when the scale used to

transform LPCM into NPCM is composed of fuzzy numbers. Resulting NPCMs are considered

as fuzzy NPCMs (FNPCM) and we refer to FAHP when such a transformation is used to

convert linguistic variables into numbers. Main motivation behind incorporating fuzzy set

theory into original AHP is based on the argument that human judgments and preferences

cannot be accurately represented by crisp numbers due to the inherent uncertainty in human

perception. Therefore, in order to address this issue of vagueness and uncertainty, and to

accurately transform human judgments into ratio scales, fuzzy set theory introduced by Zadeh

[38] has been extensively incorporated into the original AHP in which the weighing scale is

composed of fuzzy numbers.

In FAHP, weights are calculated from fuzzy comparison matrices which are later used to rank the

available alternatives together with the scores attained by the alternatives for each criterion.

Therefore, determination of the weights from comparison matrices is one of the key steps

of the process. In the conventional AHP these weights are shown to be the eigenvectors of

the comparison matrix for a fully consistent decision maker [45]. However in case of FAHP,

calculating weights from fuzzy comparison matrices is not straightforward due to complexities

associated with the arithmetics of fuzzy numbers. Therefore, over the past couple of decades,

various FAHP methods have been proposed in the literature with an aim to accurately extract

weights from fuzzy comparison matrices.
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Golany and Kress [48] provide a performance comparison of most commonly used six methods in

original AHP, in which they used minimum violation, total deviation, conformity and robustness

as criteria for performance analysis. They concluded that Modified Eigenvalue (MEV) [41] is

the least effective method, while among the remaining five algorithms, each have their own

weaknesses and advantages. Another comparative analysis is performed by Ishizaka and Lusti

[49] in which they used Monte Carlo simulations to compare and evaluate four techniques to

derive priority vector in original AHP including right eigenvalue method, left eigenvalue method,

geometric mean and the mean of normalized values and conclude that number of contradictions

increases with increase in the inconsistency as well as the size of the matrix. Some other similar

studies that compare crisp AHP approaches in various aspects are also available in the literature

[50] [51] [52] [53] [54].

Buyukozkan et al. [55] provide a review of FAHP methods and list the characteristics and

advantages and disadvantages for those methods which are structurally different. However, a

performance analysis of FAHP methods similar to the ones that are available for the original

AHP is not conducted so far. More and more papers are being published which apply FAHP

as part of the solution process; however, the choice of the FAHP technique used in the analysis

seems to be arbitrary due to this gap in the literature. Therefore, in this study we attempt to

carry out a detailed performance analysis of nine different FAHP methods in terms of accuracy

of weights calculated from fuzzy comparison matrices. Such an analysis would address the

gap in the literature and guide both the researchers and practitioners while choosing the most

appropriate FAHP method in their analysis.

As stated earlier, there are numerous FAHP methods proposed in the literature by various au-

thors to effectively derive priority vector from FNPCM. The seminal article integrating fuzzy set

theory and AHP was written by Van Laarhoven and Pedrycz [26] in which they utilized triangu-

lar fuzzy numbers and implemented logarithmic least squares method (LLSM) to derive priority

vector from FNPCMs. Other popular FAHP techniques includes Modified Logarithmic Least

Squares Method [27], Geometric Mean [28] and Fuzzy Extent Analysis [29]. Figure 4.1 illus-

trates the yearly citation history of these algorithms in Google scholar between 2000 and 2017.

Review of this literature shows that some of these techniques (particularly Chang, Laarhoven

and Buckley) are still being frequently referred to (and in some cases implemented as well) by

the researchers. Brief overview of these techniques are presented in the following sections;
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Figure 4.1: Number of citations received by the five popular algorithms in Google scholar
between years 2000 and 2017

4.1 Fuzzy Logarithmic Least Squares Method

Van Laarhoveen and Pedrycz [26] suggested one of the first models in the domain of Fuzzy AHP,

which utilizes fuzzy logarithmic least squares method (LLSM) and formulated an unconstrained

optimization model to obtain triangular fuzzy weights. Note that Equation 3.2 presented in

Section 3.2 is valid when comparison ratios are provided by a single expert and can be rewritten

for multiple experts as follows.

min
∑
i<j

δij∑
k=1

(ln aijk − (lnwi/wj))
2 (4.1)

where, δij is the number of comparison ratios assessed from different experts available for a

certain criteria. Equation 4.1 is simplified by replacing yijk = ln aij, xi = lnwi and xj = lnwj;

min
∑
i<j

δij∑
k=1

(yijk − xi + xj)
2 (4.2)

To minimize Equation 4.2, we take partial derivatives with respect to xi and equate them to
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zero. Following is the resultant set of equations.

xi

n∑
j=1
j 6=i

δij −
n∑

j=1
j 6=i

δijxj =
n∑

j=1
j 6=i

n∑
k=1

yijk (4.3)

The above system is composed of set of equations which can be simultaneously solved to

calculate all xi’s. Afterwards, to convert the system into its original form, exponential of the

solution are taken and then normalized to estimate final weights. However, system of Equations

presented in (4.3) is applicable only when the given comparison ratios are in the form of crisp

numbers. It can be transformed for triangular fuzzy weights while following the rules for fuzzy

arithmetic operations presented earlier in Table 2.4. This transformation is given as follows;

li

n∑
j=1
j 6=i

δij −
n∑

j=1
j 6=i

δijuj =
n∑

j=1
j 6=i

n∑
k=1

lijk (4.4)

mi

n∑
j=1
j 6=i

δij −
n∑

j=1
j 6=i

δijmj =
n∑

j=1
j 6=i

n∑
k=1

mijk (4.5)

ui

n∑
j=1
j 6=i

δij −
n∑

j=1
j 6=i

δijlj =
n∑

j=1
j 6=i

n∑
k=1

uijk (4.6)

where li = lnwil, mi = lnwim and ui = lnwiu. Same procedure is followed to convert the

system into its original form by taking exponential of the solutions and then normalizing to

estimate final fuzzy weights;

w̃i =

(
exp(li)∑n
i=1 exp(ui)

,
exp(mi)∑n
i=1 exp(mi)

,
exp(ui)∑n
i=1 exp(li)

)
(4.7)

4.2 Modified Fuzzy Logarithmic Least Squares Method

Subsequent research on this model identifies various irregularities and appropriate modifica-

tions are proposed [27, 56]. In the original LLSM Model, normalization process eliminates the
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optimality in the sense that the normalized solution violates the first order optimality condi-

tions and thus normalized weights do not minimize the objective function. A modified version

of the normalization procedure is proposed by Boender et al. [27] as follows;

w̃i =

(
exp(li)√∑n

i=1 exp(li).
∑n

i=1 exp(ui)
,

exp(mi)∑n
i=1 exp(mi)

exp(ui)√∑n
i=1 exp(li).

∑n
i=1 exp(ui)

)
(4.8)

4.3 Constrained Nonlinear Optimization Model

Wang et.al [56] criticize various aspects of the FLLSM Model and propose a constrained non-

linear optimization model to address those criticisms. His criticism of the original LLSM model

is summarized as follows.

Incorrect Normalization: Fuzzy weights calculated after normalization procedure must sat-

isfy the following conditions [57].

n∑
i=1

wUi −max
j

(wUj − wLj ) ≥ 1

n∑
i=1

wMi = 1

n∑
i=1

wLi −max
j

(wUj − wLj ) ≤ 1

(4.9)

Although the normalization procedure modified by [27] provides optimal weights, [56] shows a

counter example in which normalized fuzzy weights violate the conditions presented in Equa-

tion 4.9.

Incorrectness of Triangular Fuzzy Weights: The solution to the original system of equa-

tions can be represented as (li + p1,mi + p2, ui + p1). It was stated by [26] that arbitrary

parameters p1 and p2 can be always chosen in a way that will ensure that the following condi-

22



tion is satisfied;

li + p1 ≤ mi + p2 ≤ ui + p1, for i = i, ...., n

After taking exponential and normalizing, fuzzy weights are again in the correct order. However,

this claim was found false and a counter example was provided by [56] in which the normalized

solution violated the given condition of a triangular fuzzy number.

Uncertainty of fuzzy weights for incomplete comparison matrices: In case of a compar-

ison matrix in which some of the values/ratios are missing, the system of equations formed may

contain free variables. Therefore, different configurations of free variables must be formed with

each configuration leading to different weights. Such a situation is observed in the numerical

example cited by [27]; however no justification is provided for choosing a specific configuration.

This uncertainty in estimating fuzzy weights exists in all incomplete fuzzy PCMs and thus

should be addressed appropriately.

In light of the above, [56] suggests a constrained nonlinear optimization model as follows:

minJ =
n∑
i=1

n∑
j=1,j 6=i

δij∑
k=1

(lnwLi −lnwUj −ln aLijk)
2+(lnwMi −lnwMj −ln aMijk)

2+(lnwUi −lnwLj −ln aUijk)
2

Subject to



wLi +
∑n

j=1,j 6=iw
U
j ≥ 1

wUi +
∑n

j=1,j 6=iw
L
j ≤ 1∑n

i=1w
M
i = 1∑n

i=1(w
L
i + wUi ) = 2

wUi ≥ wMi ≥ wLi

(4.10)

A solution to this mathematical model is normalized fuzzy weights for both complete and

incomplete comparison matrices. The first three constraints in (4.10) satisfy the normaliza-

tion conditions of fuzzy numbers, the fourth constraint ensures a unique solution and the last

constraint ensures that the condition l < m < u is always satisfied.

4.4 Fuzzy Extent Analysis

Provided that X = {x1, x2, · · · , xn} represents an object set and G = {g1, g2, · · · , gn} represents

a goal set, then as per the extent analysis method [29], for each object, extent analysis for each
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goal gi is performed. Applying this theory in fuzzy comparison matrix, we can calculate value

of fuzzy synthetic extent with respect to the ith object as follows;

Si =
m∑
j=1

M j
gi
⊗

[
n∑
i=1

m∑
j=1

M j
gi

]−1
(4.11)

Where

m∑
j=1

M j
gi

=

(
m∑
j=1

lj,

m∑
j=1

mj,

m∑
j=1

uj

)
(4.12)

Later in the decision making process (i.e., choosing the best alternative) we need to determine

a crisp weight from these fuzzy triangular weights. A naive approach would be just using the

means (i.e., mean of each fuzzy weight obtained from Equation 4.4). However, as opposed to

the straightforward ordering of crisp numbers, the orderings of the fuzzy numbers are not that

simple and one should be more careful. Chang [29] suggest utilizing the concept of comparison

of fuzzy numbers in order to determine crisp weights from the fuzzy weights. In their approach,

for each fuzzy weight, a pair wise comparison with the other fuzzy weights are conducted, and

the degree of possibility of being greater than these fuzzy weights are obtained. The minimum

of these possibilities are used as the overall score for each criterion i. Finally these scores are

normalized (i.e., so that they sum up to 1), and the corresponding normalized scores are used

as the weights of the criteria. That is to say by applying the comparison of the fuzzy numbers,

the degree of possibility is obtained for each pair wise comparison as follows:

V (M2 ≥M1) = hgt(M1 ∩M2) = µM2(d) =


1, if m2 ≥ m1

0, if l1 ≥ u2

l1−u2
(m2−u2)−(m1−l1) , otherwise.

The same is illustrated in the Figure 4.2.

Degree of possibility for a convex fuzzy number to be greater than k convex fuzzy numbers is

given by;

V (M ≥M1,M2, · · · ,Mk) = V [(M ≥M1)and(M ≥M2), · · · , (M ≥Mk)] (4.13)
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Figure 4.2: Degree of possibility

= minV (M ≥Mi), i = 1, 2, · · · , k (4.14)

Assuming that w′i = minV (Mi ≥Mk) then weight vector is given by

W ′ = w′1, w
′
2, · · · , w′n (4.15)

Normalizing the above weights gives us the final priority vector w1, w2, · · · , wn. Wang et.al [56]

criticized fuzzy extent analysis technique and through an example showed that this method

cannot estimate true weights from fuzzy comparison matrix. Their main criticism revolves

around the fact that this method may assign a zero as criterion weight which disturbs the

whole decision making hierarchy. The basis of extent analysis theory is that it provides a

degree to which one fuzzy number is greater than another fuzzy number, and this degree of

greatness is considered as criterion weights. Therefore, if two fuzzy numbers do not intersect

then the degree of greatness of one fuzzy number to the other is 100 percent and therefore it

will assign 1 as weight to that criterion while the other criteria will be assigned as zero weight.

However, this still remains as one of the most popular FAHP technique used by the practitioners

in their decision making problems.

4.5 Buckley Geometric Mean Method

Geometric mean method was proposed by Buckley [28] in which, instead of triangular fuzzy

numbers, trapezoidal numbers were used to represent linguistic variables. Trapezoidal numbers
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are defined by (l/m, n/u) where 0 < l ≤ m ≤ n ≤ u and their membership function is

illustrated in Figure 2.1. Expert judgment is recorded in a comparison matrix by fuzzy ratio

aij = (lij/mij, nij/uij) whereas l,m, n, u ∈ {1, 2, · · · , 9}. Following calculations are required in

order to estimate final weight vector.

l =
n∑
i=1

li where as li =

[
n∏
j=1

]1/n
(4.16)

m =
n∑
i=1

mi where as mi =

[
n∏
j=1

]1/n
(4.17)

n =
n∑
i=1

ni where as ni =

[
n∏
j=1

]1/n
(4.18)

u =
n∑
i=1

ui where as ui =

[
n∏
j=1

]1/n
(4.19)

The final priority vector is given by
(
li
u
, mi

n
, ni

m
, ui
l

)
and the corresponding membership function

of the resulting trapezoidal fuzzy number is given by;

fi(y) =

[
n∏
j=1

((mij − lij)y + lij)

]1/n
(4.20)

gi(y) =

[
n∏
j=1

((nij − uij)y + uij)

]1/n
(4.21)

For complete details on this methodology, kindly refer to [28].

4.6 Fuzzification of Original AHP Heuristics

AHP heuristics explained in section 3.3, 3.4 and 3.5 are extended in the fuzzy case by replac-

ing conventional arithmetic operations with fuzzy arithmetic operations. Let (l1 m1 u1) and

(l2 m2 u2) be two triangular fuzzy numbers and (l1 m1 n1 u1) be a trapezoidal fuzzy number,
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than the basic fuzzy arithmetic operations required to extend conventional AHP algorithms to

FAHP are tabulated in Table 2.4.

4.7 Controversies Associated with FAHP Methods

Various review studies are available in the literature summarizing FAHP algorithms [58, 55].

However, in the presence of various priority derivation techniques, none of the review studies on

FAHP provide a performance analysis similar to the one present for classical AHP techniques

(which was summarized in Section 3.6). Therefore, through this research we intend to fill this

gap in the literature and conduct a detail performance analysis of popular FAHP algorithms

in terms of the accuracy of the weights calculated from FNPCM. Results of this study are

presented in Chapter 7.

Although FAHP has experienced exponential growth over past many years and has been applied

in various applications, it has also received its fair share of criticism [59]. Saaty himself criticized

fuzzifying human preferences, where he argues that human preferences are already fuzzy in

nature and further fuzzifying them will lead to wrong results [31]. Therefore, in this study,

we will also attempt to investigate the value of adding fuzziness in human preferences through

both empirical and numerical studies. Results from this study are presented in Chapter 8.
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Chapter 5

Consistency and Compatibility

In this chapter, we will discuss various measures introduced in the literature to evaluate the

quality of NPCMs. People are not like robots and various elements including lapses of reason

or concentration, states of mind, trembling, rounding effects and computational mistakes may

lead to inconsistent comparisons. Therefore, consistency check is a critical step in AHP so as

to evaluates the quality of the NPCMs, and ensures that the decision maker is consistent while

providing pairwise comparisons. Consistency measure originates from the transitivity property

of pairwise comparison matrix (PCM) i.e., aij × ajk = aik. Basic transitivity rules elaborated

in [60] are summarized as follows;

• Intransitivity: if aij ≥ 1, ajk ≥ 1, aki ≥ 1 ∀i, j, k

• Weak Stochastic Transitivity: if aij ≥ 1, ajk ≥ 1, aik ≥ 1 ∀i, j, k

• Strong Stochastic Transitivity: if aij ≥ 1, ajk ≥ 1, aik ≥ max(aij, ajk) ∀i, j, k

• Additive Transitivity: if aij × ajk = aik ∀i, j, k

Based on these transitivity rules, four main types of inconsistency in PCMs are defined as con-

tradictions, weak contradictions, the numerical scale finiteness and numerical scale discreteness

[36]. For a given matrix matrix A = (aij)3×3 these four different types of inconsistency are

briefly explained below with examples;

Contradictions: If aij ≥ 1, ajk ≥ 1 and aki ≥ 1 for i, j, k = 1, 2, 3 and i 6= j 6= k then consis-

tency in matrix A is caused by contradictions. Cause of this inconsistency can be attributed to

the illogical response provided by the decision maker which causes the resulting PCM to have
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an intransitivity property.


1 3 1/4

1/3 1 2

4 1/2 1


Weak Contradictions: If aij ≥ 1, ajk ≥ 1, aik ≥ 1 and aik < max(aij, ajk) for i, j, k = 1, 2, 3

and i 6= j 6= k then consistency in matrix A is caused by weak contradictions. Cause of this

inconsistency can also be attributed to the illogical response provided by the decision maker,

however, these illogical responses results in weak stochastic transitivity property in the resulting

PCM.


1 4 3

1/4 1 6

1/3 1/6 1


Numerical Scale Finiteness: If aij ≥ 1, ajk ≥ 1, aik = 9 and aij × ajk > 9 for i, j, k = 1, 2, 3

and i 6= j 6= k then consistency in matrix A is caused by numerical scale finiteness and this

is associated with limitation of the 1-9 scale. In such PCM there exists strong stochastic

transitivity properties.


1 3 9

1/3 1 6

1/9 1/6 1


Numerical Scale Discreteness: If aij ≥ 1, ajk ≥ 1, aik ≥ max(aij, ajk) and aij × ajk 6= aik

for i, j, k = 1, 2, 3 and i 6= j 6= k then consistency in matrix A is caused by numerical scale

discreteness and this is also associated with limitation of the 1-9 scale and such matrices also

have strong stochastic transitivity properties.
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1 1/5 2

5 1 7

1/2 1/7 1


Above discussion further validates the limitations associated with a fixed 1-9 scale, where

finiteness and discreteness of this scale is one of the causes for inconsistencies observed in

PCMs. Following, we explain Saaty inconsistency index which is the most widely used measure

to calculate consistencies in PCMs.

5.1 Saaty Consistency Measure

A matrix is considered to be fully consistent if and only if transitivity rule holds i.e., aik×akj =

aij for all i, j, k. Note that AHP results are based on subjective comparisons assessed from

the experts. Humans are very good at comparing two concepts and providing a preferential

ordering. However, they are not that good at associating a score on a particular concept

and hence in practice comparison matrices are always inconsistent to some degree. Saaty [40]

introduces an approach where the consistency of a matrix can be measured by;

C.I. =
λmax − n
n− 1

where λmax is the maximum eigenvalue and n is the size of the matrix. Recall that a totally

consistent comparison matrix theoretically has only one eigenvalue which is equals to n. As

a result, deviation from this theoretical value is used as an indication of inconsistency whose

value is given by consistency ratio (C.R).

C.R =
C.I

R.I

R.I is random index whose values are estimated by randomly generating 500 pairwise compar-

ison matrices of different sizes. If C.R ≤ 0.1 then the given PCM has a reasonable amount of

consistency and is regarded as sufficiently consistent, otherwise if C.R > 0.1 then the level of
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inconsistency is on higher side and PCM should be reformed by consulting the experts again.

Over the years this measure of inconsistency has been criticized through counter examples in

which some PCMs with contradictory judgments were rated as sufficiently consistent and others

reasonable PCMs were rejected [47]. Corresponding examples are provided below;

C1 =


1 6 9

1/6 1 7

1/9 1/7 1

 , C2 =



1 2 1/2 1 4

1/2 1 2 1/2 3

2 1/2 1 1 7

1 2 1 1 7

1/4 1/3 1/7 1/7 1


In matrix C1, criteria 1 is strongly plus more important than criteria 2 (i.e., S13 → f(S13) = 6)

and criteria 2 is demonstratively more important than criteria 3 (i.e., S14 → f(S14) = 7). It is

reasonable for decision maker to say that criteria 1 is extremely more important than criteria

3 (i.e., S16 → f(S16) = 9). However, as per Saaty inconsistency index, C.R of matrix C1 is

0.2323 > 0.1 and hence considered not sufficiently consistent.

In matrix C2, criteria 1 is weakly more important than criteria 2 (i.e., S9 → f(S9) = 2) and

criteria 2 is also weakly more important than criteria 3. However, to say criteria 3 is also weakly

more important than criteria 1 is an illogical statement. However, as per Saaty inconsistency

index, this matrix has C.R = 0.0933 < 0.1 and hence regarded as sufficiently consistent. In

what follows, we discuss a novel approach to measure inconsistency which attempts to address

issues highlighted in this section.

5.2 Consistency Test based on the Consistency Driven

Linguistic Methodology

More recently, a novel two step inconsistency test is proposed based on consistency-driven

linguistic methodology [36]. It tests whether given LPCMs are logical or not, and later sets

interval numerical scales for LPCMs to provide a measure of inconsistency. This approach is

graphically illustrated in Figure 5.1.
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Figure 5.1: Consistency test in consistency driven linguistic methodology

First step is to check whether LPCMs elicited from experts are sufficiently consistent or not.

This test is performed by analyzing if given LPCM satisfies strong stochastic transitivity prop-

erty. An example of sufficiently consistent (Matrix A1) and inconsistent (Matrix A2) matrices

are as follows;

A1 =


S8 S9 S13

S7 S8 S11

S3 S5 S8

 , A2 =


S8 S9 S10

S7 S8 S11

S6 S5 S8


Afterwards, a mathematical model is utilized to generate an interval numerical scale which

transforms LPCM into Interval Pairwise Comparison Matrices (IPCMs). Due to space limita-

tion, this model is not explained in the proposal report, however, if required its explanation

will be provided in subsequent reports. Note that linguistic scale is an ordered set and after the

check performed in the first step, LPCM does not contain any contradictions. Corresponding

interval scale is also an ordered set and therefore, it does not contain any contradictions as

well. Therefore, this measure of inconsistency ensures that no contradiction exists in NPCMs.

Furthermore, inconsistencies caused by numerical scale finiteness and discreteness are also ad-

dressed accordingly. Such an approach will be useful when testing NPCMs for consistency when

personalized scale is used. In this research, we will investigate this novel approach of measuring

inconsistency and make relevant proposals.
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5.3 Consistency in FAHP

When pairwise comparison matrices are composed of fuzzy numbers, then issue of measuring

inconsistency has largely remain sketchy. Although there are numerous consistency measures

proposed in the literature to measure consistency from fuzzy pairwise comparison matrices

[61] [62] [63] [64] [65] [66], it is observed that most practitioners ignore this critical step of

consistency check [67]. Review of the relevant literature shows that there is no universally

accepted measure of inconsistency for fuzzy AHP methods. Therefore, we will adopt Saaty

measure of inconsistency in our analysis.

5.4 Compatibility Index Value (CIV)

A more robust method to measure inconsistency is through a measure called Compatibility

Index Value (CIV) [68] which provides a measure of the deviation between NPCM provided by

the decision maker and matrix W = (wi/wj) constructed from the derived priority vector from

the same NPCM. Let A = (aij) be NPCM provided and W = (wi/wj) be perfectly consistent

matrix constructed from derived priority vector, then CIV is defined as

CIV = n−2.eTA ◦W T e (5.1)

where n is the size of the matrix and eTA ◦W T e is the Hadamard product of matrix A and

W T . Note that if A is perfectly consistent matrix than both matrices A and W will be similar

and CIV becomes one, else it will have value greater than one. Therefore, once we have an

inconsistent NPCM, and algorithm A derives a priority vector resulting in lower value of CIV

compared with a priority vector derived from algorithm B, we can conclude that algorithm A

is able to more accurately identify the priorities through information provided by the decision

maker through inconsistency pairwise comparisons.
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Chapter 6

Research Methodology

Our research methodology will be two fold i.e., numerical and empirical. We will use a data

set that was generated numerically as well as gathered through empirical studies to provide

answers to the stated research questions. Following we provide a sketch of numerical and

empirical study that will be conducted in this research.

6.1 Numerical Study

For the numerical study, we generate a data set of pairwise comparison matrices. Assume that

there are n criteria and w1, w2, · · · , wn are the subjective weights corresponding to these criteria

for a decision maker. In practice the decision makers are asked to make pairwise comparisons

and it is assumed that they utilize these weights in order to make the comparisons. In reality,

inconsistency as well as fuzziness associated with the natural language are incorporated in the

process and the resulting matrix would differ from a theoretically fully consistent comparison

matrix.

In order to conduct the experimental analysis and determine the performance of the nine FAHP

algorithms under various conditions, we developed a methodology that mimics the process used

by a human decision maker. We generated a random weight vector in each replication and using

these subjective weights, we construct a perfectly consistent crisp comparison matrix using

Equation 3.3. Afterwards, we added inconsistency into the matrices and fuzzified it through

an approach elaborated below.
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Procedure to Add Inconsistency: Various levels of inconsistency are added in the matrices

through inconsistency parameter β ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. Inconsistency interval [a b] is

generated for each element of the comparison matrix such that a = wi/wj − β × wi/wj and

b = wi/wj +β×wi/wj. A number xij is randomly selected from this interval and replaced with

the corresponding element of the comparison matrix. Note that while altering matrices in such

a manner, the reciprocal nature of the matrices is preserved. Six different values of β are used to

generate inconsistency intervals and add desired level of inconsistency in the matrices. However,

due to the randomness inherent in the process employed to incorporate inconsistency, it is

possible to end up with a comparison matrix which is less or more inconsistent than aimed with

the corresponding β parameter. Therefore, once inconsistency is added to the elements of the

comparison matrix, the resulting measure of inconsistency is calculated through C.R = CI/RI

where CI = λmax−n
n−1 as suggested by Saaty [40], where λmax is maximum eigenvalue of the

comparison matrix and RI is the random index. This C.R measure is employed to classify

matrices on different levels of inconsistency i.e., if C.R is between 0− 0.03, the corresponding

comparison matrix is considered as a low level inconsistent matrix; if C.R is between 0.03−0.06,

it is considered as medium level inconsistent matrix and a comparison matrix with C.R between

0.06 − 0.1 is regarded as highly inconsistent matrix. Note that any comparison matrix with

C.R ≥0.1 is considered as a matrix not sufficiently consistent and discarded from the data set

as suggested by Saaty [40].

To sum up the above discussion, although parameter β is utilized to add inconsistency in the

matrices, C.R measure is used to classify matrices on different inconsistency levels.

Fuzzification of Matrices: The final step of synthetic data generation is fuzzification of

matrices which is conducted through parameter α ∈ [0, 1]. This step converts a crisp number

into a triangular fuzzy number [l m u] such that l = xij − α, m = xij and u = xij + α.

We can generate a similar dataset for the case of original AHP by skipping the fuzzification

step of the process. This dataset of crisp NPCMs will be used to evaluate the value of fuzzi-

fying human preferences disccussed in Chapter 7. The overall process of generating dataset is

illustrated in Figure 6.1 and the pseudo code in provided in Algorithm 1. This process gener-

ates random matrices for 2 < n ≤ 15, representing comparison matrices assessed from decision

makers with inconsistency (β) and fuzziness (α).
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Figure 6.1: Process Diagram

Algorithm 1 Generate Dataset of Pairwise Comparison Matrices

1: n=3
2: while n ≤ 15 do
3: Initial Weights← Generate n Random Weight which sums upto 1
4: Perfectly Consistent Matrix← wi/wj
5: β = 0
6: while β ≤ 0.4 do
7: Add Inconsistency
8: alpha = 0.10
9: while α ≤ 1 do
10: if α = 0 then
11: Priority Vector← Classical AHP
12: else
13: [l m u][← [xij − α, xij, xij + α]

14: Priority Vector← Fuzzy AHP
15: α = α + 0.10

16: β = β + 0.2

17: n = n+ 4

18: Compatibility Index Value (CIV)

6.2 Empirical Study

In addition to numerical study, we also conducted two empirical studies in which pairwise

comparisons are elicited from the participants in the form of linguistic labels. Theoretical

foundations on the validity of seeking pairwise comparisons is found in the famous theory

of scales of measurements proposed by S.S. Stevens [69]. When experts are assessing ratio

judgments, in essential they compute ratios in their mind and provide pairwise comparisons

accordingly [70]. Over the past decade, mathematical psychologist have attempted to provide
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further mathematical foundations to understand structural assumptions inherent to the ratio

scaling method [71] [72] [73].

One of the ways to validate scientific theory is to show that results from an empirical study

match those predicted by the theory itself. Various AHP validation examples are provided

in [74] in which through pairwise comparisons, participants were able to accurately predict

relative sizes of geometric shapes, relative weights of objects, relative electric consumption of

house hold appliances and even relevant wealth of seven nations. Another study conducted

similar experiments in which participants provided ratios of distance of pairs of Italian cities

from a reference city, ratio of probabilities resulting from games of chance and ratio of rainfall

in pairs of European cities, and data acquired through this experiment was used to proposed a

novel approach to estimate priority vector through polynomial approximation method [75].

Similar to these studies, we will conduct experiments and seek such pairwise comparisons for

which true weights can be measured and already known. An example of such an experiment

is illustrated in Figure 6.2 where participants will be shown two images at a time and will

be asked to provide pairwise comparisons in the form of linguistic labels such as “Extremely

Dense”, “Moderately More Dense” etc.,.

Figure 6.2: Visual Experiment to seek pairwise comparisons of different densities

The participants in both studies were undergraduate students enrolled in Sabanci University,

Istanbul, Turkey. In the visual experiment, there were 164 participants; in the mass experiment,

154 participants. For their participation in the experiments, students received 2 bonus points

to their course grade. To ensure their focus during the experiments, an additional 1 bonus
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point was given to the top performing participant in terms of their consistency index value.

Both experiments were approved by the university ethics committee and written consent of

the students was obtained prior to participation in the study. Average time required for the

visual experiment and mass experiment were approximately 15 and 20 minutes per participant

respectively. Since both experiments had an underlying natural scale (i.e., for the visual ex-

periment, the number of dots; for mass experiment, grams), it was possible to assess the true

weights and corresponding weight vector for both experiments as tabulated in Table 6.1.

Table 6.1: Normalized true weight vector for visual and mass experiment

Number of Dots Mass of Bottles (Grams) Weight Vector
10 50 0.0222
20 100 0.0444
30 150 0.0667
40 200 0.0889
50 250 0.1111
60 300 0.1333
70 350 0.1556
80 400 0.1778
90 450 0.2000

6.3 Analysis Methodology for Numerical and Empirical

Study

In order to determine the effect of the various experimental parameters, we employed one-way

ANOVA (also referred to as a between-subjects ANOVA or one-factor ANOVA) which will help

in determining any statistical differences between the mean differences of CIV while we change

the experimental parameters. Note that one-way ANOVA is an omnibus test statistic and

therefore cannot tell which specific groups of data are significantly different from each other;

rather it just provide information that at least two of the groups are significantly different from

each other. Therefore, for detailed analysis, we also conducted a post hoc test in order to

analyze the results in more detail.

However, in order to conduct one-way ANOVA the following six assumptions must be satisfied:

1. Dependent variables are continuous.
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2. Independent variable consists of two or more categorical, independent groups.

3. There is no relationship between the observations in each group or between the groups

themselves i.e., independence of observations must hold.

4. There should be no significant outliers, which might have a negative effect on the one-way

ANOVA, thus reducing the validity of the results.

5. Dependent variable should be approximately normally distributed for each category of

the independent variable. However, one-way ANOVA only requires approximately normal

data because it is quite ”robust” to violations of normality, meaning that assumption can

be a little violated and still provide valid results.

6. Homogeneity of variances must hold.

As explained in the previous section, the structure of the data obtained from the experimental

analysis ensures that the first three assumptions are satisfied. We employed the methodology

provided in [76] in order to check the latter three assumptions. In order to check the validity of

the fourth assumption box-plots are utilized and some outliers are determined. These outliers

were neither result of data entry errors nor due to measurement errors but determined to be

genuinely unusual values. There are various ways through which these outliers can be treated

[77]. We resolve this problem by conducting the analysis with and without these outliers and

no significant difference in the results were observed. So we decided to keep these values in our

analysis. In order to check the validity of the fifth assumption we conducted both Kolmogorov-

Smirnov test as well as Shapiro-Wilk test for each subgroup and determined that our data is

normally distributed for each sub group. To test the final assumption, we conducted Levene’s

test for equality of variances. The results suggested that the assumption of homogeneity of

variances was violated. Hence, as suggested in [78] we decided to conduct a modified version

of one-way ANOVA which is Welch one-way ANOVA in the analysis.
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Chapter 7

Performance Analysis of FAHP

Methods

7.1 Results

In this section, the results of the performance analysis conducted on the selected nine FAHP

methods will be discussed. Five of these methods are the most popular FAHP methods in the

literature while remaining four are fuzzification of original AHP heuristics which are previously

discussed in Chapter 4. FAHP methods included in our performance analysis are listed in

Table 7.1.

Table 7.1: Selected FAHP methods

Abbreviation Method

Chang Original Fuzzy Extent Analysis (FEA) proposed by Chang (1996)

Wang Fuzzy Extent Analysis (FEA) with modified normalization proposed by Wang (2008)

Laarhoven Logarithmic Least Squares Method (LLSM)  proposed by Laarhoven (1983)

Boender Logarithmic Least Squares Method (LLSM) with modified normalization proposed by Boender (1989)

Buckley Geometric Mean Method propose by Buckley (1985)

FAM Fuzzy Arithmetic Mean similar to arithmetic mean method in original AHP

FGM Fuzzy Geometric Mean similar to geometric mean method in original AHP

FRSM Fuzzy Row Sum Method which is Fuzzy Extent Analysis (FEA) with centroid defuzzification

FICSM Fuzzy Inverse of Column Sum Method
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7.1.1 Comparison of Selected nine FAHP methods

We first tabulate descriptive statistics in terms of Mean CIV for selected nine FAHP meth-

ods. which shows that mean CIV for FICSM (1.05968, 0.04665) is lowest and for Wang

(1.30748, 0.41495) is highest. Same is illustrated in Table 7.2.

Table 7.2: Mean CIV for selected nine FAHP methods

Lower Bound Upper Bound

Boender 624 1.06203 0.04618 0.00185 1.05840 1.06566 1.00003 1.37271

Buckley 624 1.06667 0.04772 0.00191 1.06291 1.07042 1.00003 1.20900

Chang 624 1.23835 0.38388 0.01537 1.20817 1.26853 1.00146 6.48521

FAM 624 1.14855 0.14130 0.00566 1.13744 1.15966 1.00003 2.10831

FGM 624 1.06707 0.04764 0.00191 1.06333 1.07082 1.00003 1.21053

FICSM 624 1.05968 0.04665 0.00187 1.05601 1.06335 1.00003 1.17599

FRSM 624 1.10803 0.09460 0.00379 1.10060 1.11547 1.00006 1.67369

Laarhoven 624 1.06675 0.04763 0.00191 1.06300 1.07049 1.00005 1.32394

Wang 624 1.30748 0.41495 0.01661 1.27486 1.34010 1.00111 6.03032

Total 5616 1.12496 0.21717 0.00290 1.11927 1.13064 1.00003 6.48521

Model N Mean Std. Deviation Std. Error
95% Confidence Interval for Mean 

Minimum Maximum

In order to conclude that these differences are significant, one-way Welch ANOVA test is con-

ducted for which results are tabulated in Table 7.3.

Table 7.3: Welch ANOVA analysis between nine different methods

Test Statistica df1 df2 Sig.

Welch 84.146 8 2315.467 .000

a. Asymptotically F distributed

Note that Welch ANOVA results only imply that group means differ. It does not show in which

particular way these group means differ among various subgroups. Therefore, post hoc test is

conducted in order to investigate the significant differences more effectively.

Since the homogeneity of variance assumption is violated, Games-Howell post hoc test is con-

ducted instead of commonly used LSD or Tuckey test. Results of Games-Howell post hoc test

corresponding to FICSM vs other FAHP methods are tabulated in Table 7.4. Similar analysis is

conducted for each one of the algorithms and results of these analyses are graphically presented

in Figure 7.1 as heat map.

Figure 7.1 shows that the mean CIV for FICSM algorithm is lower when compared with other

algorithms and these differences are significant for FAM, FRSM, Chang and Wang.

We employed a similar methodology to determine if the above conclusions are also valid under

41



Table 7.4: Games Howell post hoc test - Comparison of FAHP methods

Method Method

(I) (J) Lower Bound Upper Bound

FICSM Boender -0.00235 0.00263 0.99327 -0.01052 0.00581

FICSM Buckley -0.00699 0.00267 0.18104 -0.01529 0.00131

FICSM Chang -0.17867 0.01548 0.00000 -0.22685 -0.13049

FICSM FAM -0.08887 0.00596 0.00000 -0.10740 -0.07034

FICSM FGM -0.00740 0.00267 0.12509 -0.01569 0.00090

FICSM FRSM -0.04835 0.00422 0.00000 -0.06148 -0.03523

FICSM Laarhoven -0.00707 0.00267 0.16753 -0.01536 0.00122

FICSM Wang -0.24780 0.01672 0.00000 -0.29983 -0.19577

*. The mean difference is significant at the 0.05 level.

Mean Difference 

(I-J)
Std. Error Sig.

95% Confidence Interval

Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00464 -0.17632 -0.08652 -0.00505 0.00235 -0.04600 -0.00472 -0.24545

Buckley -0.17168 -0.08188 -0.00041 0.00699 -0.04137 -0.00008 -0.24081

Chang 0.08980 0.17127 0.17867 0.13032 0.17160 -0.06913

FAM 0.08147 0.08887 0.04052 0.08180 -0.15893

FGM 0.00740 -0.04096 0.00033 -0.24040

FICSM -0.04835 -0.00707 -0.24780

FRSM 0.04128 -0.19945

Laarhoven -0.24073

Significantly InferiorInferiorBetterSignificantly Better

Figure 7.1: Heat map - mean CIV differences between nine FAHP methods
∗Sample read from the heat map:
mean CIV of Boender is lower by 0.00464 as compared to Buckley and this difference is not
significant
mean CIV of Boender is lower by 0.17632 as compared to Chang and this difference is significant

various experimental conditions i.e., size of the matrix (n), fuzzification parameter (α) and

inconsistency levels (C.R) which are discussed below;

7.1.2 Matrix Size

Welch one way ANOVA test (Table 7.5) shows that mean CIV is statistically different for

selected four different matrix sizes, F (3, 3053.866) = 27.866, p < .005 .

Table 7.5: Welch ANOVA analysis between different matrix sizes

Test Statistica df1 df2 Sig.

Welch 27.866 3 3053.866 .000

a. Asymptotically F distributed.

Games Howell post hoc test is conducted for each FAHP algorithm separately in order to
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investigate these differences more effectively. Mean CIV differences are illustrated as heat map

in Figure 7.2.

Where as I(n) and J(n) refer to mean CIV with different matrix sizes. Result shows that in

general, mean CIV is lowest for lower matrix sizes and it increases as the matrix size is increased

with the only exception for FEA (Chang and Wang). Otherwise, results are consistent for all

other FAHP algorithms as illustrated in Figure 7.3. That is to say, for all FAHP algorithms

(except Chang and Wang), mean CIV increases as the matrix size is increased.

Next, we compared performance of selected nine FAHP methods under different matrix sizes.

Results are graphically illustrated as heat map in Figure 7.4, which shows that at n = 3 the

best performing algorithm is Buckley, while at n = 7, FICSM is the best performing algorithm.

Boender is the best performing algorithm at higher matrix sizes i.e., n = 11, n = 15. This

result will serve as a useful guideline for practitioners in their decision making problems.

(I) n (J) n Boender Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

3 7 -0.03499 -0.04622 0.03251 -0.09474 -0.04631 -0.03335 -0.06340 -0.03869 0.20329

3 11 -0.04375 -0.05755 -0.10877 -0.16414 -0.05571 -0.04857 -0.10690 -0.04420 0.08642

3 15 -0.04733 -0.06128 -0.05394 -0.21140 -0.05946 -0.05199 -0.14427 -0.04727 0.17501

7 11 -0.00876 -0.01133 -0.14128 -0.06940 -0.00939 -0.01522 -0.04351 -0.00551 -0.11687

7 15 -0.01234 -0.01506 -0.08646 -0.11666 -0.01314 -0.01864 -0.08087 -0.00859 -0.02829

11 15 -0.00358 -0.00373 0.05482 -0.04727 -0.00375 -0.00342 -0.03736 -0.00307 0.08858

Significantly Better Better Inferior Significantly Inferior

Figure 7.2: Post hoc test - Mean CIV differences (I - J) at different matrix sizes for nine FAHP
methods

Figure 7.3: Estimated marginal means of CIV
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(a) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender 0.00511 -0.17529 -0.00047 0.00381 0.00431 0.00112 -0.00370 -0.39315

Buckley -0.18040 -0.00558 -0.00130 -0.00080 -0.00399 -0.00881 -0.39826

Chang 0.17482 0.17909 0.17960 0.17641 0.17159 -0.21786

FAM 0.00428 0.00478 0.00159 -0.00323 -0.39268

FGM 0.00050 -0.00269 -0.00750 -0.39695

FICSM -0.00319 -0.00800 -0.39746

FRSM -0.00482 -0.39427

Laarhoven -0.38945

(b) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00612 -0.10778 -0.06022 -0.00752 0.00595 -0.02729 -0.00739 -0.15486

Buckley -0.10166 -0.05409 -0.00140 0.01207 -0.02116 -0.00127 -0.14874

Chang 0.04757 0.10027 0.11374 0.08050 0.10039 -0.04708

FAM 0.05270 0.06617 0.03293 0.05282 -0.09465

FGM 0.01347 -0.01977 0.00012 -0.14735

FICSM -0.03324 -0.01335 -0.16081

FRSM 0.01989 -0.12758

Laarhoven -0.14747

(c) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00869 -0.24030 -0.12085 -0.00815 -0.00051 -0.06203 -0.00415 -0.26297

Buckley -0.23161 -0.11216 0.00054 0.00818 -0.05334 0.00455 -0.25428

Chang 0.11945 0.23215 0.23979 0.17827 0.23616 -0.02267

FAM 0.11270 0.12035 0.05882 0.11671 -0.14212

FGM 0.00764 -0.05388 0.00400 -0.25482

FICSM -0.06152 -0.00364 -0.26246

FRSM 0.05788 -0.20094

Laarhoven -0.25883

(d) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00884 -0.18190 -0.16454 -0.00832 -0.00035 -0.09582 -0.00364 -0.17081

Buckley -0.17306 -0.15570 0.00052 0.00850 -0.08697 0.00520 -0.16197

Chang 0.01736 0.17358 0.18155 0.08609 0.17826 0.01109

FAM 0.15622 0.16419 0.06872 0.16090 -0.00627

FGM 0.00797 -0.08750 0.00468 -0.16249

FICSM -0.09547 -0.00329 -0.17046

FRSM 0.09217 -0.07499

Laarhoven -0.16717

Significantly InferiorInferiorBetterSignificantly Better

Figure 7.4: Heat map - Mean CIV differences of nine FAHP methods at different matrix sizes
(a) n = 3, (b) n = 7, (c) n = 11, (d) n = 15

7.1.3 Fuzzification Parameter

One-way Welch ANOVA test for different levels of fuzzification is tabulated in Table 7.6 which

shows that mean CIV is statistically different for four different levels of fuzzification, Welch

F (3, 2936.801) = 8.689, p < .005.

Table 7.6: Welch ANOVA analysis between different levels of fuzzification

Test Statistica df1 df2 Sig.

Welch 8.689 3 2936.801 0.000

a. Asymptotically F distributed.

Games Howell post hoc test at different fuzzification levels for nine FAHP models is presented

in the form of heat map which is illustrated in Figure 7.5.
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(I) alpha (J) alpha Boender Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

0.25 0.50 -0.00756 -0.01097 0.12466 -0.05050 -0.01115 -0.00372 -0.01876 -0.01041 0.16503

0.25 0.75 -0.00778 -0.01008 0.20704 -0.06202 -0.01042 -0.00405 -0.02443 -0.01073 0.27610

0.25 1.00 -0.02024 -0.02841 0.23764 -0.12255 -0.02894 -0.00883 -0.06140 -0.02914 0.35003

0.50 0.75 -0.00022 0.00089 0.08238 -0.01152 0.00073 -0.00033 -0.00568 -0.00032 0.11107

0.50 1.00 -0.01267 -0.01744 0.11299 -0.07205 -0.01779 -0.00511 -0.04265 -0.01873 0.18500

0.75 1.00 -0.01245 -0.01833 0.03061 -0.06054 -0.01852 -0.00478 -0.03697 -0.01841 0.07393

Significantly Better Better Inferior Significantly Inferior

Figure 7.5: Post hoc test - Mean CIV differences at different levels of α for nine FAHP methods

Figure 7.5 shows that performance of all FAHP algorithms except Chang and Wang decreases

as the fuzzification level are increased. This trend is more clearly illustrated in Figure 7.6 which

shows that, the performance of FEA (Chang and Wang) increases at higher levels (0.75, 1.00)

of fuzzification, whereas, for all other FAHP methods, performance decreases as fuzzification

levels are increased. Review of literature on FAHP shows that FEA (Chang and Wang) has

been extensively applied in various decision making environments. Therefore, if FEA is the

preferred choice of practitioners, then this study recommends to use higher levels of fuzzification

in triangular fuzzy numbers.

Figure 7.6: Estimated marginal means of CIV

We also conducted comparison of nine FAHP methods under different levels of fuzzification and

results are graphically illustrated as a heat map in Figure 7.7 which shows that at lower levels

of fuzzification (α = 0.25), Boender outperforms all other algorithms. As the fuzzification levels

are increased, FICSM is the best performing algorithm. As stated before, performance of FEA

(Chang and Wang) seems to improve at higher levels of fuzzification, however, this improved

performance is not significant and its performances remains inferior when compared with other
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FAHP algorithms.

(a) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00117 -0.32755 -0.03665 -0.00131 -0.00240 -0.02875 -0.00105 -0.45213

Buckley -0.32638 -0.03548 -0.00014 -0.00123 -0.02758 0.00012 -0.45097

Chang 0.29090 0.32624 0.32515 0.29880 0.32650 -0.12459

FAM 0.03533 0.03425 0.00790 0.03560 -0.41549

FGM -0.00108 -0.02744 0.00027 -0.45082

FICSM -0.02635 0.00135 -0.44974

FRSM 0.02770 -0.42338

Laarhoven -0.45109

(b) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00457 -0.19533 -0.07959 -0.00490 0.00145 -0.03994 -0.00389 -0.27954

Buckley -0.19076 -0.07501 -0.00033 0.00602 -0.03537 0.00068 -0.27497

Chang 0.11574 0.19043 0.19678 0.15539 0.19144 -0.08421

FAM 0.07468 0.08104 0.03964 0.07569 -0.19996

FGM 0.00635 -0.03504 0.00101 -0.27464

FICSM -0.04139 -0.00534 -0.28099

FRSM 0.03605 -0.23960

Laarhoven -0.27565

(c) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00346 -0.11273 -0.09088 -0.00395 0.00134 -0.04540 -0.00399 -0.16825

Buckley -0.10926 -0.08742 -0.00049 0.00480 -0.04194 -0.00053 -0.16479

Chang 0.02185 0.10878 0.11407 0.06733 0.10874 -0.05552

FAM 0.08693 0.09222 0.04548 0.08689 -0.07737

FGM 0.00529 -0.04145 -0.00004 -0.16430

FICSM -0.04674 -0.00533 -0.16959

FRSM 0.04141 -0.12285

Laarhoven -0.16426

(d) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00934 -0.06967 -0.13896 -0.01002 0.00901 -0.06992 -0.00995 -0.08187

Buckley -0.06033 -0.12962 -0.00068 0.01835 -0.06058 -0.00061 -0.07253

Chang -0.06930 0.05965 0.07868 -0.00025 0.05972 -0.01220

FAM 0.12895 0.14798 0.06905 0.12902 0.05710

FGM 0.01903 -0.05990 0.00007 -0.07185

FICSM -0.07893 -0.01896 -0.09088

FRSM 0.05997 -0.01195

Laarhoven -0.07192

Significantly Better Better Inferior Significantly Inferior

Figure 7.7: Heat map - Mean CIV differences of nine FAHP methods at different fuzzification
levels
(a) α = 0.25, (b) α = 0.50, (c) α = 0.75, (d) α = 1.00
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7.1.4 Inconsistency Levels

One-way Welch ANOVA test is conducted for various levels of consistency and results are

tabulated in Table 7.7 which shows that mean CIV is statistically different for three levels of

inconsistency level, Welch F (2, 3663.228) = 92.232, p < .005.

Table 7.7: Welch ANOVA analysis between different levels of inconsistency

Test Statistica df1 df2 Sig.

Welch 92.232 2 3663.228 0.000

a. Asymptotically F distributed.

Results from Games Howell post hoc test for different levels of inconsistency for all FAHP

methods is graphically illustrated as heat map in Figure 7.8 which shows that performance

of all algorithms is higher at lower inconsistency levels as expected. Same is illustrated in

Figure 7.9

(I) CR (J) CR Boender Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Low Medium -0.03664 -0.03511 -0.01550 -0.05118 -0.03518 -0.03979 -0.04684 -0.03532 -0.03991

Low High -0.08276 -0.08076 -0.14290 -0.11336 -0.08038 -0.09095 -0.10008 -0.08120 -0.12882

Medium High -0.04611 -0.04565 -0.12740 -0.06217 -0.04520 -0.05115 -0.05325 -0.04587 -0.08890

Significantly Better Better Inferior Significantly Inferior

Figure 7.8: Post hoc test - Mean CIV differences at different levels of inconsistency (C.R) for
nine FAHP methods

Figure 7.9: Estimated marginal means of CIV
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Furthermore, performance of all FAHP methods is analyzed at different levels of inconsistency

and results are illustrated as heat map in Figure 7.10

(a) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00581 -0.16332 -0.07147 -0.00632 0.00613 -0.03683 -0.00568 -0.22900

Buckley -0.15751 -0.06566 -0.00051 0.01194 -0.03102 0.00013 -0.22319

Chang 0.09185 0.15699 0.16945 0.12649 0.15764 -0.06569

FAM 0.06515 0.07760 0.03464 0.06579 -0.15753

FGM 0.01245 -0.03051 0.00064 -0.22268

FICSM -0.04296 -0.01181 -0.23514

FRSM 0.03115 -0.19218

Laarhoven -0.22333

(b) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00428 -0.14218 -0.08601 -0.00486 0.00298 -0.04702 -0.00436 -0.23227

Buckley -0.13790 -0.08173 -0.00058 0.00726 -0.04275 -0.00008 -0.22800

Chang 0.05616 0.13731 0.14516 0.09515 0.13782 -0.09010

FAM 0.08115 0.08899 0.03899 0.08165 -0.14626

FGM 0.00784 -0.04216 0.00050 -0.22741

FICSM -0.05001 -0.00734 -0.23526

FRSM 0.04266 -0.18525

Laarhoven -0.22792

(c) Buckley Chang FAM FGM FICSM FRSM Laarhoven Wang

Boender -0.00382 -0.22346 -0.10207 -0.00395 -0.00206 -0.05416 -0.00412 -0.27507

Buckley -0.21964 -0.09825 -0.00013 0.00176 -0.05034 -0.00030 -0.27125

Chang 0.12139 0.21951 0.22140 0.16931 0.21934 -0.05160

FAM 0.09812 0.10001 0.04792 0.09795 -0.17299

FGM 0.00189 -0.05021 -0.00017 -0.27112

FICSM -0.05210 -0.00206 -0.27301

FRSM 0.05004 -0.22091

Laarhoven -0.27095

Significantly Better Better Inferior Significantly Inferior

Figure 7.10: Heat map - Heat map - Mean CIV differences of nine FAHP methods at different
inconsistency levels
(a) C.R = Low, (b) C.R = Medium, (c) C.R = High

Figure 7.10 shows that at high inconsistency levels, Boender outperforms all other methods

while for other levels FICSM is the best performing algorithm.

7.1.5 Overall Analysis for Boender and FICSM

From the above statistical analysis, it is observed that Boender and FICSM algorithms per-

formed significantly better compared to the other FAHP methods under specific experimental

conditions. Here, we present an overall analysis of these two best performing algorithms with-

out considering any experimental condition and using the whole dataset of 624 matrices. The

results tabulated in Table 7.8 represent the percentage of matrices, where Boender and FICSM

algorithm outperform other FAHP methods in the experiments.
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Table 7.8: Overall Analysis

Method
Percentage of matrices in which Boender outperforms 

the corresponding FAHP algorithm

Percentage of matrices in which FICSM outperforms the 

corresponding FAHP algorithm

Boender -------------- 48%

Buckley 85% 63%

Chang 87% 91%

FAM 90% 84%

FGM 85% 63%

FICSM 52% --------------

FRSM 87% 42%

Wang 89% 93%

Laarhoven 93% 62%

7.2 Discussions

In this research we compared performance of nine FAHP methods among which five FAHP

methods are the most popular ones in the literature. Compatibility Index Value (CIV) is used

as a performance metric to evaluate all nine FAHP methods. Three experimental conditions

are considered as part of the analysis, namely, size of the matrix (n), fuzzification level (α)

and inconsistency (C.R). For the fuzzification parameter four levels are assumed as 0.25, 0.50,

0.75 and 1.00. The fuzzification parameter is not inherent to the problem that the decision

maker is facing but more a decision variable as part of the process. That is to say, the decision

analysts can set the fuzzification level and conduct FAHP accordingly. On the other hand the

inconsistency parameter refers to the inconsistency of the decision maker and is not a decision

variable but depends on the fuzzy comparison matrices elicited from the experts. For the

analysis three levels are considered for the inconsistency which is low, medium and high based

on the consistency ratio (C.R) values as explained before. Finally, four different matrix sizes

are considered which are 3, 7, 11 and 15. Note that one can consider 3 as the representative of

small sized problems, 7 and 11 are for medium sized problems and 15 for larger cases.

As a result of this set up total of 48 (= 4 ∗ 3 ∗ 4) different experimental conditions are con-

structed. For each condition 13 replications are created randomly. Hence the total dataset

is composed of six hundred and twenty four matrices with varying parameters for size of the

matrix, fuzzification levels and inconsistency.

Main conclusions of this study are summarized as follows;

1. All three experimental parameters have significant effect on the mean CIV.
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• Size of the Matrix: As size of the matrix is increased, mean CIV increases and

these results are consistent for all selected nine FAHP algorithms. At n = 3 the

best performing algorithm is Buckley, while at n = 7 FICSM method outperforms

all other methods. At higher matrix sizes i.e., n = 11, n = 15, Boender is the best

performing algorithm.

• Fuzzification: Performance of all FAHP algorithms except Chang and Wang de-

creases as the fuzzification level increases. Whereas, the performance of FEA meth-

ods (Chang and Wang) improves at higher levels of fuzzification, however this im-

proved performance is still inferior when compared with other FAHP algorithms.

• Inconsistency: Overall, as the inconsistency levels are increased, mean CIV in-

creases and this increase is consistent over all selected nine FAHP algorithms. At

low and medium level of inconsistency FICSM method outperform other methods

whereas at higher inconsistency level, Boender is the best performing algorithm.

2. Among the selected nine FAHP algorithms, Boender and FICSM model performs signifi-

cantly better than other models over various experimental conditions.

3. FEA methods (Chang and Wang) performed inferior compared to other methods, al-

though this is one of the most frequently used technique in the literature.

4. If it is inevitable to use FEA method due to some reason, we propose that one must

avoid low levels of fuzzification in triangular fuzzy numbers, as results shows that the

performance of this methodology is significantly inferiors at lower levels of α.

Fuzzy numbers are considered as more realistic representations of the imprecise linguistic vari-

ables that are used by the decision makers during the preference elicitation stage of the AHP.

As a result, abundant of research is being conducted that utilize FAHP and this study will help

consolidate this literature. On the other hand, the value of introducing fuzziness to original

AHP is yet to be assessed by an extensive experimental analysis and therefore, in the next

Chapter we conduct an analysis to determine the value added by fuzzifying human preferences

in the context of pairwise comparions and AHP.
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7.3 Implications of Results and Proposed Framework for

Researchers and Practitioners

This paper provides useful guidance to researchers and practitioners in their selection process

of a particular FAHP technique. LLSM method proposed by Boender [27] and FICSM out-

performed other selected FAHP methods under various experimental conditions and therefore

should be preferred choice of FAHP method in most real life decision making environments.

For example, a company faces a multi-criteria decision problem in which it is in the process of

implementing a cloud computing solution and is currently evaluating various cloud computing

service providers based on number of selection criteria such as availability, security, storage

capacity, acquisition and transaction cost etc. Such a decision problem will have around 7 to 9

selection criteria and thus size of comparison matrices will be 7× 7 to 9× 9. Figure 7.4 shows

that modified LLSM method proposed by Boender [27] performs significantly better under these

condition. and thus should be the preferred choice of FAHP method for such an application.

Also Figure 7.7 and 7.6 shows that all FAHP algorithms excluding FEA methods [29] [79]

performs significantly better at lower levels of fuzzification. Thus ideal strategy for the imple-

mentation of Fuzzy AHP in such a decision problem will be to choose modified LLSM method

proposed by Boender [27] as a preferred choice of FAHP algorithm and low level of fuzzifications

as a decision variable to achieve best results.

Review of existing literature on FAHP shows that most practitioners utilize FEA methods in

their decision problems. This comparative study shows that although FEA is not one of the

best performing algorithms, but its performance slightly increases as the level of fuzzification

is increased (Figure 7.7 and 7.6). That is to say, if FEA method is the preferred choice of

practitioner or researcher in their decision problem then this framework proposes to use higher

levels of fuzzification for better results.
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Chapter 8

Value of Fuzzifying Human Preferences

In this chapter, the performance of classical AHP and FAHP methods are assessed under various

experimental conditions. The Welch Analysis of Variance (ANOVA) tests and Games Howell

post hoc test are used as statistical tests with the results summarized as follows.

8.1 Results from Numerical Study

Before focusing on the various experimental conditions, first the performances of all five classical

and fuzzy AHP methods are compared in the entire dataset (i.e., 2400 matrices). According

to the overall results LLSM (Crisp) has the lowest mean CIV, while Buckley has the worst

mean CIV value in our experiments. These results are tabulated in Table 8.1 and graphically

illustrated in Figure 8.1.

Table 8.1: Descriptive Statistics - Mean CIV value for five classical AHP and FAHP methods

Lower Bound Upper Bound

LLSM (Crisp) 2400 1.04823 0.04308 0.00088 1.04651 1.04995 1.00000 1.14618

Eigenvector 2400 1.04879 0.04381 0.00089 1.04704 1.05055 1.00000 1.14824

FLLSM (NLP) 2400 1.05879 0.04456 0.00091 1.05701 1.06057 1.00001 1.18302

FLLSM (Boender) 2400 1.06161 0.04608 0.00094 1.05976 1.06345 1.00001 1.39435

Buckley 2400 1.06513 0.04795 0.00098 1.06321 1.06705 1.00001 1.26330

95% Confidence Interval for Mean 
Minimum MaximumMethod N Mean Std. Deviation Std. Error

To determine if these mean CIV differences are significant or not (P ≤ 0.05), Welch ANOVA

test is conducted. The results in Table 8.2 indicate that group means significantly differ from

each other.

Post hoc test is conducted to investigate the statistical significance of these differences. Note
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Figure 8.1: Mean CIV for priority vector with PCM

Table 8.2: Welch ANOVA Analysis between nine different methods

Test Statistica df1 df2 Sig.

Welch 68.705 4 5995.394 .000

a. Asymptotically F distributed

that the homogeneity of variance assumption is violated; therefore, the Games-Howell post hoc

test is conducted instead of the commonly used LSD or Tuckey test. Results from Games-Howell

post hoc test indicate that all classical AHP methods perform significantly better (p ≤ 0.05)

when compared to FAHP methods in the whole dataset. Figure 8.2 illustrate these differences.

Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.016332 0.003517 0.006337 0.016896

Eigenvector -0.012815 -0.009996 0.000564

FLLSM (Boender) 0.002819 0.013379

FLLSM (NLP) 0.010560

Significantly InferiorInferior

BetterSignificantly Better

Figure 8.2: Mean CIV differences for AHP methods
∗Sample read from the heat map: the mean CIV of Buckley is higher by 0.016332 as compared

to Eigenvector and this difference is significant

As our numerical study consists of various experimental conditions, i.e., size of the matrix (n),

fuzzification levels (α) and inconsistency levels (CR), we further investigated the results and
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evaluated performance of both classical AHP and FAHP methods under these experimental

conditions. This discussion is summarized as follows.

Analysis for Different Matrix Sizes: Analyzing results for different matrix sizes demon-

strates that as the matrix size increases, performance of all AHP methods (classical and fuzzy)

decreases; moreover, this decrease in performance is significant (p ≤ 0.05). Both classical AHP

and FAHP methods perform significantly better at lower matrix sizes, a finding depicted as a

heat map in Figure 8.3.

Significantly Better Better Inferior Significantly Inferior

(I) n (J) n Buckley Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

3 7 -0.044419 -0.032822 -0.029575 -0.037058 -0.032101

3 11 -0.054633 -0.044115 -0.036996 -0.046093 -0.043313

3 15 -0.058868 -0.051361 -0.042003 -0.053291 -0.050627

7 11 -0.010215 -0.011293 -0.007421 -0.009035 -0.011212

7 15 -0.014449 -0.018539 -0.012428 -0.016233 -0.018526

11 15 -0.004235 -0.007246 -0.005007 -0.007198 -0.007314

Figure 8.3: Mean CIV differences at different matrix sizes (I)n - (J)n

While comparing different methods at various matrix sizes, the heat map illustrated in Figure

8.4 reveals that for all matrix sizes, classical AHP methods perform significantly better (p ≤

0.05) when compared to FAHP methods.

(a) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.008927 -0.008819 0.000967 0.008927

Eigenvector -0.017746 -0.007960 0.000000

FLLSM (Boender) 0.009786 0.017746

FLLSM (NLP) 0.007960

(b) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.020524 0.006025 0.008328 0.021244

Eigenvector -0.014499 -0.012196 0.000720

FLLSM (Boender) 0.002304 0.015220

FLLSM (NLP) 0.012916

(c) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.019445 0.008818 0.009508 0.020247

Eigenvector -0.010627 -0.009938 0.000802

FLLSM (Boender) 0.000690 0.011429

FLLSM (NLP) 0.010739

(d) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.016434 0.008046 0.006544 0.017167

Eigenvector -0.008388 -0.009890 0.000733

FLLSM (Boender) -0.001502 0.009121

FLLSM (NLP) 0.010623

BetterSignificantly Better

Inferior Significantly Inferior

Figure 8.4: Games-Howell post hoc test for comparison of AHP methods at different matrix
sizes

(a) n = 3, (b) n = 7, (c) n = 11, (d) n = 15
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Analysis for Different Levels of Fuzzification: Figure 8.5 points out that as the fuzzifica-

tion levels are increased, performance of all FAHP methods decreases; moreover, this decrease

in performance is statistically significant (p ≤ 0.05). From these results, we can conclude that

lower levels of fuzzification should be preferred while applying FAHP methods in a given de-

cision making problem. Such a result entails a considerable doubt on the use of fuzzy scales

and/or on the performance of FAHP algorithm that uses these scales

Significantly Better Better Inferior Significantly Inferior

(I) α (J) α Buckley Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

0.10 0.30 -0.013092 N/A -0.011128 -0.008502 N/A

0.10 0.50 -0.019442 N/A -0.015694 -0.011986 N/A

0.10 1.00 -0.032146 N/A -0.024449 -0.018771 N/A

0.30 0.50 -0.006350 N/A -0.004565 -0.003484 N/A

0.30 1.00 -0.019054 N/A -0.013321 -0.010268 N/A

0.50 1.00 -0.012704 N/A -0.008755 -0.006785 N/A

Figure 8.5: Mean CIV differences at different levels of fuzzification (I)α - (J)α

Figure 8.6 reveals that at α = 0.1, all classical AHP and FAHP methods perform similarly and

there is no statistical significance between the mean CIV differences. That is to say, as the scale

used to transform the linguistic labels to numerical values becomes less fuzzy (i.e., more crisp),

the algorithms tend to perform similarly. This result verifies the code used during the analysis

and also indicates that for the extreme case (no fuzziness in the data), the FAHP methods

perform similar to those of classical counterparts. However, as fuzzification levels increase,

classical AHP methods start performing better and this improved performance is statistically

significant (p ≤ 0.05). This observation substantiates the doubt regarding the use of fuzzy

scales or the FAHP methods as mentioned earlier.

Analysis for Different Levels of Inconsistency: Performance of both classical AHP and

FAHP methods decreases as the inconsistency levels are increased (Figure 8.7) and this decrease

in performance is statistically significant (P ≤ 0.05).

The heat map shown in Figure 8.8 reveals that at all levels of inconsistency, classical AHP

methods outperform FAHP methods and mean CIV differences are statistically significant (P ≤

0.05).

To sum up, the numerical study does not support that fuzzification of the human judgements

with fuzzy scales and/or the FAHP methods that are employed to derive the priority vec-

tors from the fuzzy NPCMs add value to the process. On the contrary, for all experimental

conditions but one, the FAHP methods are significantly outperformed by their classical AHP
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(a) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.000162 0.000165 -0.000018 0.000726

Eigenvector 0.000003 -0.000181 0.000564

FLLSM (Boender) -0.000183 0.000561

FLLSM (NLP) 0.000745

(b) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.013255 0.002129 0.004571 0.013818

Eigenvector -0.011126 -0.008683 0.000564

FLLSM (Boender) 0.002443 0.011690

FLLSM (NLP) 0.009247

(c) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.019604 0.003913 0.007437 0.020168

Eigenvector -0.015691 -0.012167 0.000564

FLLSM (Boender) 0.003524 0.016255

FLLSM (NLP) 0.012731

(d) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.032309 0.007862 0.013357 0.032873

Eigenvector -0.024446 -0.018952 0.000564

FLLSM (Boender) 0.005495 0.025010

FLLSM (NLP) 0.019515

Significantly Better Better

Inferior Significantly Inferior

Figure 8.6: Games-Howell post hoc test for comparison of AHP methods at different
fuzzification levels

(a) α = 0.1, (b) α = 0.2, (c) α = 0.3, (d) α = 0.4

Significantly Better Better Inferior Significantly Inferior

(I) CR (J) CR Buckley Eigen Vector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Low Medium -0.036758 -0.038719 -0.036007 -0.037200 -0.038421

Low High -0.081393 -0.085457 -0.080412 -0.081675 -0.084102

Medium High -0.044635 -0.046737 -0.044405 -0.044475 -0.045681

Figure 8.7: Mean CIV Differences at different levels of Inconsistency (I)CR - (J)CR

(a) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.018341 0.002940 0.006578 0.018354

Eigenvector -0.015401 -0.011763 0.000013

FLLSM (Boender) 0.003638 0.015414

FLLSM (NLP) 0.011776

(b) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.016379 0.003691 0.006136 0.016691

Eigenvector -0.012688 -0.010243 0.000311

FLLSM (Boender) 0.002445 0.013000

FLLSM (NLP) 0.010555

(c) Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.014277 0.003921 0.006296 0.015644

Eigenvector -0.010356 -0.007981 0.001367

FLLSM (Boender) 0.002375 0.011723

FLLSM (NLP) 0.009348

Significantly Better Better

Inferior Significantly Inferior

Figure 8.8: Games-Howell post hoc test for comparison of AHP methods at different
inconsistency levels

(a) CR = Low, (b) CR = Medium, (c) CR = High
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counterparts. The only exceptional experimental condition is when α = 0.1, i.e., the lowest

level of fuzzification. One can argue that such low level of fuzzification resembles crisp numbers

and rather than using low levels of fuzzification, crisp numbers and correspondingly classical

AHP can also be preferred.

8.2 Results from Empirical Study

Apart from the numerical study, we conducted two empirical experiments, i.e., Visual Exper-

iment and Mass Experiment, in order to evaluate the performance of the classical AHP and

FAHP methods. In both experiments, the Linguistic Pairwise Comparison Matrices (LPCMs)

were elicited from the participants (164 participants for Visual Experiment and 154 participants

for Mass Experiment). Afterwards, these matrices were transformed into numerical Pairwise

Comparison Matrices (PCMs) using the 1-9 scale so that priority vectors can be derived using

classical AHP methods. For the case of FAHP, LPCMs are transformed into fuzzy PCMs using

a scale of 1-9 and two fuzzification parameters were used, namely α = 0.1 and α = 1. For

comparison purposes, note that α = 0.1 is selected since it was the level of fuzziness where

FAHP methods performed best in the numerical study (Figure 8.5) and α = 1 is the popular

choice in the literature [55]. Those PCMs having inconsistency ≥ 0.1 were discarded from the

data set. Thus, the final empirical dataset for Visual and Mass experiment consist of 146 and

123 PCMs, respectively.

We first conducted experiments at α = 0.1 and results indicate that both classical AHP as

well as FAHP methods perform similarly. These findings are consistent with the results of the

numerical study presented earlier i.e., when low level of fuzziness is used to transform linguistic

labels into fuzzy numbers, FAHP methods do not add any value to the process. For the sake

of space, we don‘t present the results for α = 0.1 and focus only on the results obtained for the

case of α = 1.

For each experiment, two different analyses were conducted. In the first analysis, similar to the

methodology of a numerical study, we measured the deviation of priority vectors from PCMs

provided by the participants (i.e., CIV). On the other hand, for the empirical study, we also

have true weights which were tabulated earlier in Table 6.1. Therefore, in the second analysis,

we measured the deviation of the derived priority vector from the true weights. For each

analysis, descriptive statistics are tabulated in Table 8.3 - 8.6 and corresponding heat maps are
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illustrated in Figure 8.9 - 8.12. As in the numerical study, classical AHP methods significantly

outperform all other FAHP methods for both empirical experiments when α = 1.

Table 8.3: Descriptive Statistics - Mean CIV between derived priority vector and PCM (Visual
Experiment)

Lower Bound Upper Bound

LLSM (Crisp) 146 1.06175 0.02143 0.00177 1.05824 1.06525 1.02003 1.12318

Eigenvector 146 1.06236 0.02181 0.00180 1.05880 1.06593 1.02011 1.12508

FLLSM (NLP) 146 1.08075 0.02368 0.00196 1.07688 1.08462 1.03358 1.15593

FLLSM (Boender) 146 1.08354 0.02513 0.00208 1.07942 1.08765 1.03454 1.15990

Buckley 146 1.10164 0.03293 0.00273 1.09625 1.10703 1.04055 1.18268

Minimum MaximumMethod N Mean Std. Deviation Std. Error
95% Confidence Interval for Mean 

Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.039277 0.018105 0.020890 0.039891

Eigenvector -0.021172 -0.018387 0.000614

FLLSM (Boender) 0.002785 0.021786

FLLSM (NLP) 0.019001

Significantly Better Better

Inferior Significantly Inferior

Figure 8.9: Heat Map - Mean CIV differences between derived priority vector and PCM (Visual
Experiment)

Table 8.4: Descriptive Statistics - Mean CIV between derived priority vector and true weights
(Visual Experiment)

Lower Bound Upper Bound

LLSM (Crisp) 146 1.13778 0.06567 0.00543 1.12704 1.14852 1.00847 1.29958

Eigenvector 146 1.14246 0.07135 0.00590 1.13079 1.15413 1.00861 1.32607

FLLSM (NLP) 146 1.16123 0.07268 0.00602 1.14934 1.17312 1.02586 1.38829

FLLSM (Boender) 146 1.16476 0.07346 0.00608 1.15275 1.17678 1.02618 1.39644

Buckley 146 1.16400 0.07359 0.00609 1.15196 1.17604 1.02705 1.38542

Minimum MaximumMethod N Mean Std. Deviation Std. Error
95% Confidence Interval for Mean 

Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.021542 -0.000763 0.002765 0.026222

Eigenvector -0.022306 -0.018777 0.004680

FLLSM (Boender) 0.003529 0.026985

FLLSM (NLP) 0.023457

Significantly Better Better

Inferior Significantly Inferior

Figure 8.10: Heat Map - Mean CIV differences between derived priority vector and true weights
(Visual Experiment)
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Table 8.5: Descriptive Statistics - Mean CIV between derived priority vector and PCM (Mass
Experiment)

Lower Bound Upper Bound

LLSM (Crisp) 123 1.07560 0.02624 0.00237 1.07091 1.08028 1.02517 1.17033

Eigenvector 123 1.07657 0.02681 0.00242 1.07179 1.08136 1.02530 1.17479

FLLSM (NLP) 123 1.09970 0.03124 0.00282 1.09412 1.10527 1.03968 1.22611

FLLSM (Boender) 123 1.10253 0.03403 0.00307 1.09646 1.10860 1.03968 1.24109

Buckley 123 1.12300 0.05151 0.00464 1.11380 1.13219 1.03980 1.40512

Minimum MaximumMethod N Mean Std. Deviation Std. Error
95% Confidence Interval for Mean 

Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.046423 0.020464 0.023299 0.047397

Eigenvector -0.025959 -0.023124 0.000974

FLLSM (Boender) 0.002835 0.026933

FLLSM (NLP) 0.024098

Significantly Better Better

Inferior Significantly Inferior

Figure 8.11: Heat Map - Mean CIV differences between derived priority vector and PCM (Mass
Experiment)

Table 8.6: Descriptive Statistics - Mean CIV between derived priority vector and true weights
(Mass Experiment)

Lower Bound Upper Bound

LLSM (Crisp) 123 1.14044 0.04851 0.00437 1.13178 1.14910 1.04642 1.29325

Eigenvector 123 1.13966 0.05136 0.00463 1.13049 1.14882 1.04252 1.30339

FLLSM (NLP) 123 1.18210 0.07266 0.00655 1.16913 1.19507 1.05313 1.54426

FLLSM (Boender) 123 1.18640 0.07871 0.00710 1.17235 1.20045 1.05321 1.57801

Buckley 123 1.19879 0.10228 0.00922 1.18053 1.21704 1.05413 1.78107

Minimum MaximumMethod N Mean Std. Deviation Std. Error
95% Confidence Interval for Mean 

Eigenvector FLLSM (Boender) FLLSM (NLP) LLSM (Crisp)

Buckley 0.059129 0.012382 0.016689 0.058346

Eigenvector -0.046747 -0.042440 -0.000783

FLLSM (Boender) 0.004307 0.045964

FLLSM (NLP) 0.041657

Significantly Better Better

Inferior Significantly Inferior

Figure 8.12: Heat Map - Mean CIV differences between derived priority vector and true weights
(Mass Experiment)

Even though the above results substantiate the finding that FAHP methods do not add “any”

value to the process, a more detailed analysis of the results suggests that this observation

might be a misleading and hasty conclusion. For example, when we check the individual results

for both empirical studies and determine number of times classical AHP method outperforms

FAHP methods, we obtain the results tabulated in Table 8.7 and Table 8.8.

Although the classical AHP methods significantly outperform the FAHP methods, Table 8.8

shows that when we compare the deviations of the priority vectors from the true weights for

each individual separately, the FAHP (Buckley) method in particular provides more compatible
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FLLSM (Boender)  FLLSM (NLP) Buckley FLLSM (Boender)  FLLSM (NLP) Buckley 

LLSM (Crisp) 0 0 0 LLSM (Crisp) 1 1 1

Eigenvector 5 5 4 Eigenvector 5 5 5

Table 8.7: Number of matrices in which LLSM (Crisp) and Eigenvector method outperforms
FAHP method while comparing Mean CIV between PCM and derived priority vector

(a) Visual Experiment (b) Mass Experiment

FLLSM (Boender)  FLLSM (NLP) Buckley FLLSM (Boender)  FLLSM (NLP) Buckley 

LLSM (Crisp) 44 44 73 LLSM (Crisp) 23 25 32

Eigenvector 55 55 78 Eigenvector 26 27 31

Table 8.8: Number of matrices in which LLSM (Crisp) and Eigenvector method outperforms
FAHP method while comparing Mean CIV between true weights and derived priority

vector
(a) Visual Experiment (b) Mass Experiment

(i.e., closer) priority vectors in almost half of the cases in both of the empirical studies. Note

that, the source of inconsistency in pairwise comparison process is not only due to the problems

associated with the limitations of the scale used and/or the cognition during the verbal com-

munication phase, but also due to the cognition during the assessment (i.e., valuation) phase.

The comparison of the derived priority vectors with the true weights incorporates the cognition

as well during the assessment phase of the overall pairwise comparison process. According to

the results depicted in Table 8.8, for example in the Visual Experiment, out of the 146 indi-

viduals that participated the experiment, Buckley outperforms the LLSM (Crisp) method for

73 individuals and outperforms the Eigenvalue approach for 78 individuals. This observation

hints that there might be some benefit of fuzzification of the linguistic preferences even though

the existing algorithms are far from exploiting those benefits when the overall analysis is taken

into consideration.
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Chapter 9

Polarization and Non Polarization

Heuristics

Based on the analysis of results presented in the previous chapters, we propose two novel

heuristics to map linguistic labels to numbers. In the following sections, first we will provide

a theoretical background of AHP and pairwise comparisons and later present details of the

proposed heuristics.

9.1 Pairwise Comparisons and AHP

In pairwise comparisons, linguistic qualifiers elicited from experts are transformed into numeric

numbers and weight vector is estimated by calculating eigenvector of the Numerical Pairwise

Comparison Matrices (NPCMs). This approach assumes that decision maker utilizes a weight

vector in his/her mind to provide preferences and process of analyzing pairwise comparison

matrices estimate the same weight vector. This process is illustrated in Figure 9.1.

That is to say, the true weight vector and weight vector calculated at the end of process

illustrated in Figure 9.1 should be identical, which is not the case in reality due to various

reasons explained later in this section.

Note that we can use the special structure of pairwise comparison matrices to further extend

the process illustrated in Figure 9.1 and estimate priorities more efficiently. From eigenvector

of NPCM, a theoretical NPCM (TNPCM) can be constructed using Equation 9.1. By equating
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Figure 9.1: Traditional Analytic Hierarchy Process

TNPCM with LPCM provided by the decision maker, quantification of lexicons can be done

more efficiently. For clarity this process is illustrated in Figure 9.2a.

TNPCM =



w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn


(9.1)

While comparing two objects, participants can accurately provide the rank or the order rela-

tionship, but the degree of certitude is difficult to capture. Furthermore, in the presence of

multiple options with regard to various preference intensities, extreme options are avoided due

to extremeness aversion [80] which could lead to inaccurate priority vector. Therefore, using

any fixed scale has its inherent shortcomings which may lead to inaccurate weight vector.

In order to address this issue we propose a novel approach which generates a personalized

numerical scale during the process and quantify lexicons accordingly. We propose to add polar-

ization phase as shown in Figure 9.2b which convert all preference intensities in to two extreme

numbers i.e., 2 and 9 based on a β cut. Details of this process are given in subsection 9.1.1.

An argument can be made that decision makers can be given only two extreme options to

choose from, however, this could make the decision maker uncomfortable as he/she is forced to
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choose between two extreme options. Afterwards, personalized numerical scale is generated to

construct an individualized pairwise comparison matrix and calculate weight vector accordingly.
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Figure 9.2: (a) Modified Analytic Hierarchy Process (b) Modified Analytic Hierarchy Process
with Polarization Heuristics

To construct a heuristic to generate personalized numerical scale, we will use following nota-

tions.

Definition 1: Linguistic Pairwise Comparison Matrix (LPCM) Let S = {Si | i =

1, 2, ..., 9} represents a linguistic term set such that Si is defined by a linguistic variable [81]. Let

linguistic Pairwise Comparison Matrix (LPCM) represents all pairwise comparisons provided

by the decisions maker.

Definition 2: Numerical Pairwise Comparison Matrix (NPCM) Given a numerical

scale, function f() transforms linguistic variables into numbers. For example f (Saaty) will trans-
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form all linguistic labels into numbers using a scale of 1-9. Furthermore, inverse scale function

f−1 converts all numeric numbers into corresponding linguistic label.

Definition 3: Consistency of NPCM Let n represent number of criteria, then pairwise

comparison matrix is a n×n real matrix A = [aij] for all aij ≥ 0 and aij = 1/aji. Let elements

of this matrix [aij] represent preference intensity of ith criteria when compared with jth criteria.

Then transitivity relationship, i.e., aij.aji = 1, provides the measure of inconsistency in the

NPCM. Real value of inconsistency is calculated through CR = CI/RI where CI = λmax−n
n−1 as

suggested by Saaty [18], where λmax is a maximum eigenvalue of the comparison matrix and

RI is the random index.

Definition 4: Compatibility Index Value Let A = {aij} be NPCM and W = (wi/wj) the

fully consistent matrix constructed from derived priority vector from A, then CIV is defined as;

CIV = n−2.eTA ◦W T e (9.2)

where n is the size of the matrix and eTA ◦W T e is the Hadamard product of matrix A and

W T . Note that if A is a fully consistent matrix then both matrices A and W will be similar

and CIV becomes one; otherwise, CIV will have a value greater than one.

9.1.1 Proposed Heuristics

Now we present the heuristic to generate a numerical scale for a particular decision maker.

• STEP 1: Let S = {Si | i = 1, 2, ..., 9} be a set of available linguistic labels. Construct a

linguistic pairwise comparison matrix LPCM = {lij} such that lij ∈ S.

• STEP 2: Let f (Saaty) represent 1-9 numerical scale. Transform matrix L into numerical

pairwise comparison matrix NPCM = {aij} and aij = f (Saaty)(lij)

• STEP 3: Initiate cut parameter β ∈ {3, 4, 5, 6, 7, 8} and iterate the following steps until

CIV calculated in Step 10 is minimized.

– STEP 4: Construct a Polarized NPCM matrix PNPCM = {pij} such that size of

PNPCM = size of NPCM . If aij ≤ β −→ pij = 2 and if aij > β −→ pij = 9. The

resulting matrix also holds the reciprocal nature.
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– STEP 5: Calculate eigenvector of the matrix PNPCM and derive a normalized

weight vector wp.

– STEP 6: Construct a perfectly consistent theoretical NPCM (TNPCM) using

Equation 9.1 from the weight vector wp calculated in step 5.

– STEP 7: Equate matrix TNPCM with linguistic matrix LPCM to estimate nu-

merical values of linguistic labels. In case of multiple values for a specific linguistic

label, take average to estimate one single value for a particular linguistic qualifier.

The set of numerical values generated in this step is referred to as individualized

scale.

– STEP 8: Using individualized numerical scale, construct a new individualized

NPCM (INPCM = {Iij}) where Iij = f (Indivualized)(lij) .

– STEP 9: Calculate eigenvector of matrix INPCM to derive the final prioirty

vector.

– STEP 10: Calculate CIV between derived priority vector and INPCM .

We refer to the heuristic explained above as Polarization Heuristics . In addition to po-

larization heuristics, we also propose an extension of the original method without polarization

as illustrated in Figure 9.2a. We refer to this heuristic as Non Polarization Heuristic or

Extended AHP . We will compare these two methods with the original method proposed by

Saaty [18] (Figure 9.1) and approach based on mathematical modeling proposed in [30]. In the

following sections, we present results of this comparative study.

9.2 Results and Discussions

In this section we present results for both empirical and numerical studies. As stated before, our

main performance metric is Compatibility Index Value (CIV). These results are summarized

as follows;

9.2.1 Empirical Results

We first analytically analyze the empirical data and count the number of times a particular lin-

guistic label was given as preference intensity. This data is given in a histogram in Figure 9.3. It
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shows that fewer number of participants provide strongly worded preferences such as Extremely

More Important, Very Very, Strongly More Important. This points towards the presence of ex-

tremeness aversion bias, and supports our claim to polarize the preferences provided by decision

makers.
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Figure 9.3: Frequency of lexicons used by participants

Next we tabulate mean CIVs and present statistical results. Table 9.1 and Figure 9.4 show that

mean CIV between final weight vector and corresponding NPCM for both visual experiment

(1.02785) and mass experiment (1.04640) is minimum for LP model. Table 9.2 shows that

these differences are statistically significant (P ≤ 0.05). However, the mean CIV between

final weight vector and true weight vector is lowest for polarization heuristics for both visual

experiment (1.11001) and mass experiment (1.09178). Table 9.2 shows that these differences

are statistically significant. This validates the initial discussion that although LP model due

to its structure will yield more consistent matrices, the weight vector calculated from these

matrices are found farther from true weight vector.
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Table 9.1: Mean CIV for Visual and Mass experiment

Mean CIV with NPCM Mean CIV with True Weights

(Visual Experiment) (Visual Experiment)

1 - 9 Scale 164 1.07727 1.15077

LP Model 164 1.02785 1.12557

Non Polarized 164 1.08163 1.14155

Pol. Heuristics 164 1.05659 1.11001

Mean CIV with NPCM Mean CIV with True Weights

(Mass Experiment) (Mass Experiment)

1 - 9 Scale 154 1.10109 1.14718

LP Model 154 1.04640 1.09973

Non Polarized 154 1.11141 1.11970

Pol. Heuristics 154 1.07520 1.09178

Model N

Descriptive Statistics

Model N

Figure 9.4: Mean CIV Differences

9.2.2 Numerical Results:

Note that while constructing the numerical dataset, we used Saaty scale of 1-9 to convert NPCM

into LPCMs. Therefore in our comparison, we exclude this method and compare remaining
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Table 9.2: Post Hoc LSD Test for visual and mass experiment

Method Method

(I) (J) Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig.

Pol. Heuristics LP Model 0.02874 0.000 -0.01556 0.008

Pol. Heuristics Non Polarized -0.02504 0.000 -0.03154 0.008

Pol. Heuristics 1 - 9 Scale -0.02068 0.000 -0.04077 0.008

Non Polarized LP Model 0.05378 0.000 0.01598 0.008

Non Polarized 1 - 9 Scale 0.00436 0.391 -0.00922 0.008

LP Model 1 - 9 Scale -0.04942 0.000 -0.02520 0.008

Method Method

(I) (J) Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig.

Pol. Heuristics LP Model 0.02880 0.00001 -0.00795 0.144

Pol. Heuristics Non Polarized -0.03620 0.00000 -0.02792 0.000

Pol. Heuristics 1 - 9 Scale -0.02589 0.00005 -0.05540 0.000

Non Polarized LP Model 0.06501 0.00000 0.01997 0.000

Non Polarized 1 - 9 Scale 0.01032 0.10253 -0.02749 0.000

LP Model 1 - 9 Scale -0.05469 0.00000 -0.04746 0.000

CIV with NPCM (Visual Experiment) CIV with True Weights (Visual Experiment)

CIV with NPCM (Mass Experiment) CIV with True Weights (Mass Experiment)

LSD Post Hoc Test

three methods. Tables 9.3 - 9.5 tabulate mean CIVs for different matrix sizes. Similar to the

empirical study, results show that mean CIV between final weight vector and corresponding

NPCM is minimum for LP model for all matrix sizes. Results from LSD post hoc test (Table 9.4)

show that these differences are statistically significant (P ≤ 0.05).

NPCMs constructed from LP model are highly consistent and therefore weight vector calcu-

lated from these matrices will yield minimum CIV when compared with corresponding NPCM.

However, rather than comparing final weight vector with its corresponding NPCM, comparing

it with true weight vector will provide more insight as it will provide a measure of deviation of

final weight vector from the hidden weight vector which was used by the decision maker during

the elicitation stage.

Table 9.3: Mean CIV with NPCM

LP Model 225 1.00218 1.00789 1.01048 1.01411

Non Polarized 225 1.01006 1.03900 1.04741 1.05106

Pol. Heuristics 225 1.00794 1.02386 1.02777 1.02893

LP Model 225 1.07531 1.07959 1.08061 1.08200

Non Polarized 225 1.05703 1.03361 1.03325 1.03562

Pol. Heuristics 225 1.03901 1.05146 1.05526 1.06184

Mean

(n = 3)

Mean

(n = 15)

Mean

(n = 11)

Mean CIV with True Weights

Model N

Mean 

(n = 7)

Mean 

(n = 7)

Mean

(n = 11)

Mean CIV with NPCM 

Model N
Mean

(n = 3)

Mean

(n = 15)

Table 9.4: Post Hoc LSD Test - CIV with NPCM

Method Method

(I) (J) Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig.

LP Model Pol. Heuristics -0.00576 0.000 -0.01597 0.000 -0.01729 0.000 -0.01482 0.000

LP Model Non Polarized -0.00789 0.000 -0.03111 0.000 -0.03693 0.000 -0.03695 0.000

Pol. Heuristics Non Polarized -0.00213 0.053 -0.01514 0.000 -0.01964 0.000 -0.02213 0.000

Method Method

(I) (J) Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig.

LP Model Pol. Heuristics 0.03630 0.000 0.02813 0.000 0.02535 0.000 0.02016 0.000

LP Model Non Polarized 0.01828 0.033 0.04598 0.000 0.04736 0.000 0.04638 0.000

Pol. Heuristics Non Polarized -0.01802 0.036 0.01785 0.000 0.02201 0.000 0.02622 0.000

LSD Post Hoc Test - CIV with True Weights

n = 3 n = 7 n = 11 n = 15

LSD Post Hoc Test - CIV with NPCM 

n = 3 n = 7 n = 11 n = 15

Table 9.5 shows that mean CIV between final weight vector and true weight vector is minimum
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for polarization heuristic at n = 3 and results from LSD post hoc test tabulated in Table 9.6

show that these differences are statistically significant (P ≤ 0.05). For n = 7, 11, 15, non

polarized heuristic (or extended AHP heuristic) provide the lowest CIV between final weight

vector and true weight vector and these differences are statistically significant (P ≤ 0.05).

Numerical study also shows that LP model yields more consistent matrices, however, in an

effort to make NPCMs more consistent, they become farther from the true weight vector, thus

adversely affecting the validity of the outcome. Aim of such decision tools should be to estimate

the weight vector with least deviation from the hidden weight vector utilized by the decision

maker while providing his/her pairwise comparisons.

Table 9.5: Mean CIV with true weights

LP Model 225 1.00218 1.00789 1.01048 1.01411

Non Polarized 225 1.01006 1.03900 1.04741 1.05106

Pol. Heuristics 225 1.00794 1.02386 1.02777 1.02893

LP Model 225 1.07531 1.07959 1.08061 1.08200

Non Polarized 225 1.05703 1.03361 1.03325 1.03562

Pol. Heuristics 225 1.03901 1.05146 1.05526 1.06184

Mean

(n = 3)

Mean

(n = 15)

Mean

(n = 11)

Mean CIV with True Weights

Model N

Mean 

(n = 7)

Mean 

(n = 7)

Mean

(n = 11)

Mean CIV with NPCM 

Model N
Mean

(n = 3)

Mean

(n = 15)

Table 9.6: Post Hoc LSD Test - CIV with true weights

Method Method

(I) (J) Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig.

LP Model Pol. Heuristics -0.00576 0.000 -0.01597 0.000 -0.01729 0.000 -0.01482 0.000

LP Model Non Polarized -0.00789 0.000 -0.03111 0.000 -0.03693 0.000 -0.03695 0.000

Pol. Heuristics Non Polarized -0.00213 0.053 -0.01514 0.000 -0.01964 0.000 -0.02213 0.000

Method Method

(I) (J) Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig. Mean Diff. (I-J) Sig.

LP Model Pol. Heuristics 0.03630 0.000 0.02813 0.000 0.02535 0.000 0.02016 0.000

LP Model Non Polarized 0.01828 0.033 0.04598 0.000 0.04736 0.000 0.04638 0.000

Pol. Heuristics Non Polarized -0.01802 0.036 0.01785 0.000 0.02201 0.000 0.02622 0.000

LSD Post Hoc Test - CIV with True Weights

n = 3 n = 7 n = 11 n = 15

LSD Post Hoc Test - CIV with NPCM 

n = 3 n = 7 n = 11 n = 15
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Chapter 10

Conclusions and Future Research Areas

10.1 Conclusions

Most decision making environments contain qualitative information in the form of verbal

phrases and quantification of such phrases has remained a contentious issue in the literature.

Furthermore, as we move towards the fourth industrial revolution and human-machine teaming

becomes more frequent, accurate interpretation of such verbal phrases is of critical importance.

Analytic Hierarchy Process (AHP) can aid in this process as it elicit human preferences in the

form of linguistic labels and utilizes eigenvector of numerical pairwise comparison matrices to

estimate weight vector of the available criteria. Even though AHP is among the most commonly

used and widely studied operations research techniques, there are still plenty of issues requiring

clarification and improvement.

One such issue is the incorporation of fuzzy set theory in the AHP process, where fuzzy numbers

are considered by some as more realistic representations of the linguistic comparisons employed

by the decision makers during the preference elicitation stage of AHP, while others oppose this

idea. Until now, arguments from both sides were merely theoretical and neither numerical

nor empirical analysis were conducted to shed light on the issue. To bridge this gap and

evaluate the value of FAHP methods, our research compared performances of most popular

FAHP methods. Results show that among the selected nine FAHP methods, modified fuzzy

logarithmic least squares method proposed by Boender [27] and FICSM proposed in this study

performs significantly better than other methods over various experimental conditions.
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We also conducted a detailed study to investigate the value of introducing fuzziness to an origi-

nal AHP. Both numerical and empirical studies suggest that original AHP methods significantly

outperformed all the FAHP methods considered in this research. At low levels of fuzzification,

FAHP methods yielded similar results with the classical AHP methods; however, low levels of

fuzzification can be considered as equivalent to the crisp case and thus the essence of fuzzifying

human preferences is lost. Based on the results of the numerical study in particular, one can

conclude that FAHP methods presented in the literature fail to assess the hidden priority vec-

tors from the fuzzy pairwise comparison matrices, and thus, do not add any value to the process.

On the other hand, as the analysis at the end of Section 5.2 reveals, a hasty conclusion that

implies FAHP is totally redundant/irrelevant might also be misleading. Therefore, the results

of our research suggest that the existing FAHP methods are far from exploiting any potential

benefit of fuzzy representation of the pairwise comparisons in AHP; thus these methods should

be avoided until either they are modified or novel algorithms that are validated with this type

of studies are developed.

Finally, we utilized the special structure of pairwise comparison matrices and proposed two

simple heuristic to estimate linguistic qualifiers more efficiently. Results from empirical and

numerical studies show that methods proposed in this research yield priority vector closer to

true weights.

10.2 Future Research Areas

In this research, we target lexicons in the domain of MCDM; however, for future research we

propose to implement similar framework for lexicons used in other domains. This study can be

further extended using artificial intelligence techniques such as neural networks. Furthermore,

Ventromedial Prefrontal Cortex (VMF) is an important part of brain which is responsible for

human decision making. Using FMRI technology, real time neuron activity in this part of the

brain can be measured during the elicitation of pairwise comparisons, which could provide more

insight into interpretation of linguistic preferences elicited from the decision makers.
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issues on consistency of fuzzy preference relations. European Journal of Operational Re-
search, 154(1):98–109, 2004.

[61] Lawrence C Leung and D Cao. On consistency and ranking of alternatives in fuzzy ahp.
European Journal of Operational Research, 124(1):102–113, 2000.

[62] Ying-Ming Wang, Jian-Bo Yang, and Dong-Ling Xu. Interval weight generation approaches
based on consistency test and interval comparison matrices. Applied Mathematics and
Computation, 167(1):252–273, 2005.

[63] Rafikul Islam, MP Biswal, and SS Alam. Preference programming and inconsistent interval
judgments. European Journal of Operational Research, 97(1):53–62, 1997.

75



[64] Jaroslav Ramı́k and Petr Korviny. Inconsistency of pair-wise comparison matrix with fuzzy
elements based on geometric mean. Fuzzy Sets and Systems, 161(11):1604–1613, 2010.

[65] Yejun Xu, Xia Liu, and Huimin Wang. The additive consistency measure of fuzzy reciprocal
preference relations. International Journal of Machine Learning and Cybernetics, pages
1–12, 2017.

[66] Wu-E Yang, Chao-Qun Ma, Zhi-Qiu Han, and Wen-Jun Chen. Checking and adjusting
order-consistency of linguistic pairwise comparison matrices for getting transitive prefer-
ence relations. OR Spectrum, 38(3):769–787, 2016.
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