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Abstract

Factorization of polynomials over finite fields is a classical problem, going back to

the 19th century. However, factorization of an important class, namely, of permu-

tation polynomials was not studied previously. In this thesis we present results on

factorization of permutation polynomials of Fq, q ≥ 2.

In order to tackle this problem, we consider permutation polynomials Fn(x) ∈ Fq[x],

n ≥ 0, which are defined recursively as compositions of monomials of degree d with

gcd(d, q − 1) = 1, and linear polynomials. Extensions of Fq defined by using the

recursive structure of Fn(x) satisfy particular properties that enable us to employ

techniques from Galois theory. In consequence, we obtain a variety of results on degrees

and number of irreducible factors of the polynomials Fn(x).
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Özet

Sonlu cisimler üzerindeki polinomların çarpanlara ayrılması, 19. yüzyıla kadar

uzanan klasik bir problemdir. Buna rağmen, önemli bir sınıfın; permütasyon poli-

nomlarının çarpanlara ayrılması daha önce çalışılmamıştı. Bu tezde Fq, q ≥ 2 sonlu

cisimleri üzerindeki permütasyon polinomlarının çarpanları hakkında elde ettiğimiz

sonuçlar sunulmaktadır.

Bu problemi çözebilmek için, özyineli biçimde tanmlanan Fn ∈ Fq[x], n ≥ 0,

permütasyon polinomlarını ele aldık ki, bu polinomlar, dereceleri d1, . . . , dn olan ve

ebob(di, q − 1) = 1, 1 ≤ i ≤ n şartını sağlayan bir terimliler ve doğrusal polinom-

ların bileşkesiyle oluşmaktadır. Bu permütasyon polinomlarının özyineli yapısını kul-

lanarak tanımladığımız Fq cisminin genişlemelerinin sahip olduğu bazı özellikler Galois

teorisinden teknikleri kullanmamızı mümkün kılmıştır. Bu sayede Fn(x) polinomlarının

indirgenemez çarpanlarının dereceleri ve sayısı hakkında pek çok sonuç elde edebildik.
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CHAPTER 1

Introduction

1.1 Factorization of polynomials over finite fields

Throughout this thesis Fq denotes a finite field of characteristic p, hence q = pr,

r ≥ 1. Factorization of polynomials over Fq is a classical problem. In coding theory,

cryptography or number theory, there are plenty of problems solutions of which depend

in one way or another on the factorization of f(x) ∈ Fq[x]. For instance, in coding

theory, a linear code C of length n is cyclic if and only if its generator polynomial

divides xn − 1, i.e., cyclic codes are determined by factors of xn − 1.

Efficient algorithms for factorization are obtained, due to the algebraic structure of

Fq[x]. First factorization algorithms are due to Berlekamp [11], [12]. Some well-known

improvements of Berlekamp’s algorithms can be found in Cantor and Zassenhaus [17],

Kaltofen and Shoup [52], von zur Gathen and Shoup [50].

It is difficult to find criteria for the irreducibility of arbitrary polynomials, however

there are well-known criteria for polynomials of particular types, for instance those of

small weight. The following theorem, which is proven by Serret [81] for finite prime

fields, characterizes irreducible binomials over Fq.

Theorem 1.1.1 [53] Let 2 ≤ n be an integer, a ∈ F∗q, t be the order of a in the group

F∗q. Then the binomial xn − a is irreducible if and only if the following are satisfied.

(i) Each prime factor of n divides t, but does not divide (q − 1)/t,

(ii) if n ≡ 0 (mod 4), then q ≡ 1 (mod 4).
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Serret [81] also gave the explicit factorization of particular binomials xn − a ∈ Fq[x].

Dickson [31] considered the factorization of xn−a ∈ Fq[x] with n = q−1, see also Agou

[3]. Beard and West [10] and McEliece [65] tabulate factorizations of the binomials

xn − 1. More recent results on the explicit factorization of xn − 1 can be found in

Blake, Gao and Mullin [14], Chen, Tuerhong [22], Martinez, Vergara, Oliveria [62] and

Wu, Yue and Fan [92]. As an example, we state the following result.

Theorem 1.1.2 [62] Let n be a positive integer satisfying

(i) q 6≡ 3 (mod 4) or 8 6 | n,

(ii) rad(n) | (q − 1), where rad(n) denotes the product of prime divisors of n,

and set m = n
gcd(n,q−1) and l = q−1

gcd(q−1,n) . Then

xn − 1 =
∏
t | m

∏
1≤u≤gcd(n,q−1)

gcd(u,t)=1

(xt − ξul)

is the factorization of xn − 1 into irreducible factors of Fq[x], where < ξ >= F∗q.

The number of irreducible factors of a given binomial is also studied. Rédei [74] gives

a short proof for the following formula of Schwarz [79], see also Agou [2], Butler [16],

Schwarz [78].

Theorem 1.1.3 [79] Let xn − a ∈ Fq[x], a ∈ F∗q, 1 ≤ s ≤ n, ds = gcd(n, ps − 1) and

γs =

ds if p | a
ps−1
ds − 1,

0 otherwise.

Then the number of irreducible factors of xn − a of degree m is

1

m

∑
s | m

µ(
m

s
)γs,

where the sum runs over all s | m, and µ denotes the Möbius function.

Recently, Heyman and Shparlinski [43], considered various counting questions for irre-

ducible binomials of the form xn−a ∈ Fq[x]. For instance, the following theorem gives

an upper bound for the number of such irreducible binomials for a fixed q averaged

over n ≤ N .
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Theorem 1.1.4 [43] Let In(q) be the number of monic irreducible binomials of the

form xn − a ∈ Fq[x]. For any fixed positive B, ε, a sufficiently large q and real N with

N ≥ (log(q − 1))(1+ε)B log3(q)/ log4(q),

one has ∑
n≤N

In(q) ≤ (q − 1)N

(logN)B
.

Irreducibility criterion for the trinomial xp − x − a ∈ Fq[x] was first given by

Pellet [70]. Irrdeucibility of xp− x− a ∈ Fp[x] was already studied by Serret [80], [81].

A decomposition of xq − x − a ∈ Fq[x], where a is an element of a subfield of Fq, in

terms of trinomials in Fq was given by Dickson [32].

The factorizations of various compositions of the form f(g(x)) are also considered.

Varshamov [86], [87] gave a criterion for the irreducibility of the composition f(xp −

x − b), where f ∈ Fq[x] is irreducible and b ∈ Fq. Factorizations of f(xp
r − ax),

f(xp
2r − axp

r − bx) and many others for an irreducible polynomial f ∈ Fq[x] are

studied, see for instance, Agou [3], [4], Long [55], Long and Vaughan [57], [58], and

Ore [68]. Factorization of polynomials of the form f(xn), with f ∈ Fq[x] is irreducible,

is considered in Agou [2], Butler [16], Pellet [70]. Recently, Martinez and Reis [61]

proved the following.

Theorem 1.1.5 [61] Let f(x) be an irreducible polynomial of degree m. If g(x) is

any monic irreducible factor of f(xn) and a ∈ F∗q has order n, then

f(xn) =
n−1∏
i=0

[a−mig(aix)]

is the factorization of f(xn) into irreducible factors.

Factors of polynomials f(L(x)), where f is irreducible and L is a linearized polynomial,

are studied by Agou [4], Long [55], [56], Long and Vaughan [57], [58]. Analogous

problems for the multivariate case are considered in Carlitz and Long [20], and Long

[59].

Williams [89] gave a factorization of Dickson polynomials. More recent results

in this direction are obtained, for instance, by Chou [23], Fitzgerald and Yucas [38],

[39], [40]. In [39], Fitzgerald and Yucas show that irreducible factors of Dickson poly-

nomials can be obtained from particular cyclotomic polynomials, see Tosun [84] for
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a generalization. There are also numerous results on explicit factorization of cyclo-

tomic polynomials, for example, see Meyn [64], Tuxanidy and Wang [85], Wang and

Wang [88], Wu et al. [91]. In the following theorem of Tuxanidy and Wang [85], Qn

denotes the n-th cyclotomic polynomial over Fq, for n ∈ Z+.

Theorem 1.1.6 [85] Let m,n ∈ N, gcd(m,n) = gcd(φ(m), s) = 1, where φ denotes

the Euler’s totient function and s denotes the multiplicative order of q modulo n. If

Qn =

φ(n)/s∏
j=1

gj is the factorization of Qn(x) over Fq, then

Qmn(x) =

φ(n)/s∏
j=1

∏
k | m

Gj,k

(
xk
)µ(m/k)

is the factorization of Qmn over Fq, where Gj,k is the minimal polynomial of λkn,j with

g(λn,j) = 0.

The problems concerning factorization pattern of a given polynomial also have

received a lot of attention. Cohen [26], [27] considers the distribution of various fac-

torization patterns among polynomials of the form f(x) + ag(x), when f, g ∈ Fq[x] are

given and a ∈ Fq. In Cohen [28], the distribution of factorization patterns in residue

classes modulo a given polynomial or in sets of polynomials of fixed degree with preas-

signed coefficients are studied. An asymptotic formula for the number of polynomials

of fixed degree d over Fq having exactly s irreducible factors of degree e is given by

Williams [90]. Car [18] and Cohen [25] obtain asymptotic formulas for the number of

monic polynomials over Fq of fixed degree with a certain factorization pattern. Gogia

and Luthar [41] considered the same problem for the case where the degree is bounded

by a positive integer. Gómez-Pérez, Ostafe and Shparlinski [34] give a lower bound for

the largest degree of an irreducible factor, and an estimate on the number of irreducible

factors of iterates of a polynomial f(x) ∈ Fq[x]. Reis [76] studies polynomials of the

form f(g(n)(x)), where f, g are of degree at least 1 and g(n)(x) denotes the n-th iterate

of the polynomial g(x). He obtains some improvements of the results in [34]. Recently

in Reis [75], degree distribution of f(L(x)) is given, where f is irreducible and L is

linearized.

As a problem related to factorization, there has been an active interest in finding

roots of polynomials over finite fields. Berlekamp [12] suggested a method to find roots
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of polynomials when q is large. A root finding algorithm based on the consideration of

affine multiples was developed by Berlakamp, Rumsey and Solomon [13]. Rabin [73]

suggested a different method for the same problem; see also Cantor and Zassenhaus [17].

In Mann [60], the roots of f are given in terms of roots of unity over Fq and polynomials

in the coefficients of f , where f is irreducible and of degree not divisible by p. If f

has roots in Fq, Pres̆ić [71] gave an expression of these roots depending on a primitive

element of Fq. Feit and Rees [37] obtained conditions for a polynomial over Fq to split

in Fq, S̆atunovskĭi and many others studied the same problem for the case of prime

cardinality.

Further information about the algorithms and results concerning factorization of

polynomials over Fq can be found in Lidl and Niederreiter [53, Chapter 4], Mullen and

Panario [66, Chapter 11], Shparlinski [82, Chapter 1] and references therein.

1.2 Permutation polynomials

A polynomial f ∈ Fq[x] is called a permutation polynomial if it induces a bijection from

Fq to Fq. Permutation polynomials have been of great interest over the last decades,

due to their applications in coding theory, cryptography and combinatorics.

Permutation polynomials of finite fields of Fp were first studied by Hermite [42]. The

consideration of permutation polynomials of Fq is due to Dickson [33]. It was first noted

by Hermite [42] that any function ψ from Fp into Fp can be represented by a polynomial.

Dickson [33] observed that the same holds for Fq, and if the representing polynomial

f satisfies deg f < q, then f is the unique such polynomial. Carlitz [19], Dickson [33]

and Zsigmondy [93] pointed out that f can be obtained from an interpolation formula

as follows.

Theorem 1.2.1 (Lagrange Interpolation Formula) For n ≥ 0, let a0, . . . , an be

n+ 1 distinct elements of Fq, and let b0, . . . , bn be n+ 1 arbitrary elements of Fq. Then

there exists a unique f ∈ Fq[x], deg f(x) ≤ n such that f(ai) = bi, for i = 0, . . . , n.

This polynomial is given by

f(x) =
n∑
i=0

bi

n∏
k=0
k 6=i

(ai − ak)−1(x− ak).
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If ψ : Fq 7→ Fq is already given as a polynomial function, say ψ : c 7→ g(c) with

g ∈ Fq[x], then f can be obtained from g by reduction modulo xq − x, due to the

following result.

Lemma 1.2.2 Let f, g ∈ Fq[x]. The equality f(c) = g(c) holds for all c ∈ Fq if and

only if f(x) ≡ g(x) mod(xq − x).

A criterion for f(x) ∈ Fp[x] to be a permutation polynomial of Fp was given by

Hermite [42]. This result is generalized to polynomials in Fq[x] by Dickson [33].

Theorem 1.2.3 (Hermite’s Criterion) A polynomial f ∈ Fq[x] is a permutation

polynomial of Fq if and only if the following conditions are satisfied.

(i) f has exactly one root in Fq,

(ii) for each integer t with 1 ≤ t ≤ q−2 and p 6 | t, the reduction of f(x)t mod(xq−x)

has degree ≤ q − 2.

Some well-known examples of permutation polynomials are given in the following

lemma.

Lemma 1.2.4 (i) Every linear polynomial over Fq is a permutation polynomial of

Fq.

(ii) The monomial xd is a permutation polynomial of Fq if and only if gcd(d, q−1) = 1.

(iii) The p-polynomial

L(x) =
m∑
i=0

aix
pi ∈ Fq[x]

is a permutation polynomial of Fq if and only if L(x) only has the root 0 in Fq.

(iv) The Dickson polynomial

gk(x, a) =

bk/2c∑
j=0

k

k − j

(
k − j
j

)
(−a)jxk−2j,

where a ∈ F∗q, is a permutation polynomial of Fq if and only if gcd(k, q2− 1) = 1.

The following variation of Hermite’s criterion in terms of combinatorial identities is

obtained in 2006 by Masuda, Panario and Wang [63].
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Theorem 1.2.5 [63] Let f(x) = amx
m+am−1x

m−1 + . . .+a1x+a0 ∈ Fq[x], deg(f) =

m < q − 1, and SN = {(A1, A2, . . . , Am) ∈ Zm : A1 + A2 + . . . + Am = N,A1 + 2 ·

A2 + . . .m · Am ≡ 0(mod(q − 1)), Ai ≥ 0 for all i, 1 ≤ i ≤ m, and Ai = 0 whenever

ai = 0}. Then the following statements are equivalent.

(i) f(x) is a permutation polynomial of Fq.

(ii)

∑
A1,...,Am∈SN

N !

A1! · A2! · . . . · Am!
aA1
1 · aA2

2 · . . . · aAm
m =

0, if N = 1, 2, . . . (q − 2),

1, if N = q − 1.

Permutation polynomials of various forms are studied by Akbary and Wang [5], Charpin

and Kyureghyan [21], Hou [44], [46], [45] and many other researchers, see Hou [47] for

a detailed survey.

For q ≥ 2, permutation polynomials over Fq form a group under composition and

subsequent reduction modulo xq−x, which is isomorphic to Sq. The following theorem

of Carlitz [19] gives a set of generators for this group.

Theorem 1.2.6 [19] If q > 2 is a prime power, then every permutation of Fq is the

composition of permutations induced by xq−2 and by linear polynomials over Fq.

Therefore, by this theorem of Carlitz, if F (x) is a permutation polynomial over Fq,

then there exists an integer n ≥ 0 and A = (a, a0, . . . , an) ∈ Fn+2
q , where a0, an+1 ∈ Fq,

a, a1, . . . an ∈ F∗q, satisfying

F (x) = F (A)(x) = (. . . ((ax+ a0)
q−2 + a1)

q−2 + . . .+ an−1)
q−2 + an, (1.1)

see Çeşmelioğlu, Meidl, Topuzoğlu [30]. The representation in (1.1) is not unique and n

is not necessarily minimal. In Aksoy et al. [6], the Carlitz rank of F is defined to be the

smallest integer n ≥ 0 satisfying F (x) = F (A)(x) for some A ∈ Fn+2
q . Various problems

concerning Carlitz rank and its applications are studied, see, for instance Aksoy et

al. [6], Anbar et al. [7], [8], Gómez-Pérez, Ostafe, Topuzoğlu [35], Işık, Topuzoğlu,

Winterhof, [48], Işık, Winterhof [49], Pausinger, Topuzoğlu [69] and Topuzoğlu [83].
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The cycle structure of various types of permutation polynomials is studied; see

Ahmad [1] for monomials, Lidl and Mullen [54] for Dickson permutation polynomials,

and Çeşmelioğlu, Meidl, Topuzoğlu [30] for polynomials of the form (1.1).

We refer to Lidl, Niederreiter [53, Chapter 7], Mullen, Panario [66, Chapter 8], and

Shparlinski [82, Chapter 8] for a large variety of further results about permutation

polynomials, and their applications.

1.3 Overview

Although factorization of polynomials over Fq is a classical problem, factorization of

permutation polynomials has not been studied so far. In this thesis, we are concerned

with factorization of a class of recursively defined permutation polynomials, as defined

below.

Let n ≥ 1, a ∈ F∗q, a0, a1, . . . , an ∈ Fq, d1, . . . , dn be integers satisfying

di ≥ 2 and gcd(di, q − 1) = 1 for 1 ≤ i ≤ n, (1.2)

and d = lcm(d1, . . . , dn), the least common multiple of d1, . . . , dn. We set

F0(x) := ax+ a0 and Fi(x) := Fi−1(x)di + ai (1.3)

for 1 ≤ i ≤ n. By Lemma 1.2.4, Fi(x) are permutation polynomials for 0 ≤ j ≤

n. Moreover, by Theorem 1.2.6, it is known that every permutation of Fq can be

represented as polynomials of the form (1.3). The definition of the polynomials Fn

enables us to use techniques from Galois Theory.

We present our results on the degrees of the irreducible factors of Fn(x) in Chapter

2, where we assume a = 1 in (1.3), since the value of a does not effect the degree of an

irreducible factor of Fn(x). We also assume that

gcd(di, q) = 1 for 1 ≤ i ≤ n (1.4)

because if di = pk · ei for some 1 ≤ i ≤ n, then it is possible to write Fn(x) = Hn(x)p
k
,

where Hn(x) is of the form (1.3).

The first two results in Section 2.1 together, yield the set of possible degrees of

the irreducible factors of Fn(x). Naturally, degrees of the irreducible factors of Fn(x)
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depend on the coefficients ai in (1.3), for 1 ≤ i ≤ n. Consequently, we introduce the

following notation.

Let A = (a0, a1, . . . , an) ∈ Fn+1
q , D = (d1, . . . , dn) ∈ Zn+ such that d1, . . . , dn satisfy

(1.3) and (1.4). We put F
(A,D)
i := Fi(x), for 0 ≤ i ≤ n.

We define the set ∆
(D)
n to be the set of possible degrees of the irreducible factors of

F
(A,D)
n (x), for an arbitrary A ∈ Fn+1

q . Similarly, ∆
(A,D)
n denotes the set of the degrees

of the actual irreducible factors of F
(A,D)
n (x). In Section 2.2, we investigate the relation

between the sets ∆
(D)
n and ∆

(A,D)
n . More precisely, we first observe that for fixed q and

D, there may not exist any A ∈ Fn+1
q such that ∆

(A,D)
n = ∆

(D)
n . Afterwards, we give a

necessary condition on D and q, for the existence of A ∈ Fn+1
q , satisfying ∆

AD)
n = ∆

(D)
n .

It is also shown that this condition is not sufficient.

When ∆
(A,D)
n ( ∆

(D)
n for some q and D and for all A ∈ Fn+1

q we may try to eliminate

some elements of ∆
(D)
n , which are not in ∆

(A,D)
n for any A. In Section 2.3, we give some

results in this direction, i.e., on the elimination of certain elements of ∆
(D)
n , under some

conditions. Furthermore, using the procedure of proofs of these results, we obtain an

algorithm to eliminate a subset of ∆
(D)
n , when D and q are fixed. Section 2.4 consists

of some existence results, i.e., we show that some m ∈ ∆
(D)
n are necessarily in ∆

(A,D)
n .

In Chapter 3, we define consecutive permutation polynomial sequences {F (A,D)
n }n≥0

associated to the sequences A = {an}n≥0 and D = {dn}n≥1, where an ∈ F∗q and

dn ∈ Z+ satisfy (1.2) and (1.4), in such a way that the n-th term of the sequence equals

F
(A,D)
n (x), where F

(A,D)
n (x) is defined as in Chapter 2. This definition is motivated by

the definition of consecutive polynomial sequences given by Gómez-Pérez, Ostafe and

Sha in [36]. The authors of [36] studied various questions concerning factorization of

consecutive polynomial sequences, including the largest degree of irreducible factors

and the number of irreducible factors. We consider similar problems for consecutive

permutation polynomial sequences in Chapter 3.

1.4 Preliminaries

Here, we list well - known results from the theory of finite fields that we use in the

next chapter.

Let d be a positive integer such that gcd(p, d) = 1, and ζ be a primitive d-th root

9



of unity over Fq. Then the polynomial

Qd(x) =
d∏
s=1

gcd(d,s)=1

(x− ζs) (1.5)

is called the d-th cyclotomic polynomial over Fq.

Lemma 1.4.1 (i) Suppose gcd(p, n) = 1. Then xn − 1 =
∏
d | n

Qd(x),

(ii) If gcd(p, d) = 1, then Qd factors into φ(d)/m distinct monic irreducible factors

over Fq of the same degree m, where m = ordd(q).

As we mentioned in Section 1.1, the factorization of xn−1 has received a lot of attention.

By Lemma 1.4.1, it is linked with the factorization of cyclotomic polynomials. Further

research on explicit factorization of xn − 1 and cyclotomic polynomials can be found

in [22], [40], [62], [64], [85], [88], [91].

In the next chapter, we need some classical results from Galois Theory, in particular,

we use the following.

Lemma 1.4.2 (Kummer extensions) Let L ⊇ M be finite extensions of K = Fq.

Suppose that L = M(α) with αd ∈ M for some d which is relatively prime to q.

Assume moreover that M contains all d-th roots of unity. Then L/M is called a

Kummer extension and [L : M ] | d.

Lemma 1.4.3 Let L1, L2 be finite extensions of K and let L = L1L2 be the compositum

of L1 and L2. Then [L : L1] = [L2 : (L1 ∩ L2)] and [L : L1] | [L2 : K].

We also use the theory of characters in the next chapter. We first recall definitions.

Definition 1.4.1 Let G be a multiplicatively written finite abelian group of order |G|

with the identity element 1G. A character χ of G is a homomorphism from G into the

multiplicative group U of complex numbers of absolute value 1. That is, a mapping

χ : G→ U is called a character of G if it satisfies

χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G (1.6)

Let χ be a character of G. Since χ is a group homomorphism, we have χ(1G) = 1.

Furthermore,

(χ(g))|G| = χ(g|G|) = χ(1G) = 1
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for every g ∈ G, so that the values of χ are |G|-th roots of unity. Note that

χ(g)χ(g−1) = χ(gg−1) = χ(1G) = 1

and hence χ(g−1) = (χ(g))−1 = χ(g) for every g ∈ G, where the bar denotes complex

conjugation.

If χ : G → U is a map such that χ(g) = 1 for all g ∈ G, then χ is called the trivial

character of G. We denote trivial character of G by χ0.

If χ is a character of G, there exists a character which is called the conjugate character

associated to χ and denoted by χ̄ and it is defined by χ̄(g) = χ(g) for all g ∈ G.

Given finitely many characters χ1, . . . , χn of G, one can define the product character

χ1 ·. . .·χn by setting χ1 ·. . .·χn(g) = χ1(g)·. . .·χn(g) for all g ∈ G. If χ1 = . . . = χn = χ,

we denote the product character by χn. Let us denote the set of characters by Ĝ.

Obviously, Ĝ forms an abelian group under this multiplication of characters. As the

values of characters of Ĝ are |G|-th roots of unity, we know that Ĝ is finite.

The following well-known results can be found, for instance, in [53].

Theorem 1.4.4 If χ is a nontrivial character of the finite abelian group G, then

(i)
∑
g∈G

χ(g) = 0,

(ii) If g ∈ G with g 6= 1G, then
∑
χ∈G

χ(g) = 0.

Theorem 1.4.5 The number of characters of a finite abelian group is equal to |G|.

Corollary 1.4.6 (Orthogonality Relations) Let χ and ψ be characters of G. Then

(i)
1

|G|
∑
g∈G

χ(g)ψ(g) =

0 for χ 6= ψ,

1 for χ = ψ.

(ii)
1

|G|
∑
χ∈Ĝ

χ(g)χ(h) =

0 for g 6= h,

1 for g = h.

Consider the characters of Fq. Since Fq contains two finite abelian groups mainly,

the additive group and the multiplicative group, we have to consider their characters

separately. Therefore, a character of the additive group of Fq is called additive character

and a character of the multiplicative group of Fq is called multiplicative character.

11



Theorem 1.4.7 [53] Let g be a fixed primitive element of Fq. For each j = 0, 1, . . . , (q−

2), the function ψj with

ψj(g
k) = e2πijk/(q−1) for k = 0, 1, . . . , (q − 2)

defines a multiplicative character of Fq, and every multiplicative character of Fq is

obtained in this way.

Corollary 1.4.8 [53] The group of multiplicative characters of Fq is cyclic of order

q − 1.

Multiplicative characters of Fq can be extended to be defined at 0 as follows.

χ(0) =

1, for χ = χ0,

0, for χ 6= χ0.

(1.7)

Theorem 1.4.9 [53] Let χ be a multiplicative character of Fq of order s > 1 and let

G(x) ∈ Fq[x] be a monic polynomial of positive degree that is not an s-th power of a

polynomial. Let r be the number of distinct roots of G(x) in its splitting field over Fq.

Then for every a ∈ Fq we have,∣∣∣∣∣∑
c∈Fq

χ(aG(c))

∣∣∣∣∣ ≤ (r − 1)q1/2.

For the next two results, we refer to Cohen [29].

Lemma 1.4.10 Let u, t, n be positive integers such that u | t, t | n and l = n/t. Then∑
u | t

|µ(u)|
φ(u)

∑
v | l

gcd(u,l/v)=1

φ(u · v) = l ·W (t),

where W (t) denotes the number of square-free divisors of t.

Lemma 1.4.11 Let k ≥ 1, t | qk − 1 and l = qk−1
t

. The characteristic function ω(x)

of elements x ∈ F∗
qk

of order t is

ω(x) =
φ(t)

qk − 1

∑
u | t

µ(u)

φ(u)

∑
v | l

gcd(u,l/v)=1

∑
ord(χ)=u·v

χ(x).

Here, µ denotes the Möbius function, φ denotes the Euler’s totient function, and the

inner sum runs through the multiplicative characters of F∗
qk

of order u · v.
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CHAPTER 2

Factorization of a class of permutation polynomials

Chapter 2 contains our main results on the degrees of the irreducible factors of a

large class of permutation polynomials. Some of the results in this chapter are from [51],

obtained jointly with H. Stichtenoth.

2.1 Degrees of irreducible factors of Fn(x)

We start by stating one of our main results.

Theorem 2.1.1 [51] If Q(x) ∈ Fq[x] is an irreducible factor of Fn(x), then

degQ(x) divides d1 · d2 · . . . · dn−1 · ordd(q).

Proof : Let Q(x) ∈ Fq[x] be an irreducible factor of Fn(x). We may assume degQ(x) >

1. Now let λ ∈ K̄ be a root of Q(x), then degQ(x) = [K(λ) : K]. Let L = K(ζ),

where ζ ∈ K̄ is a primitive d-th root of unity, and set M = L ∩K(λ). This gives

degQ(x) = [K(λ) : M ] · [M : K].

By Lemma 1.4.1 (ii), [L : K] = [K(ζ) : K] = ordd(q). Since M ⊆ L, we obtain

[M : K] | ordd(q).

Since [K(λ) : M ] = [L(λ) : L] by Lemma 1.4.3, it suffices to show that

[L(λ) : L] | d1 · d2 · . . . · dn−1. (2.1)
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To this end, we set λi = Fi(λ), for i = 0, . . . , n. Since Q(λ) = 0 and Q(x) | Fn(x), we

have λn = Fn(λ) = 0. Moreover, using (1.3) we get

λn = Fn(λ) = Fn−1(λ)dn + an = λdnn−1 + an,

λn−1 = Fn−1(λ) = Fn−2(λ)dn−1 + an−1 = λ
dn−1

n−2 + an−1.

Continuing in this way, we obtain

λdnn−1 = λn − an = −an,

λ
dn−1

n−2 = λn−1 − an−1,
...

λd21 = λ2 − a2,

λd10 = λ1 − a1.

(2.2)

Now, consider the field extensions Ki = K(λn−i) and Li = L(λn−i), for 0 ≤ i ≤ n. As

degQ(x) > 1, there exists an index 1 ≤ j ≤ n such that

K = K0 = . . . = Kn−j $ Kn−j+1 ⊆ . . . Kn = K(λ). (2.3)

We have Kn−j+1 = K(λj−1) and

λ
dj
j−1 = λj − aj ∈ K = Fq,

by equation (2.2). Since dj is relatively prime to q − 1 and K $ Kn−j+1, there exists

b ∈ F∗q such that λj − aj = bdj . If we let µ = λj−1/b, then we obtain

K $ Kn−j+1 = K(λj−1) = K(µ), µdj = 1. (2.4)

By assumption, dj divides d, which gives µ ∈ K(ζ) = L and consequently λj−1 ∈ L.

Hence we see that

L = L0 ⊆ L1 ⊆ . . . ⊆ Ln.

For each i, 1 ≤ i ≤ n− 1, the extension Ln−i+1/Ln−i is defined by the equation

λdii−1 = λi − ai ∈ Ln−i.

As di divides d, L contains all di-th roots of unity for 1 ≤ i ≤ n. Therefore, Ln−i+1/Ln−i

is a Kummer extension. Hence by Lemma 1.4.2, [Ln−i+1 : Ln−i] = [L(λi−1) : L(λi)]

divides di for i = 1, . . . , n− 1. This proves (2.1) and finishes the proof. 2

The following result shows that each divisor of d1 · . . . · dn−1 · ordd(q) does not

necessarily occur as the degree of some irreducible factor of Fn(x).
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Theorem 2.1.2 [51] If Q(x) ∈ Fq[x] is an irreducible factor of Fn(x) satisfying

deg Q(x) > 1, then there exists some j ∈ {1, 2, . . . , n} and a prime number ` | dj
such that ord`(q) divides the degree of Q(x).

Proof : Let j be the index satisfying K = Kn−j $ Kn−j+1 ⊆ . . . Kn. By (2.4), K $

Kn−j+1 = K(λj−1) = K(µ), where µdj = 1. Let e be the order of µ in the cyclic group

of dj-th roots of unity over Fq. Then

[K(λj−1) : K] = [K(µ) : K] = orde(q).

for some divisor e of dj. Let ` be a prime divisor of e. Since ord`(q) | orde(q) and

orde(q) | degQ(x), we get ord`(q) | degQ(x). 2

Example 2.1.1 Let q = 11, n = 2, d1 = 9, d2 = 9. a0 = 4, a1 = 5, a2 = 1. 9 = 32,

ord3(11) = 2. Using Theorem 2.1.1 and Theorem 2.1.2, we conclude that possible

degrees of the irreducible factors of the corresponding F2(x) are

1, 2, 6, 18, 54. (2.5)

Using the computer algebra system MAGMA [15], we can explicitly factorize F2(x),

and see that the degrees of the irreducible factors are as in (2.5). On the other hand,

if we take a0 = 6, a1 = 2, a2 = 10 over the same field with the same di, i = 1, 2,

the explicit factorization of the corresponding F2(x) shows that the degrees of the

irreducible factors are 1, 2, 6, 18.

Example 2.1.1 shows that the degrees of the irreducible factors depend on the

coefficients of Fn(x). To emphasize this dependence, we recall the following notation.

Let A = (a0, a1, . . . , an) ∈ Fn+1
q , D = (d1, . . . , dn) ∈ Zn+ such that dj satisfy (1.3) and

(1.4), for all 1 ≤ j ≤ n, F
(A,D)
i = Fi(x), 0 ≤ i ≤ n. Then

∆
(A,D)
n ={degQ(x) : Q(x) is an irreducible factor of F

(A,D)
n (x)}

∆
(D)
n ={m ≤ d1 · d2 · . . . · dn : m | d1 · d2 · . . . · dn−1 · ordd(q)

and ord`(q) | m for some prime ` | d} ∪ {1}.

(2.6)

2.2 The relation between the sets ∆
(D)
n and ∆

(A,D)
n

In terms of the notation given by (2.6), Theorem 2.1.1 and Theorem 2.1.2 tell us that

∆
(A,D)
n ⊆ ∆

(D)
n , for each A ∈ Fn+1

q . Example 2.1.1 shows that, there exists A ∈ F3
11
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satisfying ∆
(D)
2 = ∆

(A,D)
2 , where D = (9, 9). The following example shows that this is

not always the case for an arbitrary D.

Example 2.2.1 Let q = 101, D = (39, 39), then ord3(101) = 2, ord13(101) = ord39(101) =

6. Therefore,

∆
(D)
2 = {1, 2, 6, 18, 26, 78, 234}

Using MAGMA one can see that as A runs through F3
q, ∆

(A,D)
2 is one of the following

sets.

{1}, {1, 2, 6}, {1, 6, 78}, {1, 2, 6, 78}, {1, 2, 6, 234},

{1, 2, 6, 78, 234}, {1, 2, 6, 18, 234}, {1, 2, 6, 18, 78, 234}.

That is, 26 ∈ ∆
(D)
2 but 26 /∈ ∆

(A,D)
2 for any A ∈ F3

q.

In fact, Example 2.2.1 is a special case of the following result.

Theorem 2.2.1 [51] Suppose that n ≥ 2, d = lcm(d1, d2, . . . , dn) = p1 ·p2 for distinct

prime numbers p1, p2 and

ordp1(q) < ordp2(q).

Then p2 · ordp1(q) /∈ ∆
(A,D)
n for any choice of A ∈ Fn+1

q .

In order to prove this result, we need the following lemma.

Lemma 2.2.2 Let d = p1·p2, for distinct prime numbers p1 and p2 and m = ordp1(q) <

ordp2(q). Then the following hold.

(i) gcd(p2, ordp1(q)) = 1.

(ii) gcd(p2, ordd(q)) = 1.

(iii) gcd(p2, q
m − 1) = 1.

Proof :

(i) Suppose the contrary, i.e., p2 | ordp1(q). This implies ordp2(q) < ordp1(q) since

ordp2(q) < p2, which contradicts the assumption that ordp1(q) < ordp2(q).

(ii) By a direct consequence of the Chinese Remainder Theorem, we have ordd(q) =

lcm(ordp1(q), ordp2(q)). Since ordp2(q) | p2 − 1 by Lagrange’s Theorem, we have

gcd(p2, ordp2(q)) = 1. Since we also have gcd(p2, ordp1(q)) = 1 by part (i), the

result follows.
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(iii) Suppose the contrary, i.e., p2 | qm − 1. This means that

ordp2(q) | ordp1(q),

again, contradicts the assumption that ordp1(q) < ordp2(q).

2

Proof of Theorem 2.2.1 : If p2 · ordp1(q) /∈ ∆
(D)
n , then there is nothing to show.

Now, assume that p2 · ordp1(q) ∈ ∆
(D)
n . Note that if p2 | d1, then p2 · ordp1(q) ∈ ∆

(D)
n ,

for all n ≥ 2. Suppose that there exists A ∈ Fn+1
q satisfying p2 · ordp1(q) ∈ ∆

(A,D)
n ,

i.e., there exists an irreducible factor Q(x) ∈ Fq[x] of F
(A,D)
n (x) = Fn(x) such that

degQ(x) = p2 ·ordp1(q). As in the proof of Theorem 2.1.1, let λ ∈ K̄ be a root of Q(x),

λi = Fi(λ), Ki = K(λn−i), 0 ≤ i ≤ n. Since degQ(x) > 1, we know that

K = Kn−j−1 $ Kn−j, for some index 0 ≤ j ≤ n− 1.

By Theorem 2.1.2, we have

[Kn−j : Kn−j−1] = ordej+1
(q) for some ej+1 | dj+1. (2.7)

Since [Kn−j : K] divides [Kn : K], we conclude that

ordej+1
(q) | p2 · ordp1(q) for some ej+1 | dj+1. (2.8)

Now, we will show that ej+1 is necessarily p1.

If ej+1 = p2, then from (2.8), we get

ordp2(q) | p2 · ordp1(q).

Since gcd(p2, ordp2(q)) = 1, we get ordp2(q) | ordp1(q), which contradicts the assumption

that ordp1(q) < ordp2(q).

Similarly, assuming ej+1 = d, from (2.8), we get

ordd(q) | p2 · ordp1(q).

Since gcd(p2, ordd(q)) = 1 by Lemma 2.2.2 (ii), we get ordd(q) | ordp1(q). But this is not

the case, since ordd(q) = lcm(ordp1(q), ordp2(q)) and ordp1(q) < ordp2(q). Therefore,

ej+1 = p1, and hence by (2.7), Kn−j contains all primitive p1-th roots of unity. We

know Kn−j+1 = K(λj−1), and

λ
dj
j−1 = λj − aj ∈ Kn−j. (2.9)
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by equation (2.2). Now, we will show that [Kn−j+1 : Kn−j] = 1 for the cases dj = p1,

p2, d.

Case 1 : Assume dj = p1. Since Kn−j contains all p1-th roots of unity, together

with (2.9), we conclude that Kn−j+1/Kn−j is a Kummer extension. Therefore, [Kn−j+1 :

Kn−j] is 1 or p1. If the latter holds, then we get

p1 · ordp1(q) | p2 · ordp1(q),

which is a contradiction. Hence, [Kn−j+1 : Kn−j] = 1.

Case 2 : Assume dj = p2. By equation (2.9), λj−1 is a root of the polynomial

xdj −λj +aj ∈ Kn−j[x]. Lemma 2.2.2 (iii) implies that there exists µ ∈ Kn−j satisfying

µdj = λj − aj, which shows that the polynomial xdj − λj + aj is reducible over Kn−j.

That is, [Kn−j+1 : Kn−j] < p2. If [Kn−j+1 : Kn−j] = k > 1, then we get

k · ordp1(q) | p2 · ordp1(q),

which is a contradiction since 1 < k < p2. Hence, [Kn−j+1 : Kn−j] = 1.

Case 3 : Assume dj = d. Consider the element δ = λp2j−1 and note that Kn−j ⊆

Kn−j(δ) ⊆ Kn−j+1. Equation (2.9) implies

δp1 = λj − aj ∈ Kn−j (2.10)

Since Kn−j contains all primitive p1-th roots of unity, together with (2.10), we conclude

that Kn−j(δ)/Kn−j is a Kummer extension. Therefore [Kn−j(δ) : Kn−j] is 1 or p1. If

the latter holds, we obtain a contradiction in a similar way to the proof of Case 1.

Therefore, Kn−j(δ) = Kn−j. Now, λj−1 is a root of the polynomial xp2 − δ ∈ Kn−j[x].

Using Lemma 2.2.2 (iii), one can show that the polynomial xp2 − δ is reducible as in

the proof of Case 2. That is, [Kn−j+1 : Kn−j] < p2, and hence [Kn−j+1 : Kn−j] > 1

gives a contradiction. Therefore

degQ(x) = [Kn : K] = ordp1(q),

when n = 2, which is impossible.

If n > 2, one can similarly consider these three cases where m is replaced by [Kn−j+i :

K] and di is replaced by dj−i+1, for each 2 ≤ i ≤ j and conclude that

Kn−j = Kn−j+1 = . . . = Kn.
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Therefore,

degQ(x) = [Kn : K] = ordp1(q),

again, a contradiction. Hence there is no A ∈ Fn+1
q with p2 · ordp1(q) ∈ ∆

(A,D)
n . 2

We generalize the idea of this proof for the case of an arbitrary integer d, and give a

necessary condition on q and d, for the existence of A ∈ Fn+1
q satisfying ∆

(A,D)
n = ∆

(D)
n

for n ≥ 2. We need the following lemmas.

Lemma 2.2.3 Let u ∈ Z satisfying gcd(`, u) = 1 for a prime number `. Then

(i) If gcd(u − 1, `) = `, then u ∈ Z∗
`k

for any k ∈ Z+. Moreover, if k ≥ 2 then

ord`k(u) | `k−1.

(ii) If gcd(u − 1, `) = 1, then u ∈ Z∗
`k

for any k ∈ Z+. Moreover, if k ≥ 2, m1 =

ord`(u), m2 = ord`k(um1), then ord`k(u) = m1 ·m2.

Proof :

(i) Since φ(`) | φ(`k), where φ is the Euler’s totient function, there is a ring homo-

morphism ψ : Z∗
`k
→ Z∗` . If u ≡ 1(mod `), then clearly u ∈ Z∗

`k
for any k ∈ Z+

and u ∈ Ker(ψ), where Ker(ψ) denotes the kernel of the ring homomorphism ψ.

We will show that Ker(ψ) has `k−1 elements, that is |Ker(ψ)| = 1. If k = 1, then

it is clear. If k ≥ 2, then

|Ker(ψ)| = |{u : u = ` · v + 1, 0 < ` · v + 1 < `k}|

= |{u : u = ` · v + 1, 0 ≤ v <
`k − 1

`
}|

= |{u : u = ` · v + 1, 0 ≤ v <
`k

`
− 1

`
}|

= |{u : u = ` · v + 1, 0 ≤ v <
`k

`
}| = `k−1.

By Lagrange’s Theorem, the order of any subgroup of Ker(ψ) divides the order

of Ker(ψ). Thus, ord`k(u) | `k−1.

(ii) Since uord
`k

(u) ≡ 1 (mod `k), uord
`k

(u) ≡ 1 (mod `). Thus m1 | ord`k(u). Since

m2 =
ord

`k
(u)

gcd(m1,ord
`k

(u))
and m1 | ord`k(u), we get ord`k(u) = m1 ·m2. Note that

m2 | `k−1 by part (i).

2
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Lemma 2.2.4 Let d ∈ Z+, dP = {` : ` | d, ` is a prime}. Put O = {ord`(q) : ` ∈

dP}. Suppose that r` denotes the integer satisfying `r`‖d for any ` ∈ dP . If |O| ≥ 2,

let m be the smallest element in O, with m = ord`1(q), `1 ∈ dP , and `2 be the largest

element in dP , satisfying m < ord`2(q). Then

(i) gcd(`2,m) = 1.

(ii) If e | d and m 6 | orde(q), then gcd(e, qm − 1) = 1.

(iii) If e | d and orde(q) = m, then gcd(`2, e) = 1.

(iv) If ` ∈ dP , ` 6= `2 and ord`(q) > m, then gcd(`2, ord`r` (q)) = 1.

(v) ord
`
r`2
2

(qm) = m1 ·m2, where m1 > 1, gcd(`2,m1) = 1 and m2 | `
r`2−1
2 .

Proof :

(i) Suppose that `2 | m. Then we get ord`2(q) < `2 ≤ m, which contradicts the

assumption that ord`2(q) > m.

(ii) Suppose that gcd(e, qm−1) > 1. Then there exists a prime divisor ` of e such that

` | qm− 1. The latter implies ord`(q) | m and hence, we obtain that ord`(q) = m,

as m is the smallest element of O. But then ord`(q) | orde(q), which contradicts

the assumption.

(iii) Suppose that `2 | e. Then, we have ord`2(q) | orde(q), which implies ord`2(q) ≤ m,

contradicting the assumption that ord`2(q) > m.

(iv) Suppose that r` = 1 and `2 | ord`(q). Then we get

ord`2(q) < `2 ≤ ord`(q) < `.

But this gives a contradiction to the assumption on `2, being the largest prime

divisor of d satisfying ord`(q) > m. Hence, gcd(`2, ord`(q)) = 1. Now, let r` ≥ 2.

Since

ord`r` (q) = m2 · ord`(q)

for some m2 | `r`−1 by Lemma 2.2.3 (ii), we get gcd(`2, ordr`` (q)) = 1.
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(v) Suppose that r`2 = 1. We have 1 < m1 since

m1 = ord`2(q
m) =

ord`2(q)

gcd(ord`2(q),m)

and ord`2(q) > m. We also have gcd(`2,m1) = 1, since m1 | `2 − 1. If r`2 ≥ 2,

then again by Lemma 2.2.3 (ii), we have ord
`
r`2
2

(qm) = m1 ·m2, where m2 | `2r`2−1.

2

Theorem 2.2.5 Let n ≥ 2, D = (d1, d2, . . . , dn), d = lcm(d1, d2, . . . , dn), dP = {` :

` | d, ` is a prime}, and

O = {ord`(q) : ` ∈ dP}. (2.11)

If ∆
(D)
n = ∆

(A,D)
n for some A ∈ Fn+1

q , then either

(i) |O| = 1, or

(ii) |O| ≥ 2, and `2 6 | d1 · d2 · . . . · dn−1 · ordd(q), where `2 is the largest element in

dP with ord`2(q) > m, and m is the smallest element in O.

Proof : We use the notation of Lemma 2.2.4 above and prove the contrapositive of

this statement.

Suppose that the set O has at least two elements, m = ord`1(q) is the smallest

element of O and `2 is the largest prime divisor of d satisfying ord`2(q) > m. Suppose

also `2 | d1 · d2 · . . . · dn−1 · ordd(q). This implies that `2 · m ∈ ∆
(D)
n . We now show

that `2 · m /∈ ∆
(A,D)
n , for any choice of A ∈ Fn+1

q . Suppose the contrary, i.e., there

exists A ∈ Fn+1
q such that `2 ·m ∈ ∆

(A,D)
n , and an irreducible factor Q(x) ∈ Fq[x] of

F
(A,D)
n (x) = Fn(x) satisfying degQ(x) = `2 ·m. As in the previous proofs, take a root

λ ∈ K̄ of Q(x) and set λi := Fi(λ), Ki = K(λn−i), for 0 ≤ i ≤ n. As degQ(x) > 1, let

0 ≤ j ≤ n be the index satisfying

K = K0 = Kn−j−1 $ Kn−j ⊆ . . . Kn = K(λ).

As Kn−j = K(λj) and λ
dj+1

j = λj+1 − aj+1 ∈ K(λj+1) = Kn−j−1 = K by (2.2), we

have [Kn−j : K] = ordej+1
(q) for some ej+1 | dj+1 by Theorem 2.1.2. Therefore,

ordej+1
(q) | `2 ·m. (2.12)
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First, we assume gcd(`2, ordej+1
(q)) = `2. By Lemma 2.1.1 (i), (iii), (iv) and Lemma

2.2.3 (ii), we deduce that `r2 | ordej+1
(q) for some 2 ≤ r ≤ r`2 . Together with (2.12),

we get

ord`r2(q) | `2 ·m
′
, (2.13)

for some m
′ | m. By using Lemma 2.2.3 (ii), we obtain that ord`2(q) | m

′
, which

contradicts the assumption that ord`2(q) > m. Therefore gcd(`2, ordej+1
(q)) = 1. Then,

Equation (2.12) implies ordej+1
(q) | m, which means

ordej+1
(q) = m, (2.14)

as m is the smallest element of O. Now, we will show that

[K(λj−1) : K(λj)] = [Kn−j+1 : Kn−j] = 1,

by examining three different cases for dj, since λ
dj
j−1 = λj−aj ∈ K(λj) = Kn−j by (2.2).

Case 1 : Assume m 6 | orddj(q). By Lemma 2.2.4 (ii), we have gcd(dj, q
m−1) = 1,

hence we know the existence of µ ∈ Kn−j satisfying

µdj = λ
dj
j−1 = λj − aj ∈ Kn−j. (2.15)

Equation (2.15) tells us that λj−1 is a root of the polynomial xdj − λj + aj ∈ Kn−j[x]

and we may write

xdj − λj + aj = xdj − µdj =

(
x

µ

)dj
− 1. (2.16)

By Lemma 1.4.1, [Kn−j+1 : Kn−j] = 1 or ordej(q
m) for some ej | dj. If `r2 | ej for

some 1 ≤ r ≤ r`2 , then by Lemma 2.2.4 (v) we have

m1 ·m2 | [Kn−j+1 : Kj],

where gcd(`2,m1) = 1, m1 > 1, m2 | `
r`2−1
2 . Therefore, we get

m1 ·m2 ·m | p2 ·m,

where m1 > 1 and gcd(`2,m1) = 1, a contradiction.

If `2 6 | ej, then by Lemma 2.2.4 (iv), we obtain a contradiction in a similar way.

Case 2 : Assume m | orddj(q) and ordej(q) > m for all ej | dj.

We have gcd(dj, q
m−1) = 1, because otherwise, there exists a divisor ej of dj such that
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ej | qm− 1. As m is the smallest element of O, we get ordej(q) = m, which contradicts

the assumption. Therefore, as in the proof of Case 1, we get [Kn−j+1 : Kn−j] = 1.

Case 3 : Assume m | orddj(q) and ordej(q) = m for some ej | dj.

If orddj(q) = m, then Kn−j+1/Kn−j is a Kummer extension, which implies [Kn−j+1 :

Kn−j] | dj. Since gcd(`2, dj) = 1 by Lemma 2.2.4 (iii), we get [Kn−j+1 : Kn−j] = 1.

If m is a proper divisor of orddj(q), let ej | dj satisfying ordej(q) = m. As orddj(q) 6= m

by assumption, there exists sj > 1 such that dj = ej · sj. Now, consider the element

δ = λ
sj
j−1 and notice that Kn−j ⊆ Kn−j(δ) ⊆ Kn−j+1. By (2.2), we know that

δej = (λ
sj
j−1)

ej = λj − aj ∈ Kn−j (2.17)

Equation (2.14) tells usKn−j contains all ej-th roots of unity, as ordej(q) = m. Together

with equation (2.17) we have Kn−j(δ)/Kn−j is a Kummer extension. Hence [Kn−j(δ) :

Kn−j] | ej. By Lemma 2.2.4 (iii), we know that gcd(`2, ej) = 1. Hence Kn−j(δ) = Kn−j.

If ordsj(q) = m, then Kn−j+1/Kn−j(δ) is a Kummer extension. Similarly, we obtain

Kn−j+1 = Kn−j(δ) = Kn−j by Lemma 2.2.4 (iii).

If ordsj(q) > m, there are two subcases.

If gcd(sj, q
m−1) = 1, then, as in the proof of Case 1, there exists an element µ ∈ Kn−j

such that

µsj = δ ∈ Kn−j. (2.18)

Since δ = λ
sj
j−1, λj−1 is a root of the polynomial xsj − δ ∈ Kn−j+1[x]. Together with

equation (2.18), we obtain that λj−1 is a root of the polynomial

xsj − δ = xsj − µsj =

(
x

µ

)sj
− 1 ∈ Kn−j[x]. (2.19)

Therefore, [Kn−j+1 : Kn−j] = 1 or ords′j
(qm) > 1 for some s′j | sj. The latter gives a

contradiction by Lemma 2.2.4 (iv) and (v).

If gcd(sj, q
m − 1) > 1, then similarly one can show that Kn−j+1 contains a field ex-

tension, which contains Kn−j(δ) = Kn−j and has degree relatively prime to `2 over

Kn−j, since ordsj(q) and m are not equal. Continuing in this way, we conclude that

Kn−j = Kn−j+1, as dj has finitely many divisors.

If n = 2, we get [K2 : K] = degQ(x) = m, a contradiction.

If n > 2, one can similarly consider these three cases, where m is replaced by [Kn−j+i :

K] and di is replaced by dj−i+1, for each 2 ≤ i ≤ j, and obtain that

Kn−j = Kn−j+1 = . . . = Kn,
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and hence [Kn : K] = degQ(x) = m, again, a contradiction. Therefore, there is no

A ∈ Fn+1
q with ∆

(A,D)
n = ∆

(D)
n . 2

Remark 2.2.1 Note that if n = 1, then ∆
(D)
1 = {orde(q) : e | d1} ∪ {1}. Let A =

(a0, a1) ∈ F2
q. Then

F
(A,D)
1 (x) = F1(x) = (x+ a0)

d1 + a1.

If a1 6= 0, then there exists b ∈ F∗q satisfying bd1 = −a1 since xd1 is a permutation

polynomial by Lemma 1.2.4 (i) , and hence

F1(x) = (x+ a0)
d1 + a1 =

(
x+ a0
b

)d1
− 1.

By Lemma 1.4.1, we have ∆
(A,D)
1 = ∆

(D)
1 .

Remark 2.2.2 Note that the conditions on m and `2 are necessary. If m is not the

smallest element of O, then it is possible that m = ordd(q) and if this is the case, it

is possible that ordej+1
(q) = ordd(q) in (2.12). That is, Kn−j contains all d-th roots of

unity. Therefore, it is possible that

[Kn : K] = [Kn−j+1 : K] = `2 ·m = `2 · ordd(q),

since Kn−j+1/Kn−j is a Kummer extension. If `2 is not the largest prime factor of d

satisfying ord`2(q) > m, then it is possible that `2 | ord`(q
m) for some prime divisor

`2 6= ` of d. Hence, it is possible that [Kn : K] = `2 ·m as above.

The necessary condition given by Theorem 2.2.5 is not sufficient, as the following

example indicates.

Example 2.2.2 Let q = 29, n = 2, D = (15, 5), then d = 15 = 3 · 5. We have

ord3(29) = ord5(29) = ord15(29) = 2. Thus by Theorem 2.1.1 and Theorem 2.1.2,

∆
(D)
2 = {1, 2, 6, 10, 30}. Calculations show that, if A ∈ F3

q, then ∆
(A,D)
2 is one of the

following:

{1}, {1, 2}, {1, 2, 6}, {1, 6}, {1, 2, 10}, {1, 2, 30}.

That is, there is no A ∈ F3
q such that ∆

(A,D)
2 = ∆

(D)
2 .

Remark 2.2.3 Note that for fixed q, one can always find d1 = d2 = . . . dn = `, where

` is a prime number satisfying (1.2) and (1.4), so that the condition given by Theorem
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2.2.5 (i) is satisfied. On the other hand, if D is fixed, consider d = lcm(d1, d2, . . . , dn) =

`
r`1
1 ·`

r`2
2 ·. . .·`

r`k
k for distinct primes `i, 1 ≤ i ≤ k. Since (1.2) and (1.4) implies that d is

odd, we have 1 6≡ −1 (mod `
r`i
i ), for all 1 ≤ i ≤ k. Consider the system of congruences

x ≡ −1 (mod `
r`1
1 ),

x ≡ −1 (mod `
r`2
2 ),

...

x ≡ −1 (mod `
r`k
k ).

By the Chinese Remainder Theorem, there exists a unique solution s ≡ −1 (mod d).

Dirichlet’s Prime Number Theorem tells us that there are infinitely many prime num-

bers q satisfying q ≡ −1 (mod d). Note that since ord
`
r`i
i

(q) = 2 and 1 6= ord`i(q) | ord
`
r`i
i

(q),

we have ord`i(q) = 2 for all 1 ≤ i ≤ k. That is, for fixed D, there are infinitely many

prime numbers q such that condition (i) of Theorem 2.2.5 is satisfied.

2.3 Elimination of some degrees

In the proof of Theorem 2.2.5, we actually eliminated `2 ·m from the set ∆
(D)
n , as one

can see from the following corollary of the proof of Theorem 2.2.5. We use the notation

of Lemma 2.1.1 and Theorem 2.2.5.

Corollary 2.3.1 Let n ≥ 2. Suppose that

(i) |O| ≥ 2, and

(ii) `2 | d1 · d2 · . . . dn−1 · ordd(q).

Then `2 ·m ∈ ∆
(D)
n , but `2 ·m /∈ ∆

(A,D)
n , for any choice of A ∈ Fn+1

q .

We use a similar technique to prove that it is possible to eliminate other elements of

∆
(D)
n , under certain conditions.

Theorem 2.3.2 Let n ≥ 2 and suppose the following hold.

(i) gcd(d, ordd(q)) = 1, and

(ii) there exists k | ordd(q), where 1 < k < ordd(q) such that orde(q) 6= k for all e | d.
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Then r · k ∈ ∆
(D)
n but r · k /∈ ∆

(A,D)
n , for all r | d1 · d2 · . . . dn−1 and for any choice of

A ∈ Fn+1
q .

Proof : Clearly, r · k ∈ ∆
(D)
n . We now show that there is no A ∈ Fn+1

q such that

r ·k ∈ ∆
(A,D)
n . Suppose the contrary, i.e., there exists A ∈ Fn+1

q such that r ·k ∈ ∆
(A,D)
n .

Then, F
(A,D)
n (x) = Fn(x) has an irreducible factor Q(x) ∈ Fq[x], where degQ(x) = r ·k.

Using the notation of Theorem 2.2.5, we let 0 ≤ j to be the index satisfying

K = Kn−j−1 $ Kn−j ⊆ . . . ⊆ Kn,

as degQ(x) > 1. By Theorem 2.1.2, [Kn−j : K] = m = ordej+1
(q) for some ej+1 | dj+1

and hence m | r · k. Since gcd(d, ordd(q)) = 1, we have ordej+1
(q) | k. Note that

m = ordej+1
(q) 6= k by assumption. Therefore, j = 0 gives [Kn : K] = m < k, a

contradiction. Thus 1 ≤ j and we consider [Kn−j+1 : K]. As we know, Kn−j+1 =

K(λj−1) and λ
dj
j−1 = λj − aj ∈ Kn−j.

Case 1 : Assume orddj(q) 6 | m. We have two subcases.

If gcd(dj, q
m − 1) = 1, then there exists µ ∈ Kn−j satisfying µdj = λj − aj. Therefore,

λj−1 is a root of the polynomial

xdj − λj + aj = xdj − µdj =

(
x

µ

)dj
− 1 ∈ Kn−j[x].

Thus, [Kn−j+1 : Kn−j] equals 1 or ordej(q
m) > 1 for some ej | dj. Note that gcd(ej, ej+1) =

1, since gcd(dj, q
m− 1) = 1. Now, we will show that [Kn−j+1 : K] = m · ordej(q

m) 6= k.

Suppose that

k = m · ordej(q
m) =

m · ordej(q)

gcd(m, ordej(q))
= lcm(m, ordej(q)).

Since gcd(ej, ej+1) = 1, we have ej · ej+1 | d and

ordej ·ej+1
(q) = lcm(ordej(q), ordej+1

(q)) = lcm(m, ordej(q)) = k,

which contradicts our assumption. Therefore, [Kn−j+1 : K] is a proper divisor of r · k.

Now, assume gcd(dj, q
m − 1) = fj > 1. As fj 6= dj by assumption, there exists

sj > 1 such that dj = fj · sj. Consider the element δ = λ
dj/fj
j−1 = λ

sj
j−1 and notice that

Kn−j ⊆ Kn−j(δ) ⊆ Kn−j+1. We know that

δfj = (λ
sj
j−1)

fj = λj − aj ∈ Kn−j (2.20)
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Since fj | qm − 1, Kn−j contains all fj-th roots of unity. Together with (2.20),

Kn−j(δ)/Kn−j is a Kummer extension. That is,

[Kn−j(δ) : Kn−j] = f ′j for some f ′j | fj. (2.21)

We have gcd(f ′j, k) = 1 by assumption. Hence [Kn−j(δ) : Kn−j] = f ′j is relatively prime

to k.

Now, λj−1 is a root of the polynomial xsj − δ ∈ Kn−j(δ)[x].

If gcd(sj, q
f ′j ·m−1) = 1, then as in the proof of the first subcase, there exists µ ∈ Kn−j(δ)

such that µsj = δ and hence

xsj − δ = xsj − µsj =

(
x

µ

)sj
− 1.

Therefore, [Kn−j+1 : Kn−j(δ)] equals 1 or ords′j
(qf

′
j ·m) for some s′j | sj. In a similar way

to the proof of the first subcase, consider

[Kn−j+1 : K] = f ′j · ords′j
(qf

′
j ·m) ·m. (2.22)

Since gcd(f ′j, ords′j
q) = 1 by assumption, we have

ords′j
(qf

′
j ·m) ·m =

m · ords′j
(q)

gcd(m · f ′j, ords′j
(q))

=
m · ordf ′j

(q)

gcd(m, ords′j
(q))

= lcm(m, ords′j
(q)). (2.23)

Similar to the proof of the first subcase, we have gcd(ej+1, s
′
j) = 1 and hence ej+1 ·s′j | d

and ords′j ·ej+1
(q) = lcm(m, ords′j

(q)). Therefore, [Kn−j+1 : K] = f ′j ·ords′j
(qf

′
j ·m)·m must

be a proper divisor of r · k.

If gcd(sj, q
f ′j ·m − 1) > 1, then similarly one can show that Kn−j+1 contains a field

extension, which contains Kn−j(δ) and has degree relatively prime to k over Kn−j(δ).

Continuing in this way, we obtain [Kn−j+1 : K] as a proper divisor of r · k, since dj has

finitely many divisors.

Case 2 : Assume orddj(q) | m. Then Kn−j+1/Kn−j is a Kummer extension.

Therefore, [Kn−j+1 : Kn−j] | dj. By assumption, [Kn−j+1 : Kn−j] is relatively prime to

k and hence [Kn−j+1 : K] is a proper divisor of r · k.

If n = 2, we get [K2 : K] = degQ(x) < r · k, a contradiction.

If n > 2, then one can similarly consider these two cases, where m is replaced by

[Kn−j+i : K] and di is replaced by dj−i+1, for each 2 ≤ i ≤ j. One obtains that

[Kn : K] = degQ(x) < r · k, again, a contradiction. Therefore, there does not exist

A ∈ Fn+1
q such that r · k ∈ ∆

(A,D)
n . 2
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Theorem 2.3.3 Let n ≥ 2 and suppose the following hold.

(i) r | d1 · d2 · . . . · dn−1 , 1 < r and

(ii) there exists a prime divisor ` of r such that gcd(`, ordd(q)) = 1, and

(iii) ord`(q) 6 | r · k, where k | ordd(q), 1 < k.

Then r · k ∈ ∆
(D)
n but r · k /∈ ∆

(A,D)
n , for any choice of A ∈ Fn+1

q .

Proof : Clearly, r · k ∈ ∆
(D)
n . We now show that there is no A ∈ Fn+1

q with

r · k ∈ ∆
(A,D)
n . Now, suppose the contrary, i.e., there exists A ∈ Fn+1

q such that

r · k ∈ ∆
(A,D)
n . Then, F

(A,D)
n (x) = Fn(x) has an irreducible factor Q(x) ∈ Fq[x], where

degQ(x) = r · k. As in the proof of Theorem 2.3.2, let 0 ≤ j be the index satisfying

K = Kn−j−1 $ Kn−j ⊆ . . . ⊆ Kn.

Then, in a similar way to the proof of Theorem 2.3.2, we get m | r · k, where m =

[Kn−j : K] = ordej+1
(q) for some ej+1 | dj+1. Note that m = ordej+1

(q) 6= r · k, since

gcd(`, ordd(q)) = 1. Therefore, j = 0 gives [Kn : K] = m < r · k, a contradiction. Thus

1 ≤ j and we consider [Kn−j+1 : K].

Now, we will show that [Kn−j+1 : Kn−j] is relatively prime to `. As we know,

Kn−j+1 = K(λj−1) and λ
dj
j−1 = λj − aj ∈ Kn−j.

Case 1 : Assume orddj(q) 6 | m. We have two subcases.

If gcd(dj, q
m − 1) = 1, then we get [Kn−j+1 : Kn−j] equals 1 or ordej(q

m) > 1 for

some ej | dj, as in the first case of the proof of Theorem 2.3.2. By assumption,

gcd(`, ordej(q)) = gcd(`, ordej(q
m)) = 1. Hence [Kn−j+1 : Kn−j] is relatively prime to

`.

Assume gcd(dj, q
m− 1) = fj > 1. As orddj(q) 6= m are not equal by assumption, there

exists sj > 1 such that dj = fj · sj. Consider the element δ = λ
dj/fj
j−1 = λ

sj
j−1. Then we

have Kn−j ⊆ Kn−j(δ) ⊆ Kn−j+1 and Kn−j(δ)/Kn−j is a Kummer extension. That is,

[Kn−j(δ) : Kn−j] = f ′j for some f ′j | fj. We have gcd(`, f ′j) = 1, since ord`(q) 6 | r · k by

assumption.

Now, λj−1 is a root of the polynomial xsj − δ ∈ Kn−j(δ)[x].

If gcd(sj, q
f ′j ·m−1) = 1, then as in the proof of the first subcase, there exists µ ∈ Kn−j(δ)

such that µsj = δ and hence [Kn−j+1 : Kn−j(δ)] equals 1 or ords′j
(qf

′
j ·m) for some s′j | sj.
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By assumption, gcd(`, ordsj(q
f ′j ·m)) = 1. That is, [Kn−j+1 : Kn−j(δ)] is relatively prime

to `.

If gcd(sj, q
f ′j ·m − 1) > 1, then similarly one can show that Kn−j+1 contains a field

extension, which contains Kn−j(δ) and has degree relatively prime to ` over Kn−j(δ).

Continuing in this way, we conclude that [Kn−j+1 : Kn−j] is relatively prime to `, since

dj has finitely many divisors.

Case 2 : Assume orddj(q) | m. Then Kn−j+1/Kn−j is a Kummer extension.

Therefore, [Kn−j+1 : Kn−j] | dj. By assumption, [Kn−j+1 : Kn−j] is relatively prime to

`. If n = 2, we get [K2 : K] = degQ(x) is relatively prime to `, a contradiction.

If n > 2, then one can similarly consider these two cases, where m is replaced by

[Kn−j+i : K] and di is replaced by dj−i+1, for each 2 ≤ i ≤ j. One obtains that

[Kn : K] = degQ(x) is relatively prime to `, again, a contradiction. Therefore, there

is no A ∈ Fn+1
q such that r · k ∈ ∆

(A,D)
n . 2

Example 2.3.1 Let q = 97, n = 2, D = (95, 95). Then d = 19 · 5, ord5(97) = 4,

ord19(97) = 18, ord95(97) = 36, hence

∆
(D)
2 = {1, 4, 12, 18, 20, 36, 60, 76, 90, 180, 228, 342, 380, 684, 1140, 1710, 3420}.

In order to see whether it is possible to eliminate some elements of the set ∆
(D)
2 , we

factorize its elements.

4 = 2 · 2 = ord5(q) 12 = 22 · 3 18 = 32 · 2 = ord19(q) 20 = 22 · 5

36 = 22 · 32 = ord95(q) 60 = 22 · 5 · 3 76 = 19 · 4 90 = 32 · 5 · 2

180 = 32 · 22 · 5 228 = 22 · 19 · 3 342 = 32 · 2 · 19 380 = 22 · 19 · 5

684 = 32 · 22 · 19 1140 = 22 · 19 · 5 · 3 1710 = 32 · 19 · 5 · 2 3420 = 32 · 19 · 5 · 2

Theorem 2.3.2 implies that

(i) 12 with k = 12, r = 1,

(ii) 60 with k = 12, r = 5,

(iii) 228 with k = 12, r = 19,

(iv) 1140 with k = 12, r = 95,
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are not in ∆
(A,D)
2 for any choice of A ∈ F3

q. Theorem 2.3.3 implies that

(i) 76 with k = 4, r = 19,

(ii) 90 with k = 18, r = 5,

(iii) 380 with k = 4, r = 95,

(iv) 1710 with k = 18, r = 95,

are not in ∆
(A,D)
2 for any choice of A ∈ F3

q. Therefore, we obtain the set

∆̄
(D)
2 = {1, 4, 18, 20, 36, 180, 342, 684, 3420}.

Calculations by MAGMA show that ∆
(A,D)
2 is one of the following, as A runs through

F3
q.

{1}, {1, 4, 18, 36}, {1, 4, 18, 36, 342, 684}, {1, 4, 18, 20, 36, 180, 684},

{1, 20, 180, 342, 684, 3420}, {1, 4, 18, 36, 180, 342, 684}, {1, 4, 18, 20, 36, 180, 3420},

{1, 4, 18, 36, 342, 684, 3420}, {1, 4, 18, 20, 36, 180, 684, 3420}, {1, 4, 18, 20, 36, 180, 342, 684},

{1, 4, 18, 36, 180, 342, 684, 3420}, {1, 4, 18, 20, 36, 180, 342, 684, 3420}.

Therefore, for every m ∈ ∆̄
(D)
2 , there exists A ∈ F3

97 with m ∈ ∆
(A,D)
2 .

Remark 2.3.1 Let r · k be an arbitrary element of ∆
(D)
n . Using the notation in the

proofs of Theorem 2.3.2 and Theorem 2.3.3, we need to assume the following, in order

to eliminate r · k from the set ∆
(D)
n .

(i) orde(q) 6= r · k for all e | d.

(ii) If f | d such that ordf (q) | m1, for some m1 | r · k, then gcd(f, r · k) = 1, so that

f ′j ·m1, where f ′j is given by (2.21), is not equal to r · k.

(iii) If m1 | r · k, ordf (q) | m1 for some f | d and ords(q
f ·m1) | r · k for some s | d,

then gcd(f, ords(q)) = 1, so that gcd(f ′j, ords′j(q)) = 1, in (2.22), and hence we

obtain (2.23).

Remark 2.3.2 Observe that there are three different cases in the proofs of Theorem

2.3.2 and Theorem 2.3.3. But, there may exist D such that some of these cases do not
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occur. Suppose we know D explicitly and orders of q modulo di for all 1 ≤ i ≤ n.

Then it may be possible to eliminate further elements of the set ∆
(D)
n of the form r · k,

where r | d1 · d2 · . . . dn−1 and k | ordd(q), although conditions of these theorems or

conditions given by Remark 2.3.1 are not satisfied. We have the following consequence

of the proofs of Theorem 2.3.2 and Theorem 2.3.3.

Algorithm 2.3.1 Let m ∈ ∆
(D)
n and E = {dj : ordej(q) | m for some ej | dj, 1 ≤

j ≤ n}. For each dj ∈ E, let Mj = {mj : mj = ordej(q) | m for some ej | dj}. If

1 < j, then consider gcd(dj−i, q
mj−i+1) = hj−i, for 1 ≤ i ≤ j − 1,

(i) If hj−i = 1, set mj−i = t · mj−i+1 for some fixed t, where t ∈ {t : t =

orde(q
mj−i+1) for some e | dj−i} ∪ {1}

(ii) If hj−i = dj−i, then set mj−i = e ·mj−i+1 for some fixed e | dj−i.

(iii) If 1 < hj−i < dj−i, let f0 = hj−i, u0 = s0 ·mj−i+1, for some fixed s0 | f0, l0 = dj−i.

Let 0 < k, lk+1 = lk
fk

, where fk = gcd(lk, q
uk−1 − 1) with uk = sk · uk−1, for some

fixed sk | fk.

If fk = 1 for some 1 < k, then set mj−i+i = uk−1 · t, for some t ∈ {t : t =

orde(q
uk−1) for some e | lk} ∪ {1}.

If fk = lk for some 1 < k, then set mj−i = uk.

If m1 6= m, for all possible values for m1, then m /∈ ∆
(A,D)
n , for any choice of A ∈ Fn+1

q .

Proof : We follow the steps of the proofs of Theorem 2.3.2 and Theorem 2.3.3. Note

that in part (iii), fk equals 1 or lk, for some 1 < k since dj−i has finitely many divisors

for all 1 ≤ i ≤ j − 1. 2

2.4 More on the set ∆
(A,D)
n

Our next result shows that there is some symmetry among the degrees of the irreducible

factors of Fn(x).

Theorem 2.4.1 [51] Let Q(x) be an irreducible factor of F
(A,D)
n (x) = Fn(x) for some

fixed A ∈ Fn+1
q , satisfying degQ(x) = s > 1. Suppose e | d1, 1 < e and m = orde(q).
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Then there exists an irreducible factor R(x) of Fn(x) satisfying

deg R(x) =
lcm(m, s)

f
,

for some integer f | gcd(m, s).

In order to prove Theorem 2.4.1, we need the following lemma.

Lemma 2.4.2 Let α, β, γ be non-zero elements of K̄ = F̄q satisfying K(α, β, γ) =

K(α, γ) = K(β, γ) = K(α, β). Let [K(α) : K] = s, [K(β) : K] = m. Then

[K(γ) : K] =
lcm(m, s)

f
,

for some f | gcd(m, s).

Proof : Set L := K(α, β, γ), K1 := K(α) ∩ K(γ), K2 := K(β) ∩ K(γ), g :=

gcd(m, s). Consider the following diagram.

L = K(α, γ) = K(β, γ) = K(α, β)

K(α) K(γ) K(β)

K(β) ∩K(γ) = K2K1 = K(α) ∩K(γ)

K

Using Lemma 1.4.2 (ii) on the left hand side of the diagram, we get

[L : K(γ)] = [K(α) : K1] =
s

g
=

lcm(m, s)

m
(2.24)

If we use Lemma 1.4.2 (ii) on the right hand side of the diagram, we get

[L : K(β)] = [K(γ) : K2] =
lcm(m, s)

s
=
m

g
. (2.25)

If [K1 : K] = u and [K2 : K] = v for some u | s, v | m, then combining (2.24) and

(2.25), we obtain

[K(γ) : K] =
s · u
g

=
m · v
g

. (2.26)

Since gcd(s/g,m/g) = 1, Equation (2.26) implies

u = k · m
g
, v = k · s

g
, (2.27)
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for some k ∈ Z, which yields [K(γ) : K] =
k ·m · s
g2

. Now we will show that k | g.

Using (2.27) we get

k =
g · u
m

=
g · v
s
. (2.28)

Since u | s and v | m, there exist integers k1 and k2 such that s = k1 ·u and m = k2 · v.

Substituting these into Equation (2.28), we obtain

k =
g

k2
=

g

k1
,

which shows that k | g. By all above we get

[K(γ) : K] =
m · s
g · f

=
lcm(m, s)

f
,

for some f | g. 2

Proof of Theorem 2.4.1 : Let λ ∈ K̄ be a root of F
(A,D)
n (x) = Fn(x). Suppose

that [K(λ) : K] = s, 1 < s. We firstly show that the following holds.

(x+ a0)
d1 − (λ+ a0)

d1 | Fn(x) (2.29)

To show this, we make a change of variable y = (x+ a0)
d1 . Then

Fn(x) = S(y) = (. . . (y + a1)
d2 + . . .+ an−1)

dn + an.

Since Fn(λ) = 0, S((λ+ a0)
d1) = 0, thus y− (λ+ a0)

d1 | S(y). Hence we obtain (2.29).

By this divisibility relation, we conclude that F (θ) = 0, where θ = ζ(λ+ a0)− a0, and

ζ is a d1-th root of unity. Since we assumed that 1 < s, λ + a0 6= 0 and hence we get

K(ζ, λ) = K(ζ, θ) = K(λ, θ). If we let α = λ + a0, β = ζ, γ = θ in Lemma 2.4.2, we

conclude that Fn(x) has an irreducible factor R(x) ∈ Fq[x] satisfying

degR(x) =
lcm(m, s)

f
,

where m = ordd1(q) and f is some divisor of gcd(m, s).

Corollary 2.4.3 [51] Let A ∈ Fn+1
q such that F

(A,D)
n (−a0) = Fn(−a0) 6= 0. Then

orde(q) ∈ ∆
(A,D)
n for every e | d1, 1 < e.

Proof : As Fn(x) is a permutation polynomial, it has a unique root in Fq, say λ. By

assumption λ 6= −a0 and hence λ + a0 6= 0. Therefore, as in in the proof of Theorem

2.4.1, if we take ζ as a d1-th root of unity, θ = ζ(λ + a0) − a0, then we conclude that

orde(q) ∈ ∆
(A,D)
n for all e | d1, 1 < e. 2

33



Example 2.4.1 Let n = 2, q = 59, D = (357, 357) and hence d = 17·7·3. ord3(q) = 2,

ord7(q) = 6, ord17(q) = 8. Using Theorem 2.1.1 and Theorem 2.1.2, we see that

∆
(D)
2 ={1, 2, 4, 6, 8, 12, 14, 18, 24, 28, 34, 36, 42, 56, 68, 72, 84, 102, 126, 136, 168, 204,

238, 252, 306, 408, 476, 504, 612, 714, 952, 1224, 1428, 2142, 2856, 4284, 8568}

In order to see whether it is possible to eliminate some of the elements of ∆
(D)
2 , we

factorize its elements.

2 = 2 4 = 2 · 2 6 = 3 · 2 = ord21(q)

8 = 23 = ord51(q) 12 = 22 · 3 14 = 7 · 2

18 = 32 · 2 24 = ord357(q) = ord119(q) = 23 · 3 28 = 22 · 7

34 = 17 · 2 36 = 22 · 32 42 = 7 · 3 · 2

56 = 23 · 7 68 = 22 · 17 72 = 23 · 32

84 = 22 · 7 · 3 102 = 17 · 3 · 2 126 = 32 · 7 · 2

136 = 23 · 17 168 = 23 · 7 · 3 204 = 22 · 17 · 3

238 = 17 · 7 · 2 252 = 32 · 22 · 7 306 = 32 · 17 · 2

408 = 23 · 17 · 3 476 = 22 · 17 · 7 504 = 23 · 32 · 7

612 = 32 · 32 · 17 714 = 17 · 7 · 3 · 2 952 = 23 · 17 · 7

1224 = 23 · 32 · 17 1428 = 22 · 17 · 7 · 3 2142 = 32 · 17 · 7 · 2

2856 = 23 · 17 · 7 · 3 4284 = 32 · 22 · 17 · 7 8568 = 23 · 32 · 17 · 7

Theorem 2.3.3 implies that

14 with r = 7, k = 2,

28 with r = 7, k = 4,

34 with r = 17, k = 2,

56 with r = 7, k = 8,

68 with r = 17, k = 4,

84 with r = 7, k = 12, or r = 21, k = 4,
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102 with r = 17, k = 6, or r = 51, k = 2,

204 with r = 17, k = 12, or r = 51, k = 4,

238 with r = 119, k = 2,

306 with r = 51, k = 6,

476 with r = 119, k = 4,

612 with r = 51, k = 12,

714 with r = 119, k = 6, or r = 357, k = 2,

952 with r = 119, k = 8,

1428 with r = 119, k = 12, or r = 357, k = 4,

2856 with r = 357, k = 8,

4824 with r = 357, k = 12,

are not in ∆
(A,D)
2 for any choice of A ∈ F3

q. In addition, since we know D explicitly

and all of the orders of q modulo di, for 1 ≤ i ≤ n, by Algorithm 2.3.1, we eliminate 4,

12, 36, 252 from the set ∆
(D)
2 . Therefore, our set of possible degrees, ∆

(D)
2 , is reduced

to the following set:

∆̄
(D)
2 = {1, 2, 6, 8, 18, 24, 42, 72, 126, 136, 168, 408, 504, 1224, 2856, 8568}

Calculations by MAGMA show that for each m ∈ ∆̄
(D)
2 , there exists A ∈ F3

q such that

m ∈ ∆
(A,D)
2 . Now let us show how one uses Theorem 2.4.1 to see which elements of the

set lie together in ∆
(A,D)
2 for some fixed A ∈ F3

q. Using the notation of Theorem 2.4.1,

we have m = 24.

(i) If s = 2, we have

lcm(m, s)

f
=

lcm(2, 24)

f
, f | gcd(2, 24)

Hence, if 2 is in ∆
(A,D)
2 for some fixed A ∈ F3

q, then 12 or 24 is also in ∆
(A,D)
2 .

Since we know that 12 cannot be in ∆
(A,D)
2 , we get 24 ∈ ∆

(A,D)
2 . Hence, using
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Theorem 2.4.1, we find a new element of ∆
(A,D)
2 without referring to explicit fac-

torization of F
(A,D)
2 (x).

(ii) If we take s = 6, similarly we obtain 4, 8, 12 or 24 is in ∆
(A,D)
2 . Only 8 and 24

is in the reduced form ∆̄
(D)
2 . Calculations show that if 6 ∈ ∆

(A,D)
2 for some fixed

A ∈ F3
q, then 24 ∈ ∆

(A,D)
2 , but 8 /∈ ∆

(A,D)
2 . Hence, not every integer, which is

obtained by using Theorem 2.4.1 lies in ∆
(A,D)
2 , even though it is an element of

the reduced form ∆̄
(D)
2 .

(iii) If we take s = 8, then we obtain 6, 12, 24. Only 6 and 24 are in the reduced form

∆̄
(D)
2 . Calculations show that if 8 ∈ ∆

(A,D)
2 for some fixed A ∈ F3

q, 6, 24 ∈ ∆
(A,D)
2 .

This shows that every integer obtained by Theorem 2.4.1, which lie in ∆̄
(D)
2 , may

also be an element of ∆
(A,D)
2 .

(iv) If we take s = 24, then we obtain 1, 2, 3, 4, 6, 8, 12, 24. Only 1, 2, 6, 8 in the

reduced form ∆̄
(D)
2 . Calculations show that if 24 ∈ ∆

(A,D)
2 for some fixed A ∈ F3

q,

then 6 ∈ ∆
(A,D)
2 . Note that if 6 ∈ ∆

(A,D)
2 , then 24 ∈ ∆

(A,D)
2 by (ii). The same

is true for 8 by (iii). On the other hand, the converse does not hold, i.e., 8 is

an integer which is obtained by using Theorem 2.4.1 and lies in the reduced form

∆̄
(D)
2 , however 8 /∈ ∆

(A,D)
2 for any A satisfying 24 ∈ ∆

(A,D)
2 .

(v) If we take s = 42, then we obtain 28, 56, 168. Only 168 is in the reduced form

of ∆
(D)
2 . Hence, using Theorem 2.4.1, we find a new element of ∆

(A,D)
2 for some

fixed A ∈ F3
q without referring to the explicit factorization of F

(A,D)
2 (x).

(vi) If we take s = 168, then we obtain 7, 14, 21, 28, 56, 84, 168. Only 168 lies in

the reduced form of ∆
(D)
2 . Hence there may be integers in the set ∆

(A,D)
2 for some

fixed A ∈ F3
q such that, Theorem 2.4.1, does not yield a new element of ∆

(A,D)
2 .

Although Theorem 2.4.1 gives some degrees, which occur together in the explicit

factorization, we can not obtain the whole set ∆
(A,D)
n , by using a few known elements
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of ∆
(A,D)
n , as we see in Example 2.4.1.

Therefore, for an integer m in the reduced form ∆̄
(D)
2 , one of the main problems is to

find A ∈ Fn+1
q , such that m ∈ ∆

(A,D)
n , for n ≥ 2. Note that Corollary 2.4.3 guarantees

the existence of A ∈ Fn+1
q such that m = orde(q) ∈ ∆

(A,D)
n , for every divisor e | d1,

1 < e. In order to see this, fix some B = (b0, b1, . . . , bn) ∈ Fn+1
q . If F

(B,D)
n (−b0) = 0,

then consider A = (a0, a1, . . . , an) ∈ Fn+1
q , where ai = bi for 0 ≤ i ≤ n− 1, an = bn + 1.

In this case

F (A,D)
n (−a0) = F (B,D)

n (−b0) + 1 6= 0.

Hence by Corollary 2.4.3, orde(q) ∈ ∆
(A,D)
n , for every e | d1, 1 < e.

Now, let n = 2, m ∈ ∆
(D)
2 . Now, we will find some conditions on q and D, which

imply the existence of A ∈ F3
q satisfying m ∈ ∆

(A,D)
2 . I would like to express my

gratitude to Giorgos Kapetanakis for his valuable comments on this part.

If m = orde(q) for some e | d1 · d2, 1 < e and A = (0, 0, a2), where a2 ∈ F∗q, then

clearly m ∈ ∆
(A,D)
2 . For the remaining elements m of ∆

(D)
2 , we now observe that, in

order to show the existence of A ∈ F3
q satisfying m ∈ ∆

(D)
2 , one can assume without

loss of generality that A = (0, 1, a2), with a2 ∈ F∗q.

Lemma 2.4.4 If A = (a0, a1, a2) ∈ F3
q, where a1 6= 0, then there exists B = (0, 1, b2) ∈

F3
q and c ∈ F∗q such that

F
(A,D)
2 (x) = cd1·d2 · F (B,D)

2

(
x+ a0
c

)
. (2.30)

Proof : Let c be the unique element of F∗q satisfying cd1 = a1. Let b2 be the unique

element of Fq such that b2 · cd1·d2 = a2. Then

F
(B,D)
2

(
x+ a0
c

)
= c−(d1·d2)((x+ a0)

d1 + cd1)d2 + b2 · cd1·d2 .

That is,

F
(B,D)
2

(
x+ a0
c

)
= c−(d1·d2)((x+ a0)

d1 + a1)
d2 + a2

= c−(d1·d2)F
(A,D)
2 (x),

hence the result follows. 2

Remark 2.4.1 If A ∈ F3
q and a1 = 0, then F

(A,D)
2 (x) = (x + a0)

d1·d2 + a2, and hence

∆
(A,D)
2 = {1} ∪ {orde(q) : e | d1 · d2}, when a2 6= 0, and ∆

(A,D)
2 = {1}, when a2 = 0.
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If A ∈ F3
q, where a1 6= 0, then by Lemma 2.4.4, there exists B = (0, 1, b2) ∈ F3

q such

that Equation (2.30) is satisfied. That is, if

F
(B,D)
2 (x) = R1(x) ·R2(x) · . . . ·Rm(x),

where R1, . . . , Rm are irreducible over Fq, then

F
(A,D)
2 (x) = cd1·d2 ·R1

(
x+ a0
c

)
·R2

(
x+ a0
c

)
· . . . ·Rm

(
x+ a0
c

)
,

where c is the unique element of F∗q satisfying cd1 = a1. That is, we may assume without

loss of generality that A = (0, 1, a2).

We consider the set

{r · k : r | d1, k | ordd(q), r · k ∈ ∆
(D)
2 }. (2.31)

By Theorem 2.3.2 and Algorithm 2.3.1, we know that if gcd(d, ordd(q)) = 1 and

(i) k 6= orde(q) for all e | d or,

(ii) ordr(q) 6 | k, when 1 < r,

then r · k /∈ ∆
(A,D)
2 , for any choice of A ∈ F3

q. Therefore, we assume k = orde(q) for

some e | d and if 1 < r, then ordr(q) | k = orde(q). In order to see whether there

exists A ∈ F3
q satisfying r · k ∈ ∆

(A,D)
2 ,we assume A = (0, 1, a2) ∈ F3

q, with a2 6= 0. The

following lemma characterizes the roots of F2(x).

Lemma 2.4.5 Let A = (0, 1, a2) ∈ F3
q with a2 6= 0. Then the set of zeros of F

(A,D)
2 (x) =

F2(x) is equal to the following set:

C = {λ ∈ F̄q : λd1 − (α− 1) = 0 where αd2 + a2 = 0}. (2.32)

Proof : If λ ∈ C, then F2(λ) = (λd1 + 1)d2 + a2 = αd2 + a2 = 0. This shows that every

element of the set C is a root of F2(x). Now, suppose a2 6= −1. Since gcd(d1, q) = 1

and α 6= 1, the polynomial xd1 − (α− 1) has d1 distinct zeros in F̄q, for each zero α of

the polynomial xd2 + a2. Since gcd(d2, q) = 1 and a2 6= 0, there are d2 distinct zeros of

the polynomial xd2 + a3 in F̄q. Therefore, the set C has d1 · d2 elements. Now, we will

show that gcd(F2, F
′
2) = 1, so that F2(x) is separable. The formal derivative of F2(x)

is

F
′

2(x) = d1 · d2 · (xd1 + 1)d2−1 · xd1−1. (2.33)
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Since

F2(x) = (xd1 + 1)d2 + a2, a2 6= 0, (2.34)

we have gcd(F2(x), F
′
2(x)) > 1 if and only if 0 is a root of F2(x). As a2 6= −1, we have

F2(0) 6= 0. Therefore, F2(x) is a separable polynomial over Fq of degree d1 · d2, hence

it has d1 · d2 distinct roots. Therefore, the set of zeros of F2(x) is equal to C.

If a2 = −1, then clearly, C has d1 ·(d2−1)+1 distinct elements, and F2(0) = F2(−a0) =

0. By (2.29), we see that 0 is a root of F2(x) with multiplicity at least d1.Therefore,

by (2.33) and (2.34), 0 is the only root which has multiplicity greater than 1, and the

multiplicity is d1. Hence, F2(x) has d1 · (d2 − 1) + 1 distinct roots and the set of zeros

of F2(x) is equal to C. 2

Lemma 2.4.5 yields that in order to show the existence of A ∈ F3
q satisfying r · k ∈

∆
(A,D)
2 , where r · k is given by (2.31), we have to show the existence of α − 1 = ξ

satisfying the following conditions.

(i) [Fq(ξ) : Fq] = k,

(ii) (1 + ξ)e ∈ F∗q for some e | d2,

(iii) There exists λ ∈ F̄q such that λd1 = ξ and [Fqk(λ) : Fqk ] = r.

Note that when (1+ξ)e = 1, for some e | d2, then it is possible that ξ = 0, therefore we

also assume that (1 + ξ)e 6= 1 for all e | d2. In the following lemma, Nqk/q(η) denotes

the norm of η ∈ Fqk over Fq, and if η ∈ F∗
qk

, ord(η) denotes the order of η in the cyclic

group F∗
qk
.

Lemma 2.4.6 Let k ≥ 2, q > 2, and t | qk − 1, 2 < t, e | qk − 1. Then the following

statements are equivalent.

(i) There exists ξ ∈ F∗
qk

such that ord(ξ) = t and (1 + ξ)e ∈ F∗q \ {1}.

(ii) There exists η ∈ F∗
qk

, such that Nqk/q(η) 6= 1 and ord(ηs−1) = t, where s = qk−1
e·(q−1) .

Proof : Suppose that there exists an element ξ ∈ F∗
qk

, ord(ξ) = t, where t > 2 and

(1 + ξ)e ∈ F∗q \ {1}. Then there exists an element, η ∈ Fqk such that Nqk/q(η) =

(1 + ξ)e 6= 0, 1, since Nqk/q is onto. Hence η ∈ F∗
qk

. Conversely, suppose that there
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exists η ∈ F∗
qk

such that Nqk/q(η) 6= 1 and ord(ηs − 1) = t > 2, where s = qk−1
e·(q−1) . Let

ηs − 1 = ξ. Substituting s, we get η
qk−1

e·(q−1) = ξ + 1. Therefore, we get

Nqk/q(η) = η
qk−1
q−1 = (1 + ξ)e ∈ F∗q \ {1},

by assumption and hence the result follows. 2

Remark 2.4.2 We note that the characteristic function for elements x ∈ F∗
qk

with

Nqk/q(x) = β, where β ∈ F∗q is given by

Ωβ(x) =
1

q − 1

∑
χ∈F̂∗q

χ̄(β)χ̃(x), (2.35)

where the sum runs through the multiplicative characters of Fq, χ̄ stands for the inverse

of χ and χ̃ for the lift of χ to a multiplicative character of Fqk , that is, for x ∈ Fqk ,

χ̃(x) = χ(Nqk/q(x)). This follows immediately by Corollary 1.4.6 (ii) implying that

Ωβ(x) =

1, if Nqk/q(x) = β,

0, otherwise.

(2.36)

Lemma 2.4.7 Let 2 ≤ k, 2 < q, t | qk − 1, 2 < t, e | qk − 1, l = qk−1
t

. If

e > l ·W (t) · q
k − 1

qk/2
,

then there exists an element ξ ∈ F∗
qk

, where ord(ξ) = t and (1 + ξ)e ∈ F∗q \ {1}.

Proof : Lemma 2.4.6 implies that to find an element ξ ∈ F∗
qk

with the desired proper-

ties, it suffices to find some η ∈ F∗
qk

, with Nqk/q(η) = β ∈ F∗q \ {1} and ord(ηs − 1) = t,

where s = qk−1
e·(q−1) . We note that such β exists since q > 2. Now, let l = qk−1

t
. The

characteristic function for elements of F∗
qk

, of order t is

ω(x) =
φ(t)

qk − 1

∑
u | t

µ(u)

φ(u)

∑
v | l

gcd(u,l/v)=1

∑
ord(χ)=u·v

χ(x),

see Lemma 1.4.11. By Remark 2.4.2, the characteristic function for elements x ∈ F∗
qk

with Nqk/q(x) = β, where β ∈ F∗q is given by (2.35).

Fix some β ∈ F∗q \ {1}. Let Nt be the number of elements of η ∈ F∗
qk

, such that

ord(ηs − 1) = t and Nqk/q(η) = β. From the above, it follows that

Nt =
∑
x∈F

qk

x,xs−16=0

ω(xs − 1)Ωβ(x).
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Note that x = 0 implies that xs − 1 = −1, which has order 2 6= t. Also, if xs − 1 = 0,

we get that Nqk/q(x) = 1 6= β, i.e., Ωβ(x) = 0. Hence

Nt =
∑
x∈F

qk

ω(xs − 1)Ωβ(x).

The latter implies

Nt =
φ(t)

(qk − 1) · (q − 1)

∑
x∈F

qk

∑
u | t

µ(u)

φ(u)

∑
v | l

gcd(u,l/v)=1

∑
ord(χ1)=u·v

∑
χ2∈F̂∗q

χ1(x
s − 1)χ̄2(β)χ̃2(x)

=
φ(t)

(qk − 1) · (q − 1)

∑
u | t

µ(u)

φ(u)

∑
v | l

gcd(u,l/v)=1

∑
ord(χ1)=u·v

∑
χ2∈F̂∗q

χ̄2(β)
∑
x∈F

qk

χ1(x
s − 1)χ̃2(x).

(2.37)

Now consider ∣∣∣∣∣∣
∑
x∈F

qk

χ1(x
s − 1)χ̃2(x)

∣∣∣∣∣∣ (2.38)

and suppose that χ1 is non-trivial. As the group of multiplicative characters of Fq is

cyclic by Theorem 1.4.8, let χg be a generator of this group. Then there exists u1 and

u2 such that χ1 = χu1g and (̃χ2) = χu2g . Then (2.38) becomes∣∣∣∣∣∣
∑
x∈F

qk

χu1g (xs − 1)χg
u2(x)

∣∣∣∣∣∣ (2.39)

Since χu1g (xs − 1) = χg((x
s − 1)u1) and χu2g (x) = χg(x

u2), substituting into (2.39), we

get ∣∣∣∣∣∣
∑
x∈F

qk

χg((x
s − 1)u1)χg(x

u2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
x∈F

qk

χg((x
s − 1)u1xu2))

∣∣∣∣∣∣ ≤ s · qk/2, (2.40)

where the last inequality follows from Theorem 1.4.9. When χ1 is trivial, Theorem

1.4.4 and Equation (1.7) give

∑
x∈F

qk

χ̃2(x) =

q
k, if χ2 is trivial,

0, otherwise.

By standard properties of characters, we have that |χ̄2(β)| = 1 for every χ2 and β 6= 0.

In addition, there are exactly φ(u · v) multiplicative characters of order u · v. Now,

41



we separate the term that corresponds to trivial χ1 in (2.37), plug in the bound from

(2.40), use Lemma 1.4.10, to obtain∣∣∣∣Nt · (qk − 1) · (q − 1)

φ(t)
− qk

∣∣∣∣ ≤ s · l ·W (t) · (q − 1) · qk/2.

The latter implies that Nt 6= 0, if

qk/2 > s · l ·W (t) · (q − 1).

Substituting s = qk−1
e·(q−1) , we get

e > l ·W (t) · q
k − 1

qk/2
. (2.41)

2

We refer to Schwarz [79] for the proof of the following lemma.

Lemma 2.4.8 [79] Let r ≥ 2, a ∈ F∗q, s = gcd(r, q − 1). Then there exists b ∈ F∗q
satisfying br = a if and only if a

q−1
s = 1.

Theorem 2.4.9 Let 2 < q, D = (d1, d2), k = orde(q) for some e | d2, gcd(d1, q
k−1) =

u, and l = u · f for some f | qk − 1 with 2 6= t = qk−1
l
∈ Z. If

(i) ordt(q) = k, and

(ii) e > l ·W (t) · qk−1
qk/2

,

then there exists A ∈ F3
q such that {k} ∪ {k · ordr(q

k) : r | d1, 1 < r} ⊆ ∆
(A,D)
2 .

Proof : Since 2 6= t, by Lemma 2.4.7, there exists an element ξ ∈ F∗
qk

of order t

satisfying (1 + ξ)e ∈ F∗q \ {1}, by (i) and (ii). Let (1 + ξ)e = b ∈ F∗q/{1}, A = (0, 1, a2) ,

where −bd2/e = a2 ∈ F∗q/{1}, and consider F
(A,D)
2 (x). By Lemma 2.4.5, the set of zeros

of F
(A,D)
2 (x) is equal to C, where C is given by (2.32). Note that we have xe−b | xd2+a2,

so, there exists a root λ ∈ F̄q of F
(A,D)
2 (x) such that λ is also a root of xd1 − ξ. Note

that [Fq(ξ) : Fq] = k, since ξ has order t, and ordt(q) = k by assumption (i). Since

t = qk−1
l

, by Lemma 2.4.8, there exists γ ∈ Fqk such that γd1 = ξ. Then we get

xd1 − γd1 =

(
x

γ

)d1
− 1 =

∏
r | d1

Qr

(
x

γ

)
,

where Qr denotes the r-th cyclotomic polynomial over Fqk . 2
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Theorem 2.4.10 Let 2 < q, D = (d1, d2), 1 < r, d1 = r · s, h = gcd(e, s), ordr(q) | k,

where k = orde(q) for some e | d2 and f is a divisor of qk− 1, satisfying gcd(r, f) = 1,

l = f ·s
h

, 2 6= t = qk−1
l

. If

(i) ordt(q) = k and

(ii) e > l ·W (t) · qk−1
qk/2

,

then there exists A ∈ F3
q such that r · k ∈ ∆

(A,D)
2 .

Proof : As in the proof of Theorem 2.4.9, there exists ξ ∈ Fqk with the same properties.

Now, consider F
(A,D)
2 (x), where A = (0, 1, a2), a2 = (1 + ξ)d2 , and xd1 − ξ. By Lemma

2.4.8, there exists γ ∈ Fqk such that γl = γ
f ·s
h = ξ. Since

xd1 − ξ = (xr)s − (γ
f
h )s,

we get xr − γ f
h | xd1 − ξ. Note that

ord(γ
f
h ) = ord(γ

f ·s
h ) · gcd(ord(γ

f
h ), s) = t · s′ for some s′ | s.

Hence the conditions of Theorem 1.1.1 are satisfied. That is, the polynomial xr−γ f
h is

irreducible over Fqk . So, there exists a root of λ of F2(x), such that [Fq(λ) : Fq] = r · k.

2

Corollary 2.4.11 Let q > 2. Suppose that the following hold.

(i) ordr(q) = k for all r | d1,

(ii) k | ke, where ke = orde(q), for all e | d2,

(iii) there exists e | d2 such that k = orde(q) = ke,

(iv) the conditions of Theorem 2.4.9 and Theorem 2.4.10 are satisfied for all e | d2.

Then there exists A ∈ F3
q such that ∆

(A,D)
2 = ∆

(D)
2 .

Proof : Assumptions (ii) and (iv) imply that there exits A = (0, 1, a2) ∈ F3
q, where

a2 6= 0, 1, such that {ke} ∪ {ke · ordr(q
ke) : r | d1} ⊆ ∆

(A,D)
2 for all e | d2, by Theorem

2.4.9. Similarly, assumptions (ii) and (iv) imply that r · ke ∈ ∆
(A,D)
n for each r | d1 and

ke = orde(q) for all e | d2. Note that by assumption (iii), there exists e | d2 such that

ke = orde(q) = k, and hence k = ke and r ·ke = r · k are in ∆
(A,D)
n . By (i), we conclude

that ∆
(A,D)
2 = ∆

(D)
2 . 2
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Example 2.4.2 Let q = 3, n = 2, D = (11, 121). Then ord11(3) = ord121(3) = 5.

Using notations of Theorem 2.4.10, we have k = 5, r = 11, s = h = 11. We let f = 1

and obtain t = 35 − 1. We observe that

121 > W (35 − 1) · 35 − 1

35/2
,

and hence by Theorem 2.4.10, there exists A ∈ F3
q such that 11 · 5 = 55 ∈ ∆

(A,D)
2 . Note

that conditions (i), (ii), (iii) of Corollary 2.4.11 are satisfied. Then ∆
(A,D)
2 = ∆

(D)
2 , since

we need not to check whether conditions of Theorem 2.4.9 are satisfied, as ord11(3) =

ord121(3). By MAGMA, one can see that if A = (1, 2, 2), then ∆
(A,D)
2 = {1, 5, 55}.

We end this chapter with the following remark.

Let D = (d1, . . . , dn), A ∈ Fn+1
q . Consider the permutation σ of Fq induced by

F
(A,D)
n (x). If d1 · d2 · . . . · dn ≤ q − 2, then F

(A,D)
n (x) is the unique polynomial which

represents σ by Theorem 1.2.1. In general one would expect F
(A,D)
n to be a polynomial

with large weight when q is large. However, we can express the same polynomial in the

form (1.3) with only n + 1 coefficients a0, a1, . . . , an. The two examples below exhibit

the cycle structure of such polynomials in the case n = 2.

Example 2.4.3 Consider the following permutation

σ = (0 1 7 9 5 2 3 4 6 10 8)

of F11. By Theorem 1.2.1, there exists a unique polynomial F (x) of degree less than

11, satisfying F (c) = σ(c) for all c ∈ F11. We have

F (x) = x9 + 4x8 + x7 + 7x6 + 6x5 + x4 + 7x3 + x+ 1,

with weight 9. However,

F2(x) = ((x+ 9)3 + 10)3 + 4 = F
(A,D)
2 (x),

where A = (9, 10, 4) ∈ F3
11 and D = (3, 3). Therefore, degrees of the irreducible factors

of F (x) = F2(x) lie in ∆
(D)
2 = {1, 2, 6}, since ord3(11) = 2. Note that

F (x) = F
(A,D)
2 (x) = (x+ 3)(x2 + 2x+ 6)(x6 + 10x5 + 5x4 + 9x3 + 7x2 + 10x+ 8),

so that ∆
(A,D)
2 = ∆

(D)
2 .
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Example 2.4.4 Consider the following permutation

σ = (0 4 3 8 7 6 9)

of F11. By Theorem 1.2.1, there exists a unique polynomial F (x) of degree less than

11, satisfying F (c) = σ(c) for all c ∈ F11. We have

F (x) = x9 + x8 + 9x7 + 8x6 + 6x5 + 7x4 + 2x3 + 2x2 + 5x+ 4,

with weight 10. However,

F2(x) = ((x+ 5)3 + 8)3 + 3 = F
(A,D)
2 (x),

where A = (5, 8, 3) ∈ F3
11, and D = (3, 3). Therefore, degrees of the irreducible factors

of F (x) = F2(x) lie in ∆
(D)
2 = {1, 2, 6}, since ord3(11) = 2. Note that

F (x) = F
(A,D)
2 (x) = (x+ 2)(x2 + 2x+ 5)(x6 + 8x5 + x4 + 10x3 + 9x2 + 3x+ 7),

so that ∆
(A,D)
2 = ∆

(D)
2 .
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CHAPTER 3

Consecutive permutation polynomial sequences

In this chapter we first consider the so-called consecutive polynomial sequences,

recursively defined by Gómez-Pérez, Ostafe, Sha in [36].

Similarly we recursively define a sequence of permutation polynomials. Consider

a sequence A = {an}n≥0 of elements of F∗q and a sequence D = {dn}n≥1 of elements

of Z+ satisfying (1.2) and (1.4). The sequence F = F (A,D) = {F (A,D)
n }n≥0 is called a

consecutive permutation polynomial sequence in Fq[x], associated to the sequences A

and D, if

Fn(x) = F (A,D)
n (x) = (. . . (a0x+ a1)

d1 + a2)
d2 + . . .+ an)dn + an+1. (3.1)

The authors of [36] studied various questions on irreducible factors of terms of consec-

utive polynomial sequences. Our aim is to study analogous questions for consecutive

permutation polynomial sequences. Our methods are completely different from that

of [36].

3.1 Consecutive polynomial sequences

In van der Poorten [72] it is observed that the numbers

19, 197, 1979, 19793, 197933, 1979339, 19793393, 197933933, 1979339339

are all prime numbers. After this observation, van der Poorten came up with the

following question: Is there such an infinite chain of prime numbers in some base b?

This question is related to the existence of the largest truncatable prime in a given base
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b. We recall that a prime number is called a truncatable prime if it gives a sequence

of prime numbers when the digits are removed always from the left or always from the

right. Observe that the above integer 1979339339 is not a truncatable prime. Angell

and Godwin [9], give heuristic arguments for the length of the largest truncatable prime

in base b and compute the largest truncatable primes in base b, where 3 ≤ b ≤ 15.

Mullen and Shparlinski [67] asked an analogous question about polynomials over

finite fields. They consider polynomials of the form fn ∈ Fq[x] satisfying deg fn = n,

fn = anx
n + fn−1, n ≥ 1, (3.2)

and denote by L(q), the largest L such that f1, f2, . . . , fL are irreducible. Mullen and

Shparlinski [67] posed the problems of finding upper and lower bounds for L(q), in

terms of q. Chow and Cohen [24] give a lower bound for L(q).

Theorem 3.1.1 [24] (i) If q 6= 3, then L(q) >
log q

2 log log q
.

(ii) L(3) = 3.

In [36], the following definition is given, motivated by the question of Mullen and

Shparlinski [67] above. Consider a sequence a = {an}n≥0 of elements of F∗q. The

sequence f = {fn}n≥1 is called a consecutive polynomial sequence in Fq[x], associated

to the sequence a, if fn(x) = anx
n + . . .+ a1x+ a0, n ≥ 1. If all polynomials fn, n ≥ 1

are irreducible, then f is called a consecutive irreducible polynomial sequence and a is

called a consecutive irreducible sequence.

Consider a consecutive permutation polynomial sequence f . In [36], the authors

introduce the following notation;

(i) D(fn) : the largest degree of the irreducible factors of fn;

(ii) ω(fn): the number of distinct monic irreducible factors of fn;

(iii) IN : the number of consecutive irreducible polynomial sequences of N elements.

They considered the problems of finding upper and lower bounds for D(fn), ω(fn), IN

and L(q).
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Theorem 3.1.2 [36] Let f be an infinite consecutive polynomial sequence. For any

integers n ≥ 2q − 1 and s satisfying 0 < s ≤ log((n+1)/2)
log q

, one has

max{D(fn),D(fn+s)} >
log((n+ 1)/2) + log log q − log log((n+ 1)/2)

log q
. (3.3)

Moreover, if p - (n+ 1) or p - s, then

max{D(fn),D(fn+s)} >
log((n+ 1)/2)

log q
. (3.4)

As a corollary of this result, an asymptotic bound for D(fn) is obtained in [36].

We recall that for functions g(n) and h(n), the assertion h(n)� g(n) is equivalent to

|g(n)| ≤ c · h(n) for all n, where 0 < c is a constant.

Corollary 3.1.3 [36] If f is an infinite consecutive polynomial sequence, then for

almost all integers n ≥ 1,

D(fn)� log n

log q
.

Theorem 3.1.4 [36] There exists a consecutive polynomial sequence f over Fq of N

elements, if

N ≥ b
√

2(q − 1) + 3/2c

such that all the terms in the sequence are pairwise relatively prime.

3.2 Consecutive permutation polynomial sequences

In this section, we consider problems of the previous section for consecutive permuta-

tion polynomial sequences. Let F be a consecutive permutation polynomial sequence.

As in the previous section, we use the following notation:

(i) D(Fn): the largest degree of the irreducible factors of Fn;

(ii) ω(Fn): the number of distinct monic irreducible factors of Fn.

Each term of F is a permutation polynomial and hence is reducible over Fq. Therefore,

it is not possible to consider questions regarding irreducibility for consecutive permuta-

tion polynomial sequences. We give lower and upper bounds for D(Fn) in the following

result. We first recall the definition of the set O, in (2.11).

O = {ord`(q) : ` is a prime divisor of d = lcm(d1, d2, . . . , dn)}.
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Theorem 3.2.1 Let F = F (A,D) be a consecutive permutation polynomial sequence.

Then

m ≤ D(Fn) ≤ d1 · d2 · . . . · dn−1 · ordd(q), (3.5)

where 1 < m is the smallest element of the set O given by (2.11).

Proof : Each term of F is a consecutive permutation polynomial sequence, hence has

a unique root in Fq. We have 1 < D(Fn), since we have assumed A is a sequence of

elements of F∗q and gcd(di, q) = 1 for all terms di of the sequence D. By Theorem

2.1.1 and Theorem 2.1.2, degrees of the irreducible factors of Fn lie in the set ∆
(D)
n .

The smallest element 1 < m of the set ∆
(D)
n is the smallest element of the set O given

by (2.11). Thus, m is a lower bound for D(Fn). The upper bound for D(Fn) directly

follows from Theorem 2.1.1. 2

Remark 3.2.1 We recall that that if n = 1, the upper bound for D(F
(A,D)
n ) is attained

for every choice of A and D, by Remark 2.2.1. Suppose n = 2 and D is a sequence

such that the conditions of Theorem 2.4.10 are satisfied for r = d1, and k = ordd2(q).

Then Theorem 2.4.10 implies the existence of a sequence A such that the upper bound

for D(F
(A,D)
n ) is attained.

Lemma 3.2.2 Let F = F (A,D) be a consecutive permutation polynomial sequence, s ≥

2 and put

Gs(x) = (. . . ((xdn+2 + an+3)
dn+3 + an+4)

dn+4 + . . .+ an+s)
dn+s + an+s+1. (3.6)

Then the following hold.

(i) gcd(Fn, Fn+s) = 1 if and only if Gs(an+2) 6= 0.

(ii) gcd(Fn, Fn+s) > 1 if and only if F dn+1
n | Fn+s.

Proof :

(i) First of all, observe that

Gs(Fn+1(x)) = (. . . (F
dn+2

n+1 +an+3)
dn+3 + . . .+an+s)

dn+s +an+s+1 = Fn+s(x). (3.7)

Substituting

Fn+1 = F dn+1
n + an+2 (3.8)
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into (3.7), we see that Fn+s is a polynomial in Fn, with constant term Gs(an+2).

Therefore, for an irreducible factor Q(x) of Fn(x), we have Q(x) | Fn+s(x) if and

only if Gs(an+2) = 0. Equivalently, gcd(Fn, Fn+s) = 1 if and only if Gs(an+2) 6= 0.

(ii) If gcd(Fn, Fn+s) > 1, then Gs(an+2) = 0 by part (i). Hence, the result follows by

(3.7) and (3.8). 2

Remark 3.2.2 We have gcd(Fn, Fn+1) = 1 for all n ≥ 0 by (3.8), since an+2 ∈ F∗q.

Theorem 3.2.3 If N ≤ q, then there exists a consecutive permutation polynomial

sequence F of N elements such that all the terms in the sequence are pairwise relatively

prime. Moreover, the number of such sequences is

(i) (q − 1)N+1, for N = 1, 2.

(ii) (q − 1)3 ·
∏N−1

i=2
(q − i), for 3 ≤ N ≤ q.

Proof : By Remark 3.2.2, the result holds for N = 2. We will show that for fixed D

and 3 ≤ N ≤ q , there exists a sequence A such that the condition given by Lemma

3.2.2 (i) is satisfied for each n and s with 2 ≤ n + s ≤ N , so that gcd(Fn, Fn+s) = 1

for all 2 ≤ n+ s ≤ N , by Lemma 3.2.2 (i).

Fix a0, a1, a2 ∈ F∗q. Consider F0 = a0x+a1, F1 = F d1
0 +a2. We have gcd(F0, F1) = 1

by Remark 3.2.2. If there exists a3 ∈ F∗q satisfying

ad22 + a3 6= 0, (3.9)

and F2 = F d2
1 +a3, then G2 = (ad22 +a3) 6= 0. By Lemma 3.2.2, we have gcd(F0, F2) = 1.

Note that gcd(F1, F2) = 1, by Remark 3.2.2. There are q − 2 different choices for the

element a3 to satisfy condition (3.9), since there exists only one element b ∈ F∗q such

that

ad22 + b = 0.

Now, let us fix a3. If there exists a4 satisfying

ad33 + a4 6= 0,

(ad22 + a3)
d3 + a4 6= 0.

(3.10)

and F3 = F d3
2 + a4, then G2(a3) 6= 0 and G3(a2) 6= 0. Again by Lemma 3.2.2, we

have gcd(F1, F3) = gcd(F0, F3) = 1. Note that gcd(F2, F3) = 1 by Remark 3.2.2 again.
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Since a2 ∈ F∗q, the conditions in (3.10) are different and hence there are q − 3 different

choices for the element a4. Now, we fix a4 and continue in this way. Then, we have only

one choice for the element aq, where Fq−1 = F
dq−1

q−2 + aq so that gcd(Fh, Fj) = 1 for all

0 ≤ h < j ≤ q − 1. This shows the existence of a consecutive permutation polynomial

sequence of N elements, where 1 ≤ N ≤ q, such that all terms in the sequence are

pairwise relatively prime. Note that as there will be q − 1 different conditions for the

number aq+1, where Fq = F
dq
q−1 + aq+1, we have gcd(Fq, Fj) > 1 for some 0 ≤ j < q− 1.

In order to find the number of such sequences, we follow steps of the proof above:

We have (q−1)2 different such sequences of 1 element, (q−1)3 different such sequences

2 elements and (q − 1)3 · (q − 2) · (q − 3) · . . . · (q −N + 1) different such sequences of

N elements, where 3 ≤ N ≤ q. 2

In [36], an irreducible polynomial Q(x) ∈ Fq[x] is called a primitive irreducible

divisor of fn, if Q | fn but Q - fj for all j < n, and the following problem is posed: Can

one show that almost all terms of a consecutive polynomial sequence have primitive

irreducible divisors? This problem has not been solved so far. In order to solve it in the

case of consecutive permutation polynomial sequences, we need the following lemmas.

Lemma 3.2.4 Let F be a consecutive permutation polynomial sequence. Then Fn(x)

is separable if and only if gcd(Fj, Fn) = 1 for all 0 ≤ j ≤ n− 1.

Proof : The formal derivative of Fn(x) is;

F ′n(x) = dn · F dn−1
n−1 · dn−1 · F

dn−1−1
n−2 · . . . · d1 · F d1−1

0 · a0. (3.11)

Hence the result follows. 2

Lemma 3.2.5 Let F be a consecutive permutation polynomial sequence.

If gcd(Fn, Fs) > 1 for some s ≥ n+ 2, then Fn divides Fs with multiplicity l, where

(i) dn+1 | l, and

(ii) there exist divisors di1 , . . . , dit of l, satisfying n+ 1 ≤ ij ≤ s− 1, ij+1 6= ij + 1.

Proof : Let s ≥ n+2. Suppose that gcd(Fn, Fs) > 1. Then F dn+1
n | Fs by Lemma 3.2.2

(ii). Let l be the multiplicity of Fn in Fs. In order to find l, we consider the formal

derivative of Fs(x). We have

F ′s(x) = ds · F ds−1
s−1 · ds−1 · F

ds−1−1
s−2 · . . . · dn+1 · F dn+1−1

n · . . . d1 · F d1−1
0 · a0. (3.12)
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Equation (3.12) shows that dn+1 is a proper divisor of l if and only if Fn | Fh and

Fh | Fs for some n + 2 ≤ h < s. Therefore, (3.12) implies that l is a product of di’s,

for some n + 1 ≤ i ≤ s − 1 which are non-consecutive, since consecutive terms of the

sequence are relatively prime by Remark 3.2.2. 2

Lemma 3.2.6 Let F be a consecutive permutation polynomial sequence. Then the

following hold.

(i) If gcd(Fj, Fn) > 1 for some j < n, then gcd(Fj+1, Fn) = 1.

(ii) If gcd(Fj, Fn) > 1 and gcd(Fh, Fn) > 1 for some h < n, h 6= j, then gcd(Fh, Fj) >

1.

Proof :

(i) Suppose that gcd(Fj, Fn) > 1 for some j < n. Then by Lemma 3.2.2 (i), we have

Gn−j(aj+2) = (. . . ((a
dj+2

j+2 + aj+3)
dj+3 + aj+4)

dj+4 + . . .+ an)dn + an+1 = 0.

Note that

Gn−j−1(aj+3) = (. . . (a
dj+3

j+3 + aj+4)
dj+4 + . . .+ an)dn + an+1 6= 0,

since Gn−j(aj+2) = 0 and aj+2 6= 0. Therefore, gcd(Fj+1, Fn) = 1 by Lemma

3.2.2.

(ii) Suppose that gcd(Fj, Fn) > 1 and gcd(Fh, Fn) > 1 for some h < j < n. By

Lemma 3.2.2 we have

Gn−j(aj+2) =(. . . (a
dj+2

j+2 + aj+3)
dj+3 + . . .+ an)dn + an+1 = 0,

Gn−h(ah+2) =(. . . (a
dh+2

h+2 + ah+3)
dh+3 + . . .+ aj+1)

dj+1 + aj+2)
dj+2 . . .+ an)dn + an+1 = 0.

This implies that

Gj−h(ah+2) = (. . . (a
dh+2

h+2 + ah+3)
dh+3 + . . .+ aj+1)

dj+1 = 0,

equivalently F
dh+1

h |Fj by Lemma 3.2.2. If j < h, then one can similarly show

that F
dj+1

j | Fh.

2
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Theorem 3.2.7 Let F be a consecutive permutation polynomial sequence. Then each

term of F has a primitive irreducible divisor.

Proof : If n = 1, then the statement follows from Remark 3.2.2. Let n ≥ 2 be fixed

and consider Fn. If gcd(Fj, Fn) = 1, for all 0 ≤ j < n, then the result follows. If

gcd(Fj, Fn) > 1 for some 0 ≤ j < n− 1, then by Lemma 3.2.5 we have F
dj+1

j | Fn. By

Lemma 3.2.6 (i), Fj and Fj+1 do not divide Fn simultaneously. Therefore, in order to

show the existence of a primitive divisor of Fn, we consider the case, where

(i) gcd(Fj, Fn) > 1 for some of the non-consecutive j’s, for 0 ≤ j < n− 1, and

(ii) if there exists h 6= j such that Fh | Fn, then gcd(Fh, Fj) = 1.

But (ii) does not hold by Lemma 3.2.6 (ii). We thus consider the case

F
dn−1

n−2 | Fn, and F
dh+1

h | Fn−2 (3.13)

for the maximum number of h’s, where 0 ≤ h < n − 2, since Fn−2 has the highest

degree among the possible divisors Fj of Fn. Consider

R(x) =
Fn(x)

F
dn−1

n−2 (x)
.

We have degR(x) > 1, since deg(F
dn−1

n−2 ) < deg(Fn), as di ≥ 2. By (3.11) and Lemma

3.2.2 (ii), gcd(Fj, R) = 1 for all j < n. Hence, there exists an irreducible factor Q(x)

of Fn(x) such that gcd(Q,Fj) = 1 for all 0 ≤ j ≤ n− 1.

2

We now obtain an upper bound for the number of irreducible factors of Fn.

Theorem 3.2.8 Let F be a consecutive permutation polynomial sequence. Then

2 ≤ ω(Fn) ≤
⌊∏n

i=1
di − d1
m

⌋
+
∑
e | d1

φ(e)

2
,

for n ≥ 1, where 1 < m is the smallest element of the set O in (2.11) and φ denotes

the Euler’s totient function.

Proof : Let n ≥ 1 and consider Fn. For the minimum number of distinct irreducible

factors of Fn, we consider the case where Fn has an irreducible factor of Q of degree r,

where r is the maximum element of ∆
(D)
n . Since 1 < r and Fn has a linear factor also,
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we have 2 ≤ ω(Fn). Note that the multiplicity of the linear factor can be greater than

1.

For the maximum number of distinct irreducible factors of Fn, we consider the

following case. Suppose that the root λ ∈ Fq of Fn(x) satisfies a0λ+ a1 ∈ F∗q. Using a

similar argument that we used to obtain (2.29), we get

(a0x+ a1)
d1 − (a0λ+ a1)

d1 | Fn(x). (3.14)

Since a0λ+ a1 ∈ F∗q, we have (
a0x+ a1

b

)d1
− 1 | Fn(x), (3.15)

where b is the unique element of F∗q satisfying bd1 = a0λ + a1. By Theorem 1.4.1 (i),

we have (
a0x+ a1

b

)d1
− 1 =

∏
e | d1

Qe

(
a0x+ a1

b

)
.

We also have that each term in the above product factors into φ(e)/orde(q) distinct

irreducible factors and 2 ≤ orde(q) by the assumption that gcd(d1, q − 1) = 1. There-

fore, the divisor in (3.15) has at most 1 <
∑

e | d1
φ(e)
2

distinct irreducible factors. Note

that if a0λ+ a1 = 0, then relation (3.14) gives only one irreducible factor of Fn. Now,

we continue with the quotient

S(x) =
Fn(x)

(a0x+ a1)d1 − (a0λ+ a1)d1
.

If n = 1, then S(x) = 1. If n > 1, then Fn(x) has maximum number of dis-

tinct irreducible factors when S(x) factors into irreducible polynomials of the small-

est possible degree. We know that Fn has a linear factor which already divides

(a0x+ a1)
d1 − (a0λ+ a1)

d1 . Hence the result follows. 2

Remark 3.2.3 If D is a fixed sequence, by Dirichlet’s Prime Number Theorem, there

are infinitely many prime numbers q such that the upper bound is attained for n = 1.

Obviously, the same holds for the lower bound.

The lower bound in (3.5) can be improved under special conditions.

Corollary 3.2.9 Let q be odd, n ≥ 4, D = {di}i≥1, k = orde(q) for some e | d2.
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(i) Suppose that the conditions of Theorem 2.4.9 are satisfied. Then there exists a

sequence A = {ai}i≥0 such that lcm(k, ordr(q)) ≤ D(F
(A,D)
n ), for every r | d1,

1 < r.

(ii) Suppose that the conditions of Theorem 2.4.10 are satisfied r | d1, 1 < r. Then

there exists a sequence A = {ai}i≥0 such that r · k ≤ D(F
(A,D)
n ).

Proof :

(i) By Theorem 2.4.9, there exists B = (b0, b1, b2), where bi ∈ F∗q for i = 1, 2, 3 such

that {k} ∪ {k · ordr(q
k) : r | d1, 1 < r} ⊆ ∆

(B,D)
2 . Now fix bi ∈ F∗q, where

3 ≤ i ≤ n+ 1, i 6= 4 and consider the polynomial

T1(x) = (. . . (xd4 + b5)
d5 + . . .+ bn)dn + bn+1 ∈ Fq[x].

Note that T1(x) is a permutation polynomial of Fq since gcd(di, q − 1) = 1 for

all i ≥ 1. Therefore, T1(x) has a unique zero in Fq, say b4. If b4 ∈ F∗q, then let

A = {ai}i≥0 such that ai = bi for 0 ≤ i ≤ n + 1 and consider the consecutive

permutation polynomial sequence {F (A,D)
i } of Fq[x]. Then T1(x) = Gs(x), with

s = n− 2, where Gs(x) is given by (3.6) for s ≥ 2. Since T1(a4) = Gn−2(a4) = 0,

by Lemma 3.2.2, we have

F
(A,D)
2 (x) | F (A,D)

n (x).

Hence k · ordr(q
k) = lcm(k, ordr(q)) ≤ D(F

(A,D)
n ). If b4 = 0, then let ai ∈ F∗q such

that ai = bi for 0 ≤ i ≤ n, i 6= 4, and an+1 = bn+1 + 1. If bn+1 + 1 = 0, then

consider an+1 = bn+1 − 1 ∈ F∗q, since q is odd. Now, consider the polynomial

T2(x) = (xd44 + a5)
d5 + . . .+ an)dn + an+1 = T1(x)± 1.

Again, since gcd(di, q − 1) = 1 for all i ≥ 0, T2(x) is a permutation polynomial

of Fq. Therefore, T2(x) has a unique zero in Fq, say a4. Note that a4 ∈ F∗q since

T2(0) = T1(0) ± 1 = ±1. Now, let A = {ai}i≥0 and consider the consecutive

permutation polynomial sequence {F (A,D)
i } of Fq[x]. Then T2(x) = Gs(x), with

s = n− 2 again. Since T2(a4) = Gs−2(a4) = 0, by Lemma 3.2.2,

F
(A,D)
2 (x) | F (A,D)

n (x),

and hence lcm(k, ordr(q)) ≤ D(F
(A,D)
n ).
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(ii) By Theorem 2.4.10, there exists B = (b0, b1, b2), where bi ∈ F∗q for i = 1, 2, 3 such

that r · k ∈ ∆
(B,D)
2 . The method of proof of (i) can be used again to obtain the

result.

2

We have shown in Corollary 3.2.9 that the lower bound in (3.5) can be improved

under some special conditions. The Corollary 3.2.12 and Corollary 3.2.13 below present

improvements under different conditions. We need the following lemmas.

Lemma 3.2.10 Let F = {F (A,D)
i } be a consecutive permutation polynomial sequence

and n ≥ 2 be fixed. Consider the n-th term of a given consecutive permutation polyno-

mial sequence F and set

H0(x) = xdn + an+1 Hi(x) = xdn−i + an−i+1 − αi−1, (3.16)

where α = α0 ∈ F̄q satisfies H0(α0) = 0 and Hi(αi) = 0, for 1 ≤ i ≤ n. Then Fj | Fn
for some j ≤ n− 2 if and only if Hn−j−1 is not separable.

Proof : By Lemma 3.2.2, Fj | Fn if and only ifGn−j(aj+2) = 0. Now, considerHn−j−1 =

xdj+1 + aj+2 − αn−j−2. Since gcd(di, q) = 1, for all 1 ≤ i ≤ n, Hn−j−1 is not separable

if and only if aj+2 = αn−j−2. Since αn−j−2 is a root of Hn−j−2 = xdj+2 + aj+3−αn−j−3,

aj+2 is a root of xdj+2 + aj+3 − αn−j−3. That is, a
dj+2

j+2 + aj+3 = αn−j−3. Continuing in

this way, we get Hn−j−1 is not separable if and only if Gn−j(aj+2) = 0.

2

In the following, we use the same notation as in Lemma 3.2.10.

Lemma 3.2.11 Let F = {F (A,D)
i } be a consecutive permutation polynomial sequence.

Let C be the set of roots of Fn(x) for a fixed n ≥ 2 and consider

Cn = {λ ∈ F̄q : λd1 + a2 − αn−2 = 0,where αi is a root of

Hi(x) = xdn−i + an−i+1 − αi−1, 1 ≤ i ≤ n− 2, αdn0 ∈ F∗q}
(3.17)

Then C = Cn.

Proof : Clearly, every element λ ∈ Cn is a root of Fn(x), that is, λ ∈ C. We now

show that the sets C and Cn have the same number of elements. First, suppose

Fn is separable. Then the set C has d1 · d2 · . . . · dn elements. By Lemma 3.2.4,

gcd(Fj, Fn) = 1 for all 0 ≤ j < n. Using Lemma 3.2.10, we have Hn−j−1 is separable
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for all 0 ≤ j ≤ n − 1. Therefore, the set Cn has d1 · d2 · . . . · dn elements. Now,

assume Fn is not separable. By Lemma 3.2.4, Fj | Fn for some 0 ≤ j ≤ n − 2.

Then Lemma 3.2.10 implies that Hn−j−1 = xdj+1 . If gcd(Fh, Fn) = 1 for all h < n,

h 6= j, then Hn−h+1 is separable for all h < n, h 6= j, and hence the set Cn has

dj+1 · (d1 ·d2 · . . . dj ·dj+2 · . . . ·dn− 1) + 1 elements. Note that in this case, (3.11) shows

that Fn has dj+1 · (d1 · d2 · . . . dj · dj+2 · . . . · dn− 1) + 1 distinct roots. If gcd(Fh, Fn) > 1

for some h < n, h 6= j, then similarly one can show that the set C and Cn have the

same number of elements, and the result follows. 2

Corollary 3.2.12 Let 2 < q, 2 ≤ n, D = {di}i≥1, k = orde(q) for some e | dn,

gcd(dn−1, q
k − 1) = u and l = u · f for some f | qk − 1 with 2 6= t = qk−1

l
∈ Z. If

(i) ordt(q) = k, and

(ii) e > l ·W (t) · qk−1
qk/2

,

then there exists a sequence A = {ai}i≥0 such that lcm(k, ordr(q)) ≤ D(F
(A,D)
n ), for

every r | dn, 1 < r.

Proof : Suppose (i) and (ii) hold. Then there exists ξ ∈ F̄q such that [Fq(ξ) : Fq] = k,

with (1 + ξ)e = c ∈ F∗q \ {1}, by Lemma 2.4.7. Let ai ∈ F∗q, for 0 ≤ i ≤ n − 1, an =

1, an+1 = −cdn/e, and A = {ai}i≥0. Consider the consecutive permutation polynomial

sequence {F (A,D)
i }i≥0, and H0(x) = xdn − cdn/e = xdn + an+1 as in (3.16). We have

xe − c | H0(x) and hence 1 + ξ ∈ Fqk is a root of H0(x). Now, let α0 = 1 + ξ,

H1(x) = xdn−1 + 1−α0 = xdn−1 − ξ. Then there exists λ ∈ F̄q such that H1(λ) = 0 and

[Fq(λ) : Fq] = k · ordr(q
k) = lcm(k, ordr(q)), for every r | dn, 1 < r, by Theorem 2.4.9.

Lemma 3.2.11 implies that lcm(k, ordr(q)) ≤ D(Fn). 2

Corollary 3.2.13 Let 2 < q, 2 ≤ n, 1 < r, dn−1 = r · s, h = gcd(e, s), ordr(q) | k,

where k = orde(q) for some e | dn, and f is a divisor of qk−1, satisfying gcd(r, f) = 1,

l = f ·s
h

, 2 6= t = qk−1
l

. If

(i) ordt(q) = k and

(ii) e > l ·W (t) · qk−1
qk/2

,

then there exists a sequence A = {ai}i≥0 such that r · k ≤ D(F
(A,D)
n ).
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Proof : We use the same notation as in Corollary 3.2.12. Suppose (i) and (ii) hold.

Then here exists λ ∈ F̄q such that H1(λ) = 0 and [Fq(λ) : Fq] = r · k, by Theorem

2.4.10. Hence, r · k ≤ D(Fn), by Lemma 3.2.11.

Remark 3.2.4 Here we show that D(Fn) is not a strictly increasing function of n,

when F is a consecutive permutation polynomial sequence.

Consider distinct prime numbers di, 1 ≤ i ≤ n, and integers 2 ≤ li such that

(i) orddi(li) = mi,

(ii) mi+1 | mi, mi 6= mi+1, for 1 ≤ i ≤ n− 1.

Now consider the system of congruences

x ≡ l1 (mod d1),

x ≡ l2 (mod d2),

...

x ≡ ln (mod dn).

The Chinese Remainder Theorem tells us that this system has a unique solution l

modulo d, where d = d1 · d2 · . . . · dn = lcm(d1, . . . , dn). By Dirichlet’s Prime Number

Theorem, there exists a prime number q such that q ≡ l (mod d). Moreover ordd(q) =

m1 since m1 = lcm(m1, . . . ,mn). Now, consider a sequence A of elements of F∗q,

D = {di}i≥1, and the consecutive permutation polynomial sequence F = {F (A,D)
i }.

We have D(F1) = m1 and we now show that D(Fn) ≤ m1. Note that

∆(D)
n = ∆

(D)
1 ∪ {r · k : r | d1 · . . . dn−1, k | m1, r · k ∈ ∆(D)

n }.

That is, D(Fn) > m1 if and only if there exists an irreducible factor Q(x) ∈ Fq[x] of

Fn(x) such that degQ(x) = r · k with r | d1 · . . . dn−1, 1 < r, k | m1. We now assume

that such Q(x) exists. Using the notation of Theorem 2.3.2, there exists 1 ≤ j ≤ n

such that K = Kn−j−1 $ Kn−j ⊆ . . . ⊆ Kn, [Kn−j : K] = mj+1 = orddj+1
(q) since

dj+1 is a prime. Then we consider [Kn−j+1 : K]. We recall that Kn−j+1 = K(λj−1)

and λ
dj
j−1 = λj − aj ∈ K(λj) = Kn−j. We have gcd(dj, q

mj+1 − 1) = 1, as mj+1 < mj

and dj is a prime, hence [Kn−j+1 : Kn−j] equals 1 or orddjq
mj+1 =

mj

gcd(mj ,mj+1)
=

mj

mj+1
,

as in the proof of Theorem 2.3.2. That is, [Kn−j+1 : K] equals mj+1 or mj. If n = 2,
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then [K2 : K] < r ·k, and we get a contradiction. If n > 2, one can similarly show that

[Kn : K] is at most m1, a contradiction. Hence D(Fn) ≤ m1.

The following example shows that D(Fn) is not a non-decreasing function of n.

Example 3.2.1 Let q = 29, D be a finite sequence of 3 elements with d1 = 5, d2 =

17, d3 = 3. A be a finite sequence of 5 elements with a0 = 1, a1 = 9, a2 = 1, a3 = 2,

a4 = 6. Consider the associated consecutive permutation polynomial sequence of 4

elements {F (A,D)
n }. Explicit factorization shows that D(F2) = 80, but D(F3) = 16.
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[30] A. Çeşmelioğlu, W. Meidl, A. Topuzoğlu, On the cycle structure of permutation

polynomials, Finite Fields Appl., 14, (2008), 593-614.

[31] L. E. Dickson, A fundamental system of invariants of the general modular linear

group with a solution of the form problem, Trans. Amer. Math. Soc., 12, (1911),

75-98.

[32] L. E. Dickson, Higher irreducible congruences, Bull. Amer. Math. Soc., 3, (1897),

381-389.

[33] L. E. Dickson, The analytic representation of substitutions on a power of a

prime number of letters with a discussion of the linear group, Ann. of Math.,

11, (1896/97), 65-120.
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[71] M .D. Pres̆ić, A method for solving equations in finite fields, Mat Vesnik, 7,

(1970), 507-509.

[72] A.J. van der Poorten, A quote, Math. Intell., 7, (2), (1985), 40.

[73] M. Rabin, Probabilistic algorithms in finite fields, SIAM Journal on Computing,

9, (1980), 273-280.
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