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c©Ayşegül Yavuz 2018

All Rights Reserved



to all my struggles



Ramanujan’s Congruences for the Partition Function modulo 5, 7, 11
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Abstract

In 1919, Ramanujan introduced three congruences satisfied by the partition func-

tion p(n), namely p(5n + 4) ≡ 0 (mod 5), p(7n + 5) ≡ 0 (mod 7) and p(11n + 6) ≡ 0

(mod 11). In this thesis, our goal is to present different proofs of each of these congru-

ences. For the congruence p(5n+4) ≡ 0 (mod 5), we present three types of elementary

to non-elementary proofs. In these proofs, we observe that the elementary proofs of

the congruences p(5n + 4) and p(7n + 5) are analogues with minor variations. The

second proof that we introduce can be regarded as non-elementary proof. Even though

their non-elementary proofs are similar to each other, the proof of the congruence in

modulo 7 involves considerably more computations on identities, inevitably, than the

proof of the congruence in modulo 5. We further present three worth-stressing proofs

for the congruence p(11n + 6) ≡ 0 (mod 11); The first is proved by Winquist using

a representation of (q; q)10∞ as a double series and a two parameter identity is utilized

for this double sum. Then Hirschhorn proves this congruence using a four parameter

generalization of Winquist’s identity and modifies the representation of (q; q)10∞. Lastly,

owing to Ramanujan, B. Berndt, et al., prove the congruence p(11n+ 6) ≡ 0 (mod 11)

directly using a new representation for (q; q)10∞. We complete the thesis by presenting a

more direct and a uniform proof, given by Hirschhorn in 1994, that can be applicable

to all three congruences. This proof is partially based on linear algebra, which makes

it reasonably different from Winquist’s and Hirschhorn’s earlier proofs.



Ramanujan’ın Parçalanış Fonksiyonu için (mod 5), (mod 7) ve (mod 11)’ deki

Denklikleri
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Özet

1919’da Ramanujan parçalanış fonksiyonu için p(5n+4) ≡ 0 (mod 5), p(7n+5) ≡ 0

(mod 7) ve p(11n + 6) ≡ 0 (mod 11) denkliklerini ortaya attı. Bu tezde amacımız bu

denkliklerin farklı kanıtlarını sunmak. p(5n + 4) ≡ 0 (mod 5) denkliği için temelden

zora doğru üç farklı kanıt gösterildi. Burada temel olan kanıtlar aynı doğrultuda il-

erliyor. Temel olmayan kanıtlar da birbirlerine benzer olmasına rağmen mod 7’deki

denklik kanıtı, mod 5’teki denklik kanıtından daha karmaşık özdeşlikler kullanyor. Son

denklik p(11n + 6) ≡ 0 (mod 11) için, üzerinde durulması gereken üç kanıt sunduk.

İlki, Winquist’in iki parametreli özdeşlik ve q serisi (q; q)10∞ sonsuz çarpımını çift toplam

olarak yazdığı kanıt. Diğeri, Hirschhorn tarafından verilen, iki parametreli Winquist

özdeşliğinin dört parametreye genişletip ve (q; q)10∞ serisini Winquist’ den farklı kulla-

narak yaptığı kanıt. Son olarak, Berndt ve diğerlerinin Ramanujan özdeşliklerini kulla-

narak tekrar ifade ettikleri (q; q)10∞ serisini kullanan bir kanıt. Tezi 1994’te Hirschhorn

tarafından verilen, bütün denkliklerin kanıtını aynı anda çıkarabileceğimizi gösteren

makaleyle tamamladık. Bu kanıtı diğerlerinden farklı yapan tarafı, kısmen lineer cebir

kullanıyor olmasıdır.
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suggestions which inspired me to focus on this subject. His positive attitude in any

case encouraged me throughout the study and provide sustained work. His useful

comments and remarks steered the learning process of this master thesis.

Also, I would like to thank Asst. Prof. Dr. Ayesha Asloob Qureshi and Asst. Prof.

Dr. Zafeirakis Zafeirakopoulos for being the members of my thesis committee.

I am grateful to my big family whose support is with me in times of intense work

and my sister deserves special thanks for her understanding. It is worth to appreciate
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CHAPTER 1

Introduction

In 1919, Ramanujan introduced three congruences satisfied by the partition function

p(n):

p(5n+ 4) ≡ 0 (mod 5) (1.1)

p(7n+ 5) ≡ 0 (mod 7) (1.2)

p(11n+ 6) ≡ 0 (mod 11). (1.3)

He proved (1.1) and (1.2) in [17] and later in [16] announced that he had also es-

tablished a proof of (1.3). Later on, G. H. Hardy extracted different proofs of these

congruences from unpublished works of Ramanujan in [18]. Ramanujan offered a gen-

eral conjecture of these congruences in [17]:

“ Let δ = 5a7b11c and λ be an integer such that 24λ ≡ 1 (mod δ). Then p(nδ+λ) ≡
0 (mod δ).”

He started to prove his conjecture for some a, b, c, but he did not complete. After

Ramanujan died, S. Chowla in [9] realized that p(243) is not divisible by 73 even if

24.243 ≡ 1 (mod 73). Berndt points out in [5] that Watson prove the correct version

of Ramanujan’s conjecture for a = c = 0 in [20], that is:

“Define δ′ = 5a7b
′
11c where b′ = b if b = 0, 1, 2 and b′ =

⌈
b+2
2

⌉
if b > 2. Then

p(nδ + λ) ≡ 0 (mod δ′).” (1.4)

In this thesis we have collected different proofs for (1.1), (1.2) and (1.3).

The second chapter of this study is devoted to basic facts about q series. We start

with essential definitions and theorems that are used in the later chapters. All of these

can be found in Chapter 1 of Number Theory In the Spirit of Ramanujan, [5].

Chapter 3 focuses on three different proofs for the partition function congruence

in modulo 5. These proofs are taken from [5]. The first proof provides an undemand-

ing approach using only principal theorems: Euler’s Pentagonal number theorem and

Jacobi’s identity. This proof is taken from [17] in [5]. The second proof was chosen

to highlight some observations on q-series. The extensive generalizations and results
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can be found in [3]. The third proof is non-elementary, but easy to follow. Under-

standing this proof also assists in overcoming the non-elementary proof of Ramanujan

congruence in modulo 7.

In chapter 4, we introduce two different types of proof of the Ramanujan congruence

in modulo 7. These proofs were selected from [5], and for the omitted calculations in

the book we consult [7]. This choice enables us to observe that the elementary proof of

Ramanujan congruences in modulos 5 and 7 are very similar with some variation. How-

ever the non-elementary proof of Ramanujan congruence for modulo 7 requires heavy

calculations on q-series, and some complicated identities compared to Ramanujan’s

congruence in modulo 5.

In chapter 5, we present three proofs of Ramanujan’s conjecture modulo 11, which

appeared in [17] in 1919, that prove the congruence p(11n + 6) ≡ 0 (mod 11). The

first, by Winquist, [21] uses a two parameter identity whose construction is a little bit

tricky but not hard to prove. By proving this identity we were able to facilitate a proof

of Ramanujan’s congruence modulo 11. The second, from Hirschhorn [13], improves

the two parameter identity to a four parameter identity regarded as a generalization of

Winquist’s identity. Then Hirschhorn uses a slightly modified representation of (q; q)10∞
to conclude the proof. Later Berndt, et al. introduce a new representation of (q; q)10∞
only using some identities in respect of Ramanujan and then they prove the congruence

p(11n+ 6) ≡ 0 (mod 11).

In chapter 6, we added a proof by Hirschhorn [14], present a uniform approach

that applicable to all the congruences for the partition function modulo 5, 7 and 11.

He begins by Jacobi’s triple product identity which is essential and used in almost all

proofs we introduce. Then he presents different matrices for each case and uses some

facts from linear algebra to prove the congruences. This approach is quite different

from the earlier ones we include.

In addition, for each congruence for the partition function we add a nice illustration

that p(25n+24) ≡ 0 (mod 25) and p(49n+47) ≡ 0 (mod 49). Hirschhorn asserts that

p(121n+ 116) ≡ 0 (mod 121) from the more general formula.
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CHAPTER 2

Preliminaries

In this chapter we begin with definition of an integer partition and exhibit the

established connection with q-series. We proceed to essential theorems that will be

used throughout the thesis. All of these can be found in [5] and [4] including their

detailed proofs.

Definition 2.1 An integer partition of n is a finite unordered sequence of positive

integers λ1, λ2, . . . , λk such that λ1 + λ2 + . . . + λk = n. The λk’s are called the parts

of the partition.

Examples: For n = 0 the only partition of 0 is the empty partition.

For n = 3 : 3,

2 + 1,

1 + 1 + 1.

For n = 5 : 5,

4 + 1,

3 + 2,

3 + 1 + 1,

2 + 2 + 1,

2 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1.
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For n = 7 : 7,

6 + 1,

5 + 2,

5 + 1 + 1,

4 + 3,

4 + 2 + 1,

4 + 1 + 1 + 1,

3 + 3 + 1,

3 + 2 + 2,

3 + 2 + 1 + 1,

3 + 1 + 1 + 1 + 1,

2 + 2 + 2 + 1,

2 + 2 + 1 + 1 + 1,

2 + 1 + 1 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1 + 1 + 1.

The total number of unrestricted partitions of positive integer n is denoted by p(n).

We call p(n) the partition function. One observes that p(3) = 3, p(5) = 7, p(7) = 15

in the above example. The partition function increases rapidly with n. For instance,

p(10) = 42, p(15) =, p(50) = 204226.

Definition 2.2 The generating function of an infinite sequence a0, a1, a2, a3 . . . is

f(q) = a0 + a1q + a2q
2 + a3q

3 + . . . =
∞∑
n=0

anq
n (2.1)

where q is an indeterminate. Then we say the series

f(q) =
∑
n≥0

p(n)qn

is a generating function for the partition function p(n), due to Euler, and counts all

partitions of n as the coefficient of qn.

∞∑
n=0

p(n)qn =
1

(q; q)∞
, p(0) = 1. (2.2)

Definition 2.3 For |q| < 1, (a; q)0 := 1 and

(a; q)n := (1− a)(1− aq)(1− aq2) . . . (1− aqn−1) =
n∏
j=1

(1− aqj−1)
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(a; q)∞ := (1− a)(1− aq)(1− aq2) . . . =
∞∏
j=1

(1− aqj−1) (2.3)

We call q the base, a the parameter.

If we take a = q in (2.3):

(q; q)∞ = (1− q)(1− q2)(1− q3) . . . =
∞∏
n=1

(1− qn) (2.4)

The following theorems are taken from [5].

Theorem 2.1 (q-Series Version of Euler’s Pentagonal Number Theorem)

(q; q)∞ =
∏
n≥1

(1− qn) =
∞∑

r=−∞

(−1)rq
r(3r+1)

2 =
∞∑

r=−∞

(−1)rq
r(3r−1)

2 (2.5)

Notice that the second summation arises from the first summation replacing −r for

r and vice versa.

Theorem 2.2 (Jacobi’s Identity) For |q| < 1,

(q; q)3∞ =
∞∑
n=0

(−1)n(2n+ 1)q
n(n+1)

2 (2.6)

We use two versions of Jacobi’s Triple Product Identity:

Theorem 2.3 (Jacobi’s Triple Product Identity 1)

For z 6= 0 and |q| < 1

∞∑
n=−∞

znqn
2

= (−zq; q2)∞(−z−1q; q2)∞(q2; q2)∞ (2.7)

Theorem 2.4 (Jacobi’s Triple Product Identity 2)

For z 6= 0 and |q| < 1

∞∑
m=−∞

(−1)mzmq(
m
2 ) = (z; q)∞(z−1q; q)∞(q; q)∞ (2.8)

Definition 2.4 Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1.

In particular, there are special cases defined by

ϕ(q) := f(q, q) =
∞∑

n=−∞

q
n(n+1)

2 q
n(n−1)

2 =
∞∑

n=−∞

qn
2

, (2.9)

ψ(q) := f(q, q3) =
∞∑

n=−∞

q
n(n+1)

2 q3
n(n−1)

2 =
∞∑

n=−∞

q
n(n+1)

2 .
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Corollary 2.5 From [5, Corollary 1.3.4], we have

ϕ(q) = (−q; q2)2∞(q2; q2)∞ (2.10)

f(−q) = (q; q)∞. (2.11)

Theorem 2.6 (the Binomial expansion)

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk.

Observe that, by this theorem, we have

(1− qj)n =
n∑
k=0

(
n

k

)
(−q)jk

Remark 2.1

(1− qj)n =
n∑
k=0

(
n

k

)
(−q)jk ≡ 1− qjk (mod d) where d is a prime divisor of n.

(2.12)

Example: For n = 8,

(1− qj)8 =

(
8

0

)
(−qj)0 +

(
8

1

)
(−qj)1 +

(
8

2

)
(−qj)2 + . . .+

(
8

7

)
(−qj)7 +

(
8

8

)
(−qj)8

≡ 1− q8j (mod 2)

Using the remark above, we observe that:

(q; q)8∞ =
∞∏
k=1

(1− qk)8 = (1− q)8(1− q2)8(1− q3)8 . . .

≡ (1− q8·1)(1− q8·2)(1− q8·3) . . . (mod 2)

=
∞∏
k=1

(1− q8k) = (q8; q8)∞

Hence in general

(q; q)l∞ ≡ (ql; ql)∞ (mod d) where d is a prime divisor of l. (2.13)

We use this fact many times in the proofs that follow.
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CHAPTER 3

Ramanujan’s congruence mod 5

Theorem 3.1 For each n ∈ N,

p(5n+ 4) ≡ 0 (mod 5).

We present three ways to prove this congruence.

3.1. An elementary proof

This proof is taken from [17] and [12] that was reproduced by Hardy, in [5].

Proof of Theorem 3.1 : Begin by writing

q(q; q)4∞
(q5; q5)∞
(q; q)5∞

= q
(q5; q5)∞
(q; q)∞

= q(q5; q5)∞

∞∑
m=0

p(m)qm.

In the first equation we simplify the fraction, in the second we use the definition of

the generating function of p(n), (2.2).

Observe that using (2.13) where l = d = 5, we have (q5; q5)∞ ≡ (q; q)5∞ (mod 5),

equivalently this means (q5;q5)∞
(q;q)5∞

≡ 1 (mod 5).

Hence, if we reduce modulo 5, the left hand side of the equation becomes q(q; q)4∞.

Then,

q(q; q)4∞ ≡ q(q5; q5)∞

∞∑
m=0

p(m)qm = (q5; q5)∞

∞∑
m=0

p(m)qm+1 (mod 5). (3.1)

When we write m = 5n+ 4 on the right hand side, we look for the coefficient of q5n+5

that gives zero in modulo 5. Similarly, we consider the coefficient of q5n+5 on the left
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hand side q(q; q)4∞. By the Pentagonal number theorem (2.5) and Jacobi‘s identity

(2.7):

q(q; q)4∞ = q(q; q)∞(q; q)3∞ = q
∞∑

j=−∞

(−1)jq
j(3j+1)

2

∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2

=
∞∑

j=−∞

∞∑
k=0

(−1)j+k(2k + 1)q1+
j(3j+1)

2
+

k(k+1)
2 . (3.2)

Then the following question arises: When are the exponents of q multiples of 5n+5?

Writing the exponent of q as

8

(
1 +

j(3j + 1)

2
+
k(k + 1)

2

)
= 8 + 12j2 + 4j + 4k2 + 4k

= 5 + 2j2 + 4j + 2 + 4k2 + 4k + 10j2 + 1

= 2(j2 + 2j + 1) + 4k2 + 4k + 1 + 10j2 + 5

= 2(j + 1)2 + (2k + 1)2 + 10j2 + 5.

Then

8

(
1 +

j(3j + 1)

2
+
k(k + 1)

2

)
− 10j2 − 5 = 2(j + 1)2 + (2k + 1)2.

Hence

1 +
j(3j + 1)

2
+
k(k + 1)

2
≡ 0 (mod 5)

if and only if

2(j + 1)2 + (2k + 1)2 ≡ 0 (mod 5).

Observe that when we plug in the numbers from the residue classes in modulo 5,

2(j + 1)2 gives 0, 2, 3 in modulo 5 and similarly (2k + 1)2 gives 0, 1, 4 in modulo 5.

Therefore to obtain the sum zero both 2(j + 1)2 and (2k + 1)2 must be 0 in modulo 5.

It follows that j + 1 ≡ 0 (mod 5) and 2k + 1 ≡ 0 (mod 5).

To sum up, the exponents of q are multiples of 5n + 5 if and only if 2k + 1 ≡ 0

(mod 5). By (3.2), this implies that the coefficient of q5n+5 in q(q; q)4∞ is a multiple of

5 and then the coefficient of q5n+5 on the right side of (3.1) is a multiple of 5. Therefore

p(5n+ 4) ≡ 0 (mod 5).

2

3.2. A less elementary proof
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This proof is due to Andrews, [1] and generalization of the following lemma is in

[3].

Proof of Theorem 3.1 : The second proof of Ramanujan’s congruence in modulo

5 is a consequence of this lemma:

Lemma: Let {an} be any sequence of integers and n ≥ 0.

Then the coefficient of q5n+3 in

L(q) :=
1

(q; q)2∞

∞∑
n=0

anq
n2

is divisible by 5.

Proof: Write

1

(q; q)2∞

∞∑
m=0

amq
m2

= (q; q)3∞

∑∞
m=0 amq

m2

(q; q)5∞

≡ (q; q)3∞

∑∞
m=0 amq

m2

(q5; q5)∞
(mod 5)

=
∞∑
j=0

(−1)j(2j + 1)q
j(j+1)

2

∑∞
m=0 amq

m2

(q5; q5)∞
(mod 5).

We used (2.13) in the denominator for the infinite product in the second step and

the Jacobi‘s identity, (2.6), for the last equality. By this, it is enough to consider only

the series

(q; q)3∞

∞∑
m=0

amq
m2

=
∞∑
j=0

(−1)j(2j+1)q
j(j+1)

2

∞∑
m=0

amq
m2

=
∞∑

j,m=0

(−1)j(2j+1)amq
j(j+1)

2
+m2

.

So when do we have j(j+1)
2

+ m2 = 5n + 3 for n ≥ 0 ? This is equivalent to ask

when we have j2+j
2

+m2 − 3 ≡ 0 (mod 5). Multiply this congruence by 8:

0 ≡ 4j2 + 4j + 8m2 − 24 = (2j + 1)2 + 8m2 − 25

≡ (2j + 1)2 + 3m2 (mod 5).

When we plug in the numbers from the residue classes in modulo 5, (2j + 1)2

gives us 0,±1 (mod 5) and 3m2 gives us 0, 2, 3 (mod 5). Thus the sum is zero if and

only if both (2j + 1)2 and 3m2 are zero in modulo 5. This implies that (2j + 1) ≡ 0

(mod 5) and m ≡ 0 (mod 5). Since the coefficients of q5n+3 in L(q) corresponds to

the coefficients (−1)j(2j + 1)am, we conclude that the coefficients of q5n+3 in L(q) are

divisible by 5.

2

Lets make some observations:

• Using definition of (q; q)∞, we have (q; q)∞ = (q; q2)∞(q2; q2)∞ and (q2; q2)∞ =

(q; q)∞(−q; q)∞.

9



• Recall that ϕ(q) = (−q; q2)2∞(q2; q2)∞ from (2.10) and by the definition in the

special case of Ramanujan‘s general theta function (2.9):

ϕ(−q) =
∞∑

n=−∞

(−q)n2

=
∞∑

n=−∞

(−1)nqn
2

=
−1∑

n=−∞

(−1)nqn
2

+ 1 +
∞∑
n=1

(−1)nqn
2

= 1 + 2
∞∑
n=1

(−1)nqn
2

.

Using these facts, it follows that ϕ(−q) = (q;q)∞
(−q;q)∞ . Because

(q; q)∞
(−q; q)∞

=
(q; q2)∞(q2; q2)∞

(−q; q)∞
=

(q; q2)∞(q; q)∞(−q; q)∞
(−q; q)∞

= (q; q2)∞(q; q2)∞(q2; q2)∞

= (q; q2)2∞(q2; q2)∞

= ϕ(−q).

Then
∞∑
k=0

p(k)q2k =
1

(q2; q2)∞
=

1

(q; q)∞(−q; q)∞
=

(q; q)∞
(q; q)2∞(−q; q)∞

=
1

(q; q)2∞

(
1 + 2

∞∑
m=1

(−1)mqm
2

)
.

In the third equality multiply both the numerator and the denominator by (q; q)∞

and then use the last observation. By the previous lemma the coefficients of q5n+3 are

divisible by 5. Then on the left hand side the coefficient of q2k are multiples of 5 when

2k ≡ 5n+ 3. It follows that k ≡ 5n+ 4 (mod 5). Hence p(5n+ 4) ≡ 0 (mod 5).

2

3.3. A non-elementary proof

Proof of Theorem 3.1 : The third proof is based on the following theorem taken

from [5].

Theorem 3.2 We have
∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

. (3.3)

Proof : By the pentagonal number theorem (2.5),

(q1/5; q1/5)∞ =
∞∑

n=−∞

(−1)nq
1
5

n(3n−1)
2 . (3.4)
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Our aim is to write this series as a combination of power series with integral coef-

ficients and integral powers. If n is the index of the summation, divide the terms into

residue classes modulo 5. The outcomes are as follows.

(mod 5)

n 3n− 1 (n(3n− 1))/2

0 4 0

1 2 1

2 0 0

3 3 2

4 1 2

The exponents of q are only 0/5, 1/5, 2/5 in modulo 1. Let’s observe that the expo-

nent is 0/5 (mod 1), when n ≡ 0 (mod 5) or n ≡ 2 (mod 5). We find a power series

with integral coefficients and integral powers in both cases. Therefore to illustrate,

we’ll show it for the case when n ≡ 2 (mod 5). Let n be of the form 5k+ 2. When the

indices in (3.4) are in this form, we have

∞∑
k=−∞

(−1)5k+2q
1
5

(5k+2)(15k+5)
2 =

∞∑
k=−∞

(−1)5k+2q
15k2+11k+2

2 =
∞∑

k=−∞

(−1)5k+2q
15k2+5k

2
+3k+1

=
∞∑

k=−∞

(−1)5kq5
k(3k+1)

2 q3k+1.

Using the Pentagonal number theorem, (2.5), and doing some operations on the

sum, this sum can be written as (q5; q5)∞J1(q), where J1(q) is a power series with

integral coefficients and integral powers.

The exponent is 1/5 (mod 1), when n ≡ 1 (mod 5).

∞∑
k=−∞

(−1)5k+1q
1
5

(5k+1)(15k+2)
2 =

∞∑
k=−∞

(−1)5k+1q
15k2+5k

2
+ 1

5 =
∞∑

k=−∞

(−1)5k+1q
5k(3k+1)

2 q
1
5

= −q
1
5

∞∑
k=−∞

(−1)5kq5
k(3k+1)

2 = −q
1
5 (q5; q5)∞.

Finally the exponent is 2/5 (mod 1) when n ≡ 3 (mod 5) or n ≡ 4 (mod 5). To

illustrate we‘ll show it for the case n ≡ 3 (mod 5), because we obtain a power series

with integral coefficients and integral powers in both cases. Then the indices of the

form n = 5k + 3 gives

∞∑
k=−∞

(−1)5k+3q
1
5

(5k+3)(15k+8)
2 =

∞∑
k=−∞

(−1)5k+3q
5(3k+1)k+12k

2
+ 12

5 =
∞∑

k=−∞

(−1)5k+3q
5k(3k+1)

2
+6k+2+ 2

5

= q
2
5

∞∑
k=−∞

(−1)5kq5
k(3k+1)

2 q6k+2.
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Again after some operations, this sum can be written as q2/5(q5; q5)∞J2(q), where

J2(q) is a power series with integral coefficients and integral powers. Therefore

(q1/5; q1/5)∞ = (q5; q5)∞J1(q) + (−q)1/5(q5; q5)∞ + q2/5(q5; q5)∞J2(q).

Divide both sides by (q5; q5)∞:

(q1/5; q1/5)∞
(q5; q5)∞

= J1(q)− q1/5 + J2(q)q
2/5. (3.5)

Take the cube of both sides:

(q1/5; q1/5)3∞
(q5; q5)3∞

= (J1(q)− q1/5 + J2(q)q
2/5)3

= −q3/5 + 3q2/5J1 + 3q2/5J2q
2/5 − 3q1/5J2

1 − 6q1/5J1J2q
2/5

− 3q1/5J2
2 q

4/5 + J3
1 + 3J2

1J2q
2/5 + 3J1J

2
2 q

4/5 + J3
2 q

6/5

= (J3
1 − 3J2

2 q) + q1/5(−3J2
1 + J3

2 q) + q2/5(3J1 + 3J1J2)

+ q3/5(−1− 6J1J2) + q4/5(3J2 + 3J1J
2
2 ). (3.6)

By Jacobi’s identity, (q1/5; q1/5)3∞ =
∑∞

n=0(−1)n(2n + 1)q
1
5

n(n+1)
2 . Similar to the

previous argument, divide the index of the summation into residue classes modulo 5.

(mod 5)

n n+ 1 (n(n+ 1))/2

0 1 0

1 2 1

2 3 3

3 4 1

4 5 0

The exponents of q are only 0/5, 1/5 and 3/5 on modulo 1. Then we can write

(q1/5; q1/5)3∞ as a sum of power series with integral coefficients and integral powers. We

demonstrate the case n ≡ 2 (mod 5). Let’s observe what happens when the index is

of the form n = 5k + 2 :

∞∑
k=0

(−1)5k+2(2(5k + 2) + 1)q
1
5

(5k+2)(5k+3)
2 =

∞∑
k=0

(−1)5k5(2k + 1)q
5k(k+1)

2
+ 3

5

= 5q3/5
∞∑
k=0

(−1)5k(2k + 1)q5
k(k+1)

2

= 5q3/5(q5; q5)3∞

It was shown that the terms with the exponents n ≡ 2 (mod 5) are equal to

5q3/5(q5; q5)3∞. Similarly do this for q0/5 and q1/5 to obtain the power series G1(q)

12



and G2(q) with integral powers and integral coefficients. Then

(q1/5; q1/5)3∞
(q5; q5)3∞

=
G1(q)(q

5; q5)3∞ +G2(q)q
1/5(q5; q5)3∞ + 5q3/5(q5; q5)3∞

(q5; q5)3∞
= G1(q) +G2(q)q

1/5 + 5q3/5.

Then equating the coefficient of this with (3.6), the coefficients of q2/5 and q4/5 are

0, the coefficient of q3/5 is 5. This gives

3J1 + 3J2
1J2 = 0, 3J2 + 3J1J

2
2 = 0, −1− 6J1J2 = 5 =⇒ J1J2 = −1. (3.7)

Now in (3.5), replace q1/5 by ωq1/5 where ω is a fifth root of unity.

(ωq1/5;ωq1/5)∞
(q5; q5)∞

= J1(q)− ωq1/5 + J2(q)ω
2q2/5. (3.8)

Let ω run through all five fifth roots of unity and multiply all such equalities to

obtain ∏
ω

(ωq1/5;ωq1/5)∞
(q5; q5)∞

=
∏
ω

{J1(q)− ωq1/5 + J2(q)ω
2q2/5}.

First examine the left hand side of the equality:

(ωq1/5;ωq1/5)∞ =
∞∏
k=0

(1− ω1+kq
k+1
5 ) = (1− ωq1/5)(1− ω2q2/5)(1− ω3q3/5)(1− ω4q4/5)

×(1− q)(1− ωq6/5)(1− ω2q7/5)(1− ω3q8/5) . . .

If the exponent is not a multiple of 5 then

(1− qn) = (1− qn/5)(1− ωqn/5)(1− ω2qn/5)(1− ω3qn/5)(1− ω4qn/5)

If n = 5m then (1− qm)(1− qm)(1− qm)(1− qm)(1− qm) = (1− qm)5. Using these

take the product over ω :∏
ω

(ωq1/5;ωq1/5)∞ =
∏
ω

(
∞∏
k=0

1− ω1+kq
k+1
5

)
= (1− ωq1/5)(1− ω2q1/5)(1− ω3q1/5)(1− ω4q1/5)(1− q1/5)
×(1− ω2q2/5)(1− ω4q2/5)(1− ωq2/5)(1− ω3q2/5)(1− q2/5)
× . . .× (1− ω4q4/5) . . . . . . (1− q4/5)(1− q)(1− q)(1− q)
×(1− q)(1− q)(1− ωq6/5)(1− ω2q6/5)(1− ω3q6/5)

× · · · × (1− q2)(1− q2)(1− q2)(1− q2)(1− q2)(1− ωq11/5)
×(1− ω2q11/5) . . .× (1− q5)(1− q5)(1− q5)(1− q5)(1− q5) . . .
×(1− q26/5) . . .

= (1− q)(1− q2)(1− q3)(1− q4)(1− q)5(1− q6)(1− q7) . . . (1− q2)5

×(1− q11) . . . (1− q3)5(1− q16) . . . (1− q4)5 . . . (1− q5)5 . . .
×(1− q10)5 . . .

= (1− q)6(1− q2)6(1− q3)6(1− q4)6(1− q5)5(1− q6)6(1− q7)6 . . .
×(1− q10)5(1− q11)6 . . . (1− q15)5 . . .
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Multiplying and dividing by (q5; q5)∞, we have∏
ω

(ωq1/5;ωq1/5)∞ =
(q; q)6∞

(q5; q5)∞
. (3.9)

Hence ∏
ω

(ωq1/5;ωq1/5)∞
(q5; q5)∞

=
(q; q)6∞

(q5; q5)5∞(q5; q5)∞
=

(q; q)6∞
(q5; q5)6∞

. (3.10)

Second, examine the right hand side of the equality: Since there are no fractional

powers of q on the left hand side, there are none on the right hand side as well. Thus it

is enough to examine only those terms in the product
∏

ω{J1(q)−ωq1/5 +J2(q)ω
2q2/5}

that gives rise to integral powers of q. In accordance with this purpose, we consider on

{J1(q) − ωq1/5 + J2(q)ω
2q2/5 as a quadratic expression and we factorize it in terms of

q and power series A,B,C and D with integral powers and integral coefficients in q.

∏
ω

{J1(q)− ωq1/5 + J2(q)ω
2q2/5} =

∏
ω

(A−Bωq1/5)(C −Dωq1/5)

= (A5 −B5q)(C5 −D5q)

= (AC)5 − (A5D5 +B5C5)q + (BD)5q2

where AC = J1, BD = J2, AD+BC = 1 with J1J2 = −1, then ACBD = J1J2 = −1.

Using these,

1 = (AD +BC)5 = (AD)5 + 5(AD)4BC + 10(AD)3(BC)2 + 10(AD)2(BC)3

+5(AD)(BC)4 + (BC)5

= (AD)5 − 5(AD)3 + 10AD + 10BC − 5(BC)3 + (BC)5

= (AD)5 − 5((AD)3 + (BC)3) + (BC)5 + 10. (3.11)

By a similar argument,

1 = (AD +BC)3 = (AD)3 + 3(AD)2(BC) + 3(AD)(BC)2 + (BC)3

= (AD)3 − 3(AD)− 3(BC) + (BC)3.

Then (AD)3 + (BC)3 = 4. Substituting this values in (3.11), it follows that (AD)5 +

(BC)5 = 11. Hence∏
ω

{J1(q)− ωq1/5 + J2(q)ω
2q2/5} = J5

1 (q)− 11q + J5
2 (q)q2.

It has been shown that

1

J1(q)− q1/5 + J2(q)q2/5
=

∏
ω 6=1 J1(q)− ωq1/5 + J2(q)ω

2q2/5∏
ω J1(q)− ωq1/5 + J2(q)ω2q2/5

=

∏
ω 6=1 J1(q)− ωq1/5 + J2(q)ω

2q2/5

J5
1 (q)− 11q + J5

2 (q)q2

=
F (q)

J5
1 (q)− 11q + J5

2 (q)q2
,
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where

F (q) =
J5
1 (q)− 11q + J5

2 (q)q2

J1(q)− q1/5 + J2(q)q2/5
.

After long polynomial division in q1/5, F (q) was found as

(J4
1 + 3J2q) + q1/5(J3

1 + 2J2
2 q) + q2/5(2J2

1 + J3
2 q) + q3/5(3J1 + J4

2 q) + 5q4/5.

Then (3.5) follows as

(q5; q5)∞
(q1/5; q1/5)∞

=
1

J1(q)− q1/5 + J2(q)q2/5

=
(J4

1 + 3J2q) + q1/5(J3
1 + 2J2

2 q) + q2/5(2J2
1 + J3

2 q) + q3/5(3J1 + J4
2 q) + 5q4/5

J5
1 (q)− 11q + J5

2 (q)q2
.

(3.12)

By definition of the generating function of p(n),(2.2),

1

(q1/5; q1/5)∞
=
∞∑
n=0

p(n)qn/5.

We select the terms that the exponents are congruent to 4/5 (mod 1) on both sides

of (3.12):

(q5; q5)∞
(q1/5; q1/5)∞

= (q5; q5)∞

∞∑
n=0

p(5n+ 4)q
5n+4

5 =
5q4/5

J5
1 (q)− 11q + J5

2 (q)q2
.

Divide by q4/5,

(q5; q5)∞

∞∑
n=0

p(5n+ 4)qn =
5

J5
1 (q)− 11q + J5

2 (q)q2
.

Then
∞∑
n=0

p(5n+ 4)qn =
5

(q5; q5)∞(J5
1 (q)− 11q + J5

2 (q)q2)

=
5

(q5; q5)∞
∏

ω(J1(q)− ωq1/5 + J2(q)ω2q2/5)

=
5

(q5; q5)∞
∏

ω
(ωq1/5;ωq1/5)

(q5;q5)∞

=
5

(q5; q5)∞
(q;q)6∞

(q5;q5)6∞

=
5(q5; q5)5∞

(q; q)6∞
.

2

If we reduce modulo 5,

∞∑
n=0

p(5n+ 4)qn ≡ 0.
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It follows that p(5n+ 4) ≡ 0.

2

The following theorem can be seen as an application of Ramanujan conjecture (1.4)

for a = 2, b′ = c = 0 and where δ = 25, λ = 24 with 24λ ≡ 1 (mod 25).

Theorem 3.3 For any n ∈ N,

p(25n+ 24) ≡ 0 (mod 25).

Proof : By Theorem 3.2 we know

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

. (3.13)

Using the fact (2.13) when l = 5, (mod 5) and definition of generating function

(2.2):

5
(q5; q5)5∞
(q; q)6∞

= 5
(q5; q5)5∞

(q; q)∞(q; q)5∞
= 5

(q5; q5)5∞
(q; q)∞(q5; q5)∞

= 5
(q5; q5)4∞
(q; q)∞

= 5(q5; q5)4
∞∑
m=0

p(n)qn. (3.14)

From Theorem 3.1 we know the coefficients of q5n+4 are multiples of 5. If we consider

the exponents of the form 5n+ 4 in (3.13) and (3.14),

∞∑
n=0

p(25n+ 24)q5n+4 = 5(q5; q5)4
∞∑
m=0

p(5n+ 4)q5n+4.

Hence the coefficients of q5n+4 are multiples of 25. This implies that

p(25n+ 24) ≡ 0 (mod 25).

2
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CHAPTER 4

Ramanujan’s congruence mod 7

Theorem 4.1 For each n ∈ N,

p(7n+ 5) ≡ 0 (mod 7).

4.1. A straightforward proof

This proof is taken from [17] and [12] in [5]. Since this proof is pretty similar

to the elementary proof of Ramanujan congruence in modulo 5 we can consider as a

straightforward proof.

Proof of Theorem 4.1 : Using the definition of the generating function, (2.2),

and binomial equivalence (2.13) with l = d = 7:

(q7; q7)∞

∞∑
n=0

p(n)qn+2 = q2(q7; q7)∞

∞∑
n=0

p(n)qn = q2
(q7; q7)∞
(q; q)∞

= q2(q; q)6∞
(q7; q7)∞
(q; q)7∞

≡ q2(q; q)6∞ (mod 7). (4.1)

If we show that the coefficient of the terms q7n+7 in q2(q; q)6∞ is a multiple of 7, it

will follow that the coefficient of q7n+7 on the left side is congruent to zero on modulo

7, i.e p(7n+ 5) (mod 7). Apply Jacobi’s identity, (2.6), on (4.1)

q2(q; q)6∞ = q2((q; q)3∞)2 = q2

(
∞∑
j=0

(−1)j(2j + 1)q
j(j+1)

2

)(
∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2

)

=
∞∑
j=0

∞∑
k=0

(−1)j+k(2j + 1)(2k + 1)q
j(j+1)

2
+

k(k+1)
2

+2. (4.2)
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We need to know when the exponent j(j+1)
2

+ k(k+1)
2

+ 2 is a multiple of 7. Observe

that

8

(
j(j + 1)

2
+
k(k + 1)

2
+ 2

)
= 4j(j + 1) + 4k(k + 1) + 16

= 4j2 + 4j + 1 + 4k2 + 4k + 1 + 14

= (2j + 1)2 + (2k + 1)2 + 14.

Then
j(j + 1)

2
+
k(k + 1)

2
+ 2 ≡ 0 (mod 7)

if and only if

(2j + 1)2 + (2k + 1)2 ≡ 0 (mod 7).

Observe that (2j + 1)2 ≡ 0, 1, 2, 4 (mod 7) and the same result holds for (2k + 1)2

as well. Hence the sum is congruent to zero if and only if both (2j + 1) and (2k + 1)

are congruent to zero in modulo 7. Therefore the coefficients in (4.2) are multiples of

7 when the exponent of q is a multiple of 7.

2

4.2. A non-straightforward proof

Proof of Theorem 4.1 : We demonstrate an analogue of the non-elementary proof

of the Ramanujan congruence in modulo 5 for the Ramanujan congruence in modulo

7. The following theorem was stated without proof by Ramanujan in his paper [17]

and gives a sketch of its proof in [18]. The complete proof was acquired from [7] and

we worked on the article [7] to give the detailed proof. We also attached the omitted

calculations from [5] by proving in a required order with the intention of giving an

accurate proof to the reader.

Theorem 4.2
∞∑
n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

(4.3)

Since the right hand side is congruent to zero in modulo 7, it follows that p(7n+5) ≡
0 (mod 7). Thus Theorem 4.1 can be seen as a corollary of this theorem.

Proof : First apply the Euler’s Pentagonal Number Theorem,(2.5),

(q1/7; q1/7)∞ =
∞∑

n=−∞

(−1)nq
1
7

n(3n+1)
2 (4.4)

and then divide the index of the summation into the residue classes in modulo 7.
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(mod 7)

n 3n+ 1 (n(3n+ 1))/2

0 1 0

1 4 2

2 7 0

3 10 1

4 13 2

5 16 5

6 19 2

The exponents of q are only 0/7, 1/7, 2/7, 5/7 in modulo 1. As one sees from the

table, the exponent is 0/5 (mod 1), when n ≡ 0 (mod 7) or n ≡ 2 (mod 7). The

exponent is 1/7 (mod 1), when n ≡ 1 (mod 7). We find a power series with integral

coefficients and integral powers in all cases. To illustrate, we’ll show it for the cases

when n ≡ 1 (mod 7) and when n ≡ 3 (mod 7).

Let n be of the form 7k + 1. When the indices in (4.4) are in this form, we have

∞∑
k=−∞

(−1)7k+1q
1
7

(7k+1)(21k+4)
2 = −

∞∑
k=−∞

(−1)7kq
72.3.k2+72k+4

2.7 = −
∞∑

k=−∞

(−1)7kq
7.k(3k+1)

2
+ 2

7

= −
∞∑

k=−∞

(−1)7kq7
k(3k+1)

2 q
2
7 = −q2/7(q7; q7)∞.

Let n be of the form 7k + 3. When the indices in (4.4) are in this form, we have

∞∑
k=−∞

(−1)7k+3q
1
7

(7k+3)(21k+10)
2 = −

∞∑
k=−∞

(−1)7kq
72.3.k2+133kk+30

2.7

= −
∞∑

k=−∞

(−1)7kq
7k(21k+19)+30

2.7

= −
∞∑

k=−∞

(−1)7kq
7k(3k+1)+12k

2
15
7

= −
∞∑

k=−∞

(−1)7kq7
k(3k+1)

2 q6kq2q
1
7

= q
1
7 (q7; q7)∞J2(q),

where J2(q) is a power series with integral powers and integral coefficients. Hence (4.4)

can be written as

(q1/7; q1/7)∞ = q0/7(q7; q7)∞J1(q)+q1/7(q7; q7)∞J2(q)−q2/7(q7; q7)∞+q5/7(q7; q7)∞J3(q),
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where J1, J2 and J3 are power series in q with integral coefficients and integral powers.

Divide both sides by (q7; q7)∞,

(q1/7; q1/7)∞
(q7; q7)∞

= J1(q) + q1/7J2(q)− q2/7 + q5/7J3(q). (4.5)

Take the cube of both sides:

(q1/7; q1/7)3∞
(q7; q7)3∞

= (J3
1 + 3J2

2J3q − 6J1J3q) + q1/7(3J1J2 − 6J2J3q + J + 32q2)

+ 3q2/7(J1J
2
2 − J2

1 + J3q) + q3/7(J3
2 − 6J1J2 + 3J1J

2
3 q)

+ 3q4/7(J1 − J2
2 + J2J

2
3 q) + 3q5/7(J2 + J2

1J3 − J2
3 q)

+ q6/7(6J1J2J3 − 1). (4.6)

Now apply the Jacobi’s identity to (q1/7; q1/7)3∞,

(q1/7; q1/7)3∞ =
∞∑
n=0

(−1)n(2n+ 1)q
1
7

n(n+1)
2 . (4.7)

Separate the index of summation into the residue classes modulo 7.

(mod 7)

n n+ 1 (n(n+ 1))/2

0 1 0

1 2 1

2 3 3

3 4 6

4 5 3

5 6 1

6 7 0

The exponents are 0/7, 1/7, 3/7, 6/7 in modulo 1. A similar argument to the pre-

vious ones works here. To exemplify, we’ll show it for the cases when n ≡ 5 (mod 7)

and when n ≡ 3 (mod 7). Let n be of the form 7k + 5. Then by Jacobi’s identity, in

the sum (4.7), we obtain these terms:

∞∑
k=0

(−1)7k+5(2(7k + 5) + 1)q
1
7

(7k+5)(7k+6)
2 = −

∞∑
k=0

(−1)7k(14k + 11)q
72k2+77k+30

7.2

= −
∞∑
k=0

(−1)7k(14k + 11)q
7k(k+1)+4k

2
+ 15

7

= −
∞∑
k=0

(−1)7k(14k + 11)q7
k(k+1)

2 q2k+2q
1
7

= q
1
7G2(q)(q

7; q7)3∞.
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The exponent is 6/7 (mod 1) when n ≡ 3 (mod 7). Let n be of the form 7k + 3,

∞∑
k=0

(−1)7k+3(2(7k + 3) + 1)q
1
7

(7k+3)(7k+4)
2 = −

∞∑
k=0

(−1)7k7(2k + 1)q
49k2+49k+12

7.2

= −7
∞∑
k=0

(−1)7k(2k + 1)q7
k(k+1)

2 q
6
7

= −7q6/7(q7; q7)3∞.

One can repeat the same procedure for other exponents and then (4.7) can be

written as

(q1/7; q1/7)3∞ = G1(q)(q
7; q7)3∞ + q1/7G2(q)(q

7; q7)3∞ + q3/7(q7; q7)3∞G3(q)− 7q6/7(q7; q7)3∞

where Gi’s are power series in q with integral powers and exponents, i = 1, 2, 3.

Divide both sides by (q7; q7)3∞,

(q1/7; q1/7)3∞
(q7; q7)3∞

= G1(q) + q1/7G2(q) + q3/7G3(q)− 7q6/7.

Comparing this with (4.5), we see in that equation there is no q with the powers

2/7, 4/7, 5/7. Then equating them gives

J1J
2
2 − J2

1 + J3q = 0

J1 − J2
2 + J2J

2
3 q = 0

J2 + J2
1J3 − J2

3 q = 0

6J1J2J3 − 1 = −7

and these imply

J2
1 = J1J

2
2 + J3q

J2
2 = J1 + J2J

2
3 q

J2
3 q = J2 + J2

1J3

J1J2J3 = −1.

(4.8)

Replace q1/7 by ωq1/7 in (4.4) where ω is a seventh root of unity,

(ωq1/7;ωq1/7)∞
(q7; q7)∞

= J1(q) + ωq1/7J2(q)− ω2q2/7 + ω5q5/7J3(q). (4.9)

Taking the products of both sides over all seventh roots of unity, The left hand side

is transformed as follows:

(ωq1/7;ωq1/7)∞ =
∞∏
k=0

(1− ω1+kq
k+1
7 ) = (1− ωq1/7)(1− ω2q2/7)(1− ω3q3/7)(1− ω4q4/7)

×(1− ω5q5/7)(1− ω6q6/7)(1− q)(1− ω1q8/7)

×(1− ω2q9/7)(1− ω3q10/7) . . .
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∏
ω

(ωq1/7;ωq1/7)∞ =
∏
ω

(
∞∏
k=0

1− ω1+kq
k+1
5

)
=

∏
ω

(1− ωq1/7)(1− ω2q2/7)(1− ω3q3/7)(1− ω4q4/7)

×(1− ω5q5/7)(1− ω6q6/7)(1− q)(1− ω1q8/7)(1− ω2q9/7) . . .

= (1− ωq1/7)(1− ω2q1/7)(1− ω3q1/7) . . . (1− ω6q1/7)(1− q1/7)
×(1− ω2q2/7)(1− ω4q2/7)(1− ω6q2/7)(1− ωq2/7) . . . (1− q2/7)
× . . .× (1− ω6q6/7) . . . . . . (1− q6/7)(1− q)(1− q)(1− q)(1− q)
×(1− q)(1− q)(1− q)(1− ωq8/7)(1− ω2q8/7)(1− ω3q8/7)

× · · · × (1− q2)(1− q2)(1− q2)(1− q2)(1− q2)(1− q2)(1− q2)
×(1− ωq15/7)(1− ω2q15/7) . . .

×(1− q3)(1− q3)(1− q3)(1− q3)(1− q3)(1− q3)(1− q3) . . .
= (1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6)(1− q1)7(1− q8) . . .
×(1− q2)7 . . . (1− q3)7 . . . (1− q4)7 . . . (1− q7)7 . . . (1− q8)7 . . .

= (1− q)8(1− q2)8(1− q3)8(1− q4)8(1− q5)8(1− q6)8(1− q7)7

×(1− q8)8(1− q9)8 . . . (1− q14)7(1− q15)8 . . . (1− q21)7 . . .

Multiply and divide both sides by (q7; q7)∞. Then,∏
ω

(ωq1/7;ωq1/7)∞ =
(q; q)8∞

(q7; q7)∞
. (4.10)

Hence ∏
ω

(ωq1/7;ωq1/7)∞
(q7; q7)∞

=
(q; q)8∞

(q7; q7)7∞(q7; q7)∞
=

(q; q)8∞
(q7; q7)8∞

.

Then the equation (4.9) becomes

(q; q)8∞
(q7; q7)8∞

=
∏
ω

{J1(q) + ωq1/7J2(q)− ω2q2/7 + ω5q5/7J3(q)}. (4.11)

Using the generating function for p(n), (2.2), multiplying both the numerator and

the denominator by (q49; q49)8∞ and (q7; q7)8∞:

∞∑
n=0

p(n)qn =
1

(q; q)∞

=
(q49; q49)7∞
(q7; q7)8∞

(q7; q7)8∞
(q49; q49)8∞

(q49; q49)∞
(q; q)∞

=
(q49; q49)7∞
(q7; q7)8∞

∏
ω{J1(q7) + ωqJ2(q

7)− ω2q + ω5qJ3(q
7)}

J1(q7) + qJ2(q7)− q + qJ3(q7)

=
(q49; q49)7∞
(q7; q7)8∞

∏
ω 6=1

{J1(q7) + ωqJ2(q
7)− ωq2 + ωq5J3(q

7)}. (4.12)
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We need to compute the terms in
∏

ω 6=1{J1(q7)+ωqJ2(q
7)−ωq2 +ωq5J3(q

7)} where

the powers of q are of the form 7n+ 5. Expanding the product in (4.11) we have

(q; q)8∞
(q7; q7)8∞

= J7
1 + J7

2 q + J7
3 q

5 − q2 + 7(J1J
5
2 q + J3J

5
1 q + J2J

5
3 q

4)

+ 7(J4
1J

2
2J3q + J1J

4
2J

2
3 q

2 + J2J
4
3J

2
1 q

3)

+ 7(J3
1J2q + J3

2J3q
2 + J3

3J1q
3)

+ 14(J2
1J

3
2 q + J2

3J
3
1 q

2 + J2
2J

3
3 q

3)

+ 7J2
1J

2
2J

2
3 q

2 + 14J1J2J3q
2. (4.13)

Rewriting (4.13), using the fact J1J2J3 = −1 in the second and last rows, the

equation is further transformed:

= J7
1 + J7

2 q + J7
3 q

5 − q2 + 7q(J1J
5
2 + J3J

5
1 + J2J

5
3 q

3)

+ 7(−J3
1J

1
2 q − J3

2J3q
2 − J3

3J1q
3)

+ 7(J3
1J2q + J3

2J3q
2 + J3

3J1q
3)

+ 14q(J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2)

+ 7q2 − 14q2. (4.14)

Second and third rows are opposites of each other. Now we will examine the factors

(J1J
5
2 + J3J

5
1 + J2J

5
3 q

3) and (J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2), using the identities in (4.8).

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2

= J2
1J2J

2
2 + J2

3J1qJ
2
1 + J2

2J3qJ
2
3 q

= J2
1J2(J1 + J2J

2
3 q) + J2

3J1q(J1J
2
2 + J3q) + J2

2J3q(J2 + J2
1J3)

= J3
1J2 + J2

1J
2
2J

2
3 q + J2

1J
2
2J

2
3 q + J3

3J1q
2 + J3

2J3q + J2
1J

2
2J

2
3 q

= J3
1J2 + J3

2J3q + J3
3J1q

2 + 3q. (4.15)

Again by using the identities in (4.8) and (4.15)

J1J
5
2 + J3J

5
1 + J2J

5
3 q

3 = J1J
5
2 + J3J

5
1 + J2J

5
3 q

3

= J1J2J
4
2 + J3J

4
1 + J2J3q(J

2
3 q)

2

= J1J2(J1 + J2J
2
3 q)

2 + J3(J1J
2
2 + J3q)

2 + J2J3q(J2 + J2
1J3)

2

= J3
1J2 + 2J2

1J
2
2J

2
3 q + J1J

3
2J

4
3 q

2 + J3
1J

4
2J3 + 2J2

1J
2
2J

2
3 q + J3

3J1q
2

+J3
2J3q + J2

1J
2
2J

2
3 q + J4

1J2J
3
3 q

= J3
1J2 + J3

2J3q + J3
3J1q

2 − (J2
1J

3
2 + J3

1J
2
3 q + J2

2J
3
3 q

2) + 6q

= −3q + 6q = 3q. (4.16)
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Then (4.14) continues to be transformed as follows, by substitutions (4.15) and

(4.16) in the corresponding places,

= J7
1 + J7

2 q + J7
3 q

5 − q2 + 7q.3q

+14q(J3
1J2 + J3

2J3q + J3
3J1q

2 + 3q) + 7q2 − 14q2

= J7
1 + J7

2 q + J7
3 q

5 − q2 + 21q2

+14q(J3
1J2 + J3

2J3q + J3
3J1q

2) + 42q2 + 7q2 − 14q2

= J7
1 + J7

2 q + J7
3 q

5 + 14q(J3
1J2 + J3

2J3q + J3
3J1q

2) + 55q2. (4.17)

Let’s make some observations. Let z = J3
1J2 + J3

2J3q + J3
3J1q

2. Then, take the

square of z and using the identities in (4.8) and for the fifth equality using (4.15) and

(4.16):

(J3
1J2 + J3

2J3q + J3
3J1q

2)2 = J6
1J

2
2 + J6

2J
2
3 q

2 + J6
3J

2
1 q

4

+2(J3
1J

4
2J3q + J1J

3
2J

4
3 q

3 + J4
1J2j

3
3q

2)

= J6
1 (J1 + J2J

2
3 q) + J6

2 q(J2 + J2
1J3) + J6

3 q
4(J1J

2
2 + J3q)

+2(−J2
1J

3
2 q − J2

2J
3
3 q

3 − J3
1 j

2
3q

2)

= J7
1 + J6

1J2J
2
3 q + J7

2 q + J6
2J

2
1J3q + J6

3J1J
2
2 q

4 + J7
3 q

5

−2(J2
1J

3
2 q + J3

1 j
2
3q

2 + J2
2J

3
3 q

3)

= J7
1 + J7

2 q + J7
3 q

5 − (J5
1J3q + J5

2J1q + J5
3J2q

4)

−2q(J2
1J

3
2 + J3

1 j
2
3q + J2

2J
3
3 q

2)

= J7
1 + J7

2 q + J7
3 q

5 − q3q − 2q(J3
1J2 + J3

2J3q + J3
3J1q

2 + 3q)

= J7
1 + J7

2 q + J7
3 q

5 − 3q2 − 2q(J3
1J2 + J3

2J3q + J3
3J1q

2)− 6q2

= J7
1 + J7

2 q + J7
3 q

5 − 2q(J3
1J2 + J3

2J3q + J3
3J1q

2)− 9q2.

Then

z2 = J7
1 + J7

2 q + J7
3 q

5 − 2qz − 9q2.

It follows that

J7
1 + J7

2 q + J7
3 q

5 = (z + q)2 + 8q2. (4.18)

To continue to transform (4.17) , substitute (4.18) in the last line of (4.17):

J7
1 + J7

2 q + J7
3 q

5 + 14q(J3
1J2 + J3

2J3q + J3
3J1q

2) + 55q2 = (z + q)2 + 8q2 + 14qz + 55q2

= (z + 8q)2.

Eventually we have

(q; q)8∞
(q7; q7)8∞

= (z + 8q)2.
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Observe that from the left hand side of (4.5), J2 is negative for sufficiently small q.

Because when we consider on infinite products in (4.5), we obtain

(1− q1/7)∏
n≥1(1− q7)n

=
(1− q1/7)∑∞

n=0 q
7n

= (1− q1/7) + (q7 − q50/7) + . . .

= (1− q1/7) +O(q2/7)

where O(q2/7) respesent the remaining parts of the series with exponents greater than

or equal to 2/7. Then multiply this with the remaining factors of (q1/7; q1/7)∞, again

we have

(1− q1/7) +O(q2/7).

Here one sees that when we group them according the exponent of q1/7, besides the

other exponents, we have q1/7(−1 + O(q)) where O(q) respesent the remaining parts

of the series with integral exponents greater than or equal to 1. On the other hand we

have expressed this series as J2 with integral exponents and with integral coefficients

in (4.5). Hence J2 contains −1 and by this reason for sufficiently small q, z is negative.

Taking this into account, we take the square root of both sides and solve for z:

z = − (q; q)4∞
(q7; q7)4∞

− 8q

which is

J3
1J2 + J3

2J3q + J3
3J1q

2 = − (q; q)4∞
(q7; q7)4∞

− 8q. (4.19)

Now we claim that

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = − (q; q)4∞
(q7; q7)4∞

− 5q. (4.20)

Because from (4.15) we know that

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = J3
1J2 + J3

2J3q + J3
3J1q

2 + 3q

and substitution (4.19) in corresponding place gives

J2
1J

3
2 + J2

3J
3
1 q + J2

2J
3
3 q

2 = − (q; q)4∞
(q7; q7)4∞

− 8q + 3q = − (q; q)4∞
(q7; q7)4∞

− 5q.

Returning to (4.12), by using the computer algebra system MAXIMA we compute

the terms in
∏

ω 6=1{J1(q7) + ωqJ2(q
7)− ωq2 + ωq5J3(q

7)} where the powers of q are of

the form 7n+ 5, we find:

−(J1(q
7)J5

2 (q7) + J3(q
7)J5

1 (q7) + 3J3
1 (q7)J2(q

7) + 4J2
1 (q7)J3

2 (q7))q5

−(3J3
2 (q7)J3(q

7) + 4J2
3 (q7)J3

1 (q7)− 8)q12

−(4J2
2 (q7)J3

3 (q7) + 3J3
3 (q7)J1(q

7))q19

−J2(q7)J5
3 (q7)q26.
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Group according to the coefficients of powers of q:

−(J1J
5
2 + J3J

5
1 + J2J

5
3 q

21)q5 − 3(J3
1J2 + J3

2J3q
7 + J3

3J1q
14)q5

−4(J2
1J

3
2 + J2

3J
3
1 q

7 + J2
2J

3
3 q

14)q5 + 8q12, (4.21)

where J1,J2 and J3 are power series in q7 with integral powers and integral coefficients.

Observe that when we substitute q7 in for q in (4.19), we obtain

J3
1J2 + J3

2J3q
7 + J3

3J1q
14 = − (q7; q7)4∞

(q49; q49)4∞
− 8q7 (4.22)

Similarly if we substitute q7 in for q in (4.16), we have

J1J
5
2 + J3J

5
1 + J2J

5
3 q

21 = 3q7 (4.23)

and substituting q7 in for q in (4.20),

J2
1J

3
2 + J2

3J
3
1 q

7 + J2
2J

3
3 q

14 = − (q7; q7)4∞
(q49; q49)4∞

− 5q7 (4.24)

where J1,J2,J3 are power series in q7 with integral powers and integral coefficients.Then

substituting the outcomes in (4.22), (4.23), (4.24) to (4.21) we have the desired result

7q5
(q7; q7)4∞

(q49; q49)4∞
+ 49q12.

Therefore if we consider the terms with the exponent of the form 7n + 5 on both

sides of (4.12):

∞∑
n=0

p(7n+ 5)q7n+5 =
(q49; q49)7∞
(q7; q7)8∞

[
7q5

(q7; q7)4∞
(q49; q49)4∞

+ 49q12
]

= 7q5
(q49; q49)3∞
(q7; q7)4∞

+ 49q12
(q49; q49)7∞
(q7; q7)8∞

.

Simplify q5 from both sides and then replace q7 by q:

∞∑
n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

.

2

If we reduce modulo 7

∞∑
n=0

p(7n+ 5)qn ≡ 0 (mod 7).

This implies that p(7n+ 5) ≡ 0 (mod 7). 2

Now we will illustrate (1.4) when b = b′ = 2 and a = c = 0. Since b = b′ we have

δ = δ′ = 49 and 24.λ ≡ 1 (mod 49) is satisfied when λ = 47.
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Theorem 4.3 For any n ∈ N,

p(49n+ 47) ≡ 0 (mod 49).

Proof : By Theorem 4.2 we know that

∞∑
n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

.

Rewrite this applying (2.13) to the denominator when l = d = 7 and then apply

Jacobi’s identity (2.6):

7
(q7; q7)3∞(q; q)3∞

(q; q)7∞
+ 49q

(q7; q7)7∞
(q; q)8∞

= 7(q7; q7)2∞

∞∑
m=0

(−1)m(2m+ 1)q
m(m+1)

2 + 49q
(q7; q7)7∞
(q; q)8∞

≡ 7(q7; q7)2∞

∞∑
m=0

(−1)m(2m+ 1)q
m(m+1)

2 (mod 49).

Then,

∞∑
n=0

p(7n+ 5)qn ≡ 7(q7; q7)2∞

∞∑
m=0

(−1)m(2m+ 1)q
m(m+1)

2 (mod 49). (4.25)

Now examine the terms on the right hand side where the powers are of the form

7n+ 6:

(mod 7)

m m+ 1 (m(m+ 1))/2

0 1 0

1 2 1

2 3 3

3 4 6

4 5 3

5 6 1

6 7 0

By this observation we see that the exponents are of the form 7n+ 6 if and only if

m ≡ 3 (mod 7). But in this case the coefficient (2m+ 1) in (4.25) is congruent to zero

modulo 7. Then 7(2m+ 1) is a multiple of 49. It follows that the coefficients of q7n+6

are multiple of 49 on the right hand side of (4.25). Then the coefficients of q7n+6 are

multiple of 49 on the left hand side of (4.25), i.e p(7(7n+ 6) + 5) = p(49n+ 47) must

be a multiple of 49.

2
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CHAPTER 5

Ramanujan’s congruence mod 11

We’ll present Ramanujan’s congruence for the partition function modulo 11 in two

different ways such that the second uses an evolved identity compared to the first.

Sure, there are other proofs using different ideas both easy and hard. However we

include a more elegant one, written by Winquist in 1969; An Elementary Proof of

p(11n + 6) ≡ 0 (mod 11), [21], than others. Winquist answers the question: Is it

possible to prove the modulo 11 congruence along the same line with the proofs for

modulo 5 and 7 that written by Hardy, [12], using
∏

n≥0(1 − xn)4 and
∏

n≥0(1 − xn)6

as a double series? In this direction, we also expect to write
∏

n≥0(1 − xn)10 as a

double series, and then prove the congruence modulo 11. Winquist did this. Later on,

we examine the article written by Hirschhorn, [13]. He improved the two parameter

identity, used by Winquist, to a four parameter identity. Then he provided a proof for

the congruence in modulo 11.

Theorem 5.1 For each n ∈ N,

p(11n+ 6) ≡ 0 (mod 11).

5.1. Proof by a two-parameter identity

We begin by introducing the following theorem for a two parameter identity and then

the proof for Theorem 5.1 will follow.
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Theorem 5.2

F (a, b, x) =
∏
n≥1

(1− axn−1)(1− a−1xn)(1− bxn−1)(1− b−1xn)(1− ab−1xn−1)

×(1− a−1bxn)(1− abxn−1)(1− a−1b−1xn)(1− xn)2

=
∞∑

j=−∞

(−1)j(b−3j − b−3j+1)xj(3j+1)/2
∑
i≥0

(−1)i(a−3i − a3i+3)x3i(i+1)/2

+
∑
i≥0

(−1)i(b3i+2 − b−3i−1)x3i(i+1)/2

∞∑
j=−∞

(−1)j(a−3j+1 − a3j+2)xj(3j+1)/2.

(5.1)

Proof : Observe that F (ax, b, x) = − 1
a3
F (a, b, x), since

F (ax, b, x) =
∏
n≥1

(1− axn)(1− a−1xn−1)(1− bxn−1)(1− b−1xn)(1− ab−1xn)

×(1− a−1bxn−1)(1− abxn)(1− a−1b−1xn−1)(1− xn)2

=
∏
n≥1

(1− a)−1(1− axn−1)(1− a−1)(1− a−1xn)(1− bxn−1)(1− b−1xn)

×(1− ab−1)−1(1− ab−1xn−1)(1− a−1b)(1− a−1bxn)(1− ab)−1(1− abxn−1)
×(1− (ab)−1)(1− a−1b−1xn)(1− xn)2

=
(1− a−1)(1− a−1b)(1− (ab)−1)

(1− a)(1− ab−1)(1− ab)
∏
n≥1

(1− axn−1)(1− a−1xn)(1− bxn−1)

×(1− b−1xn)(1− ab−1xn−1)(1− a−1bxn)(1− abxn−1)(1− a−1b−1xn)

×(1− xn)2

= − 1

a3
F (a, b, x).

By similar computations one can show that

F (
1

a
, b, x) = − 1

a3
F (a, b, x) (5.2)

Let

F (a, b, x) =
∞∑

r=−∞

Cr(b, x)ar. (5.3)

Then

F (ax, b, x) =
∞∑

r=−∞

Cr(b, x)xrar. (5.4)

Consider

− 1

a3
F (a, b, x)

(5.3)
= − 1

a3

∞∑
r=−∞

Cr(b, x)ar

=
∞∑

r=−∞

−Cr(b, x)ar−3

r 7→r+3
=

∞∑
r=−∞

−Cr+3(b, x)ar. (5.5)
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Then since

F (ax, b, x) = − 1

a3
F (a, b, x),

combining (5.4) and (5.5) gives

∞∑
r=−∞

Cr(b, x)xrar =
∞∑

r=−∞

−Cr+3(b, x)ar.

Hence

Cr(b, x)xr = −Cr+3(b, x). (5.6)

Again using (5.3)

F

(
1

a
, b, x

)
=

∞∑
r=−∞

Cr(b, x)a−r

r 7→−r
=

∞∑
r=−∞

C−r(b, x)ar (5.7)

By the second observation (5.2) and (5.5) we have

∞∑
r=−∞

C−r(b, x)ar =
∞∑

r=−∞

−Cr+3(b, x)ar

Then

− Cr+3(b, x) = C−r(b, x). (5.8)

Put r = −1 in (5.8) This gives −C2 = C1. Therefore if we know C0 and C1 then

by using (5.6) and (5.8) we know all Cr’s.

F (a, b, x) = C0(b, x)
∑
i≥0

(−1)i(a−3i − a3i+3)x3i(i+1)/2

+ C1(b, x)
∞∑

j=−∞

(−1)j(a−3j+1 − a3j+2)xj(3j+1)/2. (5.9)

Put x3 for x and x for a, in this order, then

F (x, b, x3) = C0(b, x
3)
∑
i≥0

(−1)i(x−3i − x3i+3)x3
3i(3i+1)

2

+ C1(b, x
3)

∞∑
j=−∞

(−1)j(x−3j+1 − x3j+2)x3
j(3j+1)

2 . (5.10)

Consider the first summation:

C0(b, x
3)
∑
i≥0

(−1)ix−3ix3
3i(3i+1)

2 = C0(b, x
3)
∑
i≥0

(−1)ix
9i2+3i

2

= C0(b, x
3)
∑
i≥0

(−1)ix3
i(3i+1)

2 (5.11)
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C0(b, x
3)
∑
i≥0

(−1)i(−x3i+3)x3
3i(3i+1)

2 = C0(b, x
3)
∑
i≥0

(−1)i+1x
(3i+2)(3i+3)

2

i 7→i−1
= C0(b, x

3)
∑
i≥1

(−1)ix
(3i−1)3i

2

i 7→−i
= C0(b, x

3)
∑
i≤−1

(−1)ix3
i(3i+1)

2 (5.12)

Combining the sums in (5.11) and in (5.12) we have

C0(b, x
3)

∞∑
i=−∞

(−1)ix
3i(3i+1)

2 . (5.13)

Now consider the second summation in F (x, b, x3):

C1(b, x
3)

∞∑
j=−∞

(−1)jx−3j+1x3
j(3j+1)

2 = C1(b, x
3)

∞∑
j=−∞

(−1)jx
9j2−3j+2

2

= C1(b, x
3)

∞∑
j=−∞

(−1)jx(x3)
j(3j−1)

2 (5.14)

C1(b, x
3)

∞∑
j=−∞

(−1)j(−x3j+2)x3
j(3j+1)

2 =
∞∑

j=−∞

(−1)jx2x9
j(j+1)

2

= x2

[
−∞∑
j<0

(−1)j(x9)
j(j+1)

2 +
∞∑
j≥0

(−1)j(x9)
j(j+1)

2

]

= x2

[
−∞∑
j<1

(−1)j−1(x9)
(j−1)j

2 +
∞∑
j≥0

(−1)j(x9)
j(j+1)

2

]

= x2

[
−

∞∑
j>−1

(−1)j(x9)
(j+1)j

2 +
∞∑
j≥0

(−1)j(x9)
j(j+1)

2

]
= 0.

Consequently combining (5.13) and (5.14) gives this result:

C0(b, x
3)

∞∑
i=−∞

(−1)ix
3i(3i+1)

2 + C1(b, x
3)x

∞∑
j=−∞

(−1)j(x3)
j(3j−1)

2 .

By the Pentagonal number theorem,(2.5), this equals to

C0(b, x
3)
∏
n≥1

(1− x3n) + C1(b, x
3)x
∏
n≥1

(1− x3n). (5.15)
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Now make the same substitutions, x3 for x and x for a, in this order, for F (a, b, x):

F (x, b, x3) =
∏
n≥1

(1− xx3n−3)(1− x−1x3n)(1− bx3n−3)(1− b−1x3n)(1− xb−1x3n−3)

×(1− x−1bx3n)(1− xbx3n−3)(1− x−1b−1x3n)(1− x3n)2

=
∏
n≥1

(1− x3n−2)(1− x3n−1)(1− b)(1− bx3n)(1− b−1x3n)(1− b−1x3n−2)

×(1− bx3n−1)(1− bx3n−2)(1− b−1x3n−1)(1− x3n)(1− x3n)

=
∏
n≥1

(1− xn)(1− bxn)(1− b−1xn)(1− x3n)(1− b)

=
∏
n≥1

(1− xn)(1− bxn−1)(1− b−1xn)(1− x3n). (5.16)

Then (5.10) is transformed to the following, using (5.15) and (5.16):

C0(b, x
3)
∏
n≥1

(1− x3n) + C1(b, x
3)x
∏
n≥1

(1− x3n)

=
∏
n≥1

(1− xn)(1− bxn−1)(1− b−1xn)(1− x3n).

Divide both sides by ∏
n≥1

(1− x3n)

.

C0(b, x
3) + C1(b, x

3)x =
∏
n≥1

(1− xn)(1− bxn−1)(1− b−1xn). (5.17)

The right hand side can be written as (x;x)∞(b;x)∞(xb−1;x)∞. Then apply Jacobi’s

triple product identity 2, (2.8):

(x;x)∞(b;x)∞(xb−1;x)∞ =
∞∑

n=−∞

(−1)nbnx(n
2)

n 7→n+1
=

∞∑
n=−∞

(−1)n+1bn+1x(n+1
2 )

=
−1∑

n=−∞

(−1)n+1bn+1x(n+1
2 ) +

∞∑
n=0

(−1)n+1bn+1x(n+1
2 )

n 7→−n
=

∞∑
n=1

(−1)−n+1b−n+1x(n
2) +

∞∑
n=0

(−1)n+1bn+1x(n+1
2 )

n 7→n+1
=

∞∑
n=0

(−1)−nb−nx(n+1
2 ) −

∞∑
n=0

(−1)n+1bn+1x(n+1
2 )

=
∞∑
n=0

(−1)n(b−n − bn+1)x(n+1
2 ).
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Hence (5.17) is transformed to the following

C0(b, x
3) + C1(b, x

3)x =
∞∑
n=0

(−1)n(b−n − bn+1)x(n+1
2 ).

Observe that in the series C0(b, x
3), exponents of x are congruent to 0 modulo 3

and in the series C1(b, x
3)x, exponents of x are congruent to 0 modulo 3. Now we are

looking for the exponents that are congruent to 1 modulo 3 and congruent to 0 modulo

3 for the right hand side.

(mod 3)

n n+ 1 n(n+ 1)/2

0 1 0

1 2 1

2 3 0

As one sees in the table, the exponent is congruent to 0 when n ≡ 0 (mod 3). For

n = 3j for some j ∈ N , the corresponding terms for C0(b, x
3) is

∞∑
j=0

(−1)3j(b−3j − b3j+1)x(3j+1
2 ). (5.18)

For n = 3j + 2 for some j ∈ N , the corresponding residue for C0(b, x
3) is

∞∑
j=0

(−1)3j+2(b−(3j+2) − b3j+3)x(3j+3
2 ) j 7→−j

=
−∞∑
j=0

(−1)−3j(b3j−2 − b−3j+3)x(−3j+3
2 )

j 7→j+1
=

−∞∑
j=−1

(−1)−3j−3(b3j+1 − b−3j)x
(−3j)(−3j−1)

2

= −
−∞∑
j=−1

(−1)−3j(b3j+1 − b−3j)x
(3j)(3j+1)

2

=
−∞∑
j=−1

(−1)j(b−3j − b3j+1)x(3j+1
2 ). (5.19)

Combining (5.18) and (5.19) gives

∞∑
j=0

(−1)3j(b−3j − b3j+1)x(3j+1
2 ) +

−∞∑
j=−1

(−1)j(b−3j − b3j+1)x(3j+1
2 )

=
−∞∑
j=−∞

(−1)j(b−3j − b3j+1)x(3j+1
2 )

=
−∞∑
j=−∞

(−1)j(b−3j − b3j+1)x
(3j+1)3j

2 .
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Writing x for x3, the corresponding residue for C0(b, x) is

−∞∑
j=−∞

(−1)j(b−3j − b3j+1)x
(3j+1)j

2 . (5.20)

In the table, the exponent is congruent to 1 modulo 3 when n ≡ 1 (mod 1). Say

n = 3i+ 1 for some i ∈ N . Then the corresponding residue for C1(b, x
3)x is

∞∑
i=0

(−1)3i+1(b−(3i+1) − b3i+2)x(3i+2
2 ) = −

∞∑
i=0

(−1)i(b−3i−1 − b3i+2)x
(3i+2)(3i+1)

2

=
∞∑
i=0

(−1)i(b3i+2 − b−3i−1)x
9i2+9i+2

2

= x
∞∑
i=0

(−1)i(b3i+2 − b−3i−1)(x9)
i(i+1)

2 .

Writing x for x3, we obtain

C1(b, x) =
∞∑
i=0

(−1)i(b3i+2 − b−3i−1)(x3)
i(i+1)

2 . (5.21)

Therefore when we substitute (5.21) and (5.20) in (5.9), we obtain (5.1).

2

Now we will derive
∏

n≥1(1 − xn)10 as a double series. Then the proof will follow.

Factor out the term (1− b) in theorem 5.2 and divide both sides by (1− b):

F (a, b, x) =
∏
n≥1

(1− axn)(1− a−1xn)(1− bxn)(1− b−1xn)(1− ab−1xn−1)

×(1− a−1bxn)(1− abxn−1)(1− a−1b−1xn)(1− xn)2

=
∞∑

j=−∞

(−1)j
b−3j − b−3j+1

1− b
xj(3j+1)/2

∑
i≥0

(−1)i(a−3i − a3i+3)x3i(i+1)/2

+
∑
i≥0

(−1)i
b3i+2 − b−3i−1

1− b
x3i(i+1)/2

∞∑
j=−∞

(−1)j(a−3j+1 − a3j+2)xj(3j+1)/2.

Let b→ 1 on both sides. To do this we apply L‘hospital rule to the right hand side.

Then

∏
n≥1

(1− axn−1)3(1− a−1xn)3(1− xn)4

=
∞∑

j=−∞

(−1)j(6j + 1)xj(3j+1)/2
∑
i≥0

(−1)ia−3i − a3i+3x3i(i+1)/2

+
∑
i≥0

(−1)i(−6i− 3)x3i(i+1)/2

∞∑
j=−∞

(−1)j(a−3j+1 − a3j+2)xj(3j+1)/2.
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This time factor the term (1− a)3 out from the left hand side and then divide both

sides by (1− a)3∏
n≥1

(1− axn)3(1− a−1xn)3(1− xn)4

=
∞∑

j=−∞

(−1)j(6j + 1)xj(3j+1)/2
∑
i≥0

(−1)i
a−3i − a3i+3

(1− a)3
x3i(i+1)/2

+ −3
∑
i≥0

(−1)i(2i+ 1)x3i(i+1)/2

∞∑
j=−∞

(−1)j
a−3j+1 − a3j+2

(1− a)3
xj(3j+1)/2.

Now let a→ 1, the right hand side becomes∏
n≥1

(1− xn)10. (5.22)

Again for the right hand side, we need to use L‘hospital rule as we differentiate

three times. Hence

lim
a→1

∞∑
j=−∞

(−1)j(6j + 1)xj(3j+1)/2
∑
i≥0

(−1)i
a−3i − a3i+3

(1− a)3
x3i(i+1)/2

−3
∑
i≥0

(−1)i(2i+ 1)x3i(i+1)/2

∞∑
j=−∞

(−1)j
a−3j+1 − a3j+2

(1− a)3
xj(3j+1)/2

= lim
a→1

[
∞∑

j=−∞

(−1)j(6j + 1)xj(3j+1)/2

∑
i≥0

(−1)i
(−3i)(−3i− 1)(−3i− 2)a−3i−3 − (3i+ 3)(3i+ 2)(3i+ 1)a3i

3.2.(−1)(−1)(−1)

×x3i(i+1)/2

]
− 3

[∑
i≥0

(−1)i(2i+ 1)x3i(i+1)/2

∞∑
j=−∞

(−1)j
(−3j + 1)(−3j)(−3j − 1)a−3j−2 − (3j + 2)(3j + 1)(3j)a3j−1

3.2.(−1)(−1)(−1)
xj(3j+1)/2

]

=
∞∑

j=−∞

(−1)j(6j + 1)xj(3j+1)/2
∑
i≥0

(−1)i
(3i+ 1)(3i+ 2)(6i+ 3)

6
x3i(i+1)/2

−3
∑
i≥0

(−1)i(2i+ 1)x3i(i+1)/2

∞∑
j=−∞

(−1)j
(3j)(3j + 1)(6j + 1)

6
xj(3j+1)/2

=
∞∑

j=−∞

(−1)i+j
(6j + 1)(3i+ 1)(3i+ 2)(2i+ 1)

2
x

3i(i+1)
2

+
j(3j+1)

2

−
∑
i≥0

(−1)i+j
(2i+ 1)(3j)(3j + 1)(6j + 1)

2
x

3i(i+1)
2

+
j(3j+1)

2 .

(5.23)
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Combining (5.22) and (5.23), we have∏
n≥1

(1− xn)10 =
∑

(−1)i+j(2i+ 1)(6j + 1)

[
(3i+ 1)(3i+ 2)

2
− 3j(3j + 1)

2

]
×x

3i(i+1)
2

+
j(3j+1)

2

summed over i,j integers, i ≥ 0, −∞ ≤ j ≤ ∞. Multiply both sides by x5:

x5
∏
n≥1

(1− xn)10 =
∑

(−1)i+j(2i+ 1)(6j + 1)

[
(3i+ 1)(3i+ 2)

2
− 3j(3j + 1)

2

]
×x

3i(i+1)
2

+
j(3j+1)

2
+5.(5.24)

We investigate in what circumstances the exponent 3i(i+1)
2

+ j(3j+1)
2

+ 5 is divisible

by 11.

(mod 11)

i i+ 1 3
2
i(i+ 1)

0 1 0

1 2 3

2 3 9

3 4 7

4 5 8

5 6 1

6 7 8

7 8 7

8 9 9

9 10 3

10 11 0

11 12 0

(mod 11)

j 3j + 1 j(3j+1)
2

0 1 0

1 4 2

2 7 7

3 10 4

4 13 8

5 16 3

6 19 4

7 22 0

8 25 1

9 28 5

10 31 1

11 34 0

The possibilities to obtain 6 for the sum j(3j+1)
2

+ 3
2
i(i + 1) are the followings and

in each case the coefficient (2i+ 1)(6j + 1) gives a different result in modulo 11:

(i) i = 2, j = 4 implies the coefficient (2i + 1)(6j + 1) is congruent to 5.25 ≡ 4

(mod 11)

(ii) i = 5, j = 9 implies that (2.5 + 1)(6.9 + 1) = 11.55 ≡ 0 (mod 11)

(iii) i = 8, j = 4 implies that (2.8 + 1)(6.4 + 1) ≡ 7 (mod 11)

(iv) i = 9, j = 5 implies that (2.9 + 1)(6.5 + 1) ≡ 6 (mod 11).
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This shows that the coefficient is not congruent to zero whenever the exponent of

x is congruent to zero. However the exponent is congruent to zero if and only if the

second case holds. In other words the exponent is congruent to zero if and only if the

factors of the coefficient is congruent to zero in modulo 11 separately. Then from (5.24)

we deduce that the coefficients of x with exponent divisible by 11 in x5
∏

n≥1(1−xn)10

are divisible by 11.

Since 1 − x11 ≡ (1 − x)11 (mod 11) as in the remark 2.12. Then by (2.13) when

d = l = 11,
(x11;x11)∞

(x;x)11∞
≡ 1 (mod 11).

Therefore

x5(x;x)10∞ ≡ x5(x;x)10∞
(x11;x11)∞

(x;x)11∞
(mod 11)

= x5
(x11;x11)∞

(x;x)∞

= x5
1

(x;x)∞
(1− x11)(1− x22)(1− x33) . . .

= x5
(∑

p(n)xn
)
P (x11) =

∑
p(n)xn+5P (x11). (5.25)

Here p(11n+6) leads to x with exponents divisible by 11. But we know in the series

x5(x;x)10∞ the coefficients of x with these exponents are divisible by 11 Hence on the

right hand side the coefficients of x with exponent 11n + 11 are divisible by 11, i.e

p(11n+ 6) ≡ 0 (mod 11).

2

5.2. Proof by a four parameter identity

We introduce a four parameter identity, due to Hirschhorn [13]. First there are

successive substitutions yield us a compact identity to apply Jacobi’s triple product

identity, (2.8). Then the proof of Ramanujan’s congruence for the partition function

p(11n+ 6) modulo 11 will follow.
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∏
n≥1

(1 + aq2n−1)(1 + a−1q2n−1)(1 + bq2n−1)(1 + b−1q2n−1)

×(1 + cq2n−1)(1 + c−1q2n−1)(1 + dq2n−1)(1 + d−1q2n−1)(1− q2n)4

=

{∏
n≥1

(1 + acdq6n−3)(1 + (acd)−1q6n−3)(1 + bcd−1q6n−3)(1 + (bc)−1dq6n−3)

×(1 + abc−1q6n−3)(1 + (ab)−1cq6n−3)(1 + a(bd)−1q6n−3)(1 + a−1bdq6n−3

+ aq
∏
n≥1

(1 + acdq6n−1)(1 + (acd)−1q6n−5)(1 + bcd−1q6n−3)(1 + (bc)−1dq6n−3)

×(1 + abc−1q6n−1)(1 + (ab)−1cq6n−5)(1 + a−1bdq6n−5)(1 + a(bd)−1q6n−1)

+ a−1q
∏
n≥1

(1 + acdq6n−5)(1 + (acd)−1q6n−1)(1 + bcd−1q6n−3)(1 + (bc)−1dq6n−3)

×(1 + (ab)−1cq6n−1)(1 + abc−1q6n−5)(1 + a−1bdq6n−1)(1 + a(bd)−1q6n−5)

+ bq
∏
n≥1

(1 + acdq6n−3)(1 + (acd)−1q6n−3)(1 + bcd−1q6n−1)(1 + (bc)−1dq6n−5)

×(1 + (ab)−1cq6n−5)(1 + abc−1q6n−1)(1 + a−1bdq6n−1)(1 + a(bd)−1q6n−5)

+ b−1q
∏
n≥1

(1 + acdq6n−3)(1 + (acd)−1q6n−3)(1 + bcd−1q6n−5)(1 + (bc)−1dq6n−1)

×(1 + (ab)−1cq6n−1)(1 + abc−1q6n−5)(1 + a−1bdq6n−5)(1 + a(bd)−1q6n−1)

+ cq
∏
n≥1

(1 + acdq6n−1)(1 + (acd)−1q6n−5)(1 + bcd−1q6n−1)(1 + (bc)−1dq6n−5)

×(1 + (ab)−1cq6n−1)(1 + abc−1q6n−5)(1 + a−1bdq6n−3)(1 + a(bd)−1q6n−3)

+ c−1q
∏
n≥1

(1 + acdq6n−5)(1 + (acd)−1q6n−1)(1 + bcd−1q6n−5)(1 + (bc)−1dq6n−1)

×(1 + (ab)−1cq6n−5)(1 + abc−1q6n−1)(1 + a−1bdq6n−3)(1 + a(bd)−1q6n−3)

+ dq
∏
n≥1

(1 + acdq6n−1)(1 + (acd)−1q6n−5)(1 + bcd−1q6n−5)(1 + (bc)−1dq6n−1)

×(1 + (ab)−1cq6n−3)(1 + abc−1q6n−3)(1 + a−1bdq6n−1)(1 + a(bd)−1q6n−5)

+ d−1q
∏
n≥1

(1 + acdq6n−5)(1 + (acd)−1q6n−1)(1 + bcd−1q6n−1)(1 + (bc)−1dq6n−5)

×(1 + (ab)−1cq6n−3)(1 + abc−1q6n−3)(1 + a−1bdq6n−5)(1 + a(bd)−1q6n−1)

}
×
∏
n≥1

(1− q6n)4.

(5.26)

In this identity we‘ll change the parameters: −aq−1 for a, −bq−1 for b, −abq−1 for

c, −ab−1q−1 for d and q for q2, in the given order. First substitute the new parameters
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on the left hand side:∏
n≥1

(1− aq2n−2)(1− a−1q2n−2)(1− bq2n−2)(1− b−1q2n−2)(1− abq2n−2)

×(1− (ab)−1q2n−2)(1− ab−1q2n−2)(1− a−1bq2n−2)(1− (q2)n)4.

Write q for q2,∏
n≥1

(1− aqn−1)(1− a−1qn−1)(1− bqn−1)(1− b−1qn−1)(1− abqn−1)

×(1− (ab)−1qn−1)(1− ab−1qn−1)(1− a−1bqn−1)(1− qn)4,

Divide by
∏

n≥1(1 − qn)2 =
∏

n≥1(1 − q3n−2)2(1 − q3n−1)2(1 − q3n)2 then the left

hand side becomes∏
n≥1

(1− aqn−1)(1− a−1qn−1)(1− bqn−1)(1− b−1qn−1)(1− abqn−1)

×(1− (ab)−1qn−1)(1− ab−1qn−1)(1− a−1bqn−1)(1− qn)2. (5.27)

Second, substitute the new parameters on the right hand side:
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{∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−2)(1− b−3q3n−1)(1− q3n−2)(1− q3n−1)

×(1− q3n−1)(1− q3n−2)
− a

∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− b3q3n−2)(1− b−3q3n−1)(1− q3n−1)(1− q3n−2)

×(1− q3n−3)(1− q3n)

− a−1q
∏
n≥1

(1− a3q3n−4)(1− a−3q3n+1)(1− b3q3n−2)(1− b−3q3n−1)(1− q3n)(1− q3n−3)

×(1− q3n−1)(1− q3n−2)
− b

∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−1)(1− b−3q3n−2)(1− q3n−2)(1− q3n−1)

×(1− q3n−1)(1− q3n−2)
− b−1q

∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−3)(1− b−3q3n)(1− q3n)(1− q3n−3)

×(1− q3n−3)(1− q3n)

− ab
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− b3q3n−1)(1− b−3q3n−2)(1− q3n)(1− q3n−3)

×(1− q3n−2)(1− q3n−1)
− (ab)−1q

∏
n≥1

(1− a3q3n−4)(1− a−3q3n+1)(1− b3q3n−3)(1− b−3q3n)(1− q3n−2)(1− q3n−1)

×(1− q3n−2)(1− q3n−1)
− ab−1

∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− b3q3n−3)(1− b−3q3n)(1− q3n−1)(1− q3n−2)

×(1− q3n−1)(1− q3n−2)
− a−1bq

∏
n≥1

(1− a3q3n−4)(1− a−3q3n+1)(1− b3q3n−1)(1− b−3q3n−2)(1− q3n−1)(1− q3n−2)

×(1− q3n−3)(1− q3n)

}
×
∏
n≥1

(1− q3n)4.

(5.28)

Observe that the parts that begin with the parameters a, a−1q, b−1q, ab, a−1bq

vanish since those parts contain the term (1 − q3n−3), which is zero for n = 1, in the

product. When we distribute the product
∏

n≥1(1− q3n)4 inside,
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∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−2)(1− b−3q3n−1)

×(1− q3n−2)2(1− q3n−1)2(1− q3n)4

− b
∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−1)(1− b−3q3n−2)

×(1− q3n−2)2(1− q3n−1)2(1− q3n)4

− (ab)−1q
∏
n≥1

(1− a3q3n−4)(1− a−3q3n+1)(1− b3q3n−3)(1− b−3q3n)

×(1− q3n−2)2(1− q3n−1)2(1− q3n)4

− ab−1
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− b3q3n−3)(1− b−3q3n)

×(1− q3n−1)2(1− q3n−2)2(1− q3n)4.

Dividing by
∏

n≥1(1− q3n−2)2(1− q3n−1)2)(1− q3n)2, we obtain∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−2)(1− b−3q3n−1)(1− q3n)2

− b
∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− b3q3n−1)(1− b−3q3n−2)(1− q3n)2

− (ab)−1q
∏
n≥1

(1− a3q3n−4)(1− a−3q3n+1)(1− b3q3n−3)(1− b−3q3n)(1− q3n)2

− ab−1
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− b3q3n−3)(1− b−3q3n)(1− q3n)2.

Write the first two rows and the last two rows in a common parenthesis :
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∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− q3n)

×

[∏
n≥1

(1− b3q3n−2)(1− b−3q3n−1)(1− q3n)− b
∏
n≥1

(1− b3q3n−1)(1− b−3q3n−2)(1− q3n)

]
− ab−1

∏
n≥1

(1− b3q3n−3)(1− b−3q3n)(1− q3n)[
a−2q

∏
n≥1

(1− a3q3n−4)(1− a−3q3n+1)(1− q3n)

+
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− q3n)

]
=

∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− q3n)

×

[∏
n≥1

(1− b3q3n−2)(1− b−3q3n−1)(1− q3n)− b
∏
n≥1

(1− b3q3n−1)(1− b−3q3n−2)(1− q3n)

]
− ab−1

∏
n≥1

(1− b3q3n−3)(1− b−3q3n)(1− q3n)

×

[
(a−2q)

1− a3/q
1− q/a3

∏
n≥1

(1− a3q3n−1)(1− a−3q3n−2)(1− q3n)

+
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− q3n)

]
=

∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− q3n)

×

[∏
n≥1

(1− b3q3n−2)(1− b−3q3n−1)(1− q3n)− b
∏
n≥1

(1− b3q3n−1)(1− b−3q3n−2)(1− q3n)

]
− ab−1

∏
n≥1

(1− b3q3n−3)(1− b−3q3n)(1− q3n)

×

[
−a
∏
n≥1

(1− a3q3n−1)(1− a−3q3n−2)(1− q3n) +
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− q3n)

]
.

With the left hand side (5.27) the four parameter identity becomes
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∏
n≥1

(1− aqn−1)(1− a−1qn)(1− bqn−1)(1− b−1qn)(1− abqn−1)

×(1− (ab)−1qn)(1− ab−1qn−1)(1− a−1bqn)(1− qn)2

=
∏
n≥1

(1− a3q3n−3)(1− a−3q3n)(1− q3n)

×

[∏
n≥1

(1− b3q3n−2)(1− b−3q3n−1)(1− q3n)− b
∏
n≥1

(1− b3q3n−1)(1− b−3q3n−2)(1− q3n)

]
− ab−1

∏
n≥1

(1− b3q3n−3)(1− b−3q3n)(1− q3n)

×

[
−a
∏
n≥1

(1− a3q3n−1)(1− a−3q3n−2)(1− q3n) +
∏
n≥1

(1− a3q3n−2)(1− a−3q3n−1)(1− q3n)

]
.

By Jacobi’s triple product identity, (2.8), the right hand side can be written as

(a3; q3)∞(a−3q3; q3)∞(q3; q3)∞(b3q; q3)∞(b−3q2; q3)∞(q3; q3)∞

−b(a3q3; q3)∞(a−3q3; q3)∞(q3; q3)∞(b3q2; q3)∞(b−3q; q3)∞(q3; q3)∞

+a2b−1(b3; q3)∞(b−3q3; q3)∞(q3; q3)∞(a3q2; q3)∞(a−3q; q3)∞(q3; q3)∞

−ab−1(b3; q3)∞(b−3q3; q3)∞(q3; q3)∞(a3q; q3)∞(a−3q2; q3)∞(q3; q3)∞

=
∞∑

m=−∞

(−1)m(a−3q3)m(q3)(
m
2 )

∞∑
n=−∞

(−1)n(b−3q2)n(q3)(
n
2)

−b
∞∑

m=−∞

(−1)m(a−3q3)m(q3)(
m
2 )

∞∑
n=−∞

(−1)n(b3q2)n(q3)(
n
2)

+a2b−1
∞∑

m=−∞

(−1)m(b−3q3)m(q3)(
m
2 )

∞∑
n=−∞

(−1)n(a3q2)n(q3)(
n
2)

−ab−1
∞∑

m=−∞

(−1)m(b−3q3)m(q3)(
m
2 )

∞∑
n=−∞

(−1)n(a−3q2)n(q3)(
n
2)

=
∞∑

m,n=−∞

(−1)m+n(a−3b−3n − a−3mb3n+1 − b−3m−1a3n+2 − b−3m−1a−3n+1)

×q
3m2+3m+3n2+n

2 .

By this, the four parameter identity becomes∏
n≥1

(1− aqn−1)(1− a−1qn)(1− bqn−1)(1− b−1qn)(1− abqn−1)

×(1− (ab)−1qn)(1− ab−1qn−1)(1− a−1bqn)(1− qn)2

=
∞∑

m,n=−∞

(−1)m+n(a−3b−3n − a−3mb3n+1 − b−3m−1a3n+2 − b−3m−1a−3n+1)

×q
3m2+3m+3n2+n

2 .
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Write a2 for a, b2 for b and then multiply by 1/ab:

(1− a2)(1− b2)
ab

∏
n≥1

(1− a2qn)(1− a−2qn)(1− b2qn)(1− b−2qn)(1− a2b2qn−1)

×(1− (ab)−2qn)(1− a2b−2qn−1)(1− a−2b2qn)(1− qn)2

=
∞∑

m,n=−∞

(−1)m+n(a−6m−1b−6n−1 − a−6m−1b6n+1 − b−6m−3a−6n+1 + b−6m−3a6n+3)

×q
1
2
(3m2+3m+3n2+n). (5.29)

Now take the derivative with respect to b and substitute b = 1. Then the left hand

side becomes

(1− a2)(12 + 1)

a12

∏
n≥1

(1− a2qn)(1− a−2qn)(1− 12qn)(1− 1−2qn)(1− a212qn−1)

×(1− (a1)−2qn)(1− a21−2qn−1)(1− a−212qn)(1− qn)2,

because of the product rule, the coefficient (1−a2)(1−b2)
ab2

remains the same in each deriva-

tive of the other factors and when we substitute b = 1, it annihilates the whole term.

Multiply by a−2 and equate the base to qn in the product, then some terms factor out

2(1− a2)(1− a2)(1− a2)
a3

∏
n≥1

(1− a2qn)(1− a−2qn)(1− qn)(1− qn)(1− a2qn)

×(1− a−2qn)(1− a2qn)(1− a−2qn)(1− qn)2

= 2

(
1− a2

a

)3∏
n≥1

(1− a2qn)3(1− a−2qn)3(1− qn)4.

For the right hand side of (5.29), after taking the derivative with respect to b,

substituting b = 1, and multiplying by a−2, we have

∞∑
m,n=−∞

(−1)m+n[a−6m−3(−6n− 1)− a−6m−3(6n+ 1) + (6m+ 3)a−6n−1 + (−6m− 3)a6n+1]

×q
1
2
(3m2+3m+3n2+n)

=
∞∑

m,n=−∞

(−1)m+n[−2(6n+ 1)a−6m−3 + (6m+ 3)a−6n−1 − (6m+ 3)a6n+1]

×q
1
2
(3m2+3m+3n2+n).

Hence

2

(
1− a2

a

)3∏
n≥1

(1− a2qn)3(1− a−2qn)3(1− qn)4

=
∞∑

m,n=−∞

(−1)m+n[−2(6n+ 1)a−6m−3 + (6m+ 3)a−6n−1 − (6m+ 3)a6n+1]

×q
1
2
(3m2+3m+3n2+n).
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Next equations show the process that we apply to both sides three times: take the

derivative with respect to a and multiply by a. For the right hand side this allows us

to collect coefficients without reducing the exponents.

∞∑
m,n=−∞

(−1)m+n[−2(6n+ 1)(−6m− 3)(−6m− 3)(−6m− 3)a−6m−3

+(6m+ 3)(−6n− 1)(−6n− 1)(−6n− 1)a−6n−1

−(6m+ 3)(6n+ 1)(6n+ 1)(6n+ 1)a6n+1]

×q
1
2
(3m2+3m+3n2+n).

Write a = 1 and divide by 2:

∞∑
m,n=−∞

(−1)m+n[(6n+ 1)(6m+ 3)3 − (6m+ 3)(6n+ 1)3]q
1
2
(3m2+3m+3n2+n).

For the left hand side we apply the same argument. Similarly in each derivative

the only remaining part after substituting a = 1 is the first part. Then the product

becomes

6

(
9a3 − a− 1

a
+

9

a3

)∏
n≥1

(1− a2qn)3(1− a−2qn)3(1− qn)4.

Write a = 1 and divide by 2, then the equality becomes

48
∏
n≥1

(1− qn)10 =
∞∑

m,n=−∞

(−1)m+n[(6n+ 1)(6m+ 3)3 − (6m+ 3)(6n+ 1)3]

×q
1
2
(3m2+3m+3n2+n). (5.30)

Let α, β ∈ Z such that α = 6m+ 3, β = 6n+ 1. Then rewrite (5.30):

48
∏
n≥1

(1− qn)10 =
∑

α≡3 (mod 6)
β≡1 (mod 6)

(−1)(α+β−4)/6[βα3 − αβ3]q(α
2+β2−10)/24.

If we write

(q; q)10∞ =
∏
n≥1

(1− qn)10 =
∞∑
n=0

a(n)qn,

then equating the coefficients of qn we find that

a(n) =
1

48

∑
α≡3 (mod 6)
β≡1 (mod 6)

(α2+β2−10)/24=n

(−1)(α+β−4)/6αβ(α− β)(α + β).

If n ≡ 6 (mod 11) then the exponent becomes

1

24
(α2 + β2 − 10) ≡ 6 (mod 11),
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α2 + β2 − 10 ≡ 1 (mod 11),

α2 + β2 ≡ 0 (mod 11).

The only solution of this is α ≡ 0 (mod 11), β ≡ 0 (mod 11) then (α − β) ≡ 0

(mod 11), (α + β) ≡ 0 (mod 11). Hence a(11n+ 6) ≡ 0 (mod 114). By the definition

of the generating function,(2.2),

∞∑
n=0

p(n)qn =
∏
n≥1

(1− qn) = (q; q)∞ =
(q; q)10∞
(q; q)11∞

(mod 11)
≡ (q; q)10∞

(q11; q11)∞
=

∑∞
n=0 a(n)qn

(q11; q11)∞
.

Therefore∑
p(11n+ 6)q11n+6 ≡

∑∞
n=0 a(11n+ 6)q11n+6

(q11; q11)∞
(mod 11)

≡ 0 (mod 11).

We have

p(11n+ 6) ≡ 0 (mod 11).

2

5.2.1 Proof of the four parameter identity

Consider

S =
∏
n≥1

(1 + a3q6n−3)(1 + a−3q6n−3)(1 + b3q6n−3)(1 + b−3q6n−3)

×(1 + c3q6n−3)(1 + c−3q6n−3)(1 + d3q6n−3)(1 + d−3q6n−3)(1− q6n)4.

(5.31)

Using Jacobi’s Triple Product identity it follows that

S =
∏
n≥1

(1 + a3q3q6n−6)(1 + a−3q3q6n−6)(1 + b3q3q6n−6)(1 + b−3q3q6n−6)(1 + c3q3q6n−6)

×(1 + c−3q3q6n−6)(1 + d3q3q6n−6)(1 + d−3q3q6n−6)(1− q6n)4

= (−a3q3; (q3)2)∞(−a−3q3; (q3)2)∞((q3)2; (q3)2)∞

×(−b3q3; (q3)2)∞(−b−3q3; (q3)2)∞((q3)2; (q3)2)

×(−c3q3; (q3)2)∞(−c−3q3; (q3)2)∞((q3)2; (q3)2)∞

×(−d3q3; (q3)2)∞(−d−3q3; (q3)2)∞((q3)2; (q3)2)∞

=
∞∑

r=−∞

a3rq3r
2
∞∑

s=−∞

b3sq3s
2
∞∑

t=−∞

c3tq3t
2
∞∑

u=−∞

d3uq3u
2

=
∞∑

r,s,t,u=−∞

a3rb3sc3td3uq3r
2+3s2+3t2+3u2 . (5.32)
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The exponent of q can be written as a sum of squares

3r2 + 3s2 + 3t2 + 3u2 = l2 +m2 + n2 + p2,

where

(i) l = r + t+ u ,

(ii) m = s+ t− u,

(iii) n = r + s− t,

(iv) p = r − s− u.

Observe that sum of the equations (i), (iii), (iv) gives

l + n+ p = 3r which means l + n+ p ≡ 0 (mod 3), (5.33)

the sum of the equations (i), (ii), (iii) gives

l +m− n = 3t which means l +m− n ≡ 0 (mod 3), (5.34)

the sum of the equations (ii), (iii), (iv) gives

m+ n− p = 3s which means m+ n− p ≡ 0 (mod 3), (5.35)

the sum of (i), (ii), (iv) gives

l −m− p = 3u which means l −m− p ≡ 0 (mod 3). (5.36)

Then (5.32) can be written as

S =
∞∑

l,m,n,p=−∞

al+n+pbm+n−pcl+m−ndl−m−pql
2+m2+n2+p2

=
∞∑

l,m,n,p=−∞

(acd)l(bcd−1)m(abc−1)n(ab−1d−1)pql
2+m2+n2+p2 .

The indices are restricted to satisfy the equivalences (5.33), (5.34), (5.35) and (5.36),

which have nine solutions in modulo 3.
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l m n p

0 0 0 0

1 0 1 1

-1 0 -1 -1

0 1 1 -1

0 -1 -1 1

1 1 -1 0

-1 -1 1 0

1 -1 0 -1

-1 1 0 1

Lets see what happens to S when the indices satisfy first solution. In the third

equality, use Jacobi‘s triple product identity, (2.8), and then write it as an infinite

product:

∞∑
l,m,n,p=−∞

(acd)3l(bcd−1)3m(abc−1)3n(ab−1d−1)3pq(3l)
2+(3m)2+(3n)2+(3p)2

=
∞∑

l=−∞

((acd)3)l(q9)l
2

∞∑
m=−∞

((bcd−1)3)m(q9)m
2
∞∑

n=−∞

((abc−1)3)n(q9)n
2
∞∑

p=−∞

((ab−1d−1)3)p(q9)p
2

= (−(acd)3q9; q18)∞(−(acd)−3q9; q18)∞(q18; q18)∞

×(−(bcd−1)3q9; q18)∞(−(bcd−1)−3q9; q18)∞(q18; q18)∞

×(−(abc−1)3q9; q18)∞(−(abc−1)−3q9; q18)∞(q18; q18)∞

×(−(ab−1d−1)3q9; q18)∞(−(ab−1d−1)−3q9; q18)∞(q18; q18)∞

=
∏
n≥1

(1 + (acd)3q18n−18+9)(1 + ((acd)3)−1q18n−18+9)(1− q18n−18+18)

×(1 + (bcd−1)3q18n−18+9)(1 + ((bcd−1)3)−1q18n−18+9)(1− q18n−18+18)

×(1 + (abc−1)3q18n−18+9)(1 + ((abc−1)3)−1q18n−18+9)(1− q18n−18+18)

×(1 + (ab−1d−1)3q18n−18+9)(1 + ((ab−1d−1)3)−1q18n−18+9)(1− q18n−18+18).

Now do the simplifications and replace a3 by a, b3 by b, c3 by c, d3 by d and q3 by

q. We have

∏
n≥1

(1 + acdq6n−3)(1 + (acd)−1q6n−3)(1− q6n)

×(1 + bcd−1q6n−3)(1 + (bcd−1)−1q6n−3)(1− q6n)

×(1 + abc−1q6n−3)(1 + (abc−1)−1q6n−3)(1− q6n)

×(1 + ab−1d−1q6n−3)(1 + (ab−1d−1)−1q6n−3)(1− q6n).
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This is the first row of the right hand side of the four parameter identity. Notice

that the factor (1 − q6n)4 which is out of the parenthesis in (5.26) was distributed

through the terms here. Let’s do the same operations for the terms satisfying the

second solution.

∞∑
l,m,n,p=−∞

(acd)3l+1(bcd−1)3m(abc−1)3n+1(ab−1d−1)3p+1q(3l+1)2+(3m)2+(3n+1)2+(3p+1)2

=
∞∑

l=−∞

((acd)3)l(acd)q9l
2+6l+1

∞∑
m=−∞

((bcd−1)3)m(q9)m
2

∞∑
n=−∞

((abc−1)3)n(abc−1)q9n
2+6n+1

∞∑
p=−∞

((ab−1d−1)3)p(ab−1d−1)q9p
2+6p+1

=

(
acdq

∞∑
l=−∞

((acdq2)3)l(q9)l
2

)(
∞∑

m=−∞

((bcd−1)3)m(q9)m
2

)
(
abc−1q

∞∑
n=−∞

((abc−1q2)3)n(q9)n
2

)(
ab−1d−1q

∞∑
p=−∞

((ab−1d−1q2)3)p(q9)p
2

)
= a3q3(−(acdq2)3q9; q18)∞(−(acdq2)−3q9; q18)∞(q18; q18)∞

×(−(bcd−1)3q9; q18)∞(−(bcd−1)−3q9; q18)∞(q18; q18)∞

×(−(abc−1q2)3q9; q18)∞(−(abc−1q2)−3q9; q18)∞(q18; q18)∞

×(−(ab−1d−1q2)3q9; q18)∞(−(ab−1d−1q2)−3q9; q18)∞(q18; q18)∞

= a3q3
∏
n≥1

(1 + (acd)3q18n−18+9+6)(1 + ((acd)3)−1q18n−18+9−6)(1− q18n−18+18)

×(1 + (bcd−1)3q18n−18+9)(1 + ((bcd−1)3)−1q18n−18+9)(1− q18n−18+18)

×(1 + (abc−1)3q18n−18+9+6)(1 + ((abc−1)3)−1q18n−18+9−6)(1− q18n−18+18)

×(1 + (ab−1d−1)3q18n−18+9+6)(1 + ((ab−1d−1)3)−1q18n−18+9−6)

×(1− q18n−18+18).

Again do the simplifications and replace a3 by a, b3 by b, c3 by c, d3 by d and q3

by q. We have

aq
∏
n≥1

(1 + acdq6n−1)(1 + (acd)−1q6n−5)(1− q6n)

×(1 + bcd−1q6n−3)(1 + (bcd−1)−1q6n−3)(1− q6n)

×(1 + abc−1q6n−1)(1 + (abc−1)−1q6n−5)(1− q6n)

×(1 + ab−1d−1q6n−1)(1 + (ab−1d−1)−1q6n−5)(1− q6n),

which is the second row of the right hand side of the four parameter identity. If we

do the same operations for all terms satisfying the solutions in the table, each of them

gives rise to products as above. Then S can be expressed as a sum of these nine
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products. Notice that as we do the replacements of a3 by a, b3 by b, c3 by c, d3 by d

and q3 by q, we do the same also for S in (5.31). Then, we obtain (5.26). 2

5.3. Proof by only using an identity for (q; q)10∞

Besides the previous two proofs there is a new representation for (q; q)10∞ given by

B.Berndt, et al. [8]. This is used to prove the congruence p(11n + 6) ≡ 0 (mod 11)

without any need as Winquist’s identity, proceed with the help of some Ramanujan’s

identities. On the way to express the new representation we need a lemma:

Lemma 5.3 We have

1 + 3
∞∑
n=1

nqn

1− qn
− 27

∞∑
n=1

nq9n

1− q9n
=

(q3; q3)10∞
(q; q)3∞(q9; q9)3∞

(5.37)

Proof : Recall the following fact from Ramanujan’s notebooks [6, p.475, Entry7 (i)],

1 + 3
∞∑
n=1

nqn

1− qn
− 27

∞∑
n=1

nq9n

1− q9n

=
f 6(−q3)

f 2(−q)f 2(−q9)
{f 6(−q) + 9qf 3(−q)f 3(−q9) + 27q2f 6(−q9)}1/3. (5.38)

With the help of (2.11), observe that f 6(−q3) = (q3; q3)6∞, f 6(−q) = (q; q)6∞,

f 3(−q9) = (q9; q9)3∞ and so on. Then the right hand side of (5.38) becomes

(q3; q3)6∞
(q; q)2∞(q9; q9)2∞

{(q; q)6∞ + 9q(q; q)3∞(q9; q9)3∞ + 27q2(q9; q9)6∞}1/3. (5.39)

Then it is enough to show that

{(q; q)6∞ + 9q(q; q)3∞(q9; q9)3∞ + 27q2(q9; q9)6∞}1/3 =
(q3; q3)4∞

(q; q)∞(q9; q9)∞
. (5.40)

Take cube of the right hand side, that is

(q3; q3)12∞
(q; q)3∞(q9; q9)3∞

. (5.41)

From Ramanujan’ notebooks [6, p.345, Entry1 (iv)], we know that

3 +
f 3(−q1/3)
q1/3f 3(−q3)

=

(
27 +

f 12(−q)
qf 12(−q3)

)1/3

.

By (2.11), this is

3 +
(q1/3; q1/3)3∞
q1/3(q3; q3)3∞

=

(
27 +

(q; q)12∞
q(q3; q3)12∞

)1/3

.
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Replace q1/3 by q and take cube of both sides:(
3 +

(q; q)3∞
q(q9; q9)3∞

)3

= 27 +
(q3; q3)12∞
q3(q9; q9)12∞

Then solve the equation for
(q3; q3)12∞
(q9; q9)3∞

,

which is very similar to (5.41).

(q3; q3)12∞
(q9; q9)3∞

=

((
3 +

(q; q)3∞
q(q9; q9)3∞

)3

− 27

)
q3(q9; q9)9∞

=

(
27

(q; q)3∞
q(q9; q9)3∞

+ 9
(q; q)6∞

q2(q9; q9)6∞
+

(q; q)9∞
q3(q9; q9)9∞

)
q3(q9; q9)9∞

= 27q2(q; q)3∞(q9; q9)6∞ + 9q(q; q)6∞(q9; q9)3∞ + (q; q)9∞

Divide both sides by (q; q)3∞, we obtain

(q3; q3)12∞
(q; q)3∞(q9; q9)3∞

= 27q2(q9; q9)6∞ + 9q(q; q)3∞(q9; q9)3∞ + (q; q)6∞.

Then taking cube root of both sides proves the equation in (5.40) Replacing

(q3; q3)4∞
(q; q)∞(q9; q9)∞

in (5.39) yields the desired result (5.37).

2

Theorem 5.4 For |q| < 1,

32(q; q)10∞ = 9

(
∞∑

n=−∞

(−1)n(2n+ 1)3q3n(n+1)/2

)(
∞∑

n=−∞

(−1)n(2n+ 1)qn(n+1)/6

)

−

(
∞∑

n=−∞

(−1)n(2n+ 1)q3n(n+1)/2

)(
∞∑

n=−∞

(−1)n(2n+ 1)3qn(n+1)/6

)
.

(5.42)

Proof : Recall Jacobi’s identity from 2.6, then

(q; q)3∞ =
1

2

∞∑
n=−∞

(−1)n(2n+ 1)q
n(n+1)

2 . (5.43)

Take the derivative with respect to q. To do this we use logarithmic differentiation.

For the left hand side let

F (q) =
∞∏
n=1

(1− qn)3 = (q; q)3∞.
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Take the logarithm

logF (q) =
∞∑
n=1

log(1− qn)3 = 3
∞∑
n=1

log(1− qn) = 3(log(1− q) + log(1− q2) + . . .)

Take the derivative with respect to q:

F ′(q)

F (q)
= 3

(
−1

1− q
+
−2q

1− q2
+
−3q2

1− q3
. . .

)
= 3

∞∑
n=1

−nqn−1

1− qn

Then

F ′(q) = −3(q; q)3∞

∞∑
n=1

nqn−1

1− qn
.

The equation (5.43) transforms to

−3(q; q)3∞

∞∑
n=1

nqn−1

1− qn
=

1

4

∞∑
n=−∞

(−1)n(2n+ 1)(n2 + n)qn(n+1)/2−1

=
1

16

∞∑
n=−∞

(−1)n(2n+ 1)(4n2 + 4n+ 1− 1)qn(n+1)/2−1

=
1

16

∞∑
n=−∞

(−1)n(2n+ 1)((2n+ 1)2 − 1)qn(n+1)/2−1

=
1

16

∞∑
n=−∞

(−1)n((2n+ 1)3 − (2n+ 1))qn(n+1)/2−1

Multiply both sides by 16q:

−48(q; q)3∞

∞∑
n=1

nqn

1− qn
=

∞∑
n=−∞

(−1)n(2n+ 1)3qn(n+1)/2 −
∞∑

n=−∞

(−1)n(2n+ 1)qn(n+1)/2

(5.43)
=

∞∑
n=−∞

(−1)n(2n+ 1)3qn(n+1)/2 − 2(q; q)3∞

Then

2(q; q)3∞

(
1− 24

∞∑
n=1

nqn

1− qn

)
=

∞∑
n=−∞

(−1)n(2n+ 1)3qn(n+1)/2. (5.44)
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Using (5.43) and (5.44)

9

(
∞∑

n=−∞

(−1)n(2n+ 1)3q3n(n+1)/2

)(
∞∑

n=−∞

(−1)n(2n+ 1)qn(n+1)/6

)

−

(
∞∑

n=−∞

(−1)n(2n+ 1)q3n(n+1)/2

)(
∞∑

n=−∞

(−1)n(2n+ 1)3qn(n+1)/6

)

= 9 · 2(q3; q3)3∞

(
1− 24

∞∑
n=1

nq3n

1− q3n

)
· 2(q1/3; q1/3)3∞

−2(q3; q3)3∞ · 2(q1/3; q1/3)3∞

(
1− 24

∞∑
n=1

nqn/3

1− qn/3

)

= 4(q3; q3)3∞(q1/3; q1/3)3∞

(
9− 9 · 24

nq3n

1− q3n
− 1 + 24

nqn/3

1− qn/3

)
= 4(q3; q3)3∞(q1/3; q1/3)3∞

(
8

(
1 + 3

nqn/3

1− qn/3
− 27

nq3n

1− q3n

))
(5.37)
= 32(q3; q3)3∞(q1/3; q1/3)3∞

(q; q)10∞
(q1/3; q1/3)3∞(q3; q3)3∞

= 32(q; q)10∞.

For the step marked with (5.37), we use Lemma 5.3 replacing q by q1/3.

2

Back to the proof of Theorem 5.1. Rewrite the Theorem 5.4, (5.42)

32(q; q)10∞ =
∞∑

m,n=−∞

(−1)m+n(9(2m+ 1)3(2n+ 1)− (2m+ 1)(2n+ 1)3)q
9m2+9m+n2+n

6

(5.45)

Let u = 2m+ 1 and v = 2n+ 1, then m = u−1
2

, n = v−1
2

and (5.45) transforms to

32(q; q)10∞ =
∞∑

u,v=−∞
u,v≡1 (mod 2)

(−1)(u+v−2)/2(9u3v − uv3)q(9u2+v2−10)/24. (5.46)

If we write

(q; q)10∞ =
∞∑
n=0

α(n)qn (5.47)

then the coefficients of q’s on both sides of the equation in 5.46 are equal. It follows

that

α(n) =
1

32

∞∑
u,v=−∞

u,v≡1 (mod 2)

(−1)(u+v−2)/2uv(9u2 − v2) (5.48)

for which 9u2 + v2 − 10 = 24n. If n ≡ 6 (mod 11) then 9u2 + v2 − 10 ≡ 1 (mod 11)

or equivalently 9u2 + v2 ≡ 0 (mod 11). However this congruence holds if and only if
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both u and v are congruent to 0 modulo 11. Then since (3u − v) ≡ 0 (mod 11) and

(3u+ v) ≡ 0 (mod 11) we have

α(11n+ 6) ≡ 0 (mod 114). (5.49)

Begin by writing the definition of generating function (2.2)

∞∑
n=0

p(n)qn =
1

(q; q)∞
=

(q; q)10∞
(q; q)11∞

(mod 11)
≡ (q; q)10∞

(q11; q11)∞

(5.47)
=

∑∞
n=0 α(n)qn

(q11; q11)∞

Then

∞∑
n=0

p(11n+ 6)q11n+6 =

∑∞
n=0 α(11n+ 6)q11n+6

(q11; q11)∞

(5.49)
≡ 0 (mod 11)

Hence p(11n+ 6) ≡ 0 (mod 11).

2
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CHAPTER 6

A uniform proof for Ramanujan’s congruences

In this section we present Hirschhorn’s proof, [14], comprehend all congruences

for the partition function modulo 5, 7 and 11. Hirschhorn uses the papers [11] and

[10] written by Garvan, Stanton and Kim who perform improvements on the partition

function. Hirschhorn’s aim is to present a more direct proof besides their contributions

giving a uniform proof of all congruences for the partition function. Hirschhorn deduce

the congruence p(5n+4) ≡ 0 (mod 5) by introducing a 5×5 matrix. The proof follows

with the help of linear algebra. For the other two congruences he provides guidance

on how to proceed with the given matrices. With this guidance we present the proof

of the congruence p(7n+ 5) ≡ 0 (mod 7).

We begin recalling Jacobi’s triple product identity (2.7)

∞∑
n=−∞

anqn
2

= (−aq; q2)∞(−a−1q; q2)∞(q2; q2)∞

Then ∑∞
n=−∞ a

nqn
2

(q2; q2)∞
= (−aq; q2)∞(−a−1q; q2)∞. (6.1)
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Let’s observe that

(−aq; q2)∞ =
∏
i≥1

(1 + aq2i−2) = (1 + aq)(1 + aq3)(1 + aq5)(1 + aq7)(1 + aq9)

×(1 + aq11)(1 + aq13)(1 + aq15)(1 + aq17)(1 + aq19)

×(1 + aq21)(1 + aq23)(1 + aq25) . . .

×(1 + aq31)(1 + aq33)(1 + aq35) . . .

= (1 + aq)(1 + aqq10)(1 + aqq20)(1 + aqq30)(1 + aqq40) . . .

×(1 + aq3)(1 + aq3q10)(1 + aq3q20)(1 + aq3q30)(1 + aq3q40) . . .

×(1 + aq5)(1 + aq5q10)(1 + aq5q20)(1 + aq5q30)(1 + aq5q40) . . .

×(1 + aq7)(1 + aq7q10)(1 + aq7q20)(1 + aq7q30)(1 + aq7q40) . . .

×(1 + aq9)(1 + aq9q10)(1 + aq9q20)(1 + aq9q30)(1 + aq9q40) . . .

=
∏
i≥1

(1 + aqq10i−10)(1 + aq3q10i−10)(1 + aq5q10i−10)

×(1 + aq7q10i−10)(1 + aq9q10i−10)

= (−aq; q10)∞(−aq3; q10)∞(−aq5; q10)∞(−aq7; q10)∞(−aq9; q10)∞.

Similarly one can obtain

(−a−1q; q2)∞ = (−a−1q; q10)∞(−a−1q3; q10)∞(−a−1q5; q10)∞(−a−1q7; q10)∞(−a−1q9; q10)∞.

Combining these results yields the product in (6.1) to continue as follows:

(−aq; q2)∞(−a−1q; q2)∞ = (−aq; q10)∞(−a−1q; q10)∞(−aq3; q10)∞(−a−1q3; q10)∞
×(−aq5; q10)∞(−a−1q5; q10)∞(−aq7; q10)∞(−a−1q7; q10)∞
×(−aq9; q10)∞(−a−1q9; q10)∞

=
1

(q10; q10)5∞
(−aq; q10)∞(−a−1q; q10)∞(q10; q10)∞

×(−aq3; q10)∞(−a−1q3; q10)∞(q10; q10)∞

×(−aq5; q10)∞(−a−1q5; q10)∞(q10; q10)∞

×(−aq7; q10)∞(−a−1q7; q10)∞(q10; q10)∞

×(−aq9; q10)∞(−a−1q9; q10)∞(q10; q10)∞

=
1

(q10; q10)5∞

∞∑
m1=−∞

(aq−4)m1(q5)m
2
1

∞∑
m2=−∞

(aq−2)m2(q5)m
2
2

×
∞∑

m3=−∞

(am3(q5)m
2
3

∞∑
m4=−∞

(aq2)m4(q5)m
2
4

∞∑
m5=−∞

(aq4)m5(q5)m
2
5

=
1

(q10; q10)5∞

∞∑
m1=−∞

am1q5m
2
1−4m1

∞∑
m2=−∞

am2q5m
2
2−2m2

×
∞∑

m3=−∞

am3q5m
2
3

∞∑
m4=−∞

am4q5m
2
4+2m4

∞∑
m5=−∞

am5q5m
2
5+4m5 .

56



If we consider the constant term, when n = 0, we obtain

1

(q2; q2)∞
=

1

(q10; q10)5∞

∑
m̂∈Z5

am1+m2+m3+m4+m5qR(m̂)

where R(m̂) = (5m2
1 − 4m1 + 5m2

2 − 2m2 + 5m2
3 + 5m2

4 + 2m4 + 5m2
5 + 4m5) and

m1 +m2 +m3 +m4 +m5 = 0. Now write q for q2, then

∞∑
n=0

p(n)qn =
1

(q5; q5)5∞

∑
m̂∈Z5

qQ(m̂) (6.2)

where

Q(m̂) =
5m2

1 − 4m1 + 5m2
2 − 2m2 + 5m2

3 + 5m2
4 + 2m4 + 5m2

5 + 4m5

2

=
(5m1 − 2)2 − 4 + (5m2 − 1)2 − 1 + (5m3)

2 + (5m2
4 + 2)2 − 1 + (5m5 + 2)2 − 4

10

=
(5m1 − 2)2 + (5m2 − 1)2 + (5m3)

2 + (5m4 + 2)2 + (5m5 + 2)2

10
− 1

and m1 +m2 +m3 +m4 +m5 = 0.

Let u1 = 5m4 + 1, u2 = 5m5 + 2, u3 = 5m1 − 2, u4 = 5m2 − 1, u5 = 5m3 such

that ui ≡ i (mod 5) with û = (u1, u2, u3, u4, u5) ∈ Z5. Since u1 + u2 + u3 + u4 + u5 =

5(m1 + m2 + m3 + m4 + m5), we have u1 + u2 + u3 + u4 + u5 = 0. Then using Q(m̂),

the equation (6.2) becomes

∞∑
n=o

p(n)qn+1 =
1

(q5; q5)5∞

∑
q(u

2
1+u

2
2+u

2
3+u

2
4+u

2
5)/10 =

1

(q5; q5)5∞

∑
û∈Z5

q‖û‖
2/10. (6.3)

where u1 + u2 + u3 + u4 + u5 = 0 with ui ≡ i (mod 5).

Here, if we consider on q’s with the exponents multiples of 5 on the left hand side,

the exponents of q have to be divisible by 5 on the right hand side. This implies that

we take into account q’s for which the exponent ‖û‖2/10 is divisible by 5. Replacing

q5 by q we obtain

∞∑
n=0

p(5n+ 4)qn+1 =
1

(q; q)5∞

∑
û∈Z5

q‖û‖
2/50 (6.4)

where 50|‖û‖2.
Let U5 = {û ∈ Z5 : ui ≡ i (mod 5), u1 + u2 + u3 + u4 + u5 = 0 and 50|‖û‖2}. We

consider the map M : R5 → R5

M =
1

5



2 1 0 4 -2

2 -2 4 0 1

2 0 -2 1 4

-3 2 2 2 2

2 4 1 -2 0
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Since

MT =
1

5



2 2 2 -3 2

1 -2 0 2 4

0 4 -2 2 1

4 0 1 2 -2

-2 1 4 2 0


We have MTM = MMT = I, M5 = I and detM = 1. The condition MTM = I

is equivalent to preservation of the inner product by M and the condition detM = 1

implies that M preserves orientation. The only eigenvalue is 1 with the eigenvector

e = (1, 1, 1, 1, 1). After some calculations we find that Me = e. Hence the fixed point

set of M is the set generated by e. By these we deduce that M is a rotation of order

5 about e. For further explanations, one can see rotation criterion [19, p.49-50]. We

prove that M acts as a permutation on U5.

Let û ∈ U5 and Mû = v̂. Since u1 + u2 + u3 + u4 + u5 = 0 it follows that û · e = 0

i.e., û ⊥ e. Since M preserves the inner product we have Mû ·Me = û · e. This implies

that v̂ · e = 0. Then v̂ ⊥ e. It remains to show that vi ≡ i (mod 5).

Let ui = 5ki + i. Since 50|‖û‖2 we have ‖û‖2 ≡ 0 (mod 25). Then

(5k1 + 1)2 + (5k2 + 2)2 + (5k3 + 3)2 + (5k4 + 4)2 + (5k5 + 5)2 ≡ 0 (mod 25)

implies

10(k1 + 2k2 + 3k3 + 4k4 + 5k5) + 55 ≡ 0 (mod 25).

Then

2(k1 + 2k2 + 3k3 + 4k4) + 1 ≡ 0 (mod 5)

2(k1 + 2k2 + 3k3 + 4k4) ≡ 4 (mod 5).

It follows that

(k1 + 2k2 + 3k3 + 4k4) ≡ 2 (mod 5).

However we know ki = ui−i
5

for i = 1, 2, 3, 4, 5, hence

u1 − 1

5
+

2(u2 − 2)

5
+

3(u3 − 3)

5
+

4(u4 − 4)

5
≡ 1

5
(u1 + 2u2 + 3u3 + 4u4)− 1 (mod 5)

≡ 2 (mod 5)

Then

1

5
(u1 + 2u2 + 3u3 + 4u4) ≡ 3 (mod 5)
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So applying M on û and writing u1 + u2 + u3 + u4 = −u5 using the fact that u1 + u2 +

u3 + u4 + u5 = 0

v1 =
1

5
(2u1 + u2 + 4u4 − 2u5)

=
1

5
(4u1 + 3u2 + 2u3 + 6u4)

= 4× 1

5
(u1 + 2u2 + 3u3 + 4u4)− u2 − 2u3 − 2u4

= 4 · 3− 2− 2 · 3− 2 · 4 ≡ 1 (mod 5)

which shows that v1 ≡ 1 (mod 5).

Similarly,

v2 = Mu2 =
1

5
(2u1 − 2u2 + 4u3 + u5)

=
1

5
(u1 − 3u2 + 3u3 − u4)

=
1

5
(u1 + 2u2 + 3u3 + 4u4)− u2 − u4

= 3− 2− 4 ≡ 2 (mod 5)

i.e., v2 ≡ 2 (mod 5). And one can obtain vi ≡ i (mod 5) for i = 3, 4, 5. Since M is an

orthogonal rotation matrix, it preserves the norm, i.e., ‖û‖ = ‖v̂‖. Further M acts as

a permutation on U5. These imply that the orbits of M are sets of five points where

‖û‖ does not change under M and when we apply 5 times we obtain itself. Since for

each step the exponent of q is constant, we obtain∑
û∈Z5

5q‖û‖
2/50

which shows that

5|
∑
û∈Z5

5q‖û‖
2/50.

Hence, by (6.4)

5|
∞∑
n=0

p(5n+ 4)qn+1.

So p(5n+ 4) ≡ 0 (mod 5).

2

Now we demonstrate the proof for the congruence p(7n+ 5) ≡ 0 (mod 7) with the

same spirit:

Begin with 6.1 By similar reason we write

(−aq; q2)∞ = (−aq; q14)∞(−aq3; q14)∞(−aq5; q14)∞(−aq7; q14)∞(−aq9; q14)∞
×(−aq11; q14)∞(−aq13; q14)∞.
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and

(−a−1q; q2)∞ = (−a−1q; q14)∞(−a−1q3; q14)∞(−a−1q5; q14)∞(−a−1q7; q14)∞
×(−a−1q9; q14)∞(−a−1q11; q14)∞(−a−1q13; q14)∞.

Hence when we multiply and divide by

1

(q14; q14)7

these two products become

(−aq; q2)∞(−a−1q; q2)∞ =
1

(q14; q14)7
(−aq; q14)∞(−a−1q; q14)∞(q14; q14)∞

×(−aq3; q14)∞(−a−1q3; q14)∞(q14; q14)∞

×(−aq5; q14)∞(−a−1q5; q14)∞(q14; q14)∞

×(−aq7; q14)∞(−a−1q7; q14)∞(q14; q14)∞

×(−aq9; q14)∞(−a−1q9; q14)∞(q14; q14)∞

×(−aq11; q14)∞(−a−1q11; q14)∞(q14; q14)∞

×(−aq13; q14)∞(−a−1q13; q14)∞(q14; q14)∞.

Apply Jacobi’s triple product identity, (2.7), to the grouped triple products on right

hand side:∑∞
n=−∞ a

nqn
2

(q2; q2)∞
=

1

(q14; q14)7

∞∑
m1=−∞

(aq−6)m1(q7)m
2
1

∞∑
m2=−∞

(aq−4)m2(q7)m
2
2

×
∞∑

m3=−∞

(aq−2)m3(q7)m
2
3

∞∑
m4=−∞

am4(q7)m
2
4

∞∑
m5=−∞

(aq2)m5(q7)m
2
5

×
∞∑

m6=−∞

(aq4)m6(q7)m
2
6

∞∑
m7=−∞

(aq6)m7(q7)m
2
7

=
1

(q14; q14)7∞

∞∑
m1=−∞

am1q7m
2
1−6m1

∞∑
m2=−∞

am2q7m
2
2−4m2

∞∑
m3=−∞

am3q7m
2
3−2m3

×
∞∑

m4=−∞

am4q7m
2
4

∞∑
m5=−∞

am5q7m
2
5+2m5

∞∑
m6=−∞

am6q7m
2
6+4m6

∞∑
m7=−∞

am7q7m
2
7+6m7

If we consider the constant term, when n = 0, then

1

(q2; q2)∞
=

1

(q14; q14)7∞

∑
m̂∈Z7

am1+m2+...+m6+m7qR(m̂)

where R(m̂) = (7m2
1− 6m1 + 7m2

2− 4m2 + 7m2
3− 2m3 + 7m2

4 + 7m2
5 + 2m5 + 7m2

6 +

4m6 + 7m2
7 + 6m7) and m1 +m2 + . . .+m6 +m7 = 0. Now write q for q2, then

∞∑
n=0

p(n)qn =
1

(q7; q7)7∞

∑
m̂∈Z7

qQ(m̂) (6.5)
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where

Q(m̂) =
7m2

1 − 6m1 + 7m2
2 − 4m2 + 7m2

3 − 2m3 + 7m2
4 + 7m2

5 + 2m5 + 7m2
6 + 4m6

2

+
+7m2

7 + 6m7

2

=
(7m1 − 3)2 − 9 + (7m2 − 2)2 − 4 + (7m3 − 1)2 − 1 + (7m4)

2 + (7m5 + 1)2 − 1

14

+
(7m6 + 2)2 − 4 + (7m7 + 3)2 − 9

14

=
(7m1 − 3)2 + (7m2 − 2)2 + (7m3 − 1)2 + (7m4)

2 + (7m5 + 1)2 + (7m6 + 2)2

14

+
(7m7 + 3)2

14
− 2

and m1 +m2 + · · ·+m6 +m7 = 0.

Let u1 = 7m5 + 1, u2 = 7m6 + 2, u3 = 7m7 + 3, u4 = 7m1 − 3, u5 = 7m2 − 2, u6 =

7m3 − 1, u7 = 7m4 such that ui ≡ i (mod 7) with û = (u1, u2, u3, u4, u5, u6, u7) ∈ Z7.

Since u1+u2+. . .+u6+u7 = 7(m1+m2+. . .+m6+m7) we say u1+u2+. . .+u6+u7 = 0

Then using Q(m̂), the equation (6.5) becomes

∞∑
n=0

p(n)qn+2 =
1

(q7; q7)7∞

∑
q(u

2
1+u

2
2+...+u

2
6+u

2
7)/14 =

1

(q7; q7)7∞

∑
û∈Z7

q‖û‖
2/14

where u1 + u2 + . . .+ u6 + u7 = 0 with ui ≡ i (mod 7).

If we consider on q’s with the exponents divisible by 7 on the left hand side then

the same idea is valid for the right hand side. Thus we take into account q’s for which

the exponent ‖û‖2/14 is divisible by 7. Writing q for q7, we deduce that∑
n≥0

p(7n+ 5)qn+1 =
1

(q; q)7∞

∑
û∈Z7

q‖û‖
2/98 (6.6)

where 98|‖û‖2.
Let U7 = {û ∈ Z7 : ui ≡ i (mod 7), u1 + u2 + . . .+ u6 + u7 = 0 and 98|‖û‖2}. Then

the map M : R7 → R7 is given

M =
1

7



-3 0 3 -1 2 5 1

2 2 2 2 -5 2 2

0 -3 1 5 2 -1 3

5 -1 0 1 2 3 -3

3 1 -1 -3 2 0 5

1 3 5 0 2 -3 -1

-1 5 -3 3 2 1 0


Again we have MTM = MMT = I with detM = 1, but this time we have M7 = I.

This means M is a rotation of order 7. The only eigenvalue is 1 with the eigenvector
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e = (1, 1, 1, 1, 1, 1, 1). We find that Me = e. Then the fixed point set of M is the set

generated by e. We prove that M acts as a permutation on U7.

Let û ∈ U7 and Mû = v̂. Since u1 + u2 + . . . + u6 + u7 = 0 we say û ⊥ e. Since

M preserves the inner product we have Mû ·Me = û · e. This implies that v̂ · e = 0.

Then v̂ ⊥ e. Now we need to show vi ≡ i (mod 7).

Let ui = 7ki + i. Since 98|‖û‖2 we have ‖û‖2 ≡ 0 (mod 49). Then,

(7k1 + 1)2 + (7k2 + 2)2 + (7k3 + 3)2 + (7k4 + 4)2 + (7k5 + 5)2 + (7k6 + 6)2

+(7k7 + 7)2 ≡ 0 (mod 49)

implies

14(k1 + 2k2 + 3k3 + 4k4 + 5k5 + 6k6 + 7k7) + 140 ≡ 0 (mod 49).

Then

2(k1 + 2k2 + 3k3 + 4k4 + 5k5 + 6k6 + 7k7) + 20 ≡ 0 (mod 7)

2(k1 + 2k2 + 3k3 + 4k4 + 5k5 + 6k6) ≡ 1 (mod 7).

It follows that

(k1 + 2k2 + 3k3 + 4k4 + 5k5 + 6k6) ≡ 4 (mod 7).

However, we know that ki = ui−i
7

, hence

u1 − 1

7
+

2(u2 − 2)

7
+

3(u3 − 3)

7
+

4(u4 − 4)

7
+

5(u5 − 5)

7
+

6(u6 − 6)

7

=
1

7
(u1 + 2u2 + 3u3 + 4u4 + 5u5 + 6u6)− 13 ≡ 4 (mod 7).

Then

1

7
(u1 + 2u2 + 3u3 + 4u4 + 5u5 + 6u6) ≡ 3 (mod 7).

So, applying M on û and writing u1 + u2 + u3 + u4 + u5 + u6 = −u7 using the fact

u1 + u2 + u3 + u4 + u5 + u6 + u7 = 0, we have

v1 =
1

7
(−3u1 + 3u3 − u4 + 2u5 + 5u6 + u7)

=
1

7
(−4u1 − u2 + 2u3 − 2u4 + u5 + 4u6)

= −4× 1

7
(u1 + 2u2 + 3u3 + 4u4 + 5u5 + 6u6) + u2 + 2u3 + 2u4 + 3u5 + 4u6

≡ −4 · 3 + 2 + 2 · 3 + 2 · 4 + 3 · 5 + 4 · 6 (mod 7)

≡ 1 (mod 7)
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which shows that v1 ≡ 1 (mod 7).

v2 =
1

7
(2u1 + 2u2 + 2u3 + 2u4 − 5u5 + 2u6 + 2u7)

=
1

7
(−7u5) ≡ −5 ≡ 2 (mod 7),

i.e., v2 ≡ 2 (mod 7).

v3 =
1

7
(−3u2 + u3 + 5u4 + 2u5 − u6 + 3u7)

=
1

7
(−3u1 − 6u2 − 2u3 + 2u4 − u5 − 4u6)

= −3× 1

7
(u1 + 2u2 + 3u3 + 4u4 + 5u5 + 6u6) + u3 + 2u4 + 2u5 + 2u6

≡ −3 · 3 + 3 + 2 · 4 + 2 · 5 + 2 · 6 ≡ 3 (mod 7)

that shows v3 ≡ 3 (mod 7). Similarly the cases for i = 4, 5, 6, 7 can be obtained. Since

M preserves the norm and acts as a permutation on U7, the orbits of M are sets of

seven points where ‖u‖ is constant under M . When we apply seven times we obtain

itself but for each step the exponent of q is constant. Thus we have∑
û∈Z7

7q‖û‖
2/98

which shows that

7|
∑
û∈Z7

7q‖û‖
2/98.

Hence, by (6.6)

7|
∞∑
n=0

p(7n+ 5)qn+1.

Then p(7n+ 5) ≡ 0 (mod 7).

2
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CHAPTER 7

Commentary and further studies

In this thesis we present different proofs of Ramanujan’s congruences for the parti-

tion function modulo 5, 7 and 11 and these can be regarded as identity based con-

gruences. One observes that all proofs we present are performed on identities in

the essence, either by elementary identities, as Euler’s or Jacobi’s identity, or non-

elementary identities, as Winquist’s identity. Neither of them is easy to come with.

However once it has been done one can provide a new proof for that identity. Soon-Yi

Kang’s paper [15] is one of them. He proves Winquist’s identity by simply using quin-

tuple product identities with some replacements. By these Kang also provides a simple

proof for the congruence p(11n+ 6) ≡ 0 (mod 11). We have examined this proof how-

ever we have decided to include the uniform proof of all three congruences,[14], lately,

since it seems appealing and its approach is different from the earlier proofs we have

introduced. Therefore when we notice the papers written by Garvan, Stanton and

Kim, [11], [10] there was no enough time to consider them and to prove the further

remarks that Hirschhorn made in [14]. It is worth to state these for those who want

to go further. First, he completes the uniform poof for the congruence p(11n+ 6) ≡ 0

(mod 11), by claiming∑
n≥0

p(11n+ 6)qn+1 =
1

(q; q)11∞

∑
û∈Z11

q‖û‖
2/242

where u1 + u2 + u3 + . . . + u11 = 0 and ui ≡ i (mod 11), 242|‖û‖2. And using the
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matrix given by

M =
1

11



6 0 5 -1 4 -2 3 -3 2 -4 1

2 2 2 2 2 2 2 2 -9 2 2

-2 4 -1 5 0 6 1 -4 2 -3 3

5 6 -4 -3 -2 -1 0 1 2 3 4

1 -3 4 0 -4 3 -1 6 2 -2 5

-3 -1 1 3 5 -4 -2 0 2 4 6

4 1 -2 6 3 0 -3 5 2 -1 -4

0 3 6 -2 1 4 -4 -1 2 5 -3

-4 5 3 1 -1 -3 6 4 2 0 -2

3 -4 0 4 -3 1 5 -2 2 6 -1

-1 -2 -3 -4 -6 5 4 3 2 1 0


one can show p(11n+ 6) ≡ 0 (mod 11). Hirshhorn also states that:

If a is odd and not multiple of 3 and if 24δ ≡ 1 (mod a) with 0 < δ < a then∑
p(an+ δ)qn+(a2+(24δ−1))/24a =

1

(q; q)a∞

∑
û∈Ua

q‖û‖
2/2a2

where Ua is the set of all û ∈ Za with ui ≡ i (mod a), u1 + · · · + ua = 0 for which

2a2|‖û‖2.

From this general form, with the same idea in modulo 25 and 49, we state that

p(121n+ 116) ≡ 0 (mod 121).

If one goes further to make advances in this area modular forms is useful and

essential tool at some point.
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for (q; q)10∞ with an application to Ramanujan’s partition congruence modulo 11,

The Quarterly Journal of Mathematics 55.1 (2004), 13-30.

[9] S. Chowla, Congruence properties of partitions, Journal of the London Mathemat-

ical Society 1.4 (1934), 247-247.

[10] F. Garvan and D. Stanton, Sieved partition functions and -binomial coefficients,

Mathematics of computation 55.191 (1990), 299-311.

[11] F.Garvan, D. Kim and D. Stanton, Cranks andt-cores, Inventiones Mathematicae

101.1 (1990), 1-17.

[12] G. H. Hardy, ed. Ramanujan, Twelve lectures on subjects suggested by his life and

work, Chelsea Pub. Co., 1959.

66



[13] M.D Hirschhorn, A generalization of Winquist’s identity and a conjecture of Ra-

manujan, J. Indian. Math. Soc. 51 (1987), 49-55.

[14] M.D Hirschhorn, Ramanujan’s partition congruences, Discrete Mathematics 131.1-

3 (1994), 351-355.

[15] Soon-Yi. Kang, A new proof of Winquist’s identity, Journal of combinatorial the-

ory, Series A 78.2 (1997), 313-318.

[16] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927;

reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical

Society, (2000).

[17] S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cam-

bridge Philos. Soc. 19 (1919), 214-216.

[18] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New

Delhi, 1988.

[19] J. Stillwell, Naive lie theory, Springer Science, Business Media, 2008.

[20] G. N. Watson, Ramanujans Vermutung ber Zerfllungszahlen, Journal fr die reine

und angewandte Mathematik, 179 (1938), 97-128.

[21] L. Winquist, An elemntary proof of p(11m + 6) ≡ 0 (mod 11), J. Comb. Thy. 6

(1969), 56-59.

67


	Abstract
	Özet
	Acknowledgements
	Introduction
	Preliminaries
	Ramanujan's congruence mod 5
	An elementary proof
	A less elementary proof
	A non-elementary proof

	Ramanujan's congruence mod 7
	A straightforward proof
	A non-straightforward proof

	Ramanujan's congruence mod 11
	Proof by a two-parameter identity
	Proof by a four parameter identity
	Proof of the four parameter identity

	Proof by only using an identity for (q;q)10 

	A uniform proof for Ramanujan's congruences
	Commentary and further studies
	Bibliography



