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ABSTRACT 

The most crucial demand in manufacturing industry is to improve productivity and 

efficiency of the processes. Cooling strategies play a significant role in determining the quality and 

cost of manufactured parts in machining operations. The present study examines machinability 

under new and alternative cooling methods in turning, milling and orthogonal turn-milling 

operations. It begins with an investigation of tool wear, surface finish, cutting forces and chip 

formation in turning of Ti6Al4V and Inconel 718 using a new cryogenic cooling approach, 

followed by a new assessment to enhance efficiency of cryogenic cooling in turn-milling of Inconel 

718 and steel 1050. Finally, thermal analyses of steel 1050 slot milling and elemental analyses of 

the generated surface for different cooling methods have been presented. 

Keywords: Cryogenic, Tool wear, Surface finish, Hard-to-cut materials, Thermal and Elemental 

Analyses 
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MAKİNE İŞLETMELERİNDE ALTERNATİF SOĞUTMA YÖNTEMLERİNİN DENEYSEL 
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Özet 

İmalat sanayinde en önemli talep, proseslerin verimliliğini arttırmaktır. Soğutma stratejileri, işleme 

operasyonlarında üretilen parçaların kalitesini ve maliyetini belirlemede önemli bir rol oynamaktadır. Bu 

çalışma tornalama, frezeleme ve ortogonal frezeleme işlemlerinde yeni ve alternatif soğutma yöntemleri 

altında işlenebilirliği incelemektedir. Bu çalışma, yeni bir kriyojenik soğutma yaklaşımı kullanarak, 

Ti6Al4V ve Inconel 718'in tornalanmasında takım aşınması, yüzey kalitesi, kesme kuvvetleri ve talaş 

oluşumunun araştırılmasıyla başlıyor, Inconel 718 ve çelik 1050'nin frezeyle tornalama operasuyonu, 

kriyojenik soğutma verimliliğini artırmak için yeni bir değerlendirme ile devam ediyor. Son olarak, çelik 

1050 slot frezelemede termal analizler ve farklı soğutma yöntemleri için üretilen yüzeyin elementel ve temel 

analizleri sunulmuştur. 

Anahtar Kelimeler: Kriyojenik, Takım aşınması, Yüzey kalitesi, Kesilmesi zor malzemeler, Isıl ve 

Element Analizi 
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CHAPTER1     INTRODUCTION 

1.1.    Historical perspective and review of cooling in machining                     

From 16th century, cooling has been applied for the machining operations using water [1]. However, 

water-based cutting fluid and oil entered machining processes in the early 20th century. Cutting 

fluids can dissipate heat from the cutting zone and thus decrease chemical and thermal wear 

whereas enhancing part quality [2, 3, 4, 5, 6]. Nonetheless, recent studies [7, 8] indicate that metal 

cutting fluids are suspected of increasing different types of cancers, larynx, scrotum, rectum 

pancreas and bladder [9, 10]. Jawahir et. al [11] reviews progress of metal working fluids in detail.  

In the 1990s, Minimum Quantity Lubrication (MQL) has emerged whilst improving power 

consumption, surface finish, tool life, etc. in machining. The effectiveness of minimum quantity 

lubrication (MQL) was limited because of low temperature reduction. Furthermore, environmental 

and health hazardous effects of mist oil is not completely understood [12, 13, 14], and thus, many 

promising areas of research is being conducted.   

1.2.     Sustainable machining  

In recent years, sustainable manufacturing has emerged as a new trend in production. Cryogenic 

coolants have been reported to be a sustainable alternative to MQL and conventional metalworking 

fluids. Liquid Nitrogen (LN2) and Carbon dioxide (CO2) due to low temperature are used as a 

coolant in machining whereas different effects and application have been reported in literature. 

Since gas-based metal cutting fluids have lower specific heat capacity and lower molecular density 

in average, it is expected to have lower heat removal energy than for minimum quantity lubrication 

(MQL) spray. Nevertheless, higher heat removal energy is observed for high pressure LN2 and 

CO2 in comparison to MQL. This observation can be refer to the Joule–Thomson effect in which 

result in a drop in its internal energy and temperature when a gas experience adiabatic expansion. 

Furthermore, lower temperature during penetration is an essential influence of CO2 compared to 

liquid nitrogen (LN2) due to Joule–Thomson effect (Lemmon et al, 2011) [15]. Subsequently, 

Jerold and Kumar (2012) observed high deduction in tool wear and cutting forces as well as better 

surface finish for application of CO2 compared to LN2, while LN2 resulted in better cutting 

temperature reduction than CO2 supply [16]. As a result, this study examines alternative cooling 
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based on CO2 whilst it offers advantages of sustainability in combination with better surface finish 

and higher heat removal efficiency compared to LN2.   

1.3.     Literature Survey and Problem Definition of Cryogenic Machining  

1.3.1.    Cryogenic Turning  

Wang and Rajurkar (2000) showed low tool life in turning of Ti6Al4V and Inconel 718 and thus 

designed a cryogenic cooling system for the cutting tool which resulted in improvement in tool life. 

They claimed that keeping tool’s temperature at lower ranges lead to maintain the strength and 

hardness of the cutting tool material [17]. Hong and Ding (2001) investigated various types of 

cryogenic cooling method and reported that the target location of cryogenic cooling plays 

substantial role in dissipating tool’s temperature [18]. Venugopal et al (2007) showed promotion 

of distinct types of tool wear and low tool life during turning of Ti6Al4V and investigated 

effectiveness of cryogenic turning [19]. The experimental results demonstrated that cryogenic 

cooling slowed down the tool wear progress but the effectiveness of cryogenic cooling decreased 

at high cutting speed of 100 and 117m/min, and therefore, claimed that reason could be improper 

penetration of cryogenic cooling. Bermingham et al (2011) reported lower cutting forces and lower 

tool wear when cryogenic coolant was used [20]. Nevertheless, he noted that not only the 

coefficient of friction in tool-chip interfaces did not reduce under cryogenic turning, but also in 

some cases increased in comparison with dry Ti6Al4V cutting. More recently, Rotella et al. (2014) 

noted there is no impact on the friction coefficient under cryogenic lubrication when machining 

Ti6Al4V [21]. To the authors’ opinion, providing lubrication agent to cryogenic coolants could 

make a strong alternative in metalworking operations. In this case, not only the cooling 

characteristic of the cryogenics improve machining operation, but also marginal lubricant effect of 

the cryogenics could be supplemented by improving lubricant effectiveness of the supply. An 

extensive review on cryogenic machining have been published by Kaynak et al (2014) [22]. As can 

be seen from the review, cryogenic machining result in desirable surface integrity characteristics. 

The combination of cooling and lubricant fluid was recently performed in different works. Supekar 

et al. (2012) used supercritical carbon dioxide (SCCO2) based MQL and have shown that SCCO2 

with dissolved lubricant has a higher heat removal potential and heat removal efficiency than 

SCCO2 with no dissolved lubricant[23]. Furthermore, he reported that SCCO2 with dissolved 
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lubricant can be both better coolants and lubricants than conventional metalworking fluids as 

reported by Clarens et al. (2006)[24]. In this system, liquid CO2 pressurized above 7.38 MPa using 

a pump, and heated to its critical point (31.2 °C) as shown by Hyatt (1984)[25]. Pusavec et al. 

(2014) proposed special position for cooling and lubricant where LN2 delivered to the flank face 

while the oil mist was delivered to the rake face[26]. Overall, this method provided lowest cutting 

forces and lowest tool wear in comparison to dry, MQL and cryogenic cooling, but in some of the 

tests, highest cutting force component and the highest tool-wear on both faces resulted for his 

trend. Biermann et al. (2015) reported a better cooling method of cutting edge using combined 

cooling of CO2-snow-cooling and minimum quantity lubrication through a modified tool holder 

where CO2 was supplied from the rake face while MQL was supplied from flank face [27]. 

1.3.2.   Cryogenic Milling 

Effect of cryogenic cooling in milling operation is not well understood. For instance, Cordes et al 

(2014) showed that CO2 reduce tool wear 62% in comparison to MQL when milling [28]. On the 

other hand, Tayler and Schmits reported 89% longer tool life using MQL cooling in comparison to 

CO2 cooling when milling Hatelloy X [29]. However, Pereira et al reported lower tool life for CO2 

compared to MQL, but, they developed a nozzle to combine MQL and CO2, and thus, the 

effectiveness of cooling has been enhanced 9.3% than for MQL in milling Inconel 718 while more 

study needed to demonstrate improvement of cooling [30]. Various cooling methods with a 

comparison of effectiveness and sustainability concerns are displayed in table 1.  
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Table 1: Effectiveness of lubricating and cooling methods [11]. 

    In spite of the fact that cryogenic machıning yielded substantial advantages in comparison to 

other cooling methods, it has still not found a wide use in industry. High improvements in terms 

of machining economics, productivity, and above all part quality could convince the industry to 

use cryogenic cooling. In order to help this, new methods needed to provide lubricant agent to 

cryogenic coolants, whereas they intend to enhance productivity and the benefit of cryogenic 

cooling specially in high speed machining.  

1.4.    Organization of the Thesis  

This thesis includes 4 chapters as is listed below: 

 After this introductory chapter 1, Investigation of machinability in turning of difficult-to-

cut materials using a new cryogenic cooling approach is presented in chapter 2. 

 Chapter 3 is deducted to new assessment to enhance efficiency of cryogenic cooling in turn-

milling of Inconel 718 and steel 1050. 

 In chapter 4, thermal analysis of the various cooling and elemental analysis of the generated 

surfaces under new cooling strategy is studied. 

 In chapter 5, conclusions achieved from this study are presented. The summary of the results 

are reported and future work is outlined. 
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In this study, external application of liquid CO2 and minimum quantity oil as a lubricant (CMQL) 

have been examined as an alternative method for supercritical CO2 and other available types of 

single or lubricant-combined cryogenic techniques in the literature. Among recent cryogenic 

techniques, super critical carbon dioxide such a lubricant-combined method will be problematic 

in industry. This is mainly due to the fact that higher energy is needed to provide and support 

critical pressure and temperature of adequate CO2 in the production line in addition to the high 

cost of this equipment. Moreover, Hong and Ding (2001) reported efficiency of the 

coolants/lubricants in tool-chip interface is much more than workpiece cooling or tool flank face 

cooling in terms of both heat removing and lubricating. As a result, it is hypothesized that CMQL 

on the tool’s rake face without any extra pressurizing and heating to reach supercritical phase of 

CO2 and dissolved lubricant can be more economical and effective. In addition, it produces better 

lubrication and cooling condition rather than various available combined method of cryogenics 

and MQL supply on the cutting tools and the workpiece. Consequently, this study investigated 

three scenarios with the same consumption of CO2 (CO2/CO2+MQL/CMQL) in addition to 

modified CO2 nozzle technique with higher consumption of CO2 with respect to best performance 

of CO2 nozzles in the literature. Since, cryogenic coolants have less impact on machinability at 

high speeds than low speeds as reported by Venugopal et al (2007), high cutting speed of 150 

m/min and 100 m/min were selected for Ti6Al4V and Inconel 718 cutting respectively. In order 

to experimentally verify these hypotheses, tool wear, surface finish, chip formation and cutting 

force measurements were conducted to compare machinability under each cooling scenario. As a 

result, the CMQL technique offers a new and alternative solution to enhance the efficiency of high 

speed cryogenic machining leading to higher tool life and better surface finish.         

2.1.   Experimental setup 

2.1.1.   Experimental procedure and process strategy 

The turning operation was carried out on Mori Seiki NL 1500 CNC-Turning lathe. Uncoated 

carbide inserts with designation of TPGN160308 and nose radius of 0.8mm were clamped on tool 

holder to provide a lead angle of 0◦ and a rake angle of -5◦, which was held by Kistler Piezo-

dynamometer to measure forces. The workpiece material of the Ti6Al4V and Inconel 718 have 

been used. Data logging was done by Lab View Signal Express software. Since, high cutting speed 

results in higher rate of wear, cutting speed of 150m/min and 100m/min were selected in the tests 
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of modified and new method of cooling. Other cutting parameters used in the tests were 

f=0.2mm/rev and ap=1mm as displayed in Table 2. The experiment repeated five times for each 

cutting method and then, the average of each measurement reported for the behavior of tool wear, 

surface roughness and cutting forces.  

 

Cutting speed 

(m/min) 

Feedrate 

(mm/rev) 

Depth of cut 

(mm) 

Cooling methods (varies for each 

listed techniques below) 

  Ti6Al4V  

150 0.2 1 CO2 (rake) 

150 0.2 1 CO2 (rake)+MQL(flank) 

150 0.2 1 CMQL(rake) 

150 0.2 1 Cryogenic CO2 (modified nozzle) 

  Inconel718  

100 0.2 1 CO2 (rake) 

100 0.2 1 CO2 (rake)+MQL(flank) 

100 0.2 1 CMQL(rake) 

100 0.2 1 Cryogenic CO2 (modified nozzle) 

Table 2: Cutting Data 

2.1.2.   Tool wear measurement and analysis method 

The progress of tool wear was measured by Dino-Lite digital microscope which was attached to 

the machine tool using a magnetic clamp to measure the tool wear without removing insert from 

tool holder as is displayed in Figure 1-a. This method of measurement enables measurement to be 

done for the fixed position of the insert eliminating potential error sources due to successive 

clamping and un-clamping of the insert during the tests. Wear measurements in every repeated 

trial and for every types of wear were done three times and the average was taken as the result. 

After reaching average flank or nose wear of 300µm cutting tests were aborted according to ISO 

3685. Besides, the criteria for maximum flank wear and notching at the depth of cutline was 600µm 
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for Inconel 718. Nonetheless, the limit of 400µm was selected for maximum and notch wear of 

Ti6Al4V due to lower progress of these wear in comparison to Inconel 718. 

2.1.3.   Surface roughness measurement  

      The surface roughness measurement was carried out with mobile roughness instrument Mahr 

PRN10, which was attached to machine tool by a magnetic clamp as is displayed in Figure 1-b. 

 

Figure 1: a) Tool wear measurement method using portable digital microscope without removing 

inserts from tool holder and machine tool. b) Surface roughness measurement strategy using 

portable roughness measuring instrument without detaching workpiece from spindle.   

2.1.4.   Chip morphology analysis 

In order to compare different types of cooling methods, the produced chips ranging from 7 to 11 

meter cutting length were characterized under SEM to investigate behavior of chip breakage and 

their microstructures.  

2.2.   Cooling methods 

2.2.1.   Cryogenic CO2 system 

In order to investigate the effects of various cryogenic coolants, various cooling types were applied 

during turning operation, where the base of applied coolants were cryogenic CO2 due to its 

environmental friendliness. A carbon dioxide cylinder containing combination of gaseous and 

liquid CO2 was used in the tests. The pressure in the cylinder was approximately 57 bar at 200C. 

If liquid CO2 is abruptly depressurized during injection, its temperature considerably drops 
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producing a mixture of CO2 gas and CO2 snow. The CO2 tubes were renewed when the pressure 

of the CO2 were decreased down to 54bar. The temperature of CO2 snow theoretically is −79.050C. 

The cylinder was connected to the digital pressure gage to monitor the pressure drop. The pressure 

was dropped for a while after activating CO2 until reaching stable outlet pressure condition. For 

that reason, cooling was activated before cutting. All connection parts were made of stainless steel 

and resistant to high pressure to supply CO2 through the nozzle. 

2.2.2.   Combination of MQL and CO2 

The new method of cooling was carried out using combination of MQL and CO2, where both 

coolants supplied from the rake face (CMQL). In this method, the injected liquids meet each other 

before reaching the cutting zone as frozen oil particles, thereby making a different attempt in 

comparison to separately cooling/lubricating each faces of cutting tool and workpiece or using the 

supercritical CO2 in turning of the hard to cut materials. The nozzle of CO2 with diameter of 0.5mm 

and distance of 1.25mm was fixed from the center of the cutting edge. The nozzle was supplied to 

cutting zone with the angle of 15◦ from both the planes of xz and zy as shown in Figure 2-a. The 

nozzle of MQL was supplied to the outlet of CO2 nozzle with the angle of 90◦C as displayed in 

Figure 2-c. As CO2 was injected at the pressure of 57bar and average flow rate of about 3g/s, oil 

was conveyed by means of the high pressure CO2 to the cutting zone. Vegetable oil with boiling 

point of 2000C and melting point of −39◦C was used in micro lubrication system to spray at the 

pressure of 6 bar and flow rate of 100cc/min for a period of 0.1 second with 0.4 second 

interruptions. Moreover, while the mentioned position for CO2 was kept constant, the position of 

the MQL nozzle located 6 mm from the center of the cutting edge with fixed position was changed 

from the rake face to flank face in order to limit the number of variables, as shown in figure2-b. 

As the last type of coolant the MQL system was stopped while only the CO2 with thin nozzle was 

supplied to the cutting zone. 

The authors believe that CMQL is sensitive and hard to create correctly for the first time. There is 

a limited space on the rake face to supply 2 coolants simultaneously. In addition, the higher 

pressure of CO2 may prevent the oil entering the cutting edge. Using low flow rate of CO2 makes 

application of CMQL possible in practice. An underlying key point to the control of CMQL 

technique is making sure that the oil enters the cutting zone. The solidification of the oil with CO2 
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resulted in higher adhesion of the oil. Thereby,   where applied vegetable oil had red color, 

solidified light red material due to frozen oil should be created clearly on whole cutting edge line. 

This clue can be observed from down view of flank face when delivery was done correctly. 

Furthermore, when the workpiece obstruct the CMQL supply before cutting, the frozen oil 

particles emerge on workpiece absolutely as is shown in figure3.   

2.2.3.   Modification of CO2 supply 

The performance of the cryogenic cooling can be enhanced further by optimizing the position of 

the nozzle as discussed by Hong et al(2001). The modification of CO2 nozzle is regarded in terms 

of easy to assemble, occupying less space, having suitable distance and angle from cutting zone as 

well as less pressure drop.  The cryogenic cooling nozzle was designed to supply CO2 from the 

rake and the flank faces, simultaneously. In this regard, one head open tube with diameter of 

2.5mm was connected to the CO2 cylinder, while it bended through the cutting edge. Two holes 

with diameter of 1mm were drilled on the steel tube where the angle of holes from rake and flank 

planes were about 15◦.  Creation of these angles was possible to the reason of tube wall thickness. 

Moreover, distance of 1.25mm was maintained from the center of the cutting zone by moving and 

fixing the tube on the insert. The above mentioned design not only helps covering rake and flank 

faces using less space, but it also contributes to approach nozzle to high efficiency positions. Other 

advantages of the proposed nozzle is to facilitate using different holders and insert designs in 

machine shops without damaging tool holders as is displayed in figure 2-d and figure 4. 
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Figure 2: Schematics of the applied cryogenic cooling methods in turning. a) CO2 delivery on the 

rake face. b) CO2+MQL supply where CO2 delivered from rake face and MQL supplied from flank 

face c) directing CMQL technique on the rake face d) modified CO2 delivery 

 

Figure3: CMQL supply is 

obstructed by workpiece 
Figure 4: Modified externally CO2 delivery; 

 a) During supply b) After supply 
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2.3.   Experimental results and discussion 

2.3.1.   Tool wear 

 Cryogenic liquid CO2 is able to reduce tool wear due to lower temperature, which is a function of 

the cooling method as well. The progresses of the maximum and average primary flank wear as 

well as  nose wear and notching at the depth of cut line for each scenario are illustrated respectively 

in Figure 5 for Ti6Al4V and in Figure 6 for Inconel 718. As summarized in Tables 2 and 3, the 

effectiveness of each method is different. The effectiveness of CO2 cooling can be increased 

substantially with a lubricant. The technique of CMQL enhanced tool life about 60% when 

compared to CO2+MQL in Ti6Al4V machining, where, this improvement was about 30% in 

Inconel 718 cutting. However, CO2+MQL did not improve tool life in cutting of Inconel 718. The 

notable reason for improvements under CMQL could be, first, higher penetration of the oil to the 

chip-tool interface leading to more reduction of heat transfer in addition to lubricant efficiency. 

Second, higher heat removal efficiency due to the frozen or low temperature oil. In comparison of 

the only cryogenic coolant with the combination of oil and super critical temperature of CO2, 

higher heat removal potential and heat removal efficiency was reported by Supekar et al., further 

investigation on generated surface and chip morphologies help to prove this claim precisely. The 

third reason can be claimed as, the creation of pre-cooling condition via CMQL in addition to 

direct cooling/lubricating[26]. The direction of CMQL spray lead to put low temperature oil on 

workpiece as well, whereas this issue can behave as workpiece pre-cooling. Forth, less oil smell 

and vapor during CMQL machining indicate that heat extraction with CO2 results in reduction of 

oil burning and evaporation. The flank cooling or lubricating lead to heat removal from the flank 

face which is the reason for high effectiveness  of CO2+MQL and modified nozzle methods. 

Hence, the failure location altered respect to each strategy as is a function of cooling type and 

method as is shown in table 3 and 4. The authors believe that in scenario of CO2+MQL, the 

significant reason for the tool life improvement is not only flank lubricant, because oil doesn’t 

penetrate as much as CO2 on the flank wear area due to lower pressure. In this method as explained 

for CMQL, to some extent oil cover on workpiece and this can work as a workpiece precooling as 

well. Nevertheless, these effects are decreased for Inconel 718 due to higher hardening and 

generated temperature. Furthermore, effect of CMQL on Inconel 718 turning was more than 
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modified nozzle along with less consumption of CO2 into account. It points out that rake face 

lubricant in too hard to cut materials is more significant. 

 

Condition Failure location Cutting 

length(m)* 

Improvement ** 

CO2 Average/Maximum 42.8 - 

CO2+MQL Average flank wear 118.9 177(%) 

CMQL Maximum flank wear 190.9 345(%) 

Modified nozzle Average/Maximum 211 392(%) 

* 

Cutting length when the tool wear reached criteria 

** 

Improvement in comparison to CO2 delivery 

Table 3: Tool life for each cutting condition and improvement with new alternatives during 

Ti6Al4V 
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Figure 5: a) Maximum flank wear growing behavior as a function of cutting length through the 

cooling strategy during Ti6Al4V turning at 150m/min. b) Average flank wear growing behavior as 

a function of cutting length through the cooling strategy during Ti6Al4V turning at 150m/min. c) 

Nose wear growing behaviour as a function of cutting length through the cooling strategy during 

Ti6Al4V turning at 150m/min. d) Notching at the depth of cut line as a function of cutting length 

through the cooling strategy during Ti6Al4V turning at 150m/min. 
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Condition Failure location Cutting 

length(m)* 

Improvement ** 

CO2 Average flank wear 37.4 - 

CO2+MQL Average flank wear 36.8 0(%) 

CMQL Average flank wear 51.9 30(%) 

Modified nozzle Average flank wear 42.9 14(%) 

* 

Cutting length when the tool wear reached criteria 

** 

Improvement in comparison to CO2 delivery 

Table 4: Tool life for each cutting condition and improvement with new alternatives during Inconel 

718 turning 
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Figure 6: a) Maximum flank wear growing behavior as a function of cutting length through the 

cooling strategy during Inconel 718 turning at 100m/min. b) Average flank wear growing behaviour 

as a function of cutting length through the cooling strategy during Inconel 718 turning at 100m/min. 

c) Nose wear growing behaviour as a function of cutting length through the cooling strategy during 

Inconel 718 turning at 100m/min. d) Notching at the depth of cut line as a function of cutting length 

through the cooling strategy during Inconel 718 turning at 100m/min. 

 

2.3.2.   Cutting forces 

Figure 7 shows force components exerted under distinct cooling method during turning operation 

where Fx, Fy and Fz are displaying thrust force, radial force and feed forces respectively.  The 

study’s outputs as shown in Figure 7-a exhibit that during Ti6Al4V turning, all three cooling 

methods with same consumption of CO2 have the same thrust force but the less radial and feed 

force are generated for CMQL strategy. Nonetheless, as displayed in Figure 7-b during cutting of 

Inconel 718 thrust forces were found in the order of high to low as CO2>MQL+CO2>CMQL. The 

radial and feed forces was approximately equal for CMQL and CO2+MQL whereas both were 
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lower than CO2 supply. In the both Inconel 718 and Ti6Al4V turning when modified nozzle 

compared to the CO2 supply, the thrust force reduced but feed and radial forces have different 

behavior. The reason could be because of higher flow of CO2 resulted to lower temperature as well 

as increasing of hardness and strength of the workpiece, then, cutting forces increase as discussed 

by Hong et al (2001). Bermingham et al. (2011) reported lower cutting force for simultaneously 

flank and rake face cryogenic cooling in comparison to only rake cooling. This idea cannot fairly 

apply for or judge in current study because there is no equal rake face supply between CO2 and 

modified nozzle delivery. Then, in participant of two variable, comparison is not reasonable. 

 

Figure 7: a) The comparison of the cutting forces through the cooling strategy during Ti6Al4V 

turning at 150m/min. b) The comparison of the cutting forces through the cooling strategy during 

Inconel 718 turning at 100m/min. 

 

2.3.3. Surface finish 

The effect of introduced cryogenic methods on surface roughness and quality have been 

investigated. Figure 8 for Ti6Al4V and figure 9 for Inconel 718 display surface roughness 

variation as a function of cutting length at different cooling methods. It is realized that the surface 

roughness under CMQL cooling is remarkably less than CO2+MQL and CO2 supply. Furthermore, 

for the most cases, surface roughness under CMQL is decreased in comparison to modified CO2 

delivery. Sample of machined surface between cutting length of 5 and 10 meter for both combined 

lubricant/cooling methods was captured with Scanning electron microscopy (SEM). As displayed 

in figure 10-a during Ti6Al4V turning and figure 11-a during Inconel 718 machining, it can be 
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observed that deformed feed lines, micro-porosity and tiny pits as well as leaving some debris of 

working material are the consequences of CO2+MQL supply. On the other hand, figures 10-b and 

11-b indicate to the surface with better quality using CMQL method in comparison to CO2+MQL 

supply. Moreover, the use of only CO2 supply not only found the same defaults with CO2+MQL 

but also tiny cracks due to chips breakage observed as shown in figure11-c. The participation of 

oil in CMQL can be the reason for the improvement in the surface quality. Indeed, making use of 

CMQL method not only yields a higher cooling performance, but it also gives rise a better surface 

quality where some drawbacks such as left debris, uneven feed lines and tiny cracks are absent.  

 

Figure 8: a) The comparison of the roughness average (Ra) of the surface under different cooling 

method during Ti6Al4V turning at 150m/min. b) The comparison of the mean roughness depth 

(Rz) under different cooling method during Ti6Al4V turning at 150m/min. 
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Figure 9: a) The comparison of the roughness average (Ra) of the surface under different cooling 

method during Inconel 718 turning at 100m/min. b) The comparison of the mean roughness depth 

(Rz) under different cooling method during Inconel 718 turning at 100m/min. 

 

Figure 10: a) SEM image of generated surface under CO2+MQL when adopting a cutting speed 

of 150 m/min and a feed rate of 0.2 mm/rev in Ti6Al4V turning. b) SEM image of generated 

surface under CMQL when adopting a cutting speed of 150 m/min and a feed rate of 0.2 mm/rev 

in Ti6Al4V turning. 
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Figure 11: a) SEM image of generated surface under CO2+MQL cooling technique when adopting 

a cutting speed of 100 m/min and a feed rate of 0.2 mm/rev in Inconel 718 turning. b) SEM image 

of generated surface under CMQL turning when adopting a cutting speed of 100 m/min and a feed 

rate of 0.2 mm/rev in Inconel 718 turning. c) SEM image of generated surface under CO2 when 

adopting a cutting speed of 100 m/min and a feed rate of 0.2 mm/rev during turning of Inconel 

718. 
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2.3.4.   Chip morphology 

The investigation of chips under SEM was carried out to observe area of serrations, shear bands 

and shear zone. As shown in Figure 12 and 13 various chip morphologies created under different 

cooling/lubricant scenarios. The serrations of Ti6Al4V under CMQL and modification of CO2 

supply, clearly are separated by shear bands or primary shear zone and also shear bands have sharp 

and direct lines comparing to CO2 delivery and CO2+MQL strategy leading better chip 

breakability. Furthermore, examining back of the chips revealed that produced chips under CMQL 

supply have a smoother chip backside in comparison to other methods. The reason can refer to 

lower stick and friction of the generated chip under CMQL. When the produced heat in the tool-

chip-workpiece interfaces cannot be removed rapidly and/or transfer to chip, tool and workpiece, 

as a consequence, elevated temperature lead to more deformation in the backside of the chip.  As 

pointed out before, CMQL produce better lubrication which lead to decrease contact length and 

lower heat generation. Thicknesses of the segments under all methods of cooling are not equal, 

implying to different shear stresses. Mentioned effect for each cooling satisfy for generated chip 

during Inconel 718 turning. Since Inconel 718 is harder than Ti6Al4V, CMQL impacted on chip 

morphology with better diagnostic as shown in figure 13-c. 
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Figure 12: a) Micro-structure of resulted chips under CO2 cooling during Ti6Al4V turning at 

velocity of 150m/min and feedrate of 0.2 mm/rev. b) Micro-structure of resulted chips under 

CO2+MQL cooling method during Ti6Al4V turning at velocity of 150m/min and feedrate of 0.2 

mm/rev. c) Micro-structure of resulted chips under CMQL cooling strategy during Ti6Al4V 

turning at velocity of 150m/min and feedrate of 0.2 mm/rev. d) Micro-structure of resulted chips 

under modified nozzle during Ti6Al4V turning at velocity of 150m/min and feedrate of 0.2 

mm/rev. 
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Figure 13: a) Micro-structure of resulted chips under CO2 delivery when adopting a cutting speed 

of 100 m/min and a feed rate of 0.2 mm/rev during turning of Inconel 718. b) Micro-structure of 

resulted chips under CO2+MQL cooling method during Inconel 718 turning at velocity of 

100m/min and feedrate of 0.2 mm/rev. c) Micro-structure of resulted chips under CMQL cooling 

strategy during Inconel 718 turning at velocity of 100m/min and feedrate of 0.2 mm/rev. d) Micro-

structure of resulted chips under modified nozzle during Inconel 718 turning at velocity of 

100m/min and feedrate of 0.2 mm/rev. 
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2.4.    Summary 

     The present study examines modification of externally cooling for supplying cryogenic liquid 

(CO2) to tool-chip-work interfaces in turning operation. A new and alternative cooling technique 

is proposed to improve effectiveness of cryogenic cooling in high speed machining. The 

combination of carbon dioxide and minimum quantity oil as a lubricant (CMQL) supplied from 

rake face are compared with supplying CO2 and MQL from rake and flank face, respectively as 

well as only CO2 supplied from rake face, in turning of Ti6Al4V and Inconel 718. Tool wear and 

surface roughness were measured on the machine during cutting tests at different stages of tool 

life. The workpiece and produced chips were also characterized by scanning electron microscopy 

(SEM). The results revealed improvement of tool life and surface finish using the modified 

cryogenic cooling method. Based on the systematical test results CMQL was identified as the 

most favorable cooling method considering tool wear, surface finish, chip formation and cutting 

forces as well as less consumption of CO2. 
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CHAPTER 3   NEW ASSESMENT TO ENHANCE EFFICIENCY OF CRYOGENIC 

TURN-MILLING  
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3.1.   Orthogonal Turn-Milling 

Turn-milling is one of the new cutting processes that combines turning and milling operations. The 

generation of lower cutting temperatures in turn-milling operation result in longer tool life and 

thus, higher cutting speed can apply for the cutting process. In this study orthogonal turn-milling 

used for the investigation of cooling strategies. The schematic of orthogonal turn-milling operation 

is displayed in Figure 14. In orthogonal turn-milling the direction of the cutting tool is 

perpendicular to the work piece rotation axis. That is why, in orthogonal turn-milling the chip is 

formed by the action of bottom and side part of the cutting tool. In orthogonal turn-milling, cutting 

motion refer to the tool rotation and feed motion results from work piece rotation in addition to 

cutting tool movement which is parallel to axis of the work piece.  

 

Figure 14: Orthogonal turn-milling. 

In orthogonal turn-milling, it is possible to offset the tool in Y-axis however as result of this chip 

thickness changes. The distance between work piece and tool is called cutting tool offset or tool 

Y-axis compensation or shortly eccentricity. When cutting tool rotation axis and work piece 

rotation axis intersect, operation is called concentric orthogonal turn-milling, otherwise, if there is 

no intersection, operation is called eccentric orthogonal turn-milling. The cases are displayed in 

Figure 15. 
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Figure 15: Cutter offset in orthogonal turn-milling. 

Cutting tool offset is a particular parameter in orthogonal turn-milling. This compensation in 

orthogonal turn-milling lead to alter chip formation whilst offset value increases only side of the 

cutting tool is involved in the chip formation depending size of depth of cut.  

3.2.   Experimental setup 

Turn-mill operation under different cooling method carried out to investigate behavior of the tool 

wear under each cooling strategy as is displayed in figure 14-19. The workpiece material of the 

Inconel 718 and steel 1050 have been used. In addition, milling tool with designation of 217.69-

03 having three cutting teeth was used, whereas, inserts with grade of F40 M and MP 2500 were 

attached to cutting tool for the Inconel 718 and steel 1050 cutting, respectively. Cutting parameters 

selected as is shown in table 5. Optimum axis offset of 12.5 mm was defined for this cutting tool 

during the experiments. The position of nozzle for the method of MQL+CO2 were 30° and 60° 

Eccentric orthogonal turn-milling 

Concentric orthogonal turn-milling 
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from workpiece direction for CO2 and MQL nozzle, respectably. The supply of CO2 in 

discontinuous CO2 cooling was selected 4second supply after 12 second stop repetitively, in which 

the oil was spraying during stop states of CO2 supply.    

(V)Cutting speed 

(m/min) 

(ae)Feedrate 

(mm/rev) 

(ap)Depth of cut 

(mm) 

Cooling methods (varies for each 

listed techniques below) 

  Inconel718  

45 8 0.2 CO2 (nozzle with diameter of 0.5 mm) 

45 8 0.2 Flood 

45 8 0.2 MQL with flow rate of 17mm/h 

45 

45 

8 

8 

0.2 

0.2 

MQL+ discontinuous CO2  

MQL+ continuous CO2  

  Steel 1050  

400 8 0.5 Dry 

400 8 0.5 Flood 

400 8 0.5 MQL with flow rate of 17mm/h 

  400 8 0.5 MQL+ continuous CO2 
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3.3.   Result and discussion  

Results pointed out that unlike the turning operation, CO2 cooling increases the tool wear in 

milling operation as is shown in figure 21 for Inconel milling. The reason can refer to the range of 

generated temperature. CO2 cooling is only suitable for the high speed machining which generates 

higher temperature, while participant of CO2 cooling can balance the temperature. On the one 

hand, milling operation produces lower temperature on each inserts in comparison to turning 

operation due to discontinuous cutting and number of cutting edge. On the other hand, low cutting 

speeds generate lower temperature and CO2 supply result in extra cooling. As a result, extra 

cooling increases cutting forces and lead to more thermal stress shocking, thereby breaking the 

cutting edge.  

 

Figure 34: Dry Figure 15: Flood Figure 16: CO2 

Figure 18: MQL+ 

continuousCO2 

Figure 19: MQL+ 

discontinuous CO2 

Figure 17: MQL 
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In spite of the fact that combination of CO2 and MQL produced the most effective method during 

turning of hard to cut material, this external strategy cannot improve 

machinability in the turn-mill operation and the tool wear was obtained exactly 

the same as CO2 cooling. This shows that oil cannot penetrate to cutting edge 

in continuous CO2+MQL cooling. As is displayed in figure 20 solidified CO2 

on the milling tool result in solidification of the oil on the external body of 

cutting tool before reaching cutting zone. Besides, when the experiment was 

done with low depth of cut, thus, there is no enough heat generation on side 

edge of the cutter to liquefy frozen oil. That is why, discontinuous CO2 cooling 

in addition to MQL cooling such a plug and play system have been applied to 

create adequate time to both cooling and lubricating of cutting edges using CO2 and MQL in order. 

This method found longest tool life among different cooling strategies as is shown if figure 21 and 

22. 

 

 

Figure20: The 
resistance of 
solidified CO2 to 
penetration of oil 
to cutting zone 
during continuous 
CO2+MQL.  

 

Figure 21: Tool wear results for Inconel 718 under different cooling condition in V=45m/min, ap=0.2mm, ae=8mm/rev.  
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To sum up, combination of MQL and discontinuous CO2 improved tool life during Inconel 718 

and Steel 1050 cutting. Nonetheless, it was needed to investigate heat removal efficiency and final 

part quality in detail. To this purpose, cylindrical workpiece which attach to turn-milling machine 

was limited to examine most of the microstructural analysis, consequently, milling operation on 

Steel 1050 carried out to measure heat removal efficiency of each cooling method in addition to 

surface finish analysis. The next chapter discusses the procedure precisely.  

3.4.    Summary  

Turn-milling operation is emerging nowadays as an alternative to conventional milling and 

turning. This operation provides high performance machining, leading to lower cutting forces and 

lower temperature as well as longer tool life and final part quality. Since cryogenic machining has 

been shown marginal effects in turning and milling operations in literature. Therefore, there is a 

need to investigate cryogenic turn-milling specifically. In this chapter, the effect of cryogenic turn-

milling is investigated for the first time, yielding conclusion for the alternative method to 

improvement and optimization of cryogenic cooling.         
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Figure 22: Tool wear results for steel 1050 under different cutting condition V=400m/min, ap=0.5mm, ae=8mm/rev. 
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CHAPTER 4    THERMAL ANALYSES AND ELEMENTAL ANALYSES OF THE 

GENERATED SURFACE OF STEEL 1050 MILLING FOR THE DIFFERENT COOLING 

METHODS 
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4.1. Experimental setup  

Most types of tool wear in machining such as abrasive wear, adhesive wear and diffusive 

wear, result from generated heat in the cutting processes. In this chapter slot-milling operation 

has been carried out on a CNC milling center “MAZAK NEXUS 510 CII” as is shown in figure 

23. The same cooling methods for CO2 cooling and CO2+MQL which was shown in figure 16 

and 19 in mill-turn operation, have been repeated for steel 1050 slot-milling.  Coated carbide 

inserts with designation of R390-11 T3 4240 were clamped on cutting tool with diameter of 

16mm of the tool manufacturer Sandvik, which was held by Kistler Piezo-dynamometer to 

measure forces. Data logging was done by Lab View Signal Express software. Since, high cutting 

speed results in higher rate of wear, spindle speed of 7961 were selected. Other cutting parameters 

used in the tests were f=500m/min and ap=1mm.  

To measure temperature of cutting zone, K-type thermocouples were planted into holes inside of 

both bottom surface and vertical wall side surface while the thermocouple measurement place were 

located close to cutting cutting edge as is displayed in figure 24, whereas, on the one hand there 

were no left material between thermocouple and cutting area, on the other hand thermocouples 

should not touch the milling tool at all. This phenomena control after each test using Dino-Lite 

digital microscopy. Otherwise, the test was rejected and the new part manufactured to repeat the 

test. The holes were filled using silicon cement with high thermal conductivity to ensure good heat 

conduction between the tool material and the thermocouple bead. The generated bottom surface 

Figure 23: Test setup for measuring cutting temperature and forces. 
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and vertical wall side surface characterized by scanning electron microscopy (SEM) and Energy 

dispersive X-ray spectroscopy (EDX).  

 

4.2.   Result and discussion 

Figure 25 and 26 show SEM image of bottom of machined surface under CO2 and CO2+MQL 

cooling respectively. As can be seen in figure 25, generated surface under CO2 have some re-

deposit of work material and higher roughness than for CO2+MQL. The reason of rougher surface 

of CO2 cooled could be lower lubrication or lower temperature than for generated under CMQL 

cooling.  

 

 

 

 

 

 

Figure 24: thermocouple implanted workpice after cutting 
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The obtained results from measurement of the temperature could support the hypothesis. Figure27 

shows complete thermal behavior of the each cooling measured with 3 thermocouple implemented 

bottom surface of slot milling. The results pointed out that average maximum temperature in the 

order of high to low were as MQL>CMQL>CO2. Furthermore, average minimum temperature 

were found in the order of high to low as MQL>CO2>CMQL as is shown in figure 28 and 29. 

Nonetheless, the behavior of temperature for CO2 cooling in comparison to CMQL cooling on the 

vertical side wall surface and bottom surface was different. When CO2 cooling shows higher 

temperature on vertical wall, it shows that CO2 evaporate locally and thus, cannot penetrate to the 

cutting area and plays role of lubricant. 

Figure 25: SEM image of generated bottom surface of slot milling under CO2 cooling 

 

Figure 26: SEM image of generated bottom surface of slot milling under CO2+MQL cooling 
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Figure 27: Thermal behavior of each cooling strategy measured from bottom surface of slot milling 



37 
 

 

 

 

 

0

20

40

60

80

100

120

M
a

x
im

u
m

 T
em

p
er

a
tu

re
(°

c)

MQL    CO2    CMQL

Bottom surface of slot-milling

0

20

40

60

80

100

M
a

x
im

u
m

 T
em

p
er

a
tu

re
(°

c)

MQL   CO2    CMQL

Vertical side wall surface of          

slot-milling

-15

-10

-5

0

5

10

15

20

25

M
in

im
u

m
 T

em
p

er
a

tu
re

(°
c)

MQL     CO2     CMQL

Bottom surface of slot-milling

-10

-5

0

5

10

15

20

25

M
in

im
u

m
 T

em
p

er
a

tu
re

(°
c)

MQL     CO2     CMQL

Vertical side wall surface of  

slot-milling

Figure 28: Maximum temperature measured on bottom and vertical side wall surface of slot 

milling 

Figure 29: Minimum temperature measured on bottom and vertical side wall surface of slot 

milling 
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4.3.     Elemental Analysis of the Specimens 

Energy dispersive X-ray spectroscopy (EDX) was employed to determine the presence and 

quantities of chemical elements by detecting characteristic X-rays, emitted from atoms irradiated 

by electron beam for the specimens which were machined under two different cooling strategies.  

In EDX spectroscopy, chemical species are identified by using the energy of characteristic X-rays 

of elements that are present in the specimen. When electron beam with a particular energy 

bombards the sample, it strikes an electron in the inner shell of an atom and knocks an electron out 

of its original position in an atom (ionization). The atom will quickly return to its normal state after 

refilling the inner electron vacancy by an outer shell electron (relaxation). The energy difference 

between the outer shell electron and the inner shell electron will generate a characteristic X-ray of 

that particular atom which is unique for each element and can be regarded as a fingerprint for 

identification of elements. 

 

Figure 30: Generation of characteristic X-ray as a result of electron-mater interaction during EDX 

elemental analysis. 

The generated characteristic X-rays are then collected by a detector which is made of a 

semiconductor silicon crystal. Absorption of x-ray energy excites electrons from filled valence 

band to conduction band of the Si detector and generates electron-hole pairs (Fig.31.a). The 

number of electron-hole pairs created is directly proportional to the energy of the X-ray photon. 
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By applying a bias across the crystal, the holes are swept to one side, the electrons to the other, 

producing a weak charge. The pulse is digitized and the X-ray energy that generated the pulse is 

computed (Fig.31.b). The number of counts per second is then plotted versus the energy of X-rays 

on the spectrum which is known as the elemental analysis. 

 

 

 

Figure 31: Mechanism of characteristic X-ray absorption by EDS detector. 

 

Figure 32 shows the electron micrograph and corresponding qualitative elemental analysis of the 

generated bottom surface under CO2 cooling conditions. As can be seen, beside the main elements, 

i.e Fe and C, the presence of a small amount of Al can be observed which can be due the penetration 

of Al from the cutting tool into the specimen. The distribution of existing elements in the surface 

of the CO2-cooled sample is also displayed in the map micrographs as is displayed in figure 33. 
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Figure 32: SEM image and EDS Spectrum of CO2 sample. 

 

Figure 33: Distribution of elements over the sample of the generated surface under CO2 cooling. 

 

Figure 34 shows the SEM image of the wall side surface (cutting affected zone) during slot milling 

operation in the CO2 specimen. As can be seen, macroscopic left debris and considerable surface 

roughness are present on the surface of the specimen when it is cooled by CO2 during cutting 

operation.  

In addition, EDX point analyses were performed on different locations of the vertical side wall 

surface and the results are shown in figure 35.  As is shown, the content of Al entered to the wall 

from the cutting tools in this regions are clearly detectable. 
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Figure 34: SEM image of the wall side surface under CO2 cooling 

Figure 35: EDX point analyses of the wall side surface under CO2 cooling 
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SEM image and the corresponding qualitative EDX analysis of the sample from bottom surface of 

cooled with CMQL method is illustrated in figure 36.  It reveals that when the specimen is cut 

under CMQL cooling conditions, there is no Al present in the surface of the sample. The 

distribution map of elements in the surface of the sample is presented in figure 37. 

 

Figure 36: SEM image and EDS Spectrum of the generated surface under CMQL cooling. 

 

Figure 37. Distribution of elements over sample of generated surface under CMQL cooling. 

 



43 
 

Figure 38 shows the SEM image of the wall (cutting affected zone) during slot milling operation 

in the CMQL specimen. Under this cooling method the magnitude of surface roughness are quite 

low in comparison to that of CO2 cutting. EDX point analyses (Fig 39) clearly confirms that there 

is no Al residual in the cutting region. Likewise, the amount of oxygen is higher than its counterpart 

Figure 38: SEM image of the wall side surface under CMQL cooling 

Figure 39: EDX point analyses of the wall side surface under CMQL 

cooling 
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in the CO2 cooled sample. The elemental analyses supported better heat removal and lubrication 

effects in CO2+MQL cutting.  

4.4.   Summary 

In this chapter CO2+MQL is applied to slot milling of steel 1050. With the purpose of identifying 

the cooling strategy for the most effectively using cryogenic cooling, this study evaluated cutting 

temperatures generated under various cooling methods. In addition, elemental analyses carried out 

to show the effect of each cooling in cutting zone.  
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CHAPTER 5   CONCLUSION 

 

This study has presented new and alternative cooling method to enhance efficiency of cryogenic 

machining. The major conclusions drawn are as follows: 

- CMQL technique introduced as an alternative cooling technique enhanced productivity and 

final product quality with low cooling rate consumption. 

- The modification of cryogenic supply could improve cooling condition in turning of hard 

to cut materials. 

- CMQL supply reduced tool wear and developed surface quality in comparison to other 

scenarios. 

- CMQL method with fixed cooling rate and lubricant increased tool life up to 60% and 30% 

during Ti6Al4V and Inconel turning in order, along with increasingly enhanced surface quality in 

comparison to CO2+MQL supply method. 

- Investigation of microstructural study from generated surfaces and chips pointed out that 

CMQL technique result in higher heat removal efficiency in addition to reduction of tool-chip 

contact length due to better generated surface and smoother chip backside with compare to other 

methods. 

- Different behaviour of cutting forces observed under cooling scenarios for Ti6Al4V cutting 

in comparison to Inconel 718 turning. 

- CMQL supply enhanced tool life about 16% with compare to modified nozzle during 

Inconel 718 cutting. Despite the fact that tool life under CMQL strategy during Ti6Al4V 

machining is decreased 9% compared to modified CO2 nozzle, the consumption of CO2 for CMQL 

is 25% of that of the modified CO2 nozzle system 

- CMQL delivery not only reduces the use of CO2 but also decreases the cost of inventory 

and transportation of CO2 tubes. Mentioned method can be integrated to lathes as an automated 

permanent system. 

- Continuous hybrid cooling cannot improve machinability in the turn-mill operation 

- The CO2 cooling in addition to MQL supply such a plug and play system found longest 

tool life among different cooling strategies in steel 1050 turn-milling 

- Thermal analysis of steel 1050 slot milling showed higher heat removal for the CO2+MQL 

cutting in comparison to CO2 and MQL 
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- The elemental analyses and SEM images of surfaces generated in slot milling revealed the 

lower friction and better surface finish for the CO2+MQL supply 

 

 

Further work proposed are listed as fallow: 

- Where the pressure of the cryogenic liquid will be problematic to apply for the 

micromachining, CMQL can be effective due to lower flow of CO2 and substantial merits to 

increase machinability.  

- Investigation of the phase transformation and the residual stresses in CMQL machining of 

hard to cut materials will be beneficial for the special applications in industry. 

- Elemental analyses of the generated surface under alternative cooling method in machining 

of materials for the medical application would be a beneficial investigation. The transition of the 

materials due to chemical wear to the generated surface can decrease quality of the final part and 

increase corrosion. 

- Optimization of the CMQL and CO2+MQL supply in turn-milling and milling operation 

is needed to improve the effect of the supply in which power consumption and cost should be 

investigated as well.  
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