title   
  

Automated text analysis and international relations: the introduction and application of a novel technique for Twitter

Warning The system is temporarily closed to updates for reporting purpose.

Hatipoğlu, Emre and Gökçe, Osman Zeki and Arın, İnanç and Saygın, Yücel (2019) Automated text analysis and international relations: the introduction and application of a novel technique for Twitter. All Azimuth: A Journal of Foreign Policy and Peace, 8 (2). pp. 183-204. ISSN 2146-7757

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
379Kb

Official URL: http://dx.doi.org/10.20991/allazimuth.476852

Abstract

Social media platforms, thanks to their inherent nature of quick and far-reaching dissemination of information, have gradually supplanted the conventional media and become the new loci of political communication. These platforms not only ease and expedite communication among crowds, but also provide researchers huge and easily accessible information. This huge information pool, if it is processed with a systematic analysis, can be a fruitful data source for researchers. Systematic analysis of data from social media, however, poses various challenges for political analysis. Significant advances in automated textual analysis have tried to address such challenges of social media data. This paper introduces one such novel technique to assist researchers doing textual analysis on Twitter. More specifically, we develop a clustering methodology based on Longest Common Subsequence Similarity Metric, which automatically groups tweets with similar content. To illustrate the usefulness of this technique, we present some of our findings from a project we conducted on Turkish sentiments on Twitter towards Syrian refugees.

Item Type:Article
Uncontrolled Keywords:text analysis, methodology, international relations
Subjects:J Political Science > JZ International relations
ID Code:36804
Deposited By:Emre Hatipoğlu
Deposited On:14 Jan 2019 12:16
Last Modified:26 Jul 2019 12:24

Repository Staff Only: item control page