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ABSTRACT

PREDICTIVE ANALYSIS OF 
SUCCESSFUL BASKETBALL SHOTS: THE EUROLEAGUE CASE

CEM YIĞMAN

Business Analytics, Master of Science Thesis, July 2018

Thesis Supervisors: Assoc. Prof. Dr. Raha Akhavan-Tabatabaei, 
Assoc. Prof. Dr. Abdullah Daşcı

Keywords: Basketball Analytics, Predictive Modeling, Binary Classification

 Basketball industry creates vast amounts of data from which the organizations 

benefit to improve their business processes like revenue management, roster selection, 

fan engagement, and on-field decision making. Sophisticated data collection systems are 

being developed in order to get the maximum benefit from analysis of the movements and 

actions of all elements in the field. Since elite teams do not have huge differences when 

compared to each other in terms of advanced fundamental, physical capacity, and motiva-

tion, this valuable information is helping them to develop data driven decision making ap-

plications which give them a significant advantage on winning. In this thesis, we analyze 

ten seasons of the Euroleague professional basketball data consisting of spatiotemporal, 

player based, and situational variables such as score difference, shot type, and home or 

away team. Using these variables, we build predictive models for the accurate prediction 

of successful shots. We develop binary classification methods such as logistic regression, 

random forest, naive bayes, support vector machines, and artificial neural networks. We 

compare these models to evaluate the best approach for classification problems of suc-

cessful basketball shots. Among all models we applied, random forest is the most accu-

rate and logistic regression is computationally the most efficient model.
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ÖZET

BAŞARILI BASKETBOL ŞUTLARININ 
TAHMİNSEL ANALİZİ: EUROLEAGUE ÖRNEĞİ

CEM YIĞMAN

İş Analitiği, Yüksek Lisans Tezi, Temmuz 2018

Tez Danışmanları: Doç. Dr. Raha Akhavan-Tabatabaei,  Doç. Dr. Abdullah Daşcı

Anahtar Kelimeler: Basketbol Analitiği, Tahminsel Analiz, İkili Sınıflandırma

Basketbol sporu, kulüplerin gelir yönetimi, kadro planlama, taraftar etkileşim yöne-

timi ve saha içi karar verme sistemlerinde yararlandıkları yüksek miktarlarda veri üreti-

yor. Gelişmiş veri toplama sistemlerinden elde edilen veriler, oyuncuların ve topun saha-

daki hareketinden en yüksek faydayı sağlayacak analitik uygulamaların geliştirilmesinde 

kullanılıyor. Üst düzey takımların arasında temel basketbol tekniği, fiziksel kapasite ve 

motivasyon parametreleri açısından çok büyük büyük farklar olmadığı göz önünde bu-

lundurulursa, bu değeri bilgi, takımların karar verme süreçlerinde destekliyor ve başarılı 

olma konusunda kayda değer bir etkide bulunuyor. Bu tezde on sezounluk Eurloegue pro-

fesyonel basketbol ligi verisini, oyun içi değişkenleri ile inceleyerek, başarılı basketbol 

şutları ile ilgili tahmin modelleri yaratıyoruz. İkili sınıflandırma metodlarından, lojistik 

regresyon, random forest, naive Bayes, support vector makinaları ve yapay sinir ağları 

gibi modelleri kullanıyoruz. Bu farklı modellerin basketbol alanındaki verimlerini değer-

lendirerek, bu alan için en iyi modeli tespit ediyoruz. Çalıştırdığımız modeller arsında 

random forest en iyi tahmin sonucunu verirken, lojistik regresyon gerektirdiği bilgisayar 

kapasitesi açısından en verimli model oldu.
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CHAPTER 1

INTRODUCTION

Analytics has been one of the most important areas that industries and corporations 

benefit from, since the technological advances in computational power and the increased 

ability to collect and analyze large quantities of data. Sophisticated on-line and off-line 

data collection methods supported by economically sustainable data storage systems as 

well as cloud storage systems led analytics to become the major decision support system 

in the past decades. According to  LaValle et al. (2011), those organizations that strongly 

believe in the use of business information systems and analytics were twice as likely to 

be top performers as compared to other organizations.

Alamar and Mehrotra (2011) describe the term “sport analytics” as “the manage-

ment of structured historical data, the application of predictive analytic models that utilize 

that data, and the use of information systems to inform decision makers and enable them 

to help their organizations in gaining a competitive advantage on the field of play.”

According to Alamar (2013), the essence of sport analytics includes managing data, 

using predictive analytics, and informing decision makers to provide competitive advan-

tage. This reveals a continuous analysis process in sport settings wherein situation-spe-

cific information informs analytical algorithms, which in turn guide data collection and 

analysis (Baker and Kwartler, 2015).

The main focus of sports analytics is to find better ways to increase the efficiency 

on decision making in sports, whether it is an individual sport like golf and the players 

are trying to predict their opponents’ putt counts per holes, or a team sport like volleyball 

and the coaches are trying to optimize their attack styles and minimize their attack errors.
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Like all other industries which benefit from analytical approaches, there are also 

many opportunities for improvement to apply analytics to sports. Figure 1.1 is an adap-

tation of sports analytics taxonomy designed by Cokins et al. (2016) which can be exam-

ined in 8 major fields. Based on this taxonomy, the focus of this thesis can be classified as 

“Game Win Strategy” which is dependent on both individual and team based analytical 

applications.

Sports 
Analytics

League

Team

Invididual

Recreational

Sports
Betting

Games of 
Chance

Fantasy
Sports

Professional
Gaming

Revenue
Licensing

Behavioral Modeling
Recruiting, Scouting, Trades, and Negotiation

Business Operations
Game Win Strategy

Biometrics
Strength Conditioning
Personalized Health

Performance Evaluation Tracking
Points Spread

Odds
Predictions

Cheating Detection
Probability Statistics
Player Win Strategy

Player Selection Sit Start
Season Win Strategy

Player Siginging and Trades
Drafting Strategy

Player Performance Points Prediction
Team Building

Figure 1.1: Adaptation of Cokins et al. (2016) Sports Analytics Taxonomy

The opportunities that come with the efficient analytics applications evoke organi-

zations to develop sophisticated high-tech applications to collect more accurate data. As 

the pioneer sport that started to apply analytics, baseball has the most detailed and precise 

data collection system among all sports. Statcast, which was introduced to all 30 The 

United States’ Major League Baseball (MLB) stadiums in 2015, is a high-speed, high-ac-

curacy, automated tool developed to analyze player movements and athletic abilities as 

well as movement of the baseball. It captures data using high-resolution optical cameras 

with radar equipment (Figure 1.2). As of 2018, Statcast is able to collect 30 variables 

about pitching, hitting, base-running, and fielding.
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Figure 1.2: Wass N. (Photographer)(2015). Statcast high-speed cameras

The United States’ National Basketball Association (NBA) also introduced its play-

er tracking technology starting from season 2013-2014, to increase the amount of data 

being collected hence to improve analytical applications. All twenty nine NBA arenes are 

equiped with cameras which are able to collect data in real time at a rate of twenty five 

frames per second. The system collects X and Y positions for the players and X, Y, and Z 

positions for the ball. The majority of the data collected is open to public. 

1.1 Sports Analytics History

Analytics has been used since the middle of the nineteenth century to improve var-

ious aspects of sports including revenue maximization, merchandising, roster selection 

and on-field decision making. The first application of analytics in the field of sports was 

developed by Henry Chadwick, a sportswriter, who first used statistics in the field of 

baseball at 1858. He made an analysis using box scores of baseball games which led the 

development of the evaluation method called “Sabermetrics” in the middle of the 20th 

century (“Sabr” stands for the Society for American Baseball Research). Starting from the 

early 1980s, Major League Baseball (MLB) teams started to employ sabermetricians who 

worked on advanced metrics on team statistics.

Towards the end of the 20th century, teams started to use sabermetrics to obtain 

relatively undervalued players. During 1990s Oakland Athletics’ Billy Beane used a more 
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quantitative approach on building a roster, including on-base performance of the players, 

which led Athletics to win 20 games in a row in 2002 while other teams were building 

their rosters with physical player attributes. The system Beane developed not only revo-

lutionized the way baseball benefited from the field of statistics, it also started a new era 

in professional sports.

The boom in sports analytics happened at the beginning of the twenty-first century 

with the increased usage of analytical applications in the NBA. Arthur and Watt (2016) 

analyzed the number of front-office analysts in NBA teams using the data they gathered 

from https://basketball.realgm.com. Their findings showed that there is an increasing 

number of front-office analysts in NBA teams since the starting year of their analysis 

2008. They split the years from 2008 to 2012 as “Early Analytics Adoption Period” and 

from 2013 to 2016 as “Late Analytics Adoption Period”. Figure 1.3 represents the to-

tal number of analytics personnel in NBA teams. Their statistical study showed that the 

teams employed at least one full-time analytics personnel by the season 2012 averaged 

about 7 more wins per season from 2008 to 2012 than the teams which had not. The study 

also showed that, the early adopters which employed analytics personnel before 2012, 

averaged about 8 more wins than their late-adopting opponents even for the seasons from 

2013 to 2016.

Figure 1.3: Number of analytics personnel per season in the NBA

(Adapted from https://basketball.realgm.com)
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1.2 Basketball: A Growing Industry

Basketball is a highly competitive sport, which has evolved to an industry from 

being “just a sport”. There are two major elite basketball organizations in the world. The 

National Basketball Association (NBA) is the largest indoor sports organization in the 

world, in revenue with $7.4 billion reported in 2018 according to Fortune Magazine. Es-

tablished in 2000, The Euroleague® organization has become the second largest basket-

ball organization in the world after the NBA. It boasts an average of 8,864 attendees per 

game and a 2.25 million accumulated audience (2017 - 2018). In the 2017 - 2018 season, 

16 teams from 9 countries played 260 games to achieve the Euroleague championship. It 

is a hard task to distinguish only the Euroleague revenues and budgets of the Euroleague 

teams, since they are not based only on the Euroleague but also on their local leagues 

unlike the NBA teams. It is clear that due to financial improvements since its foundation, 

Euroleague has become the most important indoor team sports organization in Europe 

with teams having a total budget of €256 million (2016 - 2017).

1.3 Basketball Analytics and Data Collection in Basketball

Data collection systems and analytical applications are also very common in bas-

ketball. NBA teams have high-speed cameras installed in their venues in order to track 

players and the ball which gives the opportunity to better evaluate the players and create 

set plays according to the opponent’s defensive system. Euroleague has also introduced 

its advanced player tracking system at the 2017 Final Four. SportsVU was the first player 

tracking system used in Euroleague history which is able to track the positions of the 

players, referees and the basketball. The system will provide accurate and efficient data to 

organizations which will result in an increase of data driven decision support applications 

in the Euroleague basketball. The organizations will benefit from analytical approach-

es more on their on-field applications including shot success optimization and offensive 

and defensive strategy planning. Off-field  applications like revenue management, roster 

selection, and optimizing fan engagement will also benefit from this data and analytical 

applications to a lesser extent. 
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The descriptive analysis for points per 100 shot attempts in the Table 1.1 clearly 

indicates that the team levels are very close to each other for the 59 teams which par-

ticipated to the Euroleague from 2007 - 2008 season to 2016 - 2017 season. While the 

most efficient team, in terms of points per 100 attempts, has 114 points, the worst has 92, 

and the mean points for all teams is 102. With only 10% improvement, the worst team 

becomes the average in the Euroleague organization. There is a significant opportunity 

for the teams to benefit from analytical applications to improve their shooting efficiency 

and hence, their revenues with the increased fan engagement using data driven decision 

making systems. 

Table 1.1: Team based descriptive statistics for points per 100 shot attempts

Metric Value
Mean 102
Standard Error 0.55
Median 103
Mode 107
Standard Deviation 4.25
Sample Variance 18.08
Kurtosis 0.29
Skewness -0.25
Range 22
Minimum 92
Maximum 114

1.4 Euroleague Season Structure

According to Euroleague Bylaws (2018), a Euroleague competition is played in 

three different phases; Regular season, Playoffs, and Final Four. The regular season starts 

on July 1st and the season ends on June 30th of the following year. Sixteen teams plays 

in a round-robin format (each team against all others, both at home and away). Top eight 

teams at the end of the regular season qualify for the playoffs which is held in a best of 

five games format. The winners of the playoff stage advance to the final four stage. The 

winners of the semi-finals at the final four, play the championship game.
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1.5 Thesis Objectives

In this thesis, we build predictive models for the accurate prediction of success-

ful basketball shots using spatiotemporal, player based and conditional variables. These 

models can be used by the coaches to make better decisions in their offensive organiza-

tions. We also compare these predictive models to evaluate the best model for a binary 

classification problem in this domain. This thesis will first, in Chapter 2, introduce the 

concepts and analysis methods available in the basketball analytics literature. In Chapter 

3, the data source, data gathering, and variable transformations will be described. Chapter 

4 will present the methods that are used in predictive analysis of basketball shots. Finally, 

Chapter 5 will conclude the dissertation and summarize its contribution to the field of 

basketball analytics.
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CHAPTER 2

LITERATURE REVIEW

There is a growing body of literature that recognizes the importance of analytics in 

the field of sports. This chapter presents the current literature on the key aspects of basket-

ball analytics including data collection, variable selection, variable creation, and analysis 

methods. The goal of this chapter is to establish the significance of the field of study and 

then to identify the main contribution that could be made to the literature. The literature 

is ordered according to themes of the research.

Reich et al. (2006) analyzed the conventional shot charts, which have been used 

by the NBA coaches as a descriptive analysis tool, using hierarchical spatial models and 

Markov Chain Monte Carlo (MCMC) methods to assist the coaches with the best possible 

shot location information. The dataset was downloaded from www.espn.com, which con-

tains 1,139 shots Minnesota Timberwolves’ veteran point guard Sam Cassell took during 

2003 - 2004 season. For each shot, they have game clock time elapsed since Cassell’s last 

shot (excluding time on bench), location in polar coordinates, shot result, and 10 binary 

variables which are shown in Table 2.1. They also have the interaction term NOKG x 

NOLS because Cassell’s performance may be affected by both Kevin Garnett’s and La-

trell Sprewell’s absence. The article developed a statistical model for analyzing basketball 

shot-charts and found a meaningful relationship  between spatial-temporal variables and 

a successful shot.
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Table 2.1: Binary variables used by Reich et al. (2006)

Variable Name Variable equals “1” when
NOKG Kevin Garnett is not in the game
NOLS Latrell Sprewell is not in the game
HOME The game is played in Minnesota
NOREST The Timberwolves had less than 2 days of since their last game
2HALF/OT Second half or overtime
BEHIND The Timberwolves are losing
BLOCK The opponent averages more than 4.8 blocks per game
FGPALL The opponent allowed a field goal percentage under 44 %
MISSLAST Cassell missed his previous shot
TEAMFGA The Timerwolves took more than 80 shots in the current game

The most common shooting evaluation factor is measured using “Effective Field 

Goal Percentage” (eFG%) which is used to adjust the data for the fact that a 3-point field 

goal is worth one more point than a 2-point field goal. Chang et al. (2014) introduced and 

proposed methodologies for deriving and evaluating two new metrics: (1) Effective Shot 

Quality (ESQ) and (2) EFG+, which is EFG minus ESQ, a measure of shooting ability  

above expectation. They discussed how this definition re-characterized performance for 

teams and players and how this type of analysis can affect analysis beyond shooting. With 

the help of player tracking data with the variable “Defender Distance”, they applied sev-

eral models that are generally applied in machine learning, like decision trees and logistic 

regression. With their proposed new variables, they were able to quantify (1) the quality 

of shots that a team or player is generating and (2) their skill in hitting those shots, which 

were previously confounded in EFG.

Shortridge et al. (2014) introduced several measures of relative field goal effective-

ness that explicitly account for spatial variability in scoring. These measures identify an 

expected point total for locations across the court and contrast this expected point total 

with the actual points scored by a particular player. Critically, these metrics can be either 

calculated locally for each position on the floor or they can be aggregated into a single 

global measures of relative shooting effectiveness. They used a database recording every 

shot taken during the 2011–2012 NBA regular season. Data were obtained from www.

espn.com which includes cartesian coordinates for over 141,000 field goal attempts and 
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detailed attribute information including who took the shot and whether or not the attempt 

resulted in a made basket. To construct a robust estimate of local field goal probability, 

they used Empirical Bayes (EB) rate estimation. It appears that EB surface is much more 

smoother than the raw field goal rate. The noise present in the raw rates has been removed 

as shown in the Figure 2.1. They also introduced Spatial Shooting Effectiveness (SSE) 

and Points Above League Average (POLA), which compare and contrast shooters using 

a spatially explicit perspective that accounts for the individual shot constellation and the 

relative performance of all other shooters from those spatial locations.

.

Figure 2.1: (A) Raw field goal rate surface; (B) Empirical Bayesian smoothed rate

Spatial aspects of basketball have been widely analyzed by the researchers. Gold-

berry (2012) investigates spatial and visual analytics as means to enhance basketball ex-

pertise. This article uses game data for every NBA game played between 2006 and 2011 

and the authors compiled a spatial field goal database that included Cartesian coordinates 

(x,y) for every field goal attempt in this 5-year period. This data set includes player name, 

shot location, and shot outcome for over 700,000 field goal attempts. The authors mapped 

the shot data atop a base map of a NBA basketball court according to “Range” metric, 

which shows the effective shooting range of a player across all scoring cells as shown in 

the Figure 2.2.
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Figure 2.2: Composite shot map from 2006-2011 NBA season

After the rise of the big data and analytics applications, sports organizations needed 

to develop online applications to assist coaches with the information “who should take the 

shot?” For this purpose, Wright et al. (2016) focused on a shot recommender system for 

NBA coaches. They used 2015 -2016 season NBA data which was downloaded using the 

API provided by the www.nba.com website. They stated that predicting shot success in 

basketball is a challenging task because the existing data is sparse, which means that the 

outcomes of all combinations are not represented in the datasets evenly. They compared 

factorization machine model performance with logistic regression and support vector ma-

chines. They concluded that the factorization machine which uses k=25 and optimized 

using stochastic gradient descent performs better for latent variables.

The temporal properties of basketball have also been the focus of researchers. Gar-

cia et al. (2013) created a model to identify basketball game performance indicators which 

best discriminate winners and losers in regular season and playoffs. They used a sample 

consisting of 323 games of Spanish Basketball League (ACB) which is collected manual-

ly by professional technicians on 306 regular season and 17 playoff games. They split the 

dataset according to end-of-game score differences. Balanced games are discriminated as 

the score is equal or difference is below 12 points, unbalanced games as the difference is 

between 13 and 28 points and very unbalanced games as the difference is above 28 points. 

Their study showed that “while in regular season assists, defensive rebounds, and field 

goal percentages were significant, the winning teams’ superiority was only in defensive 

rebounding in the playoff games.”
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The in-game temporal aspects of a successful basketball shot is also examined by 

the researchers. McFarlane (2018) introduced a method for end-of-game decision making 

model based on a probabilistic method which evaluates the situation for the last three 

minutes of NBA games. The data consists of NBA regular season games from 2011 to 

2015 season and gathered from stats.nba.com. The point spread data was collected from 

sportsdatabase.com. McFarlane (2018) modeled the state of a game “as a function of pos-

session, time remaining, and score differential” which led the problem to be able to han-

dled as a “Markov Chain with a transition probabilities based on team statistics.” Logistic 

regression was used to build the win probability model to introduce End-of-game Tactics 

Metric (ETM) for helping decision makers on whether offensively to attempt 2 point or 3 

point field goal or defensively make an intentional foul.      

While there are numerous studies on spatial-temporal properties that influence the 

success of a basketball shot, behavioral properties are also used in models to describe the 

outcomes of basketball shots. Avugos et al. (2013) reconsidered the “hot hand” phenom-

enon which in basketball could be described as the tendency to reject the randomness 

effect due to the belief that after a streak of successful shots, subsequent success becomes 

more likely. Reviewing the results of the meta-analysis, Avugos et al. (2013) concluded 

that the “results provided sufficient evidence that argues against the existence of the hot 

hand” in the field of basketball. On the other hand, Arkes (2010) found evidence using 

64,698 free throws taken in the NBA 2005 - 2006 season, supporting the “hot hand” in 

free throws. He shows that when the first throw is successful, there is a significantly high-

er probability that the second free throw will be successful. The variables in his fixed-ef-

fects logit model are;

• The sequence of a set of free throws (Players take 2 free throws for fouls. This variable 
shows whether that shot was the first or the second).

• The game quarter of the game when the shot took place.

• Number of free throws  the player made in the prior 1, 2, 3, 4, and 5 attempts.

• Number of free throws  the player made in the prior 1, 2, and 3 attempts.

• How many of the past 10 free throws the team attempted were made.
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In contrast to “hot hand”, the significance of “momentum effect”, which could be 

described as the increase in the probability of a team winning a game if that team has been 

playing well in the last few games, is proved by Arkes (2011) using the data from NBA in 

seasons from 2007 to 2009.” The variables for the analysis were home vs. away team and 

resting days each team had before the given game. Arkes (2011) then constructed a vari-

able on how the teams did in their previous 3 and 5 games”. The study used Bradley-Terry 

(Bradley and Terry, 1952) model concluding that they “find evidence for a positive mo-

mentum effect, in that stronger performance over the past 3 or 5 games is associated with 

a higher probability of winning the next game, with the estimated effect being stronger 

for home teams.”

Since it shares its data publicly, the most common data set that has been used in 

basketball analytics is the NBA data. NBA provides player tracking data that is a valu-

able information for predictive modeling. The literature cited  in this thesis also mostly 

uses NBA data. While seven of the papers are working with NBA data, two of them are 

focused on the Spanish Basketball League (ACB). We on the other hand, focus on the 

most important basketball tournament in Europe, the Euroleague, to build our predictive 

models.

The existing literature shows the importance of analytics in the field of sports. The 

most common area that has been in the analytical focus is the spatiotemporal properties 

of basketball. Three of the cited papers on this thesis use radially designed zones and 

two of them use Cartesian coordinates / rectangular zones to examine the shot location’s 

effect on the outcomes. We also designed radial spatial zones to understand shot loca-

tion’s effect on a successful basketball shot. But since we use the shot type variable that 

distinguishes two-point and three-point field goals, we do not use radial zones based on 

the three-point line.    

To the best of our knowledge, there are only a handful of models in the literature  

that focus on the influential variables for successful basketball shots which are summa-

rized in Table 2.2. Five of the cited papers in this thesis focus on the variables that affect 

winning or losing a game while the others focus on the variables that influence individual 

shots. Four of them use logistic regression to estimate the outcomes while the other ones 
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use wide-spread techniques. 

Our research investigates whether different models give significantly different 

outcomes in predicting successful basketball shots. For this purpose, we apply logistic 

regression, random forest, Naive Bayes, support vector machines, and artificial neural 

networks models in the software R® to understand the variables’ effects on a successful 

basketball shot.
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Table 2.2: Literature review summary table

Author(s) (Year) Title Topic Data Source Analysis Method

Chang et al. (2014) Quantifying shot quality in the NBA Maximizing the expected value of each shot 
opportunity

NBA player tracking data for 2013-
2014 season

Decision trees, logistic regression, 
gaussian process regression

Reich et al. (2006) A spatial analysis of basketball shot chart data Optimizing shots using polar zones NBA Minnesota Timberwolves Sam 
Casell 2003-2004 season

Markov chain monte carlo

Shortridge et al. (2014) Quantifying spatial relative field goal efficiency in 
basketball

Maximize spatial shooting effectiveness NBA 2011-2012 season Empirical bayes rate estimator

Gómez et al. (2013) Possession effectiveness in elite basketball according 
to situational variables in different game periods

Identifying performance indicators in pre-
dicting effectiveness of ball possessions

Spanish basketball league 2006 - 2007 
season

Logistic regression

Wright et al. (2016) Shot Recommender System for NBA Coaches Determining the odds of success of a shot NBA season 2015 - 2016 season Factorization machine

García et al. (2013) Identifying Basketball Performance Indicators Discriminating winners and losers Spanish basketball league 2007 - 2008 
season

Discriminant analysis

McFarlane (2018) Evaluating NBA end-of-game Decision Making Evaluating the tactical decisions NBA season from 2011 to 2015 Logistic regression

Arkes (2011) Finally, Evidence for a Momentum Effect in the NBA Evaluating the `momentum effect` NBA seasons from 2007 to 2009 Econometric model (Bradley-Terry 
Model)

Arkes (2010) Revisiting the Hot Hand Theory with Free Throw 
Data in a Multivariate Framework

The “hot hand” effect in free throws NBA season 2005 - 2006 free throws Fixed effects logit model
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CHAPTER 3

DATA GATHERING AND PREPROCESSING

Perhaps, the most important part for an analytics research in the field of sports or 

any other field is data gathering. In this chapter, firstly the data source will be presented 

followed by the data download process. After describing the variables that come with the 

dataset, we explain our method to create some new variables as well. We will conclude 

this chapter with the descriptive statistics.

The data for this thesis was obtained from the Euroleague website www.euroleague.
net “Game Center” section. This section includes individual and team statistics start-
ing from the 2000 - 2001 Euroleague season. After 2007 - 2008 season “Play by Play”, 
“Graphic Stats” and “Shooting Chart” tabs were added. In the “Play by Play” tab the 
game evolution is represented as a possession history of each game (Figure 3.1)

Figure 3.1: “Play by Play” tab of the Euroleague website
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As depicted in Figure 3.2, “Graphic Stats” tab includes descriptive statistics which 
visually presents the game evolution in different metrics.

Figure 3.2: “Graphic Stats” tab of the Euroleague website

The game data was scraped from the “Shooting Chart” tab of the website which 

is depicted in Figure 3.3. This tab shows the successful shots with a solid circle and 

unsuccessful shot attempts with an empty circle on a virtual basketball court with the di-

mensions 800 x 400 pixels. There are also filters available for players, quarters, and shot 

types.

Figure 3.3: “Shooting Chart” tab of the Euroleague website
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 Euroleague website provides a javascript API which can be used on scraping game 

data using the software R. The library “jsonlite” developed by Jeroen Ooms (2014) is 

used to call the API. The scraped game data includes the variables shown in Table 3.1.

Table 3.1: Game data variables

Variable Variable Description
Shot ID Unique shot ID for every game
Team Player’s team
Player ID & Palyer Name Player Information
Action Type 2FG, 3FG, Layup or Dunk
Points If the attempt is successful 2 or 3
X and Y coordinates for the virtual field Cartesian coordinates
Minute Shot timing
Season Season
Game ID Game

Static game information was scraped from the “Game Information” banner shown 

on Figure 3.4. Firstly the ”htmlparse” function from the library “XML”developed by 

Duncan Temple Lang and the CRAN Team (2017) was used to parse the HTML code 

from the Eurolegue web site. After selecting the necessary parts of the html code with 

“xpathSApply” function, “GET” function from the library “httr” developed by Hadley 

Wickham (2017) was used to get the response from the web site. R data frame was creat-

ed with “xpathSApply” and the data were stored in the local hard drive with the “write.

csv” function called to store the data as a comma separated value file. Game variables are 

given in Table 3.2.

Figure 3.4: “Game Information” banner of the Euroleague website
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Table 3.2: Game information variables

Variable
Game Date
Game Hour
Game Venue
Venue Capacity
Home Team
Away Team
Game Score
Period Scores
Game Phase
Referees 
Referee Nationalities

Player-based variables were scraped from the “Players” section of the Euroleague 

website http://www.euroleague.net/competition/players (Figure 3.5). For gathering this 

data same libraries and technique were used as in game information variables. Player 

variables can be examined in the Table 3.3.

Figure 3.5: “Player Information” section of the Euroleague website

Table 3.3: Player information variables

Variable
Player ID
Player Name
Player Height
Birthday
Nationality
Position (Guard, Forward, Center)
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The raw database was created using game variables, game information, and player 

information. The dataset consists of 10 seasons between 2007 - 2008 and 2016 - 2017. 

The free throws and dunks were excluded due to their unique nature and non-spatial 

properties. Shortridge et al. (2014) propose to only include those players attempting at 

least 250 shots in the NBA season they were analyzing. Since Euroleague teams play less 

games in each season, in our analysis only the individual players who attempted at least 

100 shots for each season are included. Cartesian coordinates provided by the website 

were converted to polar coordinates, with angle and distance information, to be able to 

create radial zones. The remaining dataset contains 169,691 shot attempts of total 2,233 

games and 473 unique players.

3.1 Variable Definitions

In this section the collected and newly generated variables will be introduced and 

their properties or calculation methods will be described.

Player Position: We identifiy player roles as “Guard”, “Forward”, and “Center” as Ab-

delkrim et al. (2010).  

Action: The shot attempts were defined as “2FG” (2-point field goal attempt), “3FG” 

(3-point field goal attempt), and “Layup” (Layup attempt).

Radial Zone: The effect of shot location on the success of a shot attempt was analyzed 

using a radial grid. For this purpose we use k-means clustering analysis in the software 

R. Firstly we standardize the shot distances for comparability. Secondly, we create fif-

teen  different models with number of clusters starting from two to fifteen. Considering 

a lower  sum of squared distances within groups and model performances, we apply 

3-cluster solution to the data (Appendix A-1). As a result we have three distance groups 

as described below.

• First group with  distance lower or equal to 4.60 meters

• Second group with distance higher than 4.60 meters and lower or equal to 7.50 meters

• Third group with distance higher than 7.50 meters
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Shot angle information is also used in the radial grid design. The half-court was 
divided into 7 different angular-based zones and this zones was blended with distance 
information. Since it is clear that the success rates for layups, which are the shot attempts 
from very near to the hoop, would have very high success rates, the angular zones in the 

first distance cluster were merged. The resulting radial grid is presented in Figure 3.6.
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eters
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B4
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Figure 3.6: Radial grid

Shot Tension: We use score difference clusters in our predictive models to include the 

effect of score difference when the shot was taken. It shows the psychological tension of 

the players if their team is losing or relaxation if their team is winning. K-means cluster-

ing analysis is done in the software R on the score difference variable and a shot tension 

variable was created with this information (Appendix A-2). According to the results of 

our clustering analysis shot tension variable is identified with 7 levels which is presented 

in Table 3.4.
Table 3.4: Score Difference Clusters

Cluster Score Difference
High Advantage Leads more than or equal to 21 points
Moderate Advantage Leads more than or equal to 11, less than 21 points
Low Advantage Leads more than or equal to 3, less than 10 points
Balanced Leads less than 2 points or back less than 5 points
Low Disadvantage Back less than or equal to 13 points, more than 6 points
Moderate Disadvantage Back less than or equal to 14 points, more than 23 points
High Disadvantage Back more than or equal to 24 points
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Shot Timing: To understand the behavioral effect of the timing on a success of a shot, 

three binary variables were introduced to the dataset. First one indicates if the shot was 

taken during the first five minutes, second one indicates if the shot was taken during the 

last five minutes, and the third one indicates if the shot was taken during the middle thirty 

minutes of the game. Overtime periods were included in the variable showing the last five 

minutes (Sampaio et al., 2010a; Sampaio et al., 2010b).

Home or Away Shot: This variable takes “H” if the shot was taken by the home team and 

“A” if the shot was taken by the away team.

Game Phase: The games are distinguished as “Regular Season”, and “Postseason”.

Player Season Index: To examine the effect of prior individual performance on a suc-

cessful shot, player index rating variable was introduced to the data set. For 2007 - 2008 

season, end-of-season general success rate was used for all players. For the other seasons, 

individual success rates of the previous season were used. If a player was excluded from 

the previous year, due to the minimum 100 shot limit, the general success rate for the 

previous year was used.     

Successful Shot: The dependent binary variable which takes “1” if the shot is successful 

and “0” if the shot is unsuccessful.

3.3 Descriptive Analysis

One of the most analyzed features of basketball is the spatial success rate. For this 

purpose the radial zones described in the data source section are used. Spatial decisions 

are made according to offensive strategies of the teams as well as the defensive strategies 

of the opponents. Figure 3.7 (right) clearly shows that the shots with low angles to the 

hoop have lower success rates but players tend to attempt more from the lower angles as 

represented in Figure 3.7 (left). Figure 3.8 represents the spatial grid with “points per 100 

attempts” based on the radial zones. According to the Euroleague organization’s findings, 

the percentage of possessions derived from pick-and-roll increased from 23% in 2009 to 

42.2% in 2018. Teams are generally starting pick-and-roll offenses from the low angle 

zones and try to find a match-up which the guard can be matched with a center. When the 

match-up does not work, or the center defends the guard effectively, then they try to find 
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shooters from the high angle zones. That’s why the high angle zones have higher success 

rates.
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Figure 3.7: Spatial grid (Left: Shot success rates, Right: Total shot attempts) 
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Figure 3.8: Spatial grid (Points per 100 shot attempt)

When the “Points per 100 attempts” information shown in Table 3.4 is detailed with 

“Home/Away” and “Shot Tension” variables, it can clearly be seen that having a score 

advantage increases the points for the home team (Figure 3.9). This shows the importance 

of coaching and psychological strength. If the coaches takes the time-outs according to 

this information, they will have the chance to motivate their teams and close the score 

difference.
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Table 3.5 represents the “points per 100 attempts”, “success rate” and “total shot 

attempts” for each player position, i.e. guard, forward and center. Although it is very clear 

that the center players are more efficient, teams are using guards and forwards more. This 

is expected because the Euroleague is defensively a tough organization. Especially the 

“big guys” playing as centers are strong and have good defensive fundamentals. On the 

other hand, rise of the pick-and-roll offenses again create more chances for guards and 

forwards. 

Table 3.5: Player position based shot attempt statistics

Player Position Total Shot Attempts Success Rate Points Per  100 Attempts
Guard 81,372 43.0 % 102.6
Forward 63,573 44.8 % 103.1
Center 24,745 52.8 % 109.7

Figure 3.9 and Figure 3.10 represent the frequency for point per 100 points, team 
based and player based, respectively. Only one team in the Euroleague organization 
exceeds 110 points per 100 shot attempts in the data scope of this research. We run a 
Shapiro-Wilk test on R for points per 100 attempts data (AppendixA-3). For players, W 
= 0.9915 and p-value = 0.008303, and for teams W = 0.93878 and p-value = 0.01097. 
According to these values we can say that the points per 100 attempts data are normally 
distributed for the teams but not for the players with 95% confidence.
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Figure 3.9: Points per 100 attempts for teams
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CHAPTER 4

ANALYSIS AND METHODS

In this chapter, the predictive models, their parameters,  and results will be present-

ed. Since we focus on the success probability of a basketball shot, the dependent vari-

able for all models is a binary variable which makes our problem a binary classification 

problem that can be analyzed by supervised learning techniques. Since all data gathered 

from the Euroleague website is preprocessed before (as explained in the Chapter 3), only 

the necessary transformations that R libraries demand were included in this chapter. We 

randomly split the data into an 80% “train set” with 135,752 observations and a 20% “test 

set” with 33,938 observations (Appendix A-4). Both datasets have 45% success rate. 

We train models on the train set and predict on the test set. We apply logistic regression, 

random forest, Naive Bayes, support vector machines, and artificial neural networks al-

gorithms and compare their accuracies. All analyses were carried out using R. At the end 

of this chapter the summary table for all models is presented. The independent variables 

and their data types are presented in Table 4.1.

Table 4.1: Independent variables details

Variable Data Type Data Type Detail
Player Season Index Numerical Normalized
Radial Zone Categorical 15 Levels
Player Position Categorical 3 Levels
Action Categorical 3 Levels
Home / Away Binary 2 Levels
First or Last Five Minutes Categorical 3 Levels
Game Phase Binary 2 Levels
Shot Tension Categorical 7 Levels
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The classification outcomes of the models will be presented as confusion matrices 

shown in Table 4.2. The “Positive Predictive Value” is described as “Σ True Positive / Σ 

Test Outcome Positive”. The “Negative Predictive Value” is described as “Σ True Nega-

tive / Σ Test Outcome Negative”. 

Table 4.2: Confusion matrix

Prediction

1 0

A
ct

ua
l 1 True Positive False Negative

0 False Positive True Negative

4.1 Logistic Regression

The most widely used classification technique for binary classification problems 

since 19th century is the logistic regression. The probabilistic outcomes of the logistic re-

gression range between 0 and 1 which the prediction is dependent using a threshold value,  

If the predicted success probability is above the threshold value than the shot is assigned 

as successful. In our analysis, we firstly use the threshold value of 0.50.

The “glm” (Generalized linear model) library was used for prediction on the test set 

and “confusionMatrix” function from the library “caret” developed  by Kuhn et al. (2017) 

was used to create the confusion matrix which is presented in Table 4.3. The prediction 

on the test data has positive predictive value of 56.62 %, the negative predictive value 

of 66.61 % and the overall prediction accuracy value of 60.13 %. All the variables were 

statistically significant (Appendix A-5). 

Table 4.3: Confusion matrix for logistic regression

Prediction

1 0

A
ct

ua
l 1 7,944 7,443

0 6,086 12,465
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We also apply threshold values ranging from 0.5 to 0.7 with an increment of 0.01 to 

see the effect of the threshold value in logistic regression model with the test predictions. 

(Table 4.4). The results show that the test accuracy with threshold value of 0.50 is 60.13% 

and 54.66% with the threshold value 0.70. 

Table 4.4: Accuracies for Different Threshold Values

Threshold Value Test Accuracy Threshold Value Test Accuracy

0.50 0.60136 0.61 0.55165

0.51 0.60136 0.62 0.54897

0.52 0.60239 0.63 0.54770

0.53 0.60065 0.64 0.54729

0.54 0.60095 0.65 0.54700

0.55 0.59461 0.66 0.54664

0.56 0.58787 0.67 0.54667

0.57 0.57861 0.68 0.54661

0.58 0.56868 0.69 0.54661

0.59 0.56052 0.70 0.54661

0.60 0.55513

Since the radial zones and player positions could have a correlation, the interaction 

term was introduced to the model and the results are shown in the Table 4.5. Although it 

is obvious that the centers are shooting mostly from closer ranges to the hoop, the inter-

action term did not change the accuracy level significantly. The prediction on the test data 

has a positive predictive value of 56.72 %, the negative predictive value of 62.57 % and 

the overall prediction accuracy value of 60.17 %. 



29

Table 4.5: Confusion matrix for logistic regression including interaction term

Prediction

1 0

A
ct

ua
l 1 7,892 7,495

0 6,023 12,528

4.2 Random Forest

The random forest model is an ensemble learning method used for classification 

and regression. It creates multiple decision trees with randomly chosen variable subsets. 

The random forest model was run with the “randomForest” function from the R library 

“randomForest” which was developed by Liaw and Wiener (2002). We use number of 

trees starting from 500 to 3000 with 500 increments to see if this parameter will increase 

the accuracy. The results for random forest models with different tree sizes are presented 

in Table 4.6. According to this information, increasing the tree size of a random forest 

model, which needs more computational power and time, does not significantly affect the 

accuracy (Appendix A-6).

Table 4.6: Accuracies for Random Forest Models with Different Tree Sizes

Number of Trees Test Accuracy 
(%)

Train Accuracy
(%)

500 60.68 61.95

1,000 60.72 61.94

1,500 60.69 61.98

2,000 60.69 61.93

2,500 60.65 61.94

3,000 60.68 61.95
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The results with the random forest model with 1,000 trees are detailed in Table 4.7. 

The positive predictive value is 48.46 %, the negative predictive value is 70.89 % and 

the overall prediction accuracy value is 60.72 %. The interesting outcome of the random 

forest model is that the negative predictive value is much higher than the positive predic-

tive value.

Table 4.7: Confusion matrix for random forest with 1000 trees

Prediction

1 0

A
ct

ua
l 1 7,456 7,931

0 5,401 13,150

4.3 Naive Bayes Estimator

Naive bayes is a classification method from the “probabilistic classifiers” family. 

The algorithm is based on the prior probabilities of the outcomes. Different from the 

Bayes algorithm, Naive Bayes assumes that the independent variables are conditionally 

independent from each other. For running Naive Bayes on the software R, library “klaR” 

developed by Weihs et al. (2005) is used. The data was sampled as 80% train and 20% 

test splits. 10-fold cross validation was applied through the Naive Bayes classifier. The 

results are represented in Table 4.8. According to this table the positive predictive value 

is 51.92 %, the negative predictive value is 66.81 % and the overall prediction accuracy 

value is 60.06 % (Appendix A-7). 

Table 4.8: Confusion matrix for Naive Bayes

Prediction

1 0

A
ct

ua
l 1 7,988 7,399

0 6,157 12,394
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The common “mlr” extension was applied to the Naive Bayes model to examine if 

a linear extension of the model will improve the accuracy. The results were represented in 

Table 4.9. The positive predictive value is 51.92 %, the negative predictive value is 67.07 

% and the overall prediction accuracy value is 60.20 % (Appendix A-8).

Table 4.9: Confusion matrix for Naive Bayes MLR extension

Prediction

1 0
A

ct
ua

l 1 7,989 7,398
0 6,108 12,443

4.4 Support Vector Machine (SVM)

For support vector machines model on the software R library “e1071” which was 

developed by Meyer et al. (2017). The data is sampled as 2/3 train and 1/3 test splits and 

10-fold cross validation was applied. Linear kernel “Vanilladot” from the library “kern-

lab” which was developed by Karatzoglou (2004) was used. Linear kernels are used to 

find the largest possible linear margin that separates two regions. The results are repre-

sented in Table 4.10. According to the table the positive predictive value is 51.79 %, the 

negative predictive value is 67.10 % and the overall prediction accuracy value is 60.16 % 

(Appendix A-9).

Table 4.10: Confusion matrix for Support Vector Machine

Prediction

1 0

A
ct

ua
l 1 7,969 7,418

0 6,103 12,448
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4.5 Artificial Neural Networks (Deep Learning)

Deep learning, which is a field of artificial neural networks, is one of the most 

common machine learning techniques applied in classification problems, robotics, and 

artificial intelligence. It uses “Multi Layer Perceptron” (MLP) to build  the models. To 

create a neural network model in R, library “keras” developed by Allaire (2017) was used 

and the steps presented below were executed (Appendix A-10).

1 - The data was sampled as 80% training and 20% test

2 - Recipe object was created. Recipe objects are the data preprocessing instruments 

for the neural network models. The recipe object in our model checks if the data types 

provided for the model are appropriate or not. It also applies one-hot-encoding method 

to convert categorical variables into dummy variables to be able to use as a matrix. The 

library “recipes” is used to apply the recipes to the data set (Kuhn and Wickham, 2018).

3 - The data was baked with the recipe. Baking, in neural networks, is the process of ap-

plying the recipe objects to the datasets.

4 - The dependent variable data frame was converted into a vector.

5 - The neural network model was built with two hidden layers. On both layers dropout 

rate was 0.1 to prevent over-fitting. The first layer was created with 16 units, “uniform” 

kernel and “relu” activation. The second layer was created with 16 units, “uniform” ker-

nel and “sigmoid” activation.

6 - The complier was set with “adam” optimizer and “binary cross-entropy” loss function.

7 - The model was fitted with a batch size 100, epochs 100 and validation split of 20%.

The confusion matrix for the artificial neural network model is presented in Table 

4.11. According to this table, the positive predictive value is 57.49 %, the negative pre-

dictive value is 61.78 % and the overall prediction accuracy value is 60.20 %. Figure 4.1 

represents the variable importance plot on which the positive correlations contribute to 

success and negative correlations prevent success. According to this, radial zone, shot 

type, player season index, and home or away team variables play a significant role in 
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predicting successful shots. Three point field goals prevent shots from being successful 

the most.

Table 4.11: Confusion matrix for Artificial Neural Network

Prediction

1 0

A
ct

ua
l 1 7,211 8,176

0 5,331 13,220

Figure 4.1: Neural network variable importance plot

4.5 Summary of Predictive Models

Chang et al. (2014). suggest that getting a model with predictability above 65% 

seems difficult, because the success rate ranges between 35% and 65% in the NBA. Our 

study showed that Euroleague success rate per game also ranges between 30% and 65%. 

In summary, these results also show that predicting a successful basketball shot with 

more than 65% accuracy is a challenging task and needs more sophisticated and detailed 
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data source. The summary accuracy information of the models used in the thesis is repre-

sented in Table 4.12.

Table 4.12: Predictive models summary table

Model Positive 
Predictive 
Value (%)

Negative 
Predictive
Value (%)

Overall Test 
Accuracy 

(%)

Overall Train 
Accuracy 

(%)

Logistic Regression 56.62 66.61 60.14 59.99

Logistic Regression
Interaction Term

56.72 62.57 60.17 60.04

Random Forest 48.46 70.89 60.72 61.94

Naive Bayes 51.91 66.81 60.06 59.89

Naive Bayes
(MLR Extension)

51.92 67.07 60.20 59.99

Support Vector Ma-
chines

51.79 67.10 60.16 59.99

Artificial Neural 
Networks

57.49 61.78 60.20 60.27

Table 4.12 is quite revealing in several ways. First, the overall accuracy range is 

very small. Furthermore more the random forest model has the highest accuracy among 

all models. There are also interesting differences on positive and negative predictive val-

ues among all models. While the random forest model performs the best with the nega-

tive predictive value, artificial neural networks model has the highest positive predictive 

value.
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CHAPTER 5

CONCLUSION

Compared with the conventional statistical methods that have been used for many 

years, analytical approaches offer a wide range of analysis methods that help the decision 

makers in the field of basketball. The aim of the present research is to determine the sig-

nificant aspects of basketball games and players which have an influence on the success 

of basketball shots. The second aim of this study is to investigate the effects of different 

models on prediction accuracy to evaluate the best approach for predicting successful 

basketball shots.

The relevance of the relationship between spatial-temporal aspects of shots and the 

success rate is clearly supported by the current findings. Shooting zones and game phases  

show a statistically significant effect on the shot success. The second major finding is that 

different predictive models used in this research did not show a significant difference on 

the accuracy of results.

The scope of this study was limited in terms of the collected data. The data used in 

this research consists of offense teams’ shot attempts. More information on ball posses-

sions, defense strategies, and more importantly, player tracking data with variables like 

nearest defense player, mean distances between players  and ball velocity would help us 

to establish a greater degree of accuracy. Further work needs to be done to establish an 

on-line decision making system, which will collect the game data simultaneously and 

support coaches on the decisions for clutch shooting situations.
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APPENDIX A

R CODES

1 - K-means clustering for creating radial shotting zones

Before running k-means clustering algorithm, shot distances were normalized. This pro-

cess is followed by determining number of clusters. We use three-cluster  solution for 

shooting zones in our analysis.

clusteringDistance$scaledDistance = scale(clusteringDistance$virtualDistance)

wss = (nrow(clusteringDistance)-1) * sum(apply(clusteringDistance$scaledDistance,2,-

var))

for (i in 1:15) wss[i] = sum(kmeans(clusteringDistance$scaledDistance, 

                                     centers=i)$withinss)

plot(1:15, wss, type=”b”, xlab=”Number of Clusters”,

     ylab=”Within groups sum of squares”)

fit = kmeans(clusteringDistance$scaledDistance, 3)

aggregate(clusteringDistance$scaledDistance,by=list(fit$cluster),FUN=mean)

clusteringDistance = data.frame(clusteringDistance, fit$cluster)
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2 - k-means Clustering for Creating Shot Tension Variable Based on Score Difference

We use seven-cluster solution for score difference variable.

clusteringScoreDif$scaledScoreDifference = scale(clusteringScoreDif$scaledScoreDif-

ference)

wss = (nrow(clusteringScoreDif)-1)*sum(apply(clusteringScoreDif$scaledScoreDiffer-

ence,2,var))

for (i in 2:15) wss[i] = sum(kmeans(clusteringScoreDif$scaledScoreDifference, 

                                     centers=i)$withinss)

plot(1:15, wss, type=”b”, xlab=”Number of Clusters”,

     ylab=”Within groups sum of squares”)

fit = kmeans(clusteringDistance$scaledDistance, 7)

aggregate(clusteringDistance$scaledDistance,by=list(fit$cluster),FUN=mean)

clusteringDistance = data.frame(clusteringDistance, fit$cluster)

3 - Shapiro-Wild Test for Determining Normal Distribution  of “Points per 100 

Attempts” 

shapiro.test(PP100$teamsPP100)

shapiro.test(PP100$playersPP100)

4 - Train and Test Data Splitting

set.seed(100)

smp_size = floor(0.80 * nrow(data))

index = sample(seq_len(nrow(data)),size=smp_size)

train = data[index,]

test = data[-index,]
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5 - Logistic Regression

library(caret)  

fpr = NULL

fnr = NULL

acc = NULL

model = glm(successfulFlag ~ 

                 playerPosition + actionID + ha + regularSeason + radialZone + firstFive 

               + lastFive + mid30 + shotTension + playerIndex + radialZone * playerPosition

               ,family=binomial,data=train)

results_prob = predict(model,subset(test,select=c(2:11)),type=’response’)

results = ifelse(results_prob > 0.5 ,1,0)

answers = test$successfulFlag

misClasificError = mean(answers != results)

acc = 1-misClasificError

cm = confusionMatrix(data=results, reference=answers)

6 - Random Forest

library(randomForest)

rf_model = randomForest(successfulFlag ~ playerPosition + actionID + ha

                   + regularSeason + radialZone + firstFive + lastFive + mid30

                        +shotTension + playerIndex , data = train, importance = TRUE, ntree=1000)

rf_pred = predict(rf_model, test)

table(observed = test$successfulFlag, predicted = rf_pred)
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7 - Naive Bayes

library(ElemStatLearn)

library(klaR)

library(caret) 

xTrain = train[,-1] # removing y-outcome variable.

yTrain = as.factor(train$successfulFlag) # only y.

xTest = test[,-1]

yTest = as.factor(test$successfulFlag)

model = train(xTrain,yTrain,’nb’,trControl=trainControl(method=’cv’,number=10))

(table(predict(model$finalModel,xTest)$class,yTest))

8 - Naive Bayes MLR Extension

task = makeClassifTask(data = data, target = “successfulFlag”)

selected_model = makeLearner(“classif.naiveBayes”)

NB_mlr = train(selected_model, task)

NB_mlr$learner.model

predictions_mlr = as.data.frame(predict(NB_mlr, newdata = data[,2:8]))

table(predictions_mlr[,1],data$successfulFlag)

9 - Support Vector Machines

library(kernlab)

letter_classifier = ksvm(as.factor(successfulFlag) ~ ., data = train, kernel = “vanillad-

ot”, cross = 10)

svm_pred = predict(letter_classifier, test[,-1])

table(svm_pred, test$successfulFlag)
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10 - Artificial Neural Networks

library(keras)

library(recipes)

rec_obj = recipe(successfulFlag ~ ., data = train) %>%

  step_dummy(all_nominal(), - all_outcomes()) %>%

  step_center(all_predictors(), - all_outcomes()) %>%

  step_scale(all_predictors(), -all_outcomes()) %>%

  prep(data = train)

x_train = bake(rec_obj, newdata = train %>% select(-successfulFlag))

x_test = bake(rec_obj, newdata = test %>% select(-successfulFlag))

y_train = ifelse(pull(train,successfulFlag) == 1,1,0)

y_test = ifelse(pull(test,successfulFlag) == 1,1,0)

model_keras = keras_model_sequential()

model_keras %>%

layer_dense(units = 16, kernel_initializer = “uniform”, activation = “relu”,

input_shape = ncol(x_train)) %>%

layer_dropout(rate = 0.1) %>%

layer_dense(units = 16, kernel_initializer = “uniform”, activation = “sigmoid”) %>%

layer_dropout(rate = 0.1) %>%

layer_dense(units = 1, kernel_initializer = “uniform”, activation = “sigmoid”) %>%

compile(optimizer = ‘adam’, loss = ‘binary_crossentropy’, metrics = ‘accuracy’)


