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c© Özde Özkaya 2018

All Rights Reserved



ABSTRACT

TEMPTATION AS A RESULT OF AMBIGUITY

Özde ÖZKAYA

Economics, MA Thesis, July 2018

Thesis Supervisor: Assoc. Prof. Mehmet BARLO

Keywords: Temptation, Ambiguity, Dual-self, Multiple-selves

Employing the well-accepted axioms of Ghirardato, Maccheroni, and Marinacci (2004)
on preferences under ambiguity and extending them to the case with menus while using a
mild condition, we obtain a multiple-selves representation. As a result, when evaluating
a menu the decision maker can be thought to imagine that with some menu-dependent
probability his/her “ego” is in charge and he/she consumes the best alternative, whereas with
the remaining probability the decision maker faces an ambiguity about his/her consumption
as he/she does not know which one of his/her “alter egos” is to decide. We also show that
our multiple-selves representation transforms into a dual-self representation under a more
restrictive condition. Finally, the relation of our representation theorem with some models of
temptation is analyzed and we show that our representation result delivers their key axioms
concerning temptation.
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ÖZET

MUĞLAKLIK SONUCUNDA AYARTI

Özde ÖZKAYA

Ekonomi, Yüksek Lisans Tezi, Temmuz 2018

Tez Danışmanı: Doç. Dr. Mehmet BARLO

Anahtar Kelimeler: Ayartı, Muğlaklık, İkili-Benlik, Çoklu-Benlik

Bu tezde, Ghirardato, Maccheroni, ve Marinacci (2004)’ün muğlaklık içeren tercihler
üzerine yaptıkları varsayımları kabul edip, bu varsayımları menü içeren durumlara, önermekte
olduğumuz ılımlı bir koşul altında genişleterek, bir çoklu-benlik temsil sonucunu kanıtlıyoruz.
Böylelikle, karar vericinin şu şekilde davranıyormuş gibi hareket ettiğini meşrulaştırmaktayız:
Karar verici birey bir menüyü değerlendirken, menü ile alakalı belirli bir olasılık ile menüdeki
en iyi alternatifi seçecek olan benliğinin ortaya çıkacağını, kalan olasılıkla da hangi benliğinin
ortaya çıkacağını ve hangi alternatifin tüketileceğini bilememesi sebebi ile muğlaklık du-
rumu ile karşılaşacağını düşünür. Buna ek olarak, daha kısıtlayıcı bir koşul altında, or-
taya çıkardığımız çoklu-benlik temsil sonucunun, ikili-benlik tensil sonucuna dönüştüğünü
gösteriyoruz. Son olarak, elde ettiğimiz temsil sonuçlarının, bazı alakalı ayartı modelleri ile
karşılaştırmalı analizini yapıp, bu ayartı modellerinin en önemli varsayımlarının, bizim temsil
sonucumuz ile elde edilebildiğini gösteriyoruz.
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1 INTRODUCTION

Conventional decision making theories put emphasis on well–defined, stationary and coher-

ent preferences and entail the decision maker to choosing always his/her most preferred

alternative; as a result of which it is as if he/she maximizes his/her well-being according to

his/her preferences. Nevertheless, casual real-world observations suggest that people often

succumb to temptation and make decisions which are not compatible with their “rational”

preferences. For example, a person who is on diet and prefers low calorie meals may choose

to eat a hamburger with French fries at lunch and may regret this decision after his/her

short-run craving is gone; or, a diabetic person who is not allowed eat food containing sugar

may attempt to eat chocolate cake even though he/she knows of the risks involved. To

that regard, experimental psychologists and economists conducted both laboratory and field

experiments to understand the dynamics of temptation; and their findings suggest that the

dynamic inconsistency in choices (for instance, choice of salad yesterday and choice of burger

today) and preference for commitment (e.g., a person on a diet making a lunch reservation

in the morning to a restaurant serving only low calorie healthy food) constitutes an evidence

for temptation’s impacts on decision making process.1

Such effects on decision making processes have led psychologists and economists to ana-

lyze psychological phenomena of self-control and willpower as important reasons of succumb-

ing to temptation. Based on experimental evidence, Baumeister, Vohs, and Tice (2007)

states that willpower is a limited cognitive resource whose depletion may lead a decision

1We refer our readers to see Houser, Schunk, Winter, and Xiao (2018), Toussaert (2018), Ashraf, Karlan,
and Yin (2006),Thaler (1981), Loewenstein and Thaler (1989) and Lipman and Pesendorfer (2011) for related
literature.
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maker not to exercise self-control, and hence, succumb to temptation.2 Therefore, decision

theory expanded to include issues involving self-control and temptation. Except few studies

which model the choice from a menu, e.g. Masatlioglu, Nakajima, and Ozdenoren (2011),

the mainstream focus in the literature on temptation is to represent preferences over menus

in order to capture the idea of preference for commitment.

Employing well-accepted axioms on preferences under ambiguity and a mild condition

used when extending these preferences to menus which demands every acceptable menu to

have an unambiguous value, the current study obtains the resulting representation of these

preferences and proves that the associated behavior under ambiguity admits a multiple-selves

representation. That is, the decision maker acts as if with some endogenously determined

menu specific probability, he/she gets to consume the best alternative of that menu while

he/she does not have any idea and imagines the worst case scenario about the behavior of

his/her alter egos in the other contingencies.

When evaluating a menu, the multiple-selves setting calls for the decision maker to pre-

sume that with some probability the “ego” (alternatively, long-run self or the rational decision

maker him/herself) is decisive and as a result the decision maker consumes the best alterna-

tive of that menu, while with the remaining probability the decision maker faces ambiguity

about which one of many “alter egos” (alternatively, short-run selves or ids) is in charge. In

these ambiguous situations, the decision maker cannot predict the behavior of his/her alter

ego as he/she does not know either the particular alter ego that will be deciding or the exact

probability distribution on the potential deciding alter egos. This makes the decision maker

imagine the worst case scenario in these contingencies.

At this stage, we think that briefly discussing multiple-selves and dual-self models in the

psychology and economics literature is useful to capture the intuition behind and contri-

bution of our model. In order to explain the social behavior of an individual, Strack and

Deutsch (2004) argues a dual-system model which assumes that behavior is determined by

2See the following studies regarding the experimental evidence discussed above: Muraven, Tice, and
Baumeister (1998), Baumeister, Bratslavsky, Muraven, and Tice (1998), and Baumeister, Gailliot, DeWall,
and Oaten (2006).
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two interacting systems which are operating distinctively. The reflective system produces

decisions based on knowledge about facts and values whereas the impulsive system produces

decisions based associative links and motivational orientations. Furthermore, in a review

of judgment and decision making literature, Weber and Johnson (2009) states that dual-

process models involving a fast, automatic, effortless, associative and intuitive process and

a slower, rule-governed, analytic, deliberate and effortful process are accounted for many

decision making phenomena such as valuation of risky options, risk taking and hyperbolic

discounting. Therefore, dual-process ideas led economists to consider models in which de-

cisions are explained via interaction of two different selves. For example, Fudenberg and

Levine (2006) presents a model in which a decision problem reflects conflict between short-

run impulsive-self and long-run patient-self.

On the other hand, the psychology literature includes studies which focuses on the

multiple-selves approaches as well. For example, James (1890) claims that human beings

carry many different social selves as each of one them is a part of many different groups of

people; and Roberts and Donahue (1994) and Markus and Nurius (1986) also propose that

individuals have multiple-selves. Furthermore, Schelling (1984) points out that individuals

do not always act according to their usual self and behave as if there are other different

selves who take turns and act according to their own values.

As our model relies heavily on representation of preferences under ambiguity, we would

like to present a standard terminology that is used in the literature of ambiguity by the

virtues of one simple example. Imagine that there is a horse race in which three horses

(Queen, King and Princess) are competing. Then, there are six states of the natures: Queen

is the first, King is the second and Princess is the third; Queen is the first, Princess is the

second and King is the third; King is the first, Queen is the second and Princess is the third;

King is the first, Princess is the second and Queen is the third; Princess is the first, King is

the second and Queen is the third; and finally, Princess is the first, Queen is the second and

King is the third. Notice that, many factors including the weather, the performance of the

jockey, the health condition of the horse, and so and so forth, make a bettor face ambiguity
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in a horse race. Furthermore, suppose that a person gets 10 TL if the horse he/she bets

on wins and loses 10 TL otherwise. Then, an act is a function which assigns each state an

outcome; for example, consider two acts, denoted by f and g where f assigns 10 TL to states

in which Queen wins, and g assigns 10 TL to states in which King wins. Hence, f maps the

first two states to 10 TL and last four states to -10 whereas g maps the third and fourth

states to 10 TL and others to -10 TL.

While Schmeidler (1989) aims to lay the ground work to obtain representation of prefer-

ences of a decision maker over ambiguous acts, Gilboa and Schmeidler (1989) obtains such a

representation, the well-known maxmin expected utility representation. On the other hand,

the representation model we build upon relies on the α–maxmin expected utility model of

Ghirardato, Maccheroni, and Marinacci (2004) which is regarded as an extension of Hurwicz

(1951). In this model, probabilistic scenarios that the decision maker considers concerning

possible states of nature are revealed via the unambiguous preference relation between acts.

We say that an act is unambiguously preferred to another if the expected utility of the first

act is greater or equal to the expected utility of the other in each possible probabilistic

scenario that the decision maker considers. Hence, their representation model states that

α-maxmin expected utility of an act is based on the weighted average of the best case and the

worst case scenarios with act specific weights which can be interpreted as an act dependent

index of optimism and pessimism, respectively.

In order to adopt the setting of Ghirardato, Maccheroni, and Marinacci (2004) and employ

α– maxmin expected utility representation, we constructed the state space with the following

properties. In our model, each alternative in a menu is treated as a potential tempting

option for the decision maker because cognitive, commercial, social, cultural, professional and

financial factors may cause different alter egos to show up at different times. For example,

a person who is on diet could be affected by his/her friend’s choice of pizza and succumb

to temptation by ordering pizza in one instance whereas the same decision maker can be

tempted by a hamburger in another instance due to the delicious image of a hamburger on

the menu. That is why we have constructed our state space as a Cartesian product of menus
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so that a particular alter ego amounts to a state, and vice versa; hence, the jth dimension of

a given state represents the specific alter ego’s choice from the jth menu. One point that we

would like to highlight is that we do not necessarily assume that the alter egos are rational

in their own right and they can be viewed as “behavioral types” or “machines”.

This method also ensures that there exists a state, each dimension of which corresponds

to the best alternative from the corresponding menu; hence, the realization of this state gen-

erates the best case scenario for a decision maker. In fact, this is the state that corresponds

to the rational id, the ego.

The condition we employ to extend preferences under ambiguity to menus and obtain

the aforementioned multiple-selves representation demands that each acceptable menu (set of

options containing an element that provides strictly higher utilities than the globally worst

alternative) is unambiguously strictly preferred to the menu containing only the globally

worst option. That is why, we refer to this condition as the strict unambiguous value of

acceptable menus. In fact, it ensures that among the probability distributions obtained there

is one which assigns probability 1 to the state that corresponds to the ego, the rational

id. This, then, implies that when menus are added to the consideration, the representation

theorem of Ghirardato, Maccheroni, and Marinacci (2004) takes a form where the best case

scenario coincides with the behavior of the ego, hence, the decision maker; in turn, delivering

us the multiple-selves representation.

Therefore, the main contribution of the current thesis involves employing the construction

of the states using menus and showing that the strict unambiguous value of acceptable menus

enables us to get rid off the ambiguity concerning the best scenario and to replace it with

the behavior of the ego.

We also show that under a more restrictive condition calling for unambiguous preference

relations to be sustained only by monotonicity (an axiom ensuring that the act delivering

more desired consequences in every possible contingency must be unambiguously preferred),

the decision maker’s beliefs about potential alter egos is equal to all probability distributions

on alter egos. Hence, our multiple-selves representation transforms into a dual-self version
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in which the worst case scenario regarding the consumption of a menu corresponds to the

consumption of the worst alternative from that menu. Therefore, a decision maker evaluates

a menu by imagining that the ego will decide and he/she will consume the best alternative

of this menu with some menu dependent probability, whereas the alter-ego which represents

the most evil-self will be at the helm, resulting in the consumption of the worst alternative

in this menu with the remaining probability.

Instead of presenting the model and results of Ghirardato, Maccheroni, and Marinacci

(2004) superfluously, this thesis analyzes the construction and proofs of that paper in detail

due to the following: First, when menus are added to the consideration, we need to make sure

that our state space construction is compatible with theirs and these deliver the α–maxmin

expected utility model. Second, we have to check under the hood by going deep into their

construction and proofs in order to come up with a clean condition that we need in obtaining

multiple-selves representation of preferences on menus under ambiguity.

The studies in the temptation literature closest in spirit to ours are Chatterjee and

Krishna (2009), and its working paper version, Chatterjee and Krishna (2005). Chatterjee

and Krishna (2009) argues that individuals do not always choose the best alternative from

a menu and that study claims that such “mistakes” can be interpreted as an indication

of the presence of a virtual alter ego. Therefore, using some axioms they obtain a dual-

self representation of preferences of the decision maker over menus in which he/she acts as

if he/she has a virtual alter ego. This alter ego appears with some constant probability

and makes choices which are not necessarily preferred by the long-run self. Meanwhile, their

axioms on preferences on menus ensure that the alter ego is rational in his/her own right since

the alter ego’s preferences are represented by a von-Neumann Morgenstern utility function.

Consequently, they interpret alternatives maximizing the alter ego’s utility as the tempting

alternatives of a given menu.

By employing slightly different axioms, Chatterjee and Krishna (2005), the working pa-

per version of the aforementioned study, obtains a similar, but menu dependent, dual-self

representation one where the only difference is that the probability of the alter ego being
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decisive depends on the given menu at hand. Furthermore, they show that preferences on

menus satisfying the axioms of Gul and Pesendorfer (2001) also admit the menu dependent

dual-self representation, whereas the converse is not necessarily true.

Chatterjee and Krishna (2009) and Chatterjee and Krishna (2005) both employ a key

axiom to obtain their representation theorem. This, so-called, temptation axiom requires

that given any menu, the menu consisting of only the the best alternatives from the given

menu must be preferred to the given menu while the menu itself must be preferred to the

menu consisting of only the worst alternatives from the given menu.

In the current thesis, we prove that our multiple-selves representation delivers the temp-

tation axioms of Chatterjee and Krishna (2009) and Chatterjee and Krishna (2005).

Gul and Pesendorfer (2001) triggered the temptation and self-control literature with their

well-known representation theorem. Their model delivers the decision maker’s commitment

ranking and temptation ranking over alternatives and the cost of self-control. Therefore,

when the decision maker evaluates the worth of a menu, he/she imagines that he/she would

be choosing an alternative which brings about the highest utility despite the cost of self-

control that is exerted while choosing this alternative. They also claim that their model

captures the choice in the second period where the decision maker chooses an item from a

menu selected at the first period. In other words, the choice from a menu projects the com-

promise between choosing the best alternative according to his/her commitment preferences

and the cost of self-control due to not choosing the most tempting alternative. Hence, if the

decision maker is able to choose the best alternative in a given menu, then he/she is endowed

with a self-control which enables him/her to resist temptation.

The key axiom in their representation theorem is set betweenness: A preference relation

defined on menus (compact subsets of the simplex formed on the set of alternatives) satisfies

set betweenness if for any pair of menus with the first being preferred to the second, the

menu consisting of the union of these menus must be preferred to the second menu while

the first menu is to be preferred to the menu consisting of the union of the two menus.

We analyze situations which are rich enough to enable our dual-self representation to

7



deliver the set betweenness axiom of Gul and Pesendorfer (2001). Nevertheless, we have

to confess that the current thesis does not deliver a definitive answer to this question as

the corresponding endeavor requires an additional verification involving the use of Clarke

differential which we are not well acquainted with. Ergo, this creates a future task for us

that we would like address in the near future.

This thesis is organized as follows: Chapter 2 presents preliminaries and axioms for pref-

erences over acts, the unambiguous preference relation defined on acts, and the α–maxmin

expected utility model of Ghirardato, Maccheroni, and Marinacci (2004) along with its proof.

In Chapter 3, we present our construction of acts concerning menus and the multiple-selves

representation. Next, Chapter 4 introduces the dual-self representation under ambiguity and

discusses the constant ambiguity aversion index and the relation of our dual-self model with

key axioms of Chatterjee and Krishna (2005), Chatterjee and Krishna (2009) and Gul and

Pesendorfer (2001). Finally, Chapter 5 concludes.
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2 REPRESENTATION UNDER

AMBIGUITY

This chapter follows Gilboa and Schmeidler (1989) and Ghirardato, Maccheroni, and Mari-

nacci (2004) and presents the required arguments and proofs in detail in order to obtain

the desired representation theorem under ambiguity and to apply it to the acts concerning

menus involving ambiguous choices of the alter egos.

2.1 Preliminaries and axioms

We let X be the set of all alternatives, a compact metric space, and X ≡ ∆(X), the set of

probability measures on the Borel sigma-algebra of X (alternatively, the simplex formed on

X) endowed with the weak* topology. Then, X is non-empty and convex and weak* compact

and a convex subset of a vector space (endowed with the variation norm). Next, we define

the state space S with a generic member, a state, s ∈ S.

In order to apply the α–maxmin expected utility model of Ghirardato, Maccheroni, and

Marinacci (2004) in our analysis, first we adapt the well-known setup of Anscombe and

Aumann (1963) to our model.

Given S and X respectively, which are defined above, let Σ be an algebra sigma of subsets

of S, called events, and let F be a set of all the acts which are finite valued Σ–measurable

functions f : S → X. It is useful to point out that F is convex. A convex combination of two

acts, also referred to as a mixtures of two acts is defined as follows: For any given f, g ∈ F
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and λ ∈ [0, 1], the convex combination of f and g via λ is λ f + (1− λ)g ∈ F where this act

delivers λ f(s) + (1− λ)g(s) ∈ X in state s ∈ S. Moreover, an act h ∈ F is called a constant

act if h(s) = ` for all s ∈ S and for some ` ∈ X; namely, regardless of the state which is

realized, h gives the same consequence, the lottery `. We denote Fc the set of all constant

acts.

B0(Σ) denotes the set of all bounded Σ–measurable real valued simple functions. Then,

for any f ∈ F and define uf ∈ B0(Σ) by uf (s) ∈ R, i.e. for any S ∈ Σ the set uf (S) =

{uf (s) : s ∈ S} is measurable and uf : S → R is a simple function.

Let %⊆ F × F a binary relation which we will refer to as a preference relation over F .

Indeed, f % g is pronounced as f is weakly preferred to g. Also, f � g is equivalent to f % g

while not g% f , and is to be read as f is strictly preferred to g. Finally, f ∼ g if and only

if f % g and g% f , a case which we will refer to as f being indifferent to g.

Ghirardato, Maccheroni, and Marinacci (2004) borrowed the following five axioms from

Gilboa and Schmeidler (1989):

Axiom 1 (Weak Order) % is a complete and transitive binary relation; i.e. (i.) for all

f, g ∈ F , either f % g or g % f or both, and (ii.) for all f, g,m ∈ F , if f % g and g % m,

then f % m.

Axiom 2 (Certainity Independence) For all f, g ∈ F and for all h ∈ Fc and for all

λ ∈ [0, 1], it must be that f % g if and only if λ f + (1− λ)h % λ g + (1− λ)h.

Axiom 3 (Continuity) For all f, g,m ∈ F with f � g and g�m, there exist λ, λ′ ∈ (0, 1)

such that λ f + (1− λ)m� g and g�λ′ f + (1− λ′)m.

Axiom 4 (Monotonicity) For all f, g ∈ F and for any given s ∈ S letting hf(s), hg(s) ∈ Fc
be defined by hf(s)(s

′) = f(s) and hg(s)(s
′) = g(s) for all s′ ∈ S, the condition hf(s) % hg(s)

for all s ∈ S implies f % g.

Axiom 5 (Non–degeneracy) There exist f, g ∈ F such that f � g.
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The following result is due to Ghirardato, Maccheroni, and Marinacci (2004) (Lemma 1;

p.141)

Theorem 1 A binary relation % on F satisfies Axiom 1–5 if and only if there exist a

monotone and constant linear functional I : B0(Σ)→ R and a non-constant affine function

u : X → R such that f % g if and only if I(uf ) ≥ I(ug), f, g ∈ F , and `%X `′ if and only

if u(`) ≥ u(`′), `, `′ ∈ X. Moreover, functional I is unique and u is unique up to a positive

affine transformation. 1

Proof. The sufficiency direction of the current Theorem is trivial; hence, omitted.

The regarding the necessity direction is done by mimicking the arguments in the Lemmas

3.1–3.3 of Gilboa and Schimeidler (1989).

Notice that the relation % on F induces a relation %X on X defined as follows: for any

`, `′ ∈ X, ` %X `′ if and only if h` % h`′ h`, h`′ ∈ Fc are such that h`(s) = ` and h`′(s) = `′

for all s ∈ S. Then, Axiom 2 ensures that the independence axiom for %X is satisfied. To

see that, consider any `, `′ ∈ X with ` %X `′ and any λ ∈ [0, 1] and `′′ ∈ X and notice that

h`, h`′ , h`′′ ∈ Fc with h`%h`′ ; so by C-independence, we have λh` + (1−λ)h`′′ % λh`′ + (1−

λ)h`′′ which implies with the help of the definition of %X that λ `+(1−λ)`′′ %X λ `′+(1−λ)`′′.

Also, letting ` = `′ and λ = 1 establishes %X is reflexive. As all axioms of von Neumann –

Morgenstern expected utility theorem is satisfied we obtain the following result stated as a

lemma:

Lemma 1 There is an affine function u : X → R such that for all `, `′ ∈ X, ` %X `′ if

and only if u(`) ≥ u(`′). Therefore, for any h`, h`′ ∈ Fc with h`(s) = ` and h`′(s) = `′ for

all s ∈ S, h` % h`′ if and only if u(`) ≥ u(`′). Moreover, u is unique up to positive affine

transformation.

Next, we observe that von Neumann – Morgenstern’s construction involving best and

worst lotteries, extends to the case of acts:

1It may be appropriate to remark that u(`) = uf (s) for any f ∈ Fc with f(s) = ` ∈ X for all s ∈ S.
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Lemma 2 There exists f, f ∈ Fc such that for any f ∈ F it must be that f % f % f . In fact,

f is defined by f(s) = ¯̀∈ X with ¯̀%X `′ for all `′ ∈ X while f is defined by f(s) = ` ∈ X

with `′%X ` for all `′ ∈ X, for all s ∈ S. Moreover, for any f ∈ F there exists a unique

αf ∈ [0, 1] such that f ∼αff + (1− αf )f .

Proof. Let f ∈ F and notice that ¯̀%X f(s)%X ` for all s ∈ S implies with the help of

Axiom 4 (monotonicity) that f % f % f . Now, define B+, B− ⊂ [0, 1] by B+ = {α ∈ [0, 1] :

αf + (1 − α)f % f} and B− = {α ∈ [0, 1] : f % αf + (1 − α)f}. Due to Axioms 1 and

3 (completeness and continuity), B+ and B− are closed and any α ∈ [0, 1] belongs to at

least one of them. Thus, the closedness and nonemptiness of B+ and B− together with the

fact that [0, 1] is connected ensures that B+ ∩ B− 6= ∅. Hence, there exists at least one α

belonging to both of these sets; and it is unique. This follows from Axiom 1 (transitivity)

implying that B̊+ = {α ∈ [0, 1] : αf+(1−α)f � f} and B̊− = {α ∈ [0, 1] : f �αf+(1−α)f}

are such that B̊+ ∩ B̊− = ∅.

The following result will be helpful in the rest of the proof: For any given % and affine

function u : X → R representing %X, let K = u(X) ⊂ R. Then, by the continuity of u

(implied by u being affine), K is compact. Let B0(Σ, K) be subsets of functions in B0(Σ)

whose values are in K.

Lemma 3 The following hold:

(i) For any f ∈ F , there exists fc ∈ Fc such that f ∼ fc; and

(ii) For any f, g ∈ F and resulting uf , ug ∈ B0(Σ) and β ∈ [0, 1], uβf+(1−β)g ∈ B0(Σ) and

uβf+(1−β)g = βuf + (1− β)ug; and

(iii) For any ψ ∈ B0(Σ, K), there exists f ∈ F with ψ = uf .

Proof. Part (i) of the above Lemma follows from Lemma 2.

For part (ii), take any f, g ∈ F and resulting uf , ug ∈ B0(Σ) and β ∈ [0, 1]. Then, clearly,

uβf+(1−β)g ∈ B0(Σ). Now, consider act βf+(1−β)g ∈ F . By (i) of the current Lemma, there
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is fc, gc ∈ Fc with fc∼ f and gc∼ g and fc(s) = `f and gc(s) = `g for all s ∈ S; and notice that

βf + (1−β)g∼ βfc + (1−β)gc.
2 Thus, uβf+(1−β)g = uβfc+(1−β)gc = u(β`f + (1−β)`g) which,

due to (i) of Lemma 3, equals βu(`f ) + (1− β)u(`g) = βufc + (1− β)ugc = βuf + (1− β)ug.

Regarding the last item, part (iii) of the current Lemma, consider any ψ ∈ B0(Σ, K).

Then, for any given s ∈ S, ψ ∈ B0(Σ, K) implies ψ(s) ∈ [u(`), u(¯̀))], a non-empty, convex,

and compact set; thus, due to Lemma 1 u is continuous and so by Brower’s Fixed Point

Theorem there exists `s with u(`s) = ψ(s); consequently, defining f ∈ F by f(s) ≡ `s for

s ∈ S establishes our observation.

Lemma 4 Given u : X→ R representing %X, let J : F → R given as follows is well-defined

and unique:

(i) f % g if and only if J(f) ≥ J(g), f, g ∈ F , and

(ii) for any h` ∈ Fc defined by h`(s) = ` for all s ∈ S, it must be that J(h`) = u(`).

Proof. By (ii) above, J is uniquely determined on Fc. By Lemma 2, for any f ∈ F ,

there exists a unique αf ∈ [0, 1] such that f ∼αf f̄ + (1− αf )f with f̄ , f ∈ Fc. Thus, by (i)

and (ii), J(f) = J(αf f̄ + (1− αf )f). Therefore, for any f ∈ F , J clearly satisfied (i) and is

uniquely determined.

Lemma 5 For any affine function u : X → R representing %X, there exists a uniquely and

well-defined functional I : B0(Σ)→ R satisfying the following:

(i) For all f ∈ F , I(uf ) = J(f); and

(ii) I is monotonic, i.e. for any f, g ∈ F and resulting uf , ug ∈ B0(Σ), uf (s) ≥ ug(s) for

all s ∈ S implies I(uf ) ≥ I(ug); and

2This follows from Axiom 2 (certainty independence) as follows: f ∼ fc and g∼ gc implies for any λ ∈ [0, 1]
that λf + (1 − λ)fc∼ fc and λg + (1 − λ)gc∼ gc as fc, gc ∈ Fc. So, without loss of generality suppose
βf +(1−β)g�βfc+(1−β)gc. Then, by Axiom 2 for any λ ∈ [0, 1] we have λ(βf +(1−β)g)+(1−λ)(βfc+
(1 − β)gc)�βfc + (1 − β)gc. So, λ(βf + (1 − β)g) + (1 − λ)(βfc + (1 − β)gc) = β(λ f + (1 − λ)fc) + (1 −
β)(λ g+ (1−λ)gc)∼βfc + (1−β)gc (due to λf + (1−λ)fc∼ fc and λg+ (1−λ)gc∼ gc) we have the desired
contradiction.
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(iii) I is homogeneous of degree 1, i.e. for any f ∈ F and resulting uf ∈ B0(Σ), I(βuf ) =

βI(uf ) for all β ≥ 0.

(iv) I is constant additive, i.e. for any f ∈ F and resulting uf ∈ B0(Σ), I(uf + β) =

I(uf ) + β for all β ∈ R.

Proof. Recall that for any given % and affine function u : X → R representing %X, let

K = u(X) ⊂ R and B0(Σ, K) be subsets of functions in B0(Σ) whose values are in K.

Claim 1 Let I : B0(Σ, K) → R be defined by for any f ∈ F and resulting uf ∈ B0(Σ, K),

I(uf ) = J(f). Then, I is uniquely and well-defined on B0(Σ, K).

Proof. The result follows from Lemma 4

Claim 2 For any f, g ∈ F and resulting uf , ug ∈ B0(Σ), uf (s) ≥ ug(s) for all s ∈ S implies

I(uf ) ≥ I(ug).

Proof. Let f, g ∈ F with uf (s) ≥ ug(s) for all s ∈ S which is equivalent to f(s) %X g(s)

for all s ∈ S as u represents %X and uf (s) = u(`) where f(s) = `. Thus, by Axiom 4

(monotonicity), f % g. Then, by (i) of Lemma 4 J(f) ≥ J(g); so, by (i) of Lemma 5

I(uf ) ≥ I(ug).

Claim 3 For any f ∈ F and resulting uf ∈ B0(Σ), I(βuf ) = βI(uf ) for all β ≥ 0.

Proof. Let f ∈ F and resulting uf ∈ B0(Σ), and consider β ≥ 0. It suffices to restrict

attention to the case when β ∈ [0, 1].

Due to Axiom 5 (non-degeneracy) and Lemma 2, we know f̄ � f and by Lemma 1 without

loss of generality we can normalize u such that u(¯̀) > 1 and u(`) < −1. Next, notice that

by following similar steps presented in the proof of part (iii) of Lemma 3, there exists `0 ∈ X

such that u(`0) = 0; and define h0 ∈ Fc with h0(s) = `0 for all s ∈ S. 3 Then, clearly

uh0(s) = 0 for all s ∈ S.

3As X is non-empty convex and compact and u : X→ R is continues and u(¯̀) > 1 and u(`) < −1, there
exists `0 with u(`0) = 0. Then, let h0 ∈ Fc be defined by h0(s) = `0 for all s ∈ S.
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By Lemma 3, there exists fc ∈ Fc with f ∼ fc; so, uf = ufc .

Then, consider the act βfc + (1 − β)h0; thus, by Lemma 3, uβfc+(1−β)h0 = βufc + (1 −

β)uh0 = βufc + 0.

Therefore, I(βuf ) = I(βufc) = J(βfc + (1−β)h0) which equals (as βfc + (1−β)h0 ∈ Fc)

to uβfc+(1−β)h0(s) = ū for all s ∈ S and uβfc+(1−β)h0(s) = βufc(s) = ū for all s ∈ S which

implies ū = βufc(s) = βJ(fc) = βJ(f) = βI(uf ).

Claim 4 For any f ∈ F and resulting uf ∈ B0(Σ), I(uf + b) = I(uf ) + β for all β ∈ R

where b(s) = β for all s ∈ S.

Proof. Without loss of generality let β ∈ [u(`), u(¯̀)] and for any such β we define hβ ∈ Fc
by hβ(s) = `β ∈ X for all s ∈ S with uhβ ∈ B0(Σ) be given by uhβ(s) = u(`β) = β = b(s) for

all s ∈ S, so uhβ = b. 4Such a lottery `β exists as X is non-empty convex and compact and

u : X → R is continuous. Then, I(uhβ) = J(hβ) = u(`β) = β = I(b) due to hβ ∈ Fc and

part (ii) of Lemma 4.

By Lemma 3, there exists fc ∈ Fc with f ∼ fc; so, uf = ufc . Let `fc be such that

`fc = fc(s) for all s ∈ S.

Now, consider act 1
2
f+ 1

2
hβ. Notice that J(1

2
f+ 1

2
hβ) = I(1

2
uf + 1

2
uhβ) = I(1

2
ufc + 1

2
uhβ) =

J(1
2
fc+

1
2
hβ) = u(1

2
`fc+

1
2
`β) = 1

2
u(`fc)+ 1

2
u(`β) = 1

2
u(`fc)+ 1

2
β = 1

2
J(fc)+ 1

2
β = 1

2
J(f)+ 1

2
β =

1
2
I(uf ) + 1

2
β. Thus, as uhβ = b, I(1

2
uf + 1

2
b) = 1

2
I(uf ) + 1

2
β which by Claim 3 implies that

I(1
2
uf + 1

2
b) = I(1

2
(uf +b)) = 1

2
I(uf +b) = 1

2
I(uf )+ 1

2
β, hence, delivering the desired result.

This concludes the proof of the Lemma, hence, the Theorem.

2.2 Unambiguous preferences

In what follows, we need the relation that represents an unambiguous preference between

two acts. To that regard, we say that an act f ∈ F is unambiguously preferred to another

4When β /∈ [u(`), u(¯̀)], then we can find β′ = cβ with c ∈ R and β′ ∈ [u(`), u(¯̀)] and define b′ = cb.
Then, due to Claim 3, the following proof can be done by employing cuf + cb which is in B0(Σ).
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act g ∈ F , denoted by f %UA g, whenever λ f + (1− λ)m % λ g + (1− λ)m for all λ ∈ (0, 1]

and for all m ∈ F . Then, %UA⊆ F × F is a binary relation which we will refer to as an

unambiguous preferences defined over F . Naturally, f �UA g is equivalent to f %UA g while

not g%UA f , and is to be read as f is unambiguously strictly preferred to g. Finally, f ∼UA g

if and only if f %UA g and g%UA f , a case which we will refer to as f being unambiguously

indifferent to g.

The following lemma presents the properties of %UA:

Lemma 6 Suppose that a binary relation % on F satisfies Axiom 1–5 and %UA on F is as

defined above. Then, each of the following holds for %UA⊆ F × F :

(i) For any f, g ∈ F , f %UA g implies f % g.

(ii) For any h, h′ ∈ Fc, h%UA h′ if and only if h%h′.

(iii) %UA is preorder, i.e. reflexive and transitive.

(iv) %UA is monotone. 5

(v) %UA satisfies the independence axiom. 6

(vi) %UA is the maximal restriction of % satisfying the independence axiom. 7

Proof. For the part (i), let f %UA g. Then, for any f, g ∈ F we must have λ f+(1−λ)m %

λ g + (1− λ)m for all λ ∈ (0, 1] and for all m ∈ F . If λ = 1, then clearly f % g.

Only if part of (ii) follows from the (i) of current lemma. For the if part of (ii), assume

that there are two constant acts h, h′ ∈ Fc with h % h′. Let `, `′ ∈ X be two lotteries such

that h(s) = ` and h′(s) = `′ for all s ∈ S. Then, we must have ` %X `′. Now, let m ∈ F be

an arbitrary act and for any given s ∈ S define m(s) = `m(s). Therefore, since %X satisfies

5For any given s ∈ S let f(s) = `f(s) and g(s) = `g(s) with `f(s), `g(s) ∈ X. Then, %UA is monotone if for

any f, g ∈ F with `f(s) %X `g(s) for all s ∈ S, it must be that f %UA g.

6%UA satisfies the independence axiom if for any f, g,m ∈ F with f %UA g and λ ∈ [0, 1] it must be that
λ f + (1− λ)m %UA λ g + (1− λ)m.

7That is, if %∗⊂% with the restriction that %∗ satisfies the independence axiom, then %∗⊂%UA.
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the independence axiom, it must be λ `+ (1−λ)`m(s) %X λ `′+ (1−λ)`m(s) for all s ∈ S and

λ ∈ [0, 1]; so, λh(s)+(1−λ)m(s) %X λh′(s)+(1−λ)m(s) for all s ∈ S and λ ∈ (0, 1]. This,

by Axiom 4 (monotonicity), implies that λh+ (1− λ)m % λh′ + (1− λ)m for all λ ∈ (0, 1];

hence, h %UA h′ as m ∈ F is selected arbitrarily.

Regarding the third item, first notice that reflexivity of %UA is a direct consequence of

Axiom 4 (monotonicity): For any given f ∈ F and any arbitrarily selected λ ∈ (0, 1] and

m ∈ F , due to the reflexivity of %X, we have λ f(s) + (1− λ)m(s)%X λ f(s) + (1− λ)m(s)

for all s ∈ S; thus, by monotonicity, λ f + (1 − λ)m%λ f + (1 − λ)m, so f %UA f . In

order to show that %UA is transitive, assume that f %UA g and g %UA m with f, g,m ∈ F .

Therefore, for any k ∈ F and λ ∈ (0, 1], we have λ f + (1 − λ)k % λ g + (1 − λ)k and

λ g + (1− λ)k % λm + (1− λ)k. Then, by Axiom 1, λ f + (1− λ)k % λm + (1− λ)k. So,

as λ ∈ (0, 1] and m ∈ F is arbitrary, f %UA m.

In order to show that %US is monotonic, we will repeat the similar steps that we took

in the proof of (ii): For any s ∈ S let `f(s) %X `g(s) where f(s) = `f(s) and g(s) = `g(s) and

f, g ∈ F and `f(s), `g(s) ∈ X. Let m ∈ F be arbitrary with m(s) = `m(s), s ∈ S. By the

independence axiom of %X, it must be λ f(s) + (1− λ)m(s) %X λ g(s) + (1− λ)m(s) for all

s ∈ S and for all λ ∈ [0, 1]. Then, by Axiom 4 (monotonicity), λ f +(1−λ)m % g+(1−λ)m

for all λ ∈ (0, 1]; so, f %UA g.

The proof (v) is as follows: Let f, g,m ∈ F with f %UA g and λ ∈ [0, 1]. We need to show

that λ f +(1−λ)m %UA λ g+(1−λ)m which is equivalent to µ(λ f +(1−λ)m)+(1−µ)k %

µ(λ g+ (1−λ)m) + (1−µ)k for any arbitrary k ∈ F and µ ∈ (0, 1]. Let k ∈ F and µ ∈ (0, 1]

be arbitrary and consider the associated convex combination of two acts (λ f+(1−λ)m) and

(λ g + (1− λ)m). Notice that (λ f(s) + (1− λ)m(s)), (λ g(s) + (1− λ)m(s)) ∈ X and as %X

satisfies the independence axiom we have θ(λ f(s) + (1−λ)m(s)) + (1− θ)k(s)%X θ(λ g(s) +

(1 − λ)m(s)) + (1 − θ)k(s) for all s ∈ S and θ ∈ [0, 1]. By Axiom 4 (monotonicity), we

have θ(λ f + (1 − λ)m) + (1 − θ)k% θ(λ g + (1 − λ)m) + (1 − θ)k, for all θ ∈ [0, 1]. So,

µ(λ f + (1− λ)m) + (1− µ)k%µ(λ g+ (1− λ)m) + (1− µ)k, for all µ ∈ (0, 1], which implies

λ f + (1− λ)m %UA λ g + (1− λ)m as k is arbitrary.
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Finally, for the proof of (vi), let %∗⊂% and %∗ satisfies the independence axiom. So , for

any f, g ∈ F with f %∗ g we have λ f + (1 − λ)m %∗ λ g + (1 − λ)m for all λ ∈ (0, 1] and

m ∈ F . As %∗⊂%, then f %∗ g and λ f + (1 − λ)m %∗ λ g + (1 − λ)m implies f % g and

λ f + (1 − λ)m % λ g + (1 − λ)m for all λ ∈ (0, 1] and arbitrary m ∈ F . Therefore, by the

definition of %UA we have f %UA g.

Now, we will turn our attention to revealed ambiguity. The following result is due to

Ghirardato, Maccheroni, and Marinacci (2004) (Proposition 5; p.144) and it justifies the

following observation: If an act f ∈ F is unambiguously preferred to another act g ∈ F ,

then for every probabilistic scenario P ∈ C the expected utility of f is higher than the

expected utility of g.

Theorem 2 Suppose that a binary relation % on F satisfies Axiom 1–5 and %UA on F is

as defined above. Then, there exists a unique nonempty, weak* compact and convex set of C

of probabilities on Σ such that for all f, g ∈ F , f %UA g if and only if
∫
S
ufdP ≥

∫
S
ugdP

for all P ∈ C.

Proof. Let K be an arbitrary non-singleton interval in R (implied by the non-triviality

and at this stage we do not insist on K equaling u(X)) and define, as above, B0(Σ, K) be

a subset of B0(Σ) consisting of all bounded Σ–measurable real valued simple functions that

take values in K. Define a binary relation D on B0(Σ, K) with the following properties:

(i) a preorder, i.e. D is reflexive and transitive;

(ii) continuous, i.e. for any sequence {ψn, φn}n∈N in B0(Σ, K)×B0(Σ, K) with ψnDφn for

all n ∈ N and (ψn, φn)
sup−−→ (ψ, φ), we have that ψ D φ; 8

(iii) conic, i.e. for any ψ, φ ∈ B0(Σ, K) with ψ D φ implies βψ + (1− β)γ D βφ+ (1− β)γ

for all γ ∈ B0(Σ, K) and β ∈ [0, 1];

(iv) monotone, i.e. ψ(s) ≥ φ(s) for all s ∈ S implies ψ D φ;

8For any ψ and {ψn}, ψn
sup−−→ ψ whenever limn sups∈S |ψn(s)− ψ(s)| = 0.
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(v) nontrivial, i.e. there are ψ, φ ∈ B0(Σ, K) with ψ D φ while not φD ψ.

The following is stated without a proof as Proposition A.2 in Ghirardato, Maccheroni,

and Marinacci (2004), and we thank Paolo Ghirardato for providing us with its proof.

Lemma 7 A binary relation D ⊆ B0(Σ, K) × B0(Σ, K) is a nontrivial, continuous, conic

and monotonic preorder if and only if there exists a convex and weak* closed nonempty

set C of probabilities such that ψ D φ if and only if
∫
S
ψdP ≥

∫
S
φdP for all P ∈ C and

ψ, φ ∈ B0(Σ, K).

Proof. Define Ko as the interior of K, i.e. the largest open set which is contained in K.

Let k0 ∈ Ko and notice that 0 is contained in the interval K−k0. Define Do on B0(Σ, K−k0)

such that for any ψ, φ ∈ B0(Σ, K − k0), ψDoφ if and only if ψ + k0 D φ+ k0.

Claim 5 Let k0 ∈ Ko. Then, Do defined on B0(Σ, K − k0) is nontrivial, continuous, conic

and monotonic preorder.

Proof. We will first show that Do is reflexive and transitive. Let ψ ∈ B0(Σ, K − k0) be

such that ψ+ k0 ∈ B0(Σ, K). Then, it must be ψ+ k0 Dψ+ k0, as D is reflexive. Therefore,

we observe that ψDoψ, so Do is reflexive. For transitivity, suppose ψDoφ and φDoγ with

ψ, φ, γ ∈ B0(Σ, K − k0); then, it must be that ψDoγ. First, notice that ψDoφ and φDoγ

imply ψ + k0 D φ + k0 and φ + k0 D γ + k0, respectively. Since D is transitive, it must be

ψ + k0 D γ + k0; so ψDoγ.

Next, we will show that Do is continuous. Take any sequence {ψn, φn}n∈N in B0(Σ, K −

k0) × B0(Σ, K − k0) with ψnDoφn for all n ∈ N and (ψn, φn) → (ψ, φ). Then, it must be

ψn + k0 D φn + k0 for all n ∈ N. It is obvious that ψn + k0 → ψ + k0 and φn + k0 → φ+ k0.

Since D is continuous, we must have ψ + k0 D φ+ k0, which implies ψDoφ.

Do is conic if for any ψ, φ ∈ B0(Σ, K−k0) with ψDoφ implies βψ+(1−β)γDoβφ+(1−β)γ

for all γ ∈ B0(Σ, K − k0) and β ∈ [0, 1]. Now, notice that βψ + (1 − β)γ, βφ + (1 − β)γ ∈

B0(Σ, K − k0) and that ψDoφ implies ψ + k0 D φ,+k0 and ψ + k0, φ + k0 ∈ B0(Σ, K).

Since D is conic for all β ∈ [0, 1] and for all γ + k0 ∈ B0(Σ, K) the following will hold:
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β(ψ + k0) + (1 − β)(γ + k0) D β(φ + k0) + (1 − β)(γ + k0) which is the same as βψ + (1 −

β)γ + k0 D βψ + (1 − β)γ + k0. Therefore, for all γ ∈ B0(Σ, K − k0) and β ∈ [0, 1] it must

be that βψ + (1− β)γDoβφ+ (1− β)γ.

For monotonicity of Do, let ψ, φ ∈ B0(Σ, K − k0) (and observe that ψ + k0, φ + k0 ∈

B0(Σ, K)) which satisfy ψ(s) ≥ φ(s) for all s ∈ S. Then, ψ(s) + k0 ≥ φ(s) + k0 will hold for

all s ∈ S as well. Since D is monotone we have ψ + k0 D φ,+k0, so ψDoφ.

Finally, Do is nontrivial since K is a non-singleton interval on real line and Do satisfies

monotonicity: Define ψ, φ ∈ B0(Σ, K−k0) by ψ(s) = maxk∈K k−k0 and φ(s) = mink∈K k−k0

for all s ∈ S and observe that ψ + k0 D φ+ k0, so ψDoφ and not φDoψ.

Claim 6 Following statements are equivalent for any ψ, φ ∈ B0(Σ, K − k0):

(i) ψDoφ;

(ii) There is α > 0 with αψ, αφ ∈ B0(Σ, K − k0) and αψDoαφ;

(iii) For all α > 0 with αψ, αφ ∈ B0(Σ, K − k0), it must be αψDoαφ.

Proof. Taking α = 1 is enough to show that (i) implies (ii); and (iii) implies (i).

In order to show that (ii) implies (iii), suppose that there exist α > 0 with αψ, αφ ∈

B0(Σ, K − k0) and αψDoαφ. Let α′ > 0 be such that α ≥ α′ > 0, then α′ψ = α′

α
αψ +

(1 − α′

α
)0Do α′

α
αφ + (1 − α′

α
)0 = α′φ and notice that α′ψ, α′φ,0 ∈ B0(Σ, K − k0) because 0

is in the interval K − k0 and Do is conic. Now, if α′ > α (for a contradiction) assume that

α′ψ, α′φ ∈ B0(Σ, K − k0) and not α′ψDoα′φ. Since αψDoαφ, it must be α
α′
α′ψDo α

α′
α′φ. Let

δ̄ = sup {δ ∈ [0, 1] : δα′ψDoδα′φ} and notice that {δ ∈ [0, 1] : δα′ψDoδα′φ} 6= ∅ (as δ may

equal α
α′
∈ (0, 1)) and because that Do is continuous, it must be δ̄α′ψDoδ̄α′φ. Due to the

fact that Do is conic and δ̄ ∈ [0, 1] and α′ψ, α′φ ∈ B0(Σ, K − k0), by mixing α′ψ and α′φ by

a weight of δ̄/(1 + δ̄) it must be that

1

1 + δ̄
δ̄α′ψ +

δ̄

1 + δ̄
α′ψDo 1

1 + δ̄
δ̄α′φ+

δ̄

1 + δ̄
α′ψ, (2.1)

1

1 + δ̄
δ̄α′ψ +

δ̄

1 + δ̄
α′φDo 1

1 + δ̄
δ̄α′φ+

δ̄

1 + δ̄
α′φ. (2.2)
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As the right hand side of (2.1) is the same as the left hand side of (2.2), by the transitivity

of Do, 1
1+δ̄

δ̄α′ψ + δ̄
1+δ̄

α′ψDo 1
1+δ̄

δ̄α′φ+ δ̄
1+δ̄

α′φ which is the same as 2δ̄
1+δ̄

α′ψDo 2δ̄
1+δ̄

α′φ. By the

definition of δ̄, it must be that δ̄ ≥ 2δ̄
1+δ̄

, so δ̄(1 + δ̄) ≥ 2δ̄, so δ̄2− δ̄ ≥ 0. However, since δ̄ > 0

requires this inequality to hold only when δ̄ = 1 and δ̄α′ψDoδ̄α′φ, delivering the desired

contradiction.

Define DΣ on B0(Σ) as follows: for all ψ, φ ∈ B0(Σ), ψDΣφ if and only if αψDoαφ for some

(all) α > 0 with αψ, αφ ∈ B0(Σ, K−k0). We observe that, by Claim 6: ψ, φ ∈ B0(Σ, K−k0)

implies ψ DΣ φ if and only if ψDoφ.

Claim 7 DΣ defined on B0(Σ) is nontrivial, continuous, conic and monotonic preorder.

Proof. By following similar steps presented in the proof of reflexivity and transitivity of

Do of Claim 5, it is easy to establish that DΣ is reflexive and transitive.

In order to show that DΣ is continuous, take any sequence {ψn, φn}n∈N in B0(Σ)×B0(Σ)

with ψn DΣ φn for all n ∈ N and (ψn, φn) → (ψ, φ) ∈ B0(Σ) × B0(Σ). We need to show

that ψ DΣ φ. Now, ψn DΣ φn implies that there exists αn > 0 with αnψnDoαnφn and

αnψn, αnφn ∈ B0(Σ, K − k0) for all n ∈ N. As ψ, φ ∈ B0(Σ), by the Archimedean Proporty,

there exists α∗ > 0 such that α∗ψ, α∗φ ∈ B0(Σ, K − k0); so, and without loss of generality

(by focusing on n sufficiently high) we may restrict attention to {αn} living in a compact

subset of R+ and converging to α∗ > 0. Then, by the Lebesgue Dominated Convergence

Theorem (as ψn, ψ, φn, φ are in B0(Σ)), limn∈N αnψn = α∗ψ and limn∈N αnφn = α∗φ and as

α∗ > 0 and α∗ψDoα∗φ, we conclude that ψ DΣ φ.

When attention is focused on K = R, the definition of a conic preoder (as presented in the

footnote 1 of Ghirardato, Maccheroni, and Marinacci (2002) and footnote 19 of Ghirardato,

Maccheroni, and Marinacci (2004)) is as follows: DΣ is conic if and only if ψ DΣ φ implies

βψ + θ DΣ βφ + θ for all β ≥ 0 and θ ∈ B0(Σ). For showing that DΣ is conic, let ψ DΣ φ

and β ≥ 0 and θ ∈ B0(Σ). For any θ ∈ B0(Σ), by the Archimedean Proporty, there exists

λ ∈ (0, 1] such that λ θ ∈ B0(Σ, K − k0). As ψ DΣ φ, it must be that for some (all) α > 0

we have αψDoαφ and αψ, αφ ∈ B0(Σ, K − k0). Since Do is conic, for any λ > 0 with

21



λ θ ∈ B0(Σ, K − k0), it must be that for all µ ∈ [0, 1], (1− µ)αψ + µλ θDo(1− µ)αφ+ µλ θ

(and note that (1 − µ)αψ + µλ θ, (1 − µ)αφ + µλ θ ∈ B0(Σ, K − k0)). Thus, (1 − µ)αψ +

µλ θ = µλ( (1−µ)α
µλ

ψ) + µλ θDo(1 − µ)αφ + µλ θ = µλ( (1−µ)α
µλ

φ) + µλ θ which is the same

as µλ( (1−µ)α
µλ

ψ + θ)Doµλ( (1−µ)α
µλ

φ + θ). Furthermore, notice that (1−µ)α
µλ

ψ + θ, (1−µ)α
µλ

φ + θ ∈

B0(Σ) and µλ > 0 whenever µ ∈ (0, 1]. Hence, µλ( (1−µ)α
µλ

ψ + θ)Doµλ( (1−µ)α
µλ

φ + θ) implies

(1−µ)α
µλ

ψ + θ DΣ (1−µ)α
µλ

φ + θ for all µ ∈ (0, 1], and λ θ ∈ B(Σ, K − k0). Since µ, λ ∈ (0, 1]

and α > 0, we have (1−µ)α
µλ

> 0. Then, for any given β > 0 and α > 0 and λ > 0 with

λ θ ∈ B0(Σ, K−k0), by letting µ ∈ (0, 1] (arbitrary small if needed) be such that β = (1−µ)α
µλ

,

we have βψ + θ DΣ βφ+ θ.

In order to show that DΣ is monotonic, suppose that ψ(s) ≥ φ(s) for all s ∈ S and

ψ, φ ∈ B0(Σ). Then, αψ(s) ≥ αφ(s) for all α > 0 and s ∈ S. There exist λ1, λ2 ∈ (0, 1]

such that λ1 ψ ∈ B0(Σ, K − k0) and λ2 φ = φ∗ ∈ B0(Σ, K − k0). Without loss of generality,

suppose that λ1 = min{λ1, λ2}; then, λ1 φ ∈ B0(Σ, K − k0) as we have shown in the proof

of the Claim 6. As ψ(s) ≥ φ(s) for all s ∈ S, it must be that λ1 ψ(s) ≥ λ1 φ(s) for all s ∈ S

from which we can obtain λ1 ψDo λ1 φ, since Do is monotone. Hence, λ1 ψDo λ1 φ for λ1 > 0

with λ1 φ, λ1 ψ ∈ B0(Σ, K − k0) implies ψ DΣ φ.

As noted in the paragraph before the statement of the current Lemma, ψ DΣ φ if and

only if ψDoφ whenever ψ, φ ∈ B0(Σ) are such that ψ, φ ∈ B0(Σ, K−k0). Thus, nontriviality

of DΣ follows trivially from nontriviality of Do: By the nontriviality of Do, there are ψ, φ ∈

B0(Σ, K − k0) such that ψDoφ and not φDoψ; so, since the interval K − k0 is trivially

contained in R, this means there are ψ, φ ∈ B0(Σ) such that ψDΣφ and not φDΣψ.

B0(Σ), the set of all bounded Σ–measurable real valued simple functions, can equivalently

be viewed as the vector space generated by the simple functions on Σ. Then, B(Σ), the

closure of B0(Σ) with the supnorm, also called the uniform norm, is a subset of the set of all

bounded functions on the state space S which is known to be a Banach space, a complete

normed vector space. Also, B0(Σ) is dense in B(Σ). Now, we let ba(Σ) denote the set of all

bounded, finitely additive set functions on Σ (i.e. signed measures on Σ) and it is known that

ba(Σ) is also a Banach space equipped with the variation norm. Moreover, pc(Σ) denotes the
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set of all probability measures in ba(Σ) and is a convex subset of a Banach space ba(Σ) (with

the variation norm). Due to the duality of Banach spaces, ba(Σ) is isometrically isomorphic

to B(Σ) (and also to B0(Σ) as it is dense in B(Σ).9 This result enables us to view a measure

(in ba(Σ)) as a linear functional on measurable functions (mapping B0(Σ) into R); so, one

can define the integral using a finitely additive measure. Thus, for any L ∈ ba(Σ) and

ψ, φ ∈ B0(Σ) it must be that L(ψ) ≥ L(φ) if and only if
∫
S
ψdL ≥

∫
S
φdL. This is also

what will done in our construction of L, the set of all non-negative measures on Σ with the

property that for all ψ ∈ B0(Σ) it must be that ψ DΣ 0, which is defined as follows:

L = {L ∈ ba(Σ) : L(ψ) ≥ 0, for all ψ with ψ DΣ 0}.

Trivially, 0 ∈ L and L is a convex cone.10

In order to use the Hahn-Banach (Hyperplane Separation) Theorem, we need to show

that L ⊂ ba(Σ) is a Banach space with the variation norm. To that regard, we show that L

is closed in the topology τ(ba(Σ), B0(Σ)) as τ(ba(Σ), B0(Σ)) coincides with τ(ba(Σ), B(Σ))

in the weak* topology. Let {Lα} be a net in L with limit L in the weak* topology. That is,

for all ψ ∈ B0(Σ) we have Lα(ψ) converging to L(ψ) (in real numbers). Thus, if ψDΣ 0 and

as Lα ∈ L for all α it must be that Lα(ψ) ≥ 0 for all α; therefore, L(ψ) ≥ 0. Hence, L ∈ L.

Claim 8 ψ DΣ φ if and only if L(ψ) ≥ L(φ) for all L ∈ L \ {0}.

Proof. For necessity, notice that for any ψ, φ ∈ B0(Σ), ψ DΣ φ implies, as DΣ is conic

and (−φ) ∈ B0(Σ), ψ − φ DΣ 0; thus, for all L ∈ L, it must be that L(ψ − φ) ≥ 0 which

trivially implies that for all L ∈ L \ {0}, it must be that L(ψ − φ) ≥ 0. As any such L is a

finitely additive set function, L(ψ − φ) = L(ψ)− L(φ) ≥ 0 implying L(ψ) ≥ L(φ).

For sufficiency, suppose that L(ψ) ≥ L(φ) for all L\{0} but not ψDΣφ. Then, ζ = ψ−φ ∈

B0(Σ) but not ζDΣ 0. Therefore, by Hahn-Banach (Hyperplane Separation) Theorem, there

9A space is isometrically isomorphic to another space if there is a distance preserving continuous function
with a continuous inverse.

10L is a convex cone if for all α, β ≥ 0 and L,L′ ∈ L, αL+ βL′ ∈ L.
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exists L′ ∈ ba(Σ) such that L′(θ) ≥ 0 > L′(ζ) for all θ ∈ B0(Σ) with θ DΣ 0. Because

that L′ ∈ ba(Σ) is such that L′(θ) ≥ 0 for all θ ∈ B0(Σ) with θ DΣ 0, L′ ∈ L. Thus,

L′(ζ) = L′(ψ− φ) < 0, as not ψDΣ φ, implies L′ 6= 0 and (due to the finite additivity of L′)

L′(ψ) < L′(φ) contradicting to the hypothesis of L(ψ) ≥ L(φ) for all L \ {0}.

Since L is a bounded, finitely additive set function on Σ, the Claim 8 implies

ψ DΣ φ⇔ L(ψ)

L(S)
≥ L(φ)

L(S)
for all L ∈ L \ {0}.

We define C as C = L ∩ pc(Σ), then C is the set of all probability charges in L. Moreover,

notice that C is weak* closed and convex since L and pc(Σ) are weak* closed and convex

sets. Hence, we conclude that

ψ DΣ φ⇔ P (ψ) ≥ P (φ) for all P ∈ C.

Furthermore, observe that for any ψ, φ ∈ B0(Σ, K) we have ψ−k0, φ−k0 ∈ B0(Σ, K−k0)

and ψ − k0, φ− k0 ∈ B0(Σ). Hence, for any ψ, φ ∈ B0(Σ, K) the following must be true:

ψ D φ⇔ ψ − k0D
oφ− k0 ⇔ ψ − k0 D

Σ φ− k0 ⇔ P (ψ − k0) ≥ P (φ− k0) for all P ∈ C

⇔ P (ψ) ≥ P (φ) for all P ∈ C ⇔
∫
S

ψdP ≥
∫
S

φdP for all P ∈ C.

In turn, this concludes the proof of Lemma 7.

Lemma 8 For i = 1, 2, let Ci be non-empty sets of probabilities on Σ and binary relations

Di ⊆ B0(Σ, K) × B0(Σ, K) be defined by ψ Di φ if and only if
∫
S
ψdP ≥

∫
S
φdP for all

P ∈ Ci. Then,

ψ Di φ if and only if

∫
S

ψdP ≥
∫
S

φdP for all P ∈ cow∗(Ci).11

Furthermore, the following statements are equivalent:

11For a set Y , cow
∗
(Y ) is the closure of the convex hull of the set Y in weak* topology.
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(i) For all ψ, φ ∈ B0(Σ, K), ψ D1 φ implies ψ D2 φ;

(ii) cow
∗
(C2) ⊆ cow

∗
(C1).

Proof. For any ψ, φ ∈ B0(Σ, K) and i ∈ {1, 2}, by Lemma 7, ψDi φ implies there exists

a convex and weak* closed nonempty Ci with
∫
S
ψdP ≥

∫
S
φdP for all P ∈ Ci. Notice that

due to these Ci = cow
∗
(Ci). Now, for any P ∈ Ci, there exists a net {Pα} ⊂ Ci such that

Pα(ψ) → P (ψ) for all ψ ∈ B0(Σ). Therefore, if ψ Di φ for any ψ, φ ∈ B0(Σ), then (by

Lemma 7) it must be Pα(ψ) ≥ Pα(φ) for all α and for all Pα ∈ Ci; thus, ψ Di φ implies

P (ψ) ≥ P (φ) (alternatively,
∫
S
ψdP ≥

∫
S
φdP ). As P ∈ Ci is arbitrary, the proof of the

necessity concludes. For the converse direction, if P (ψ) ≥ P (φ) for all P ∈ cow∗(Ci); then,

P ′(ψ) ≥ P ′(φ) for all P ′ ∈ Ci since Ci ⊆ cow
∗
(Ci); hence, by Lemma 7, ψ Di φ.

In what follows, we will show that (i) implies (ii). First, for a contradiction suppose that

ψD1φ implies ψD2φ for any ψ, φ ∈ B0(Σ), but cow
∗
(C2) * cow

∗
(C1); so C2 * C1. Thus, there

is P̃ ∈ C2 \ C1.

Let us define the set M1 = {αP : α ≥ 0, P ∈ C1}. Trivially, (by setting α = 1),

C1 ⊂ M1. Notice that M1 is a convex cone since for any αP, α′P ′ ∈ M1, if α = α′ = 0, then

βαP + β′αP ′ = 0 ∈ M1 for all β, β′ ∈ R+; and if β = β′ = 0, then βαP + β′αP ′ = 0 ∈ M1

for all α, α′ ∈ R+; lastly, without loss of generality, suppose that α > 0, α′ ≥ 0, β > 0 and

β′ ≥ 0, then βαP + β′α′P ′ = βα + β′α′( βα
βα+β′α′

P + β′α′

βα+β′α′
P ′) ∈ M1 since βα + β′α′ > 0

and ( βα
βα+β′α′

P + β′α′

βα+β′α′
P ′) ∈ C1 (as C1 is weak* closed and convex). Next, we will show

that M1 is weak* closed. Suppose that a net {βαPα} ⊂ M1 with {βαPα}
w∗−→ L. We need

to show that L ∈ M1. As βαPα ∈ M1, βα ≥ 0 and Pα ∈ C1 for all α. If L = 0, then

L ∈ M1. So suppose L 6= 0. Then, by the Archimedean Property, L = βP for some

β > 0 and P ∈ pc(Σ). So, βαPα(S) converging to βP (S), implies βα converges to β. Hence,

Pα = 1
βα

(βαPα)
w∗−→ 1

β
(βP ) = P from which we can infer as {Pα} ⊂ C1 and C1 is weak*

closed, P ∈ C1 which implies L = βP ∈M1.

Furthermore, notice that P̃ /∈ C1 ⊂ M1. As M1 is a convex weak* closed cone (implying

that is a Banach space), by the Hahn-Banach (Hyperplane Separation) Theorem, there exists
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ψ ∈ B0(Σ) \ 0 such that:

L(ψ) ≥ 0 > P̃ (ψ) for all L ∈M1 (2.3)

As K is a non-singleton interval there exist k0 ∈ Ko and µ > 0 such that µψ + k0 ∈

B0(Σ, K). Furthermore, notice that (2.3) implies P (ψ) ≥ 0 for all P ∈ C1 as C1 ⊂M1. Thus,

by the construction presented in the proof of Lemma 7, the following holds:

P (ψ) ≥ 0 for all P ∈ C1 ⇔ αP (ψ) ≥ 0 for all P ∈ C1

⇔ P (αψ) ≥ 0 for all P ∈ C1

⇔ P (αψ) + k0 ≥ k0 for all P ∈ C1

⇔ P (αψ + k0) ≥ k0 for all P ∈ C1

⇔ αψ + k0 D1 k0.

On the other hand, 0 > P̃ (ψ), (2.3) implies k0 > P̃ (αψ+ k0), hence, not αψ+ k0 D2 k0 since

P̃ ∈ C2; in turn, delivering the desired contradiction. Thus, (i) implies (ii).

In order to show that (ii) implies (i), suppose that cow
∗
(C2) ⊆ cow

∗
(C1) and ψ D1 φ for

any ψ, φ ∈ B0(Σ). Then, P (ψ) ≥ P (φ) for all P ∈ cow∗(C1) which implies P (ψ) ≥ P (φ) for

all P ∈ cow∗(C2) ⊆ cow
∗
(C1); and hence, ψ D2 φ.

f %UA g for any f, g if and only if λ f + (1 − λ)m % λ g + (1 − λ)m for any λ ∈ (0, 1]

and m ∈ F . Then, by Theorem 1, I(uλ f+(1−λ)m) ≥ I(uλ g+(1−λ)m) which can be written as

I(λuf + (1− λ)um) ≥ I(λug + (1− λ)um) due to Lemma 3.

Define a binary relation DUA on B0(Σ, K) with K = u(X) such that for any f, g ∈ F ,

ufDUAug if and only if I(λuf +(1−λ)um) ≥ I(λug+(1−λ)um) for all m ∈ F and λ ∈ (0, 1].

Therefore, f %UA g if and only if uf DUA ug.

Claim 9 DUA ⊆ B0(Σ, K)×B0(Σ, K) nontrivial, continuous, conic and monotonic preorder.

Proof. Reflexivity and transitivity of %UA established in Lemma 6 implies trivially that

DUA is reflexive and transitive.
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By Claim 3 there exists ¯̀, ` ∈ X such that u(¯̀) > 1 and u(`) < −1. Let h̄, h ∈ Fc be

two acts with h̄(s) = ¯̀ and h(s) = ` for all s ∈ S. Clearly h̄�h, and then by (ii) of Lemma

6 we have h̄�UA h which is equivalent to h̄%UA h while not h%UA h̄. Hence, for resulting

uh̄, uh ∈ B(Σ, K) we have uh̄D
UA uh while not uhDUA uh̄ due to the definition of DUA which

shows that it is nontrivial.

Let f, g ∈ F with f(s) = `f(s) and g(s) = `g(s) be two acts such that resulting uf , ug ∈

B0(Σ, K) satisfies uf (s) ≥ ug(s) for all s ∈ S. Then, u(`f(s)) ≥ u(`g(s)) which implies

`f(s) %X `g(s) for all s ∈ S. Therefore, due to the (iv) of Lemma 6, we have f %UA g which

implies uf DUA ug, i.e. monotonicity.

In order to show that DUA is conic suppose that we have ufDUAug for any f, g ∈ F . Then,

by the definition of DUA it must be f %UA g which implies λ f+(1−λ)m %UA λ g+(1−λ)m

for all m ∈ F and for all λ ∈ (0, 1] due to the (v) of Lemma 6. Therefore, it must be

uλ f+(1−λ)mDUAuλ g+(1−λ)m for all λ ∈ (0, 1]. By (ii) of Lemma 3, we know that uλ f+(1−λ)m =

λuf +(1−λ)um and uλ g+(1−λ)m = λug+(1−λ)um. Thus, uλ f+(1−λ)mDUAuλ g+(1−λ)m implies

λuf + (1− λ)um DUA λug + (1− λ)um for all λ ∈ (0, 1]. Clearly, if λ = 0 then the previous

observation holds trivial.

For the continuity of DUA suppose that we have ufnD
UAugn for all n ∈ N with ufn

sup−−→ uf

and ugn
sup−−→ ug then I(λufn + (1 − λ)um) ≥ I(λugn + (1 − λ)um) for all um ∈ B(Σ, K),

λ ∈ (0, 1] and n ∈ N. 12 As I is continuous under the supnorm convergence (in the sense

that when ψn
sup−−→ ψ for ψ, ψn ∈ B0(Σ), then {I(ψn)} ⊂ R converges to I(ψ)), we have

I(λuf + (1 − λ)um) ≥ I(λug + (1 − λ)um) for all um ∈ B(Σ, K), λ ∈ (0, 1] which implies

uf DUA ug.

As we have shown that DUA nontrivial, continuous, conic and monotonic preorder on

B0(Σ, K), by Lemma 7 and Lemma 8 there exists a unique nonempty, weak* compact and

convex set of C of probabilities on Σ such that for all f, g ∈ F , f %UA g if and only if∫
S
ufdP ≥

∫
S
ugdP for all P ∈ C. Therefore, the proof of Theorem 2 is concluded.

The following analysis concerning the sure-thing principle is of independent interest and

12For recalling the definition of the supnorm continuity, please check footnote 8.
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will not be employed in our results. Savage (1954) introduced the sure-thing principle which,

in words, states that an agent who would take a certain action when he/she knew whether

event E is achieved or not, should take the same action even if he/she does not know anything

about event E. Formally, for any f,m ∈ F and E ∈ Σ define fEm by

fEm =

 f(s) if s ∈ E

m(s) if s /∈ E.

Then, %UA satisfies the sure-thing principle if for all f, g,m,m′ ∈ F and E ∈ Σ, fEm %UA

gEm if and only if fEm′ %UA gEm′.

Lemma 9 Suppose that a binary relation % on F satisfies Axiom 1–5 and %UA on F is as

defined above. Then, %UA satisfies the sure-thing principle.

Proof. We know that for all f, g,m,m′ ∈ F and E ∈ Σ if fEm %US gEm then it must

be
∫
S
ufEmdP ≥

∫
S
ugEmdP for all P ∈ C by Theorem 2. Then, we can write that inequality

as
∫
s∈E ufdP +

∫
s/∈E umdP ≥

∫
s∈E ugdP +

∫
s/∈E umdP for all P ∈ C. Therefore, the following

observation must be true for all f, g,m,m′ ∈ F and E ∈ Σ:

fEm %UA gEm⇔
∫
s∈E

ufdP +

∫
s/∈E

umdP ≥
∫
s∈E

ugdP +

∫
s/∈E

umdP for all P ∈ C

⇔
∫
s∈E

ufdP +

∫
s/∈E

um′dP ≥
∫
s∈E

ugdP +

∫
s/∈E

um′dP for all P ∈ C

⇔ fEm′ %UA gEm′.

The next Theorem establishes an important implication that will be used in our main

results.

Theorem 3 Suppose that a binary relation % on F satisfies Axiom 1–5 and %UA on F is

as defined above. Then, for all f, g ∈ F , f %UA
1 g implies f %UA

2 g if and only if u1 is a

positive affine transformation of u2 and C2 ⊆ C1.
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Proof. For the proof of this Theorem, we will first introduce the following Lemma:

Lemma 10 Suppose that Z is a vector space and u, v are two nonzero linear functionals on

Z. One and only one of the following statements is true:

(i) u(z) = av(z) for some a > 0 and for any z ∈ Z;

(ii) There exists z ∈ Z such that u(z)v(z) < 0.

Proof. If (i) is true, then clearly u(z) and v(z) must have the same sign for any z ∈ Z;

therefore, (ii) can not be true. If (ii) is true, then u(z) and v(z) has opposite signs for a

z ∈ Z and for any z′ ∈ Z, u(z′) = av(z′) is possible only when a < 0; so, (i) cannot be true.

Therefore, (i) and (ii) cannot hold at the same time.

Next, we will show that only one of them must hold. For a contradiction, suppose that

both of them are false. Then, it must be u(z) 6= av(z) for all a > 0 and for all z ∈ Z and

u(z)v(z) ≥ 0 for all z ∈ Z. Therefore, Z = {z ∈ Z : u(z)v(z) > 0}∪{z ∈ Z : u(z) = 0}∪{z ∈

Z : v(z) = 0}; and observe that {z ∈ Z : u(z) = 0} and {z ∈ Z : v(z) = 0} are equivalent

to the keru and ker v, respectively; hence, Z = {z ∈ Z : u(z)v(z) > 0} ∪ keru ∪ ker v. keru

and ker v are maximal subspaces of Z13. To see this, suppose that Z ′ with keru ( Z ′ ⊂ Z

is a subspace of Z and z′ ∈ Z ′ \ keru, thus, u(z′) 6= 0. Any arbitrary z ∈ Z can be written

as z = u(z)
u(z′)

z′ + (z − u(z)
u(z′)

z′). Furthermore, notice that u(z − u(z)
u(z′)

z′) = u(z) − u( u(z)
u(z′)

z′) =

u(z) − u(z)
u(z′)

u(z′) = u(z) − u(z) = 0 since u is linear functional; hence, z − u(z)
u(z′)

z′ ∈ keru.

Due to the fact that each subspace is also a vector space, then Z ′ is endowed with the same

operations as Z; so for any z ∈ Z ′ and c ∈ R we have cz ∈ Z ′; and if z′, z′′ ∈ Z ′, then it must

be z′ + z′′ ∈ Z ′. Therefore, u(z)
u(z′)

z′ ∈ Z ′ (as z′ ∈ Z ′ \ keru and u(z)
u(z′)

is a real number); and

z = u(z)
u(z′)

z′ + (z − u(z)
u(z′)

z′) ∈ Z (as Z ′ also contains keru). Thus, since the z ∈ Z was chosen

arbitrarily, Z ⊆ Z ′ which, together with Z ′ ⊆ Z, implies Z ′ = Z, so keru is a maximal

subspace of Z. Similar steps can be followed to see that ker v is also maximal subspace of Z.

13A supspace V is called a maximal subspace of a vector space Z if for any subspace W with V (W ⊆ Z,
then W = Z.
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First, suppose that keru = ker v. Since u is non-zero linear functionals on Z, then there

exist a z′ ∈ Z such that u(z′) 6= 0. Let z1 ∈ Z be such that z1 = z′

u(z′)
, and observe

that u(z1) = u( z′

u(z′)
) = u(z′)

u(z′)
= 1. Therefore, for all z ∈ Z the following must be true:

u(z − u(z)z1) = u(z) − u(u(z)z1) = u(z) − u(z)u(z1) = 0 since u is linear functional.

Then, z − u(z)z1 ∈ keru which implies z − u(z)z1 ∈ ker v and, hence, v(z − u(z)z1) = 0 (as

keru = ker v). Since v is also linear functional, v(z−u(z)z1)+v(u(z)z1) = v(z)−v(u(z)z1)+

v(u(z)z1) = v(z) for all z ∈ Z. Furthermore, notice that v(z − u(z)z1) + v(u(z)z1) =

v(u(z)z1) = v(u(z))v(z1) = u(z)v(z1) (as v(z − u(z)z1) = 0) from which we can obtain

v(z) = v(z1)u(z). However, this contradicts with u(z) 6= av(z) for all a > 0 and u(z)v(z) ≥ 0

for all z ∈ Z.

Secondly, suppose that keru 6= ker v. Then, let zu ∈ keru \ ker v and zv ∈ ker v \ keru

(as keru and ker v are maximal subspace of z, it can not be keru ⊂ ker v or ker v ⊂ keru) be

such that u(zu) = 0 and v(zu) > 0; and v(zv) = 0 and u(zv) < 0. Thus, u(zu+zv)v(zu+vu) =

u(zv)v(zu) < 0 which contradicts with u(z)v(z) ≥ 0 for all z ∈ Z.

Lemma 11 Suppose that X is a nonempty convex subset of a vector space Z and u, v are

two non-constant affine functionals on Z. Then, there exist a > 0 and b ∈ R such that

u = av + b if and only if u(x) ≥ u(x′) implies v(x) ≥ v(x′) for all x, x′ ∈ X.

Proof. For the only if part of the proof, suppose that u = av + b for some a > 0 and

b ∈ R, so for any x, x′ ∈ X we have u(x) = av(x) + b and u(x′) = av(x′) + b. If u(x) ≥ u(`′),

then av(x) + b ≥ av(x′) + b. Therefore, v(x) ≥ v(x′).

For the if part of the proof, let W = {t(x1 − x2) : t > 0, x1, x2 ∈ X}. Then, W is vector

space because vector addition and scalar multiplication operations are defined on W . To see

that let w,w′ ∈ W be such that w = t(x1 − x2) and w′ = (x3 − x4) where x1, x2, x3, x4 ∈ X

and t > 0, then w + w′ = t(x1 + x3 − x2 − x4). Since x1 + x3, x2 + x4 ∈ X (as X is a vector

space), w + w′ = t((x1 + x3) − (x2 + x4)) ∈ W . Furthermore, let w∗ ∈ W be such that

w∗ = t(x1 − x2) where x1, x2 ∈ X and t > 0; then, cw∗ = ct(x1 − x2) = t(cx1 − cx2) and

since cx1, cx2 ∈ X, we have cw∗ ∈ W .
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Now, define functionals ũ, ṽ on W as follows: ũ(t(x1 − x2)) = t(u(x1) − u(x2)); and

ṽ(t(x1−x2)) = t(v(x1)−v(x2)). Notice that ũ and ṽ are well-defined, non-empty and linear on

W (as u and v are non-empty, linear functionals). If, for any t(x1−x2) ∈ W with x1, x2 ∈ X

and t > 0 ũ(t(x1 − x2)) = t(u(x1) − u(x2)) = tu(x1) − tu(x2) ≥ 0, then u(x1) ≥ u(x2)

which implies v(x1) ≥ v(x2); so ṽ(t(x1 − x2)) ≥ 0. Hence, there is no w ∈ W such that

ũ(w)ṽ(w) < 0. Then, due to the Lemma 10, there is a > 0 such that ũ = aṽ. Next, we will

fix x0 ∈ X; so that for all x ∈ X we have ũ(t(x− x0)) = t(u(x)− u(x0)) = at(v(x)− v(x0))

which implies (u(x) − u(x0)) = a(v(x) − v(x0)), and u(x) = av(x) − av(x0) + u(x0). By

setting b = u(x0)− av(x0), we can obtain u(x) = av(x) + b.

For the proof of Theorem 3, first, suppose that u1 = au2 + b, where a > 0 and b ∈ R,

and C2 ⊆ C1; and f %1 g. Then, due to the Theorem 2,
∫
S
u1fdP ≥

∫
S
u1gdP for all P ∈ C1.

If u1 = au2 + b, where a > 0 and b ∈ R; then, we have
∫
S
(au2f + b)dP = a

∫
S
u2fdP + b ≥

a
∫
S
u2gdP + b =

∫
S
(au2g + b)dP for all P ∈ C1. Since C2 ⊆ C1, we can observe that∫

S
u2fdP ≥ a

∫
S
u2gdP for all P ∈ C2; so f %2 g.

For the converse direction, suppose that for any f, g ∈ F f %UA
1 g implies f %UA

2 g. Let

`, `′ ∈ X such that u1(`) ≥ u1(`′); then, by the Theorem 1 ` %X `′ which implies h %UA
1 h′

where h, h′ ∈ Fc are such that h(s) = ` and h′(s) = `′ for all s ∈ S due to the (iv) of Lemma

6. Therefore, we have h %UA
2 h′; and u2(`) ≥ u2(`′). By the Lemma 11, we can conclude that

u1 is a positive affine transformation of u2. Furthermore, if f %UA
1 g implies f %UA

2 g for any

f, g ∈ F , then by the Theorem 2,
∫
S
u1fdP = a

∫
S
u2fdP +b ≥ a

∫
S
u2gdP +b =

∫
S
u1gdP for

all P ∈ C1 must imply
∫
S
u2fdP ≥

∫
S
u2gdP for all P ∈ C2. After rearranging the terms, we

can obtain
∫
S
u2fdP ≥

∫
S
u2gdP for all P ∈ C1 implies

∫
S
u2fdP ≥

∫
S
u2gdP for all P ∈ C2.

Due to the Lemma 8, we have C2 ⊆ C1.

2.3 The representation theorem

The next result concerns the best and worst case scenarios and establishes that the “answer”

must be somewhere in between.
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Theorem 4 Suppose that a binary relation % on F satisfies Axiom 1–5 and let f ∈ F .

Then, for the functional I and utility function u that we have obtained through Theorem 1

and the set of C of probabilities that we have obtained through Theorem 2, the following holds:

maxP∈C P (uf ) ≥ I(uf ) ≥ minP∈C P (uf ), where maxP∈C P (uf ) and minP∈C P (uf ) correspond

to best-case and worst-case scenario evaluations in C.

Proof. For simplicity, we will denote for every uf ∈ B0(Σ, K), P (uf ) = minP∈C P (uf )

and P̄ (uf ) = maxP∈C P (uf ).

Lemma 12 For all f ∈ F , we have the following equalities:

(i) maxP∈C P (uf ) = sup{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = sup{I(uf + ψ)−

I(ψ) : ψ ∈ B0(Σ)}

(ii) minP∈C P (uf ) = inf{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = inf{I(uf + ψ) −

I(ψ) : ψ ∈ B0(Σ)}

Proof. First, notice that {1−λ
λ
ug : g ∈ F and λ ∈ (0, 1]} ⊆ B0(Σ). Next, for all

ψ ∈ B0(Σ) there exists φ ∈ B0(Σ, K) and β ∈ (0, 1) where K = u(X) such that φ = βψ.

Furthermore, from the (iii) of Lemma 3 we know that for any φ ∈ B0(Σ, K), there exists

g ∈ F such that φ = ug. Thus, there also exists g ∈ F with φ = ug = βψ which implies

ψ = 1
β
ug. Given that λ ∈ (0, 1] and β ∈ (0, 1), it must be 1−λ

λ
∈ [0,∞) and 1

β
∈ (1,∞). Then,

there is a λ∗ ∈ (0, 1] such that 1−λ∗
λ∗

= 1
β

hence ψ = 1−λ∗
λ∗

ug. Therefore, we have B0(Σ) ⊆

{1−λ
λ
ug : g ∈ F and λ ∈ (0, 1]} which, together with {1−λ

λ
ug : g ∈ Fandλ ∈ (0, 1]} ⊆ B0(Σ),

implies B0(Σ) = {1−λ
λ
ug : g ∈ Fandλ ∈ (0, 1]}. As a result, for any f ∈ F we have that

{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = {I(uf + ψ) − I(ψ) : ψ ∈ B(Σ)} as well as

sup{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = sup{I(uf + ψ)− I(ψ) : ψ ∈ B(Σ)} and

inf{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = inf{I(uf + ψ)− I(ψ) : ψ ∈ B(Σ)}.

For any f ∈ F take `min ∈ X with u(`min) = P (uf ). Notice that due to the Lemma 2 we

know that there exists h̄, h ∈ Fc with h̄(s) = ¯̀∈ X, h(s) = ` ∈ X such that l̄ %X ` %X ` for

all ` ∈ X and for all s ∈ S; therefore, for any f ∈ F it must be ¯̀%X f(s) %X ` for all s ∈ S.
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Then, by Axiom 4 and (iv) of Lemma 6 we must have h̄ % f % h and h̄ %UA f %UA h.

By the Theorem 2 it must be
∫
S
uh̄dP ≥

∫
S
ufdP ≥

∫
S
uhdP for all P ∈ C. Then, it must

be u(¯̀) ≥ P (uf ) ≥ u(`) for all P ∈ C. So we can write u(¯̀) ≥ P (uf ) ≥ u(`). Since u is

continuous, there exists a `min ∈ X such that u(`min) = P (uf ) by the Intermediate Value

Theorem. Furthermore, we have hmin ∈ Fc with f %UA hmin where hmin(s) = `min for all s ∈

S since we have P (uf ) ≥ P (uf ) = u(`min) = P (uhmin) for all P ∈ C. Hence, for all λ ∈ (0, 1]

and g ∈ F we have the following inequality I(u(λ f+(1−λ)g) ≥ I(u(λhmin+(1−λ)g) which can be

written as I(λuf+(1−λ)ug) ≥ I(λuhmin+(1−λ)ug) due to the (ii) of Lemma 3. Since λuhmin

is a constant which is equal to λu(`min), and functional I is constant additive as we have

shown in (iv) of Lemma 5, we can write I(λuf + (1−λ)ug) ≥ λu(`min) + I((1−λ)ug) which

implies I(λuf +(1−λ)ug)−I((1−λ)ug) ≥ λu(`min). Then, by the (iii) of Lemma 5 we know

that I is homogeneous of degree 1, so we can obtain I(uf + (1−λ)
λ
ug)− I( (1−λ)

λ
ug) ≥ u(`min)

from the previous inequality. As u(`min) = P (uf ) and I(uf + (1−λ)
λ
ug)− I( (1−λ)

λ
ug) ≥ u(`min)

holds for all g ∈ F and λ ∈ (0, 1], we can write inf{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈

(0, 1]} ≥ P (uf ).

Next, suppose that `inf ∈ X is such that u(`inf ) = inf{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈

F , λ ∈ (0, 1]}. First of all, due to definition of infimum, for all g ∈ F and λ ∈ (0, 1] it must

be (I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug)) ≥ inf{I(uf + 1−λ

λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]}. Then,

by taking g ∈ F with ug = 0, or λ = 0, we have that I(uf ) ≥ inf{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) :

g ∈ F , λ ∈ (0, 1]}. 14 We have already shown that inf{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈

(0, 1]} ≥ P (uf ) = u(`min) and there exist h̄, h ∈ Fc such that h̄ % f % h which implies

uh̄ ≥ I(uf ) ≥ uh. Hence, we have the following inequalities: uh̄ ≥ I(uf ) ≥ inf{I(uf +

1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} ≥ u(`min). Again, since u is continuous, there exists

`inf ∈ X such that u(`inf ) = inf{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} due to the

Intermediate Value Theorem. Therefore, we can write (I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug)) ≥ u(`inf );

or equivalently (I(uf + 1−λ
λ
ug) ≥ u(`inf ) + I(1−λ

λ
ug)) for all g ∈ F and λ ∈ (0, 1]. Let

hinf ∈ Fc be defined by hinf (s) = `inf for all s ∈ S. Since u(`inf ) = uhinf (s) for all s ∈ S

14Such ug exists as we have shown in the proof of Claim 3.
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is constant and functional I is constant additive due to the (iv) of Lemma 5, we can obtain

I(uf + 1−λ
λ
ug) ≥ I(uhinf + 1−λ

λ
ug) for all g ∈ F and λ ∈ (0, 1]. Then, by using the (iii) of

Lemma 5, we have the following inequality: I(λuf + (1 − λ)ug) ≥ I(λuhinf + (1 − λ)ug)

for all g ∈ F and λ ∈ (0, 1] which implies f %UA hinf . By the Theorem 2, we have∫
S
ufdP ≥

∫
S
uhinfdP = u(`inf ) for all P ∈ C. Hence, P (uf ) ≥ u(`inf ) for all P ∈ C from

which we can obtain P (uf ) ≥ u(`inf ); or P (uf ) ≥ inf{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈

(0, 1]} as inf{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = u(`inf ). Therefore, we have

minP∈C P (uf ) = P (uf ) = inf{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]}.

In what follows, we will show that maxP∈C P (uf ) = sup{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) :

g ∈ F , λ ∈ (0, 1]}. Firstly, for any f ∈ F , let `max = P̄ (uf ). Existence of such `max

can be easily seen with the argument that we have used for existence of `min. Moreover,

we have hmax ∈ Fc with hmax %UA f where hmax(s) = `max for all s ∈ S since P̄ (uf ) =

u(`max) = P (uhmax) ≥ P (uf ) for all P ∈ C; so, I(u(λhmax+(1−λ)g) ≥ I(u(λ f+(1−λ)g), or

equivalently, I(λuhmax + (1 − λ)ug) ≥ I(λuf + (1 − λ)ug) due to the (ii) of Lemma 3,

for all λ ∈ (0, 1] and g ∈ F . Then, again by using (iii) and (iv) of Lemma 5 we can

obtain u(`max) ≥ I(uf + (1−λ)
λ
ug) − I( (1−λ)

λ
ug) for all λ ∈ (0, 1] and g ∈ F which implies

P̄ (uf ) ≥ sup{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]}.

Secondly, let `sup ∈ X be such that u(`sup) = sup{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈

(0, 1]}. The existence of such `sup can be easily seen by using the same argument for the

existence of `inf . Furthermore, we should note that, due to the definition of the supremum

it must be sup{I(uf + 1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} ≥ (I(uf + 1−λ

λ
ug)− I(1−λ

λ
ug))

for all g ∈ F and λ ∈ (0, 1]. Hence, u(`sup) ≥ (I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug)), and u(`sup) +

I(1−λ
λ
ug)) ≥ (I(uf + 1−λ

λ
ug) for all g ∈ F and λ ∈ (0, 1]. Let hsup ∈ Fc be defined by

hsup(s) = `sup for all s ∈ S, then we have u(`sup) = uhup(s). Then, again by applying

(iii) and (iv) of Lemma 5 the following result can be obtained : I(λuhsup + (1 − λ)ug) ≥

I(λuf + (1 − λ)ug) for all g ∈ F and λ ∈ (0, 1], which implies hinf %UA f . Theorem

2 ensures that u(`sup) =
∫
S
uhsupdP ≥

∫
S
ufdP for all P ∈ C which implies u(`sup) ≥

P̄ (uf ) as well as sup{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} ≥ P̄ (uf ) since we
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set sup{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} = u(`sup). Therefore, we have

maxP∈C P (uf ) = sup{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} which concludes the

proof of the current lemma.

As it was mentioned in the proof of Lemma 12, due to the definition of infimum and

supremum, for a given f ∈ F , for all g ∈ F and for all λ ∈ (0, 1] we must have: sup{I(uf +

1−λ
λ
ug)− I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} ≥ (I(uf + 1−λ

λ
ug)− I(1−λ

λ
ug)) ≥ inf{I(uf + 1−λ

λ
ug)−

I(1−λ
λ
ug) : g ∈ F , λ ∈ (0, 1]}. By using a specific g̃ ∈ F with ug̃ = 0 in the previous

inequality, we obtain that sup{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]} ≥ I(uf ) ≥

inf{I(uf + 1−λ
λ
ug) − I(1−λ

λ
ug) : g ∈ F , λ ∈ (0, 1]}. Then, due to the Lemma 12, we have

maxP∈C P (uf ) ≥ I(uf ) ≥ minP∈C P (uf ); in turn, concluding the proof of Theorem 4.

At this stage, it maybe useful to remind that for any f, g ∈ F , f %UA g whenever

λ f + (1−λ)m % λ g+ (1−λ)m for all λ ∈ (0, 1] and for all m ∈ F ; and f ∼UA g if and only

if f %UA g and g%UA f , a case which we will refer to as f being unambiguously indifferent

to g.

The ambiguity concerning two acts f, g ∈ F are equivalent, denoted by f � g, whenever

there are h, h′ ∈ Fc and λ, λ′ ∈ (0, 1] which satisfy λ f + (1− λ)h ∼UA λ′ g + (1− λ′)h′. For

any given f ∈ F , we denote the set of acts g ∈ F whose ambiguity is equivalent to that of

f , by F(f). That is, F(f) = {g ∈ F : g � f}. Moreover, the family of ambiguity equivalent

sets is defined by F = {F(f) : f ∈ F}.

The following lemma establishes that � defined on F is, indeed, an equivalence relation:

Lemma 13 Suppose that a binary relation % on F satisfies Axiom 1–5 and � on F is as

defined above. Then, the following statements are equivalent for any f, g ∈ F :

(i) f � g.

(ii) For all P, P ′ ∈ C, we have P (uf ) ≥ P ′(uf ) if and only if P (ug) ≥ P ′(ug). In other

words, {P (uf ) : P ∈ C} and {P (ug) : P ∈ C} are isotonic.

(iii) There exist a > 0 and b ∈ R which satisfies following equality : P (uf ) = aP (ug)+ b for

all P ∈ C. In other words, {P (uf ) : P ∈ C} and {P (ug) : P ∈ C} are positive affine
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transformation of each other;

Proof. First, we will first show that (i) implies (ii). Let f, g ∈ F be two acts such

that f � g, then there exist λ′, λ′′ ∈ (0, 1] and h′, h′′ ∈ Fc with h′(s) = `′ ∈ X and

h′′(s) = `′′ ∈ X for all s ∈ S, and λ′ f + (1 − λ′)h′ ∼UA λ′′ g + (1 − λ′′)h′′. Then, by

Theorem 2 it must be P (uλ′ f+(1−λ′)h′) = P (uλ′′ g+(1−λ′′)h′′) for all P ∈ C. Due to the (ii)

of Lemma 3, we can write P (λ′ uf + (1 − λ′)uh′) = P (λ′′ ug + (1 − λ′′)uh′′) for all P ∈ C.

Since expected utility mapping P is homogeneous of degree 1 and constant additive and

uh′ = u(`′), uh′′ = u(`′′) are constant. 15 Then, we can rewrite the previous inequality as

λ′ P (uf ) + (1− λ′)u(`′) = λ′′ P (ug) + (1− λ′′)u(`′′) for all P ∈ C and for some λ′, λ′′ ∈ (0, 1]

and for some `′, `′′ ∈ X. Without loss of generality, suppose that for any P, P ′ ∈ C we have

P (uf ) ≥ P ′(uf ) which implies λP (uf )+(1−λ)u(`) ≥ λP ′(uf )+(1−λ)u(`) must hold for all

λ ∈ (0, 1] and for all ` ∈ X. Then, clearly λ′ P (uf ) + (1− λ′)u(`′) ≥ λ′ P ′(uf ) + (1− λ′)u(`′)

for λ′ ∈ (0, 1] and for `′ ∈ X. Therefore, it must be λ′ P (uf ) + (1 − λ′)u(`′) = λ′′ P (ug) +

(1−λ′′)u(`′′) ≥ λ′ P ′(uf ) + (1−λ′)u(`′) = λ′′ P ′(ug) + (1−λ′′)u(`′′) for any P, P ′ ∈ C and for

some λ′, λ′′ ∈ (0, 1] and for some `′, `′′ ∈ X; so, we have P (ug) ≥ P ′(ug) for any P, P ′ ∈ C.

In order to show that (ii) implies (iii), let P, P ′ ∈ C and since both P and P ′ are positive

affine functionals mapping B0(Σ) into R, {P (uf ) : P ∈ C} and {P (ug) : P ∈ C} are isotonic

(i.e. every probability measure on uf order the elements in the same way as it order ug) if

and only if uf and ug in B0(Σ) are positive affine transformations of one another.

Finally, to show that (iii) implies (i), suppose that for any f, g ∈ F there exist a > 0

and b ∈ R such that P (uf ) = aP (ug) + b for all P ∈ C. First, if 0 < a < 1, then take λ′ = a

and suppose that b
1−λ′ ∈ u(X). 16 Therefore, we can write P (uf ) = λ′ P (ug) + (1 − λ′) b

1−λ′

for all P ∈ C which implies P (uf ) = P (λ′ ug + (1 − λ′) b
1−λ′ ) for all P ∈ C. Then, we can

write P (λuf + (1 − λ)uh) = P (λ′ ug + (1 − λ′)uh′) for all P ∈ C, for λ = 1 and λ′ = a,

15For any f ∈ F , h ∈ Fc with h(s) = ` for all s ∈ S, and for a given P ∈ C, P (uf ) is defined by
∫
S
ufdP .

Therefore, due to the properties of integral, we have P (λuf + (1 − λ)uh) =
∫
S

(λuf + (1 − λ)uh)dP =
λ
∫
S
ufdP + (1− λ)uh = λP (uf ) + (1− λ)u(`).

16 If b
1−λ′ /∈ u(X), then we can renormalize the von-Neumann Morgenstern utility function via taking an

appropriate affine transformation.
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for any h′ ∈ Fc with h′(s) = `′ ∈ X for all s ∈ S where u(`′) = b
1−λ′ , and for all h ∈ F .

Thus, there exist λ, λ′ ∈ (0, 1] and h, h′ ∈ F such that λ f + (1− λ)h ∼UA λ′ g + (1− λ′)h′,

so f � g. Secondly, if a > 1, we will rewrite P (uf ) = aP (ug) + b as 1
a
P (uf ) − b

a
= P (ug)

for all P ∈ C. Then, by taking λ = 1
a

and supposing that 1−λ
a
b ∈ u(X) we can write

λP (uf ) + (1 − λ)1−λ
a
b = P (ug) for all P ∈ C. 17 By following the similar steps above, we

can obtain λ f + (1 − λ)h ∼UA λ′ g + (1 − λ′)h′ for λ = 1
a
, for λ′ = 0, for any h ∈ Fc with

h(s) = ` ∈ X for all s ∈ S where u(`) = 1−λ
a
b, and for all h′ ∈ Fc. Thus, we have f � g.

Finally, if a = 1, then P (uf ) = P (ug) + b, or equivalently 1
2
P (uf ) = 1

2
P (ug) + 1

2
b for all

P ∈ C. Suppose that b ∈ u(X), so we can write P (1
2
uf + 1

2
uh) = P (1

2
ug + 1

2
uh′) for all P ∈ C,

for any h, h′ ∈ Fc with h(s) = ` and h′(s) = `′ where `′ ∈ X is such that u(`′) = b and ` ∈ X

such that u(`) = 0 which is exist as we have shown in the proof of Claim 3. 18 Then, for

λ, λ′ = 1
2

and for h, h′ ∈ Fc we have 1
2
f + 1

2
h ∼ 1

2
g + 1

2
h′, so f � g.

In order to obtain the desired representation, we need to handle acts whose evaluation

does not have an effect on the ambiguity, so-called crisp acts: An act m ∈ F is a crisp act

if f ∼ g implies (1− λ)f + λm ∼ (1− λ)g + λm for all f, g ∈ F with f ∼ g and λ ∈ (0, 1).

Furthermore, we will denote M for the set of all crisp acts.

The following displays some properties of crisp acts:

Lemma 14 Suppose that a binary relation % on F satisfies Axiom 1–5. Then, the following

statements are equivalent:

(i) m is a crisp act;

(ii)
∫
umdP =

∫
umdP ′ for all P, P ′ ∈ C;

(iii) I(uλm+(1−λ)f ) = λ I(um) + (1− λ)I(uf ) for all f ∈ F and λ ∈ [0, 1];

(iv) m � h for some h ∈ Fc.

17If needed, a renormalization discussed in Footnote 16 can be done in this case as well.

18In this case, a more careful renormalization (using a selected affine transformation) of the von Neumann
Morgenstern utility u is in order so that both b ∈ u(X) and u(`) < 0 and u(¯̀) > 0.
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Proof. Firstly, we will show that (i) implies (ii). Suppose that m ∈ F is a crisp act; i.e.

for all f, g ∈ F with f ∼ g and λ ∈ (0, 1) we have (1− λ)f + λm ∼ (1− λ)g + λm. Thus,

I(uf ) = I(ug) and I(u(1−λ)f+λm) = I(u(1−λ)g+λm) by Theorem 1. Due to the (ii) of Lemma 3,

I(u(1−λ)f+λm) = I(u(1−λ)g+λm) implies I((1−λ)uf+λum) = I((1−λ)ug+λum) which can be

written as I(um+ 1−λ
λ
uf ) = I(um+ 1−λ

λ
ug). Since I(uf ) = I(ug), I(um+ 1−λ

λ
uf )−I(1−λ

λ
uf ) =

I(um + 1−λ
λ
ug)− I(1−λ

λ
ug) must be true.

From the proof of Lemma 12, we know that B0(Σ) = {1−λ
λ
ug : g ∈ F and λ ∈ (0, 1]},

then for any ψ, φ ∈ B0(Σ) with I(ψ) = I(φ) we have I(um + ψ)− I(ψ) = I(um + φ)− I(φ).

On the other hand, let I(ψ) = I(φ) + b where b ∈ R for any ψ, φ ∈ B0(Σ) with I(ψ) 6= I(φ);

clearly I(ψ) = I(φ+ b) since I is constant additive. Therefore, we have I(um +ψ)− I(ψ) =

I(um + φ + b) − I(φ + b) which implies I(um + ψ) − I(ψ) = I(um + φ) + b − I(φ) − b =

I(um + φ) − I(φ) again since I is constant additive. Hence, for all ψ, φ ∈ B0(Σ) we have

I(um + ψ)− I(ψ) = I(um + φ)− I(φ) which implies sup{I(um + ψ)− I(ψ) : ψ ∈ B0(Σ)} =

inf{I(um + ψ)− I(ψ) : ψ ∈ B0(Σ)}. Due to the Lemma 12, maxP∈C P (um) = minP∈C P (um)

and therefore,
∫
umdP =

∫
umdP

′ for all P, P ′ ∈ C.

Next, we will show that (ii) implies (iii). If (ii) is true, maxP∈C P (um) = minP∈C P (um).

Therefore, by the Lemma 12, sup{I(um+ 1−λ
λ
uf )−I(1−λ

λ
uf ) : f ∈ F , λ ∈ (0, 1]} = inf{I(um+

1−λ
λ
uf )− I(1−λ

λ
uf ) : f ∈ F , λ ∈ (0, 1]}. Hence, the result of I(um + 1−λ

λ
uf )− I(1−λ

λ
uf ) must

be the same for all f ∈ F and λ ∈ (0, 1]. In fact, we have I(um+ 1−λ
λ
uf )− I(1−λ

λ
uf ) = I(um)

for all f ∈ F and all λ ∈ (0, 1] which can be easily seen by taking λ = 1. By multiplying

both sides of the equation with λ, we can obtain I(λum + (1 − λ)uf ) − I((1 − λ)uf ) =

I(λum) for all f ∈ F and all λ ∈ (0, 1]. Hence, arranging the terms I(λum + (1 − λ)uf ) =

I(λum) + I((1 − λ)uf ) so as I(uλm+(1−λ)f ) = I(λum + (1 − λ)uf ) (due to Lemma 3) we

have I(uλm+(1−λ)f ) = λ I(um) + (1 − λ)I(uf ) for all f ∈ F and all λ ∈ (0, 1]. When λ = 0,

I(λum + (1− λ)uf ) = λ I(um) + (1− λ)I(uf ) holds for all f ∈ F trivially.

Next, we will show that (iii) implies (i). Let f, g ∈ F be such that f ∼ g, then

I(uf ) = I(ug). As (iii) is true, for any f, g,m ∈ F with f ∼ g and λ ∈ [0, 1] we have

I(λum+(1−λ)uf ) = λ I(um)+(1−λ)I(uf ) = λ I(um)+(1−λ)I(ug) = I(λum)+I((1−λ)ug) =
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I(λum + (1−λ)ug) from which we obtain I(uλm+(1−λ)f ) = I(uλm+(1−λ)g) which follows from

Lemma 3. Hence, λm + (1 − λ)f ∼ λm + (1 − λ)g for all f, g,m ∈ F with f ∼ g and

λ ∈ (0, 1), in turn, establishing that m ∈ F is a crisp act.

So far, we have proved that (i), (ii) and (iii) are equivalent. In what follows, we will

show that (ii) is true if and only if (iv) is true. For the if direction ((ii) implying (iv)),

suppose that for any m ∈ F we have
∫
umdP = c for all P ∈ C, and let h ∈ Fc be such

that h(s) = ` ∈ X for all s ∈ S and u(`) = c. Thus,
∫
S
umdP = c =

∫
S
uhdP for all P ∈ C

which implies m %UA h due to Theorem 2. Then, clearly we have λ f + (1 − λ)h′ ∼UA

λ′ h + (1 − λ′)h′′ for λ, λ′ = 1 and any h′, h′′ ∈ Fc, so m � h. Conversely, for the only if

direction, suppose that m � h for some h ∈ Fc. Then, there exist some λ, λ′ ∈ (0, 1] and

h′, h′′ ∈ Fc such that λm + (1 − λ)h′ ∼UA λ′ h + (1 − λ′)h′′. Due to the Theorem 2, we

have P (uλm+(1−λ)h′) = P (uλ′ h+(1−λ′)h′′) for all P ∈ C. Then by the (ii) of Lemma 3, we have

P (λum + (1− λ)uh′) = P (λ′ uh + (1− λ′)uh′′) which implies (due to constant additivity and

homogeneity of degree 1) λP (um) + (1−λ)u(`′) = λ′ u(`) + (1−λ′)u(`′′) for all P ∈ C where

u(`) = uh(s) and u(`′) = uh′(s) and u(`′′) = uh′′(s) for all s ∈ S as uh, uh′ , uh′′ ∈ B0(Σ, K)

are constant. Hence, P (um) equals a constant for all P ∈ C which concludes the proof of the

statement that (iii) and (iv) are equivalent.

Before presenting the desired representation result concerning %, we need to define the

family of equivalence sets restricted on non-crisp acts: F∗ = {F(f) : f ∈ F \M}.

Theorem 5 A binary relation %⊆ F × F satisfies axioms 1-5 if and only if there exist a

monotone and constant linear functional I : B0(Σ)→ R, and a non-constant affine function

which is unique up to a positive affine transformation u : X → R, and a non-empty and

unique and weak* compact and convex set C of probabilities on Σ, and a function α : F →

[0, 1] with a uniquely defined restriction on F∗ such that f % g if and only if

I(uf ) = αF(f) max
P∈C

∫
ufdP + (1− αF(f)) min

P∈C

∫
ufdP (2.4)

≥ αF(g) max
P∈C

∫
ugdP + (1− αF(g)) min

P∈C

∫
ugdP = I(ug)
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and uf and ug and C are as in the representation theorem of %UA, Theorem 2, i.e. f %UA g

if and only if
∫
S
ufdP ≥

∫
S
ugdP for all P ∈ C.

Proof. The sufficiency direction of the current Theorem is trivial; hence, omitted. Sup-

pose that %⊆ F × F satisfies Axioms 1-5; and let I and u be the monotone and constant

linear functional I : B0(Σ) → R and the non-constant affine function u : X → X, respec-

tively, that we have obtained in the Theorem 1. By the same Theorem, we know that I is

unique and represents %; and u is unique up to positive affine transformation and represents

%X. Furthermore, let C be the nonempty and unique weak* compact and convex set of

probabilities on Σ that represents %UA which is obtained in Theorem 2.

Due to the Theorem 4, we know that for any f ∈ F we have

P̄ (uf ) ≡ max
P∈C

P (uf ) ≥ I(uf ) ≥ min
P∈C

P (uf ) ≡ P (uf ).

In what follows, for any given f ∈ F we will identify αF(f) ∈ [0, 1] such that

I(uf ) = αF(f)P̄ (uf ) + (1− αF(f))P (uf ).

In Lemma 14, we have observed that f is a crisp act (i.e. f ∈ M) if and only if P̄ (uf ) =

I(uf ) = P (uf ) and we may choose αF(f) ∈ [0, 1] arbitrarily. On the other hand, if f ∈ F\M,

then P̄ (uf ) ≥ I(uf ) ≥ P (uf ) with one of the inequalities holding strictly and we set

αF(f) =
I(uf )− P (uf )

P̄ (uf )− P (uf )
,

which is in [0, 1] as P̄ (uf ) − P (uf ) > 0. Notice that this defines αF(f) uniquely for all

f ∈ F \M.

Next, we will show that for any f, g ∈ F \M with f � g, it must be that αF(f) = αF(g).

For any f, g ∈ F \M with f � g, it must be that λ f+(1−λ)h ∼UA λ′ g+(1−λ′)h′ for some

λ, λ′ ∈ (0, 1] and some h, h′ ∈ Fc. By (i) of Lemma 6, we have λ f+(1−λ)h ∼ λ′ g+(1−λ′)h′

which implies, by Lemma 3 and Theorem 1, I(λuf +(1−λ)uh) = I(λ′ g+(1−λ′)uh′). Since
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I is constant additive and homogeneous of degree 1, the previous equality is equivalent to

λ I(uf ) + (1− λ)uh = λ′ I(ug) + (1− λ′)uh′ where h(s) = ` ∈ X with uh = u(`) and h′(s) =

`′ ∈ X with uh′ = u(`′) for all s ∈ S. After dividing both sides to λ > 0 and rearranging

terms, we obtain I(uf ) = λ′

λ
I(ug) + (1−λ′)

λ
uh′ − (1−λ)

λ
uh = λ′

λ
I(ug) + 1

λ
[(1−λ′)uh′ − (1−λ)uh].

Let a = λ′

λ
> 0 and b = 1

λ
[(1 − λ′)uh′ − (1 − λ)uh], then I(uf ) = aI(ug) + b. On the

other hand, due to the Theorem 2, λ f + (1− λ)h ∼UA λ′ g + (1− λ′)h′ implies (by Lemma

3) P (λuf + (1 − λ)uh) = P (λ′ g + (1 − λ′)uh′) for all P ∈ C from which we can obtain

λP (uf ) + (1− λ)uh = λ′ P (ug) + (1− λ′)uh′ for all P ∈ C since P is also constant additive

and homogeneous of degree 1. After rearranging these terms as above, we have P (uf ) =

λ′

λ
P (ug) + (1−λ′)

λ
uh′ − (1−λ)

λ
uh = λ′

λ
P (ug) + 1

λ
[(1−λ′)uh′ − (1−λ)uh]; so, P (uf ) = aP (ug) + b.

Hence, for any f, g ∈ F \M with f � g we have:

αF(f) =
I(uf )− P (uf )

P̄ (uf )− P (uf )
=

(aI(ug) + b)− (aP (ug) + b)

(aP̄ (ug) + b)− (aP (ug) + b)
=
I(ug)− P (ug)

P̄ (ug)− P (ug)
= αF(g).

This concludes the proof of Theorem 5.
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3 ACTS CONCERNING MENUS

For reasons of exposition and in order to avoid technical and notational complexities, we

restrict attention to cases in which X is a finite set of alternatives and X is the simplex

on X (which is non-empty and convex and compact) and we let X be set of all non-empty

subsets of X. Then, a menu A ∈ X is given by A ≡ ∆(A) a non-empty and convex and

compact subset of X and we let A to be the set of all menus on X. When the meaning is

clear, we will abuse notation and refer to a generic member of the set of menus by A ∈ A

while formally A ∈ A. 1 It should be pointed out that given a finite X, there exists J ∈ N

such that A = {A1, . . . , AJ}. 2

In this study, we justify the multiple-selves setting where with a probability p ∈ [0, 1]

that we identify endogenously from the given underlying preferences of the decision maker,

1 It needs to be told that, in general, we do not need the assumption concerning the finiteness of X. In
fact, as in Chapter 2, we can let X denote a compact metric space of alternatives and X identifies the simplex
formed on X endowed with the weak* topology and X is well-known to be non-empty and convex and weak*
compact. Then, any A ∈ X , where X denotes the set of all non-empty and compact and measurable subsets
of X (which can be equipped with the Hausdorff metric), identifies the set of discreet alternatives in menu
A ≡ ∆(A), the set of probability measures on the Borel sigma-algebra of A: thus, A is non-empty and convex
and weak* compact. Again, the set of all menus would be denoted by A. This method of defining menus,
on the other hand, is not standard. In fact, as was done in Gul and Pesendorfer (2001) and Chatterjee
and Krishna (2009), a menu is often defined as a compact subset of X and letting A be the non-empty
and compact subsets of X endowed with the Hausdorff metric: Then, a menu is a member of A . Even
though this formulation can also be adopted in our setting, our way of defining a menu, we feel, is more
convenient as menus are required to be defined via taking the simplex on some discreet alternatives. Then,
using the standard linearity properties of the resulting von Neumann – Morgenstern expected utilities, in
representation theorems one obtains the luxury of restricting attention to (discreet) alternatives rather than
working with some exogenously given abstract set of lotteries.

2For each A ∈ A, the exogenously given temptation set of A could be identified by ΓA and in order to
avoid non-fruitful complexities in notation we restrict attention to cases where the temptation set equals the
menu; i.e. for any given menu A ∈ A, let ΓA = A.
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the “ego” (alternatively, the long-run or the rational decision maker) gets to choose, a case

to which we will refer to as the ego contingency ; while with probability (1 − p), one of the

many potential “alter egos” (alternatively, the ids or the short run selves) will choose and

these cases will be referred to as the alter ego contingencies. In fact, given a menu A ∈ X ,

the decision maker’s ambiguity attitude involving the choice from this menu implies that the

associated decision making process is as if with a probability pA the ego is at the helm and

the best alternative of the menu is consumed, while with probability (1 − pA) the decision

maker faces the ambiguity about which one of the alter egos gets to make a decision about

which alternative to go for.

In order to apply the representation result under ambiguity presented and discussed in

detail in Chapter 2 to the case with menus and obtain a multiple-selves representation, we

need some extra structure on the set of states. Indeed, this addition does not tamper with

any of the results of Chapter 2.

Given X and J ∈ N with menus A = {A1, . . . , AJ} with Aj ∈ X , if the decision maker

has chosen menu Aj, then “a particular id” may choose any one of aj ∈ Aj, j = 1, . . . , J .

Therefore, our state space is a Cartesian product of menus, S ≡ A1×. . .×AJ and a state s ∈ S

is equal to (a1, . . . , aJ) with aj ∈ Aj for all j = 1, . . . , J . So, in our formulation a particular

id corresponds to a state, and vice versa: for any given particular id s = (a1, . . . , aJ) ∈ S,

it must be that s’s choice from Aj denoted by ajs ∈ Aj, equals to aj, the jth dimension of

s; therefore, s = (ajs)
J
j=1. The cardinality of S, alternatively, the number of distinct and

particular ids, equals some number S̄ =
∏J

j=1 #|Aj|. 3

The decision maker knows neither the particular id, s ∈ S, he/she faces, nor the exact

3The essence of the technical difficulties discussed in footnote 1 can clearly be seen at this stage, the
construction of states of nature with menus. In fact, below we discuss how to handle cases when X is
countably infinite: without loss of generality the set of menus (the set of all non-empty subsets of X) could
be indexed using [0, 1]; thus, we can write A = {Ar : r ∈ [0, 1]}. Then, a state s ∈ S is a function mapping
[0, 1] (i.e. menus) into an element of the menu under analysis; that is, for any Ar we have s(r) ∈ Ar,
with r ∈ [0, 1]. Thus, the states of nature S are all such functions. Still the resulting function space is
well-behaved for us to construct a sigma algebra on, as was done in Chapter 2. However, when X is not
necessarily countable, then we currently lack the technical training in order to identify the specific properties
to be insisted on so that the resulting state space is well-behaved for us to be able obtain the construction
and the representation theorem presented in Chapter 2.
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Aj

[ego]
āj ∈ Aj

pAj

1− pAj

[ids]

aj1 ∈ Aj
[id 1]

...

ajr ∈ Aj
[id r]

...
[id S̄]

ajS̄ ∈ Aj.

Figure 3.1: Our decision chart.

probability distribution on the potential ids he/she could face. Consequently, the implication

of our representation result is portrayed in figure 3.1 where the ambiguity attitude of the

decision maker considering menu Aj implies a setting as if the decision maker knows that

the best alternative of that menu, āj, will be chosen by the ego (with a probability of pAj)

while he/she does not have any idea what his/her alter ego will do.

Formally, given the sets of states and alternatives, S and X respectively, recall that F

is a set of all acts (the set of functions mapping S in to X) which is known to be convex

while the set of constant acts is given by Fc. This, in turn, translates to the following in the

case with menus and allows us to define acts on menus: Given X and J ∈ N with menus

A = A1, . . . , AJ with Aj ∈ X , the act concerning an alternative a from menu Aj, denoted by

f(a,Aj), is a function mapping S into Aj with the property that f(a,Aj)(s) = ajs ∈ Aj (the jth

dimension of s) (which does not have to equal a). We denote the set of each act concerning

an alternative from a menu by FM .

Below, we provide an example aiming to provide a tangible understanding for the current

setting.

Example 1 Let the set of alternatives be X = {a, b, c}. Then, menus A given by (simplices
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formed on the following sets) A1 = {a} and A2 = {b} and A3 = {c} (singleton menus), and

A4 = {a, b} and A5 = {a, c} and A6 = {b, c} (doubleton menus), and A7 = {a, b, c}. So, a

state maps every menu into itself. That is s1 = (a, b, c, a, a, b, a), and s2 = (a, b, c, b, a, b, a),

and s3 = (a, b, c, a, c, b, a), and s4 = (a, b, c, a, a, b, b), and . . ., and s24 = (a, b, c, b, c, c, c), that

is S̄ = 24. Now, when say A5 is chosen, then the third id, s3, would choose c; and when A6

is chosen, s3 would choose b.

In this case, f(a,A5) ∈ FM is a function mapping S into A5 such that f(a,A5)(s) = a

whenever the fifth dimension of s equals a and f(a,A5)(s) = c otherwise. On the other hand,

f(c,A5) ∈ FM is a function mapping S into A5 such that f(c,A5)(s) = a whenever the fifth

dimension of s equals a and f(c,A5)(s) = c otherwise. We will show below that f(a,A5) = f(c,A5)

is no coincidence.

The reader will benefit to see an example of a constant act in the current setting. Let

h ∈ Fc be defined by h(s) = 1
2
a + 1

2
c for all s ∈ S. Then, as fa,A1(s) = a for all s and

fc,A3(s) = c for all s, we can let h(s) = 1
2
fa,A1 + 1

2
fc,A3. Thus, this displays that any constant

act can be obtained by employing a convex combination of acts concerning singleton menus.

The last example concerns a non-constant act that cannot be obtained by any convex

combination of acts concerning menus: Let f ∈ F \FM be given by f(s1) = b and f(s2) = c

and f(s3) = a while f(s) is arbitrary for other states. As for any a ∈ A and fa,A(s) ∈ A for

all s, notice that f(s1) = b and f(s2) = c and f(s3) = a cannot be obtained by any convex

combination of acts concerning menus.

The following is an immediate, yet important, implication of the construction of the

states in the current setting:

Lemma 15 For any a, b ∈ A with A ∈ A, f(a,A) = f(b,A) = fA; in particular, f(a,A) � fA. 4

Proof. As for any given a, b ∈ Aj with Aj ∈ A, f(a,As)(s) = ajs = f(b,Aj)(s) for all s ∈ S,

the result follows.

4Recall that the ambiguity concerning two acts f, g ∈ F are equivalent, denoted by f � g, whenever there
are h, h′ ∈ Fc and λ, λ′ ∈ (0, 1] which satisfy λ f + (1− λ)h ∼UA λ′ g + (1− λ′)h′.
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Due to Lemma 15, without loss of generality we can restrict attention to acts associated

with menus, fA ∈ FM . Therefore, for any alternative from a given menu, the ambiguity of

the act concerning the choice of an alternative from a menu is equivalent to the ambiguity

of the associated menu. In other words, the ambiguity of the act concerning the choice of

an alternative from a menu depends only on the menu.

Because of this observation, given X and J ∈ N with menus A = A1, . . . , AJ with

Aj ∈ X , it must be that for any fAj , gAj ∈ FM we have fAj = gAj . Thus, given profile

of menus A1, . . . , AJ with Aj ∈ X for all j = 1, . . . , J , the set of acts concerning menus is

uniquely identified and FM = {fA1 , . . . , fAJ}.

In this study, our aim is to obtain a utility representation on acts concerning menus

involving ambiguity resulting from id’s non-predictable behavior. While the construction

of the states performs well in terms of handling acts associated with menus, one has to be

careful with the interpretation that this construction implies on non-constant acts which are

not associated with any convex combination of acts on menus.

Therefore, in the current simple setting our underlying hypothesis is that the construction

of states using menus suffices to provide enough richness to handle all relevant states of

nature. If that is not the situation, the following construction of states will take care of the

inconvenience: Let S∗ be the set representing all possible states of nature when there are no

menus under consideration, and for the profile of menus A = {A1, . . . , AJ} with Aj ∈ X for

all j = 1, . . . , J we define S ≡ ×Jj=1Aj × S∗. Then, a state s = (a1, . . . , aj, s
∗) represents the

id who chooses alternative aj from menu Aj in the state of nature s∗.

Even though this method of constructing the states of nature is guaranteed to provide

enough dimensions to handle all possible states of nature including those with menus, for

reasons of exposition we restrict attention to states of nature using menus.

Recall that %⊆ F ×F is a preference relation over F and %X a preference relation on X

with an associated utility function u : X → R while the unambiguously preference relation

is given by %UA as follows: f %UA g, whenever λ f + (1 − λ)m % λ g + (1 − λ)m for all

λ ∈ (0, 1] and for all m ∈ F .
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The state that corresponds to the vector listing the best alternatives from each associated

menu, indeed, is nothing but the ego: among all the possible ids, one of them is the ego.

Using that observation, the following condition ensures that the state corresponding to the

ego is assigned a probability of 1 in some probability distribution among the ones obtained

in the representation theorem, Theorem 5. This, in turn, allows us to employ the α-maxmin

expected utility representation when evaluating menus and conclude that the resulting be-

havior under ambiguity is as if the following holds: with some endogenously determined

menu specific probability, the decision maker consumes the best alternative of that menu

while he/she does not have any idea and imagines the worst case scenario about the behavior

of his/her alter egos in the other cases.

We need to have the following concerning the best elements of a given menu prior to

the statement and formal discussion of our condition. When % on F satisfies Axioms 1–5,

by Theorem 1, we know there is a non-constant affine function which is unique up to a

positive affine transformation u : X → R representing the preference relation %X defined

on X. For any given finite X and resulting J ∈ N with menus A = {A1, . . . , AJ} with

Aj ∈ X , it must be that Aj is a non-empty convex and compact subset of X; ipso facto,

Āj = {aj ∈ Aj : u(aj) ≥ u(a′j) for all a′j ∈ Aj} is non-empty and contains the best (discreet)

alternatives in Aj, while Aj = {aj ∈ Aj : u(aj) ≤ u(a′j) for all a′j ∈ Aj} is also non-empty

and contains the worst (discreet) alternatives in Aj.

For any given finite X and resulting J ∈ N with menus A = {A1, . . . , AJ} with Aj ∈ X ,

define J+ = {j : u(āj) > u(`) with āj ∈ Āj}; the menus whose best alternatives provide

strictly higher utilities than those provided by the worst lottery. Due to non-triviality, J+

is non-empty. Notice that for any menu r /∈ J+, by definition it must be that u(a) = u(`)

for all a ∈ Ar; thus, we argue that menu r is unacceptable. That is why, we refer to J+ as

the set of acceptable menus.

The following condition requires that the best alternative of each acceptable menu pro-

vides strictly higher utility than the worst lottery, and each one of the acts concerning

acceptable menus must be unambiguously strictly preferred to the worst (constant) act,
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obtaining the worst lottery in every possible state of nature. Therefore, we refer to this

condition as the strict unambiguous value of acceptable menus.

Condition 1 For any preference relation % defined on F and for any given finite set of

alternatives X and resulting J ∈ N with menus A = {A1, . . . , AJ} uniquely determining

FM = {fA1 , . . . , fAJ} and for each non-constant affine function that is unique up to a positive

affine transformation u : X→ R representing the preference relation %X defined on X, there

exists k0 ∈ (u(`), u(¯̀)) such that for all j ∈ J+

1. u(āj)− k0 > 0, for all āj ∈ Āj, and

2. fAj %
UA hk0 where hk0 ∈ Fc such that hk0(s) = `k0 ∈ X for all s ∈ S with u(`k0) = k0.

Before presenting our main result, it maybe a good idea to remind that the ambiguity

concerning two acts f, g ∈ F are equivalent, denoted by f � g, whenever there are h, h′ ∈ Fc
and λ, λ′ ∈ (0, 1] which satisfy λ f + (1−λ)h ∼UA λ′ g + (1−λ′)h′; and for any given f ∈ F ,

the ambiguity equivalence class of f is F(f) = {g ∈ F : g � f} while F = {F(f) : f ∈ F}

identifies the set of ambiguity equivalence classes. Meanwhile, the the set of ambiguity

equivalence classes obtained via non-crisp acts is given by F∗ = {F(f) : f ∈ F\M} where the

set of crisp acts areM = {m ∈ F : f ∼ g implies (1−λ)f+λm ∼ (1−λ)g+λm for all λ ∈

(0, 1)}.

Now, we present our main result providing a utility notion for menus under ambiguity,

in turn, a multiple-selves representation:

Theorem 6 Given finite X and resulting menus A = {A1, . . . , AJ} and preference relation

% defined on F satisfying Axioms 1–5 and Condition 1 implies there exist a monotone and

constant linear functional I : B0(Σ)→ R, and a non-constant affine function which is unique

up to a positive affine transformation u : X → R, and a non-empty and unique and weak*

compact and convex set C of probabilities on Σ, and a function pAj : F → [0, 1] with a
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uniquely defined restriction on F∗ such that fAj % fAj′ with j, j′ ∈ {1, . . . J} if and only if

I(ufAj ) = pAju(āj) + (1− pAj) min
P∈C

∫
ufAjdP (3.1)

≥ pAj′u(āj′) + (1− pAj′ ) min
P∈C

∫
ufAj′

dP = I(ufAj′
)

where āj ∈ Āj, āj′ ∈ Āj′.

Proof. By Theorem 1, we know that %⊆ F ×F satisfies Axiom 1–5 if and only if there

exist a monotone and constant linear functional I : B0(Σ) → R, and a non-constant affine

function which is unique up to a positive affine transformation u : X → R such that for

all f, g ∈ F f % g if and only if I(uf ) ≥ I(ug). Furthermore, by Theorem 2 we know that

if %⊆ F × F satisfies Axioms 1–5, then there exists a unique nonempty, weak* compact

and convex set of C of probabilities on Σ such that for all f, g ∈ F , f %UA g if and only

if
∫
S
ufdP ≥

∫
S
ugdP for all P ∈ C. The particular acts we will restrict attention to when

employing these theorems are acts concerning menus and satisfying Condition 1. To that

regard, let fA1 , . . . , fAJ be the associated acts on menus and assume k0 ∈ (u(`), u(¯̀)), and

hk0 with hk0(s) = `k0 ∈ X for all s ∈ S and u(`k0) = k0 be as given in Condition 1. By the

second item of that condition, we have that fAj %
UA hk0 for all j ∈ J+, and by Theorem 2,

this is equivalent to for all j ∈ J+

∫
S

ufAjdP ≥
∫
S

uhk0
dP = k0 for all P ∈ C.

Let s̄ = (ā1, . . . , āJ) with āj ∈ Āj for all j ∈ J . Notice that for any r /∈ J+, as was

discussed above u(a) = u(`) for all a ∈ Ar; thus, Ar = Ār. It is clear that fAj(s̄) = āj by

construction. Therefore, the key defining property of s̄ concerns j ∈ J+ as the others can

be selected arbitrarily. Then, the following is a consequence of Condition 1:

Lemma 16 C contains a distribution that assigns probability 1 to s̄ ∈ S.

Proof. Recall that B0(Σ) is the set of all bounded Σ–measurable real valued simple

functions. For the non-singular interval K = [u(¯̀), u(`)] and k0 ∈ Ko as given in Condition
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1, B0(Σ, K) (and B0(Σ, K − k0)) denotes the set of all bounded Σ–measurable real valued

simple functions with a range given by K (and K − k0, respectively). Moreover, ba(Σ) is

the set of all bounded, finitely additive set functions on Σ and pc(Σ) denotes the set of all

probability measures in ba(Σ) where Σ is an algebra sigma of subsets of S. It maybe useful

to point out that these notions were defined and discussed and extensively used in the proof

of Theorem 2 (in particular, Lemma 7) on page 22.

Let P ∗ ∈ pc(Σ) assign probability of 1 to s̄ and probability of 0 to all other s ∈ S \ s̄.

First, we remind that for all f, g ∈ F , f %UA g if and only if uf DUA ug where DUA

is a nontrivial, continuous, conic and monotonic preorder on B0(Σ, K). Furthermore, as

was observed in the proof of Lemma 7 (which is employed to prove Theorem 2), we have

uf DUA ug ⇔ uf − k0Doug − k0 ⇔ uf − k0 DΣ ug − k0 where k0 as given above; Do and

DΣ are nontrivial, continuous, conic and monotonic preorders on B0(Σ, K − k0) and B0(Σ),

respectively. Therefore, by Condition 1, we have for all j ∈ J+ we have

fAj %
UA hk0 ⇔ ufAj D

UA k0 ⇔ ufAj − k0D
o0 ⇔ ufAj − k0 D

Σ 0.

Next, we wish to remind that the construction of the set of probabilities C presented in the

proof of Lemma 7 calls for P ∈ C whenever P ∈ L ∩ pc(Σ) where L = {L ∈ ba(Σ) : L(ψ) ≥

0, for all ψ ∈ B0(Σ) with ψ DΣ 0}. In this case, notice that L ∈ ba(Σ) is in L if and only if

L(ufAj − k0) ≥ 0 for all j ∈ J+ since (by Condition 1) ufAj − k0 DΣ 0 for all such j. Clearly

P ∗ ∈ ba(Σ). So, we need to show that P ∗ ∈ L; i.e. P ∗(ufAj −k0) ≥ 0 for all j ∈ J+. Since P ∗

is constant additive, we have P ∗(ufAj −k0) = P ∗(ufAj )−k0; and as P ∗ assigns probability of

1 to s̄ ∈ S, we have P ∗(ufAj ) = u(āj); hence, P ∗(ufAj −k0) = P ∗(ufAj )−k0 = u(āj)−k0 > 0

for all j ∈ J+ which follows from Condition 1. Therefore, P ∗ ∈ L. Thus, P ∗ ∈ L ∩ pc(Σ)

which implies P ∗ ∈ C.

In what follows, we will show that I(ufAj ) = pAju(āj) + (1 − pAj) minP∈C
∫
ufAjdP , for

all j = 1, . . . , J . By Theorem 5, we know that % satisfies Axioms 1–5 if and only if there

exist a monotone and constant linear functional I : B0(Σ) → R, and a non-constant affine

function which is unique up to a positive affine transformation u : X→ R, and a non-empty
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and unique and weak* compact and convex set C of probabilities on Σ (I, u and C are

obtained through Theorem 1 and Theorem 2), and a function α : F→ [0, 1] with a uniquely

defined restriction on F∗ such that for any f ∈ F , I(uf ) = αF(f) maxP∈C
∫
ufdP + (1 −

αF(f)) minP∈C
∫
ufdP . Therefore, for fAj , j ∈ J+, we have:

I(ufAj ) = αF(fAj ) max
P∈C

∫
ufAjdP + (1− αF(fAj )) min

P∈C

∫
ufAjdP

where αF(fAj ) ∈ [0, 1]. Since P ∗ ∈ C and ufAj (s̄) ≥ ufAj (s) for all s ∈ S \ s̄, it must be

that
∫
ufAjdP

∗ = u(āj) ≥
∫
ufAjdP for all P ∈ C and for all j ∈ J+. The same observation

trivially holds for all r /∈ J+, as for all such r we have u(a) = u(`) for all a ∈ Ar. Therefore,

maxP∈C
∫
ufAjdP = u(āj); thus, we set pAj = αF(fAj ); then, we have:

I(ufAj ) = pAju(āj) + (1− pAj) min
P∈C

∫
ufdP,

for all j = 1, . . . , J ; concluding the proof of Theorem 6.
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4 Temptation

In this chapter, we establish that the implications of our representation result concerning

menus under ambiguity under a regularity condition. After presenting the resulting repre-

sentation result and elaborating on its implications, we show that what we obtain becomes

compatible with earlier models of temptation

4.1 Dual-self representation

The regularity condition we wish to employ considers the set of probabilities obtained in

the proof of Theorem 2: Restrict attention to unambiguous preference, %UA, be sustained

only by monotonicity. That is, we would require the existence of k0 ∈ (u(`), u(¯̀)) such that

the only unambiguous preference relation allowed concerns fAj %
UA hk0 with j such that

Aj = {aj} (a singleton menu) with u(aj) − k0 > 0. Then, C = pc(Σ); i.e., C includes all

probability distributions on Σ.

As a result, our representation result for menus under ambiguity simplifies to the follow-

ing:

Corollary 1 Suppose a preference relation % defined on F satisfies Axioms 1–5 and the

set of probability distributions C = pc(Σ). Then, there exists a non-constant affine function

which is unique up to a positive affine transformation u : X → R representing %X and

a function p : X → [0, 1] such that for any A,A′ ∈ A we have fA% fA′ if and only if
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U(A) ≥ U(A′) where

U(A) = pAu(ā) + (1− pA)u(a) (4.1)

with ā ∈ Ā = {a ∈ A : u(a) ≥ u(a′) for all a′ ∈ A} and a ∈ A = {a ∈ A : u(a′) ≥

u(a) for all a′ ∈ A}.

Proof. Given X and A = {A1, . . . , AJ}, by Theorem 5, we know that there exist a

monotone and constant linear functional I : B0(Σ)→ R, and a non-constant affine function

which is unique up to a positive affine transformation u : X → R, and a non-empty and

unique and weak* compact and convex set C of probabilities on Σ, and a function pAj : F→

[0, 1] with a uniquely defined restriction on F∗ such that the following function represents %

on FM : for any fAj ∈ FM

I(ufAj ) = αF(fAj ) max
P∈C

∫
ufAjdP + (1− αF(fAj )) min

P∈C

∫
ufAjdP

where αF(fAj ) ∈ [0, 1]. Since C = pc(Σ), there exist Ps̄, Ps ∈ C which assign probability 1

to s̄ ∈ S and s ∈ S, respectively, for s̄ = (ā1, . . . , āJ) with āj ∈ Āj and s = (a1, . . . , aJ)

with aj ∈ Aj; so, fAj(s̄) = āj and fAj(s) = aj for all j = 1, . . . , J . Therefore,
∫
ufAjdPs̄ =

u(āj) ≥
∫
ufAjdP and

∫
ufAjdP ≥

∫
ufAjdPs = u(aj) for all P ∈ C and for all j = 1, . . . , J .

Hence, maxP∈C
∫
ufAjdP = u(āj) and minP∈C

∫
ufAjdP = u(aj) which, together with setting

U(Aj) = I(ufAj ) and pAj = αF(fAj ) for all j, implies U(Aj) = pAju(āj) + (1− pAj)u(aj).

Theorem 6 in Chapter 2 presents our representation result justifying the multiple-selves

setting, in which with some probability the decision maker will face the ambiguity about

which one of the specific alter egos (multiple-selves) will make the decision. The decision

maker when faced with this ambiguity knows neither the particular alter ego who will be

making the decision, nor the exact distribution on all the alter egos that will select the

deciding one. In that representation, our key condition involved a very mild requirement on

the behavior of unambiguous preference relations concerning acceptable menus: Condition

1 allows for any unambiguous preference relation such that each one of the acts concerning
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acceptable menus must be unambiguously strictly preferred to the worst (constant) act.

Then, given such an unambiguous preference relation we show that the best case scenario

when evaluation a menu corresponds to the consumption of the best alternative in that

menu while the worst case scenario involves the aforementioned ambiguity and does not

necessarily coincide with the consumption of the worst alternative of that menu. Therefore,

when the unambiguous preference relation displays some richness, we obtain a multiple-selves

representation, rather than a dual-self.

When unambiguous preference relations are those implied only by monotonicity, Corol-

lary 1 displays that the resulting ambiguity is one which makes the decision maker imagine

that the worst case scenario amounts to the consumption of the worst alternative of that

menu. This, in turn, provides the dual-self representation presented above: When the de-

cision maker evaluates a menu, he/she imagines that the ego (or rational-self) is at the

helm and the best alternative of the menu will be consumed with some probability whereas

with the remaining probability the alter-ego (evil-self) is making the decision and the worst

alternative of the menu will be consumed.

Hence, when unambiguous preferences become more restricted, the multiple-selves model

turns into a dual-self version.

One notable point of our findings is that the implications of our representation results do

not involve any rationality on the alter-egos behavior; e.g. we do not impose an independence

axiom on menus. In essence, alter-egos in our model can be viewed as “behavioral types” or

“machines”.

We would like emphasize that our result stated in Corollary 1 resembles the Hurwicz α–

criterion which is introduced by Hurwicz (1951). This criterion states that a decision maker’s

pessimism level is indexed with α ∈ [0, 1]; whenever he/she has to take ambiguous actions,

he/she assigns coefficient α to the worst outcome and (1−α) to the best outcome in order to

determine an associated value. Then, our representation can be seen as Hurwicz α–criterion

by interpreting the probability of alter ego contingencies of a menu A ∈ A; i.e., (1− pA) as

pessimism index. Nevertheless, one important difference between Hurwicz α–criterion and
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our model is that probability (1−pA) of alter egos making the decision is menu dependent for

all menus A ∈ A whereas pessimism index is constant for all actions concerning ambiguity.

4.2 Constant ambiguity-aversion index

At this stage it is useful to point that Ghirardato, Maccheroni, and Marinacci (2004) tries to

obtain the α-maxmin expected utility representation of Hurwicz (1951) by coming up with

an axiom in order to sustain a constant ambiguity-aversion index. Below we present this

axiom. Given any f ∈ F , define

XUA(f) = {` ∈ X : h`′ %
UA f ⇒ h`′ %

UA h` and f %UA h`′ ⇒ h`%
UA h`′ ,∀`′ ∈ X},

and notice XUA(f) provides the certainty equivalent (lotteries) with respect to unambiguous

preference relation %UA associated with the act f . Then, the axiom they use is:

Axiom 6 XUA(f) = XUA(g) implies f ∼ g, f, g ∈ F .

In words, this axiom demands that any two acts f and g having the same unambiguous

certainty equivalent sets must be indifferent to one another.

Using this axiom on top of Axioms 1–5, in Proposition 19 Ghirardato, Maccheroni, and

Marinacci (2004) obtains the following α-maxmin representation:

A binary relation %⊆ F × F satisfies axioms 1-6 if and only if there exist a monotone

and constant linear functional I : B0(Σ) → R, and a non-constant affine function which is

unique up to a positive affine transformation u : X → R, and a non-empty and unique and

weak* compact and convex set C of probabilities on Σ, and α ∈ [0, 1] such that f % g if and

only if

αmax
P∈C

∫
ufdP + (1− α) min

P∈C

∫
ufdP ≥ αmax

P∈C

∫
ugdP + (1− α) min

P∈C

∫
ugdP

and uf and ug and C are as in the representation theorem of %UA, Theorem 2, i.e. f %UA g

if and only if
∫
S
ufdP ≥

∫
S
ugdP for all P ∈ C.
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Eichberger, Grant, Kelsey, and Koshevoy (2011), in a recent paper, shows that when the

state space, S, is finite, a preference relation % defined on F satisfying Axioms 1-6 implies

that the constant ambiguity-aversion index, α, equals either 0 or 1. This, clearly, is bad

news for the α-maxmin expected utility representation with finite state spaces, because in

these cases we get either maxmax or maxmin expected utility representation.

4.3 Related temptation models

Using some axioms Chatterjee and Krishna (2009) obtains a “dual-self” representation the-

orem for menu preferences and as a result the decision “could be interpreted as being made

by an “alter ego” who appears randomly”. As in Gul and Pesendorfer (2001), this study

considers that elements of menus are lotteries and employs independence on the set of menus.

According to their representation theorem, (by restricting attention to degenerate lotteries

by using standard linearity properties of von Neumann – Morgenstern utilities) the utility

of a menu A ∈ A is given by

UCK(A) = pmax
a∈A

ũ(a) + (1− p) max
a′∈Bv(A)

ũ(a′),

where (1−p) is probability of the alter ego making the choice, ũ is the ego’s von Neumann –

Morgenstern expected utility function over lotteries and Bṽ(A) = argmaxa′∈A ṽ(a′) the best

alternatives in the menu according to the alter-ego’s point of view which is represented by

ṽ, the alter-ego’s von Neumann – Morgenstern expected utility function over lotteries.

The key axiom of Chatterjee and Krishna (2009), the temptation axiom, is: Given A ∈ A,

there exists a, a′ ∈ A such that {a} %CK A %CK {a′}.

In Chatterjee and Krishna (2005), the working paper version of Chatterjee and Krishna

(2009), they present a representation theorem which employs a menu dependent dual-self

model such that the utility of a menu is given by:

UCK′(A) = pA max
a∈A

ũ(a) + (1− pA) max
a′∈Bṽ(A)

ũ(a′),
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where probability of the alter ego deciding, (1− pA), is menu dependent.

The axiom of temptation in Chatterjee and Krishna (2005) is slightly different from the

one defined above. For any given menu A ∈ A, let Ā ≡ {a ∈ A : {a} %CK′ {a′} for all a′ ∈

A} and A ≡ {a ∈ A : {a′} %CK′ {a} for all a′ ∈ A}. %CK′ satisfies the temptation axiom if

Ā %CK′ A %CK′ A for any A ∈ A.

Below, we show that our representation theorem of acts concerning menus delivers the

temptation axioms of Chatterjee and Krishna (2005) and Chatterjee and Krishna (2009).

Corollary 2 Suppose that % defined on F satisfies Axioms 1–5 and the set of probability

distributions C = pc(Σ). Then, there exists a non-constant affine function which is unique up

to a positive affine transformation u : X→ R representing %X and a function p : A → [0, 1]

such that for any A ∈ A it must be that

1. hā % fA % ha, and

2. fĀ % fA % fA,

where hā, ha ∈ Fc are defined as hā(s) = ā and ha(s) = a for all s ∈ S and ā ∈ Ā = {a ∈

A : u(a) ≥ u(a′) for all a′ ∈ A} and a ∈ A = {a ∈ A : u(a′) ≥ u(a) for all a′ ∈ A}.

Proof. By Corollary 1, we know that U(fA) = pAu(ā) + (1− pA)u(a).

Then, u(ā) ≥ pAu(ā) + (1− pA)u(a) ≥ u(a) for any pA ∈ [0, 1]; hence, hā % fA % ha.

Now, as for any ā ∈ Ā and a∗ ∈ A we have u(ā) = u(`) for all ` ∈ ∆(Ā) and u(a∗) = u(`′)

for all `′ ∈ ∆(A), U(Ā) = u(ā) and U(A) = u(a); ipso facto, u(Ā) ≥ pAu(Ā)+(1−pA)u(A) ≥

u(A) for any pA ∈ [0, 1]; hence, fĀ % fA % fA.

A remark that the interested reader may find helpful is that the conclusion of Corollary

2 can be obtained without restricting attention to the situation with C = pc(Σ); but, using

Condition 1. As for any A ∈ A, I(ufĀ) = u(ā) for ā ∈ Ā and I(ufA) = u(a) for a ∈ A and

u(ā) ≥ maxP∈C
∫
ufAdP and minP∈C

∫
ufAdP ≥ u(a) and αA ∈ [0, 1], the conclusion would

be obtained; delivering the following:
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Remark 1 Suppose that % defined on F satisfies Axioms 1–5 and Condition 1. Then, there

exists a non-constant affine function which is unique up to a positive affine transformation

u : X → R representing %X and a function p : A → [0, 1] such that for any A ∈ A it must

be that hā % fA % ha, and fĀ % fA % fA where hā, ha ∈ Fc are defined as hā(s) = ā and

ha(s) = a for all s ∈ S and ā ∈ Ā and a ∈ A.

On the other hand, Gul and Pesendorfer (2001) pioneered the temptation and self-control

literature with their well-known representation theorem. Our model with menus corresponds

to a version of theirs in which attention is restricted to lotteries that can be obtained as a

convex combination of some discreet lotteries; in turn, enabling us to confine our considera-

tion to discreet lotteries when identifying best/worst alternatives of a menu (due to standard

linearity properties of the von Neumann – Morgenstern utilities).1 The preferences that Gul

and Pesendorfer (2001) consider on menus, %GP⊆ A×A, are binary relations defined on the

simplex formed on non-empty compact sets of alternatives, i.e. A = {∆(A) : A ∈ A}. Uti-

lizing some set of axioms (including independence on the set of menus), Gul and Pesendorfer

(2001) obtains a representation theorem using the following utility of a menu:

UGP (A) = max
a∈A

(
ũ(a) + ṽ(a)

)
−max

a′∈A
ṽ(a′),

where ũ, ṽ are von Neumann – Morgenstern expected utility functions over lotteries and ũ

represents the decision maker’s commitment ranking while ṽ represents his/her temptation

ranking over lotteries. Therefore, given a∗, ã ∈ A with a∗ ∈ arg maxa∈A(ũ(a) + ṽ(a)) and

ã ∈ arg maxa′∈A ṽ(a′), the utility of a menu U(A) equals ũ(a∗) − (ṽ(ã) − ṽ(a∗)) where the

cost of self-control is given by (ṽ(ã)− ṽ(a∗)).

An interesting remark concern the fact that Chatterjee and Krishna (2005) shows that

preferences which satisfy the axioms needed for the representation of Gul and Pesendorfer

1It needs to be emphasized that our setting is, in fact, rich enough to handle that of Gul and Pesendorfer
(2001) which defines the set of menus as weak* compact subsets of X, thus, allowing menus to consist of only
non-discreet lotteries. While this situation can be handled with the technicalities presented in the current
study (see footnote 1 of Chapter 3), we argue that our formulation is better suited for preferences on menus
as in representation theorems we can confine interest to (discreet) alternatives.
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(2001) also admit menu dependent dual-self representations as defined above.

In order to obtain the representation theorem of Gul and Pesendorfer (2001), that study

introduced and employed a key axiom, set betweenness, which is stated as follows: For any

menu A,A′ ∈ A with A %GP A′ implies A %GP A ∪ A′ %GP A′.

For any given pair of menus Ar, At ∈ A, we denote Ar∪t = Ar ∪ At ∈ A.

In what follows, we analyze situations when our representation theorem of acts concerning

menus under ambiguity is rich enough to deliver the set betweenness axiom of Gul and

Pesendorfer (2001). In fact, we wish to obtain the following result, currently a conjecture:

Conjecture 1 Let X be a finite set of alternatives and A = {A1, . . . , AJ} with Aj ∈ A for

all j = 1, . . . , J be the resulting menus. Then, there exists a preference relation % defined on

F satisfying Axioms 1–5 and the set of probability distributions C = pc(Σ) and p : A → [0, 1]

such that fAr % fAt implies fAr % fAr∪t % fAt.

In order to establish that result, we would suppose that a preference relation % defined

on F satisfies Axioms 1–5 and the set of probability distributions C = pc(Σ) (which can

be obtained by a condition on unambiguous preferences, e.g. the regularity condition we

discussed in the beginning of Chapter 4). Then, by Corollary 1, for any A ∈ A, U(A) =

pAu(ā) + (1− pA)u(a) with ā ∈ Ā = {a ∈ A : u(a) ≥ u(a′) for all a′ ∈ A} and a ∈ A = {a ∈

A : u(a′) ≥ u(a) for all a′ ∈ A}.

The remaining task is to establish that there exists p : A → [0, 1] such that fAr % fAt

implies fAr % fAr∪t % fAt and the resulting unambiguous preference relation %UA is such

that C is equal to pc(Σ).

So, let fAr % fAt .

If u(ār) ≥ u(āt) and u(ar) ≥ u(at), then let pAr∪t satisfy

pAr (u(ār)− u(ar)) + (u(ar)− u(at))

(u(ār)− u(at))
≥ pAr∪t ≥

pAt(u(āt)− u(at))

(u(ār)− u(at))
. (4.2)

Then u(ār∪t) = u(ār) and u(ar∪t) = u(at) which implies U(Ar∪t) = pAr∪t (u(ār)− u(at)) +

u(at) due to Corollary 1. Thus, by (4.2), pAr (u(ār)− u(ar))+(u(ar)− u(at)) ≥ pAr∪t(u(ār)−
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u(at)) ≥ pAt(u(āt)− u(at)) implies fAr % fAr∪t % fAt .

If u(ār) ≥ u(āt) and u(at) ≥ u(ar), then let pAr∪t satisfy

pAr ≥ pAr∪t ≥
pAt(u(āt)− u(at)) + (u(at)− u(ar))

(u(ār)− u(ar))
. (4.3)

So u(ār∪t) = u(ār) and u(ar∪t) = u(ar) bringing about U(Ar∪t) = pAr∪t (u(ār)− u(ar)) +

u(ar) by Corollary 1. Thus, by (4.3), pAr (u(ār)− u(ar)) ≥ pAr∪t(u(ār)−u(ar)) ≥ pAt(u(āt)−

u(at)) + (u(at)− u(ar)) implies fAr % fAr∪t % fAt .

If u(āt) ≥ u(ār) and u(at) ≥ u(ar), then let pAr∪t with

pAr (u(ār)− u(ar))

(u(āt)− u(ar))
≥ pAr∪t ≥

pAt(u(āt)− u(at)) + (u(at)− u(ar))

(u(āt)− u(ar))
. (4.4)

Now, u(ār∪t) = u(āt) and u(ar∪t) = u(ar) so U(Ar∪t) = pAr∪t (u(āt)− u(ar)) + u(ar) by

Corollary 1. Ipso facto, by (4.4), pAr (u(ār)− u(ar)) ≥ pAr∪t(u(āt) − u(ar)) ≥ pAt(u(āt) −

u(at)) + (u(at)− u(ar)) implies fAr % fAr∪t % fAt .

Finally, if u(āt) ≥ u(ār) and u(ar) ≥ u(at), then let pAr∪t with

pAr (u(ār)− u(ar)) + u(ar)− u(at)

(u(āt)− u(at))
≥ pAr∪t ≥ pAt . (4.5)

Thence, u(ār∪t) = u(āt) and u(ar∪t) = u(at) so U(Ar∪t) = pAr∪t (u(āt)− u(at)) + u(at) by

Corollary 1. Hence, by (4.5), pAr (u(ār)− u(ar)) + u(ar) − u(at) ≥ pAr∪t(u(āt) − u(at)) ≥

pAt (u(āt)− u(at)) implying fAr % fAr∪t % fAt .

What remains to be analyzed is whether or not the following holds: Given X and

A = {A1, . . . , AJ} and pf , f ∈ F , obtained by employing Theorem 5 with the particu-

lar restrictions given in 4.2 - 4.5, define for any f ∈ F

I(uf ) = pf max
a∈X(f)

u(a) + (1− pf ) min
a∈X(f)

u(a), (4.6)

where X(f) = {a ∈ X : f(s) = ` for some s ∈ S with `(a) > 0} (i.e. the support of f in

alternatives).
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The essence of this problem is due to the following fixed point issue at hand: Given a

fixed C and pf , f ∈ F , representation equation of Theorem 5, equation 2.4, given by

I(uf ) = pf max
P∈C

∫
ufdP + (1− pf ) min

P∈C

∫
ufdP (4.7)

identifies a preference relation % and %UA both defined on F . Then, the resulting unam-

biguous preference relation %UA implies C̃ as shown in the proof of Theorem 2. How do we

know that C̃ = C the set of probability distributions that we started with?

This issue is raised and addressed in Section 5 of Ghirardato, Maccheroni, and Marinacci

(2004) and it is shown that if C is equal to the Clarke differential of I, as given in equation

4.7, at 0.

Therefore, in order to prove the aforementioned conjecture what needs to be done is to

show that the Clarke differential of I given in equation 4.6 at 0 is equal to pc(Σ); a task to

be addressed in the near future.
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5 CONCLUDING REMARKS

In order to obtain the desired multiple-selves representation, first we associate each alter ego

with a state of nature the realization of which make the associated alter ego decide what to

consume in a given menu; and second, we extend the preferences under ambiguity to menus.

Then, by employing the well-accepted axioms of Ghirardato, Maccheroni, and Marinacci

(2004) on preferences on menus under ambiguity and introducing a mild condition, we ob-

tain the resulting representation for those preferences justifying that the associated behavior

under ambiguity admits a multiple-selves representation: When evaluating a menu the de-

cision maker imagines that with some menu-dependent probability the “ego” who consumes

the best alternative of that menu will be in charge, whereas with remaining probability the

decision maker imagines the worst case scenario as he/she faces ambiguity about which one

of many “alter egos” will be present and choose what to consume in that menu.

We also show that the multiple-selves representation model transforms to the dual-self

representation if we employ more restrictive condition. Furthermore, this dual-self repre-

sentation justifies temptation axioms in Chatterjee and Krishna (2009) and Chatterjee and

Krishna (2005) which are the closest studies to ours in the spirit of representation. We

analyze the cases where our representation model delivers the set betweenness axiom of Gul

and Pesendorfer (2001) which leads us to direct our further studies to focus on the Clarke

differential of functional I.
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