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ABSTRACT

ON BEHAVIORAL IMPLEMENTATION

Ece YEGANE

Economics, MA Thesis, July 2018

Thesis Supervisor: Assoc. Prof. Mehmet BARLO
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This thesis studies implementation under complete information with boundedly rational
agents. We introduce a notion called maximal choice set and define an associated maxi-
mal choice monotonicity condition on social choice rules. We show that this condition is
necessary for Nash implementation when choice correspondences satisfy Sen’s property α.
Moreover, we prove that maximal choice monotonicity and no veto-power suffice for Nash
implementation when agents have unique maximal choice sets. Our results, following Maskin
(1999), provide some convenience when evaluating the Nash implementability of social choice
correspondences without checking for the existence of the associated Moore and Repullo sets.
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ÖZET

DAVRANIŞSAL UYGULAMA ÜZERİNE

Ece YEGANE

Ekonomi, Yüksek Lisans Tezi, Temmuz 2018

Tez Danışmanı: Doç. Dr. Mehmet BARLO

Anahtar Kelimeler: Davranışsal uygulama, Nash uygulaması, kısıtlı rasyonellik.

Bu tezde tam bilgi ve kısıtlı akılcılık altında uygulama analizi incelenmektedir. Mak-
simal seçim kümeleri kurgusunu sunup sosyal seçim kuralları üzerine alakalı bir tekdüze-
lik kavramı tanımlıyoruz. Bu tekdüzelik nosyonunun Sen’in α özelliği ile beraber, sosyal
seçim kurallarının Nash dengesi altında uygulanması için gerekli olduğunu kanıtlıyoruz. De-
vamında, alakalı tekdüzelik nosyonunun ve veto yetkisinin yokluğu ile beraber maksimal
seçim kümelerinin tekliği varsayımının sosyal seçim kurallarının Nash dengesi altında yeterli
olduğunu gösteriyoruz. Elde ettiğimiz sonuçlar, alakalı Moore ve Repullo kümelerinin var-
lığını kontrol etmeden Maskin (1999) tarafından kurulan Nash dengesi altında sosyal seçim
kurallarının uygulanabilirliğinin değerlendirilmesi açısından elle tutulur kolaylık sağlamak-
tadır.
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1 Introduction

A social planner wishes to implement a pre-determined social choice rule that selects the

socially optimal outcomes based on the preferences of individuals, by designing the institution

through which the members of the society will interact. Implementation theory works on

the question of designing a game form (or a mechanism) such that when individuals play it,

the equilibrium outcomes of the game will coincide with the outcomes of the social choice

rule in question. One way to accomplish this goal is to obtain preferences of the individuals

and choose the socially optimal outcomes that is dependent on these preferences accordingly.

However, it may be costly for the planner to elicit these preferences. More importantly, if

individuals know the social choice rule the planner abides by, they may have an incentive

to falsely report their preferences. Hence, in implementation theory, it is assumed that the

individual preferences are unknown to the social planner and the goal of the planner is to

design a game so that the equilibrium actions of individuals are reliable to select the true

socially optimal outcome.

Most of the previous results on implementation work under the assumption of rational

individual preferences. However, it is now well-known that individual behavior may not

be consistent with a rational preference relation (e.g. Tversky (1969), Thaler (1980)). As a

matter of fact, people are prone to cognitive biases such as status quo bias, endowment effect,

attraction effect, which typically result in violations of the standard rationality assumptions

in economics (e.g. Huber, Payne, and Puto (1982), Kahneman, Knetsch, and Thaler (1991)).

The insights from behavioral economics and psychology on the systematic deviations from

rationality have received wide attention in the popular culture. Moreover, there is a recent
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tendency among economists as well as policymakers on effectively using these behavioral

insights to help people with making better decisions for themselves. In particular, Thaler

and Sunstein (2008)’s book Nudge has received wide media attention and became influential

in guiding government policies. For instance, the Behavioral Insights Team, also known as

the Nudge Unit, has been established in 2010 in the United Kingdom in order to improve

the government policies using ideas and recommendations from the behavioral sciences 1. In

the United States, President Obama has released an executive order in 2015, emphasizing

the importance of behavioral insights to deliver better policy outcomes at lower costs and at

the same time encouraging executive departments and agencies to incorporate these insights

into policy-making 2. In 2017, a behavioral public policy unit with a similar purpose has

also been established in Turkey 3. Considering the attention behavioral insights has received

from decision makers, the analysis of implementation can be consequently improved with the

new information on how people actually make decisions and behave. Therefore, relaxing the

rationality assumptions in the usual implementation framework is a relevant and important

question to analyze.

In this thesis, we introduce a notion which we call maximal choice set. A maximal choice

set of an alternative x of an agent is a set of alternatives from which the alternative x is chosen

from and there is no other set strictly containing the maximal choice set with the property

that x is still being chosen by that agent. Our notion of a maximal choice set is related to

Sugden (2004)’s opportunity criterion. Sugden (2004) formulates the opportunity criterion

in order to make normative judgments on resource allocations in environments without using

the standard assumptions of rationality. In that regard, the opportunity criterion attaches

value directly to the abundance of opportunities provided to individuals while keeping them

responsible from how they use these opporunities. In the maximal choice set definition, we
1Please refer to https://www.theguardian.com/society/2010/sep/09/cameron-nudge-unit-economic-

behaviour
2Please refer to https://obamawhitehouse.archives.gov/the-press-office/2015/09/15/executive-order-

using-behavioral-science-insights-better-serve-american
3Please refer to https://www.aa.com.tr/tr/ekonomi/davranissal-kamu-politikalari-ekonomi-bakanliginda-

hayata-geciyor/971671
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have a similar purpose: to offer the richest set of alternatives while making sure that the

alternative with which the maximal choice set is defined will be chosen from this maximal

set.

We define our environment using choice correspondences instead of preference relations

while relaxing the rationality assumptions imposed on choice. By using the maximal choice

set structure, we define a maximal choice monotonicity condition akin to Maskin monotonic-

ity. Existence of a rational preference relation (meaning that behavior can be represented

by a binary relation that is reflexive, complete and transitive) requires that the choice corre-

spondence must satisfy two axioms property α and property β as formulated by Sen (1971).

Property α restricts choice correspondences as the choice set shrinks while property β imposes

a restriction as the choice set expands. In words, property α requires that if an alternative

is chosen from a set S, then it must be chosen whenever that alternative is available in any

subset of S. On the other hand, a choice correspondence satisfies property β if whenever

two alternatives are chosen from a set S, then in any superset of S, if one of the alternatives

chosen in S is chosen, then the other alternative chosen in S must be chosen as well. We

use Nash equilibrium as the equilibrium concept to determine the strategic outcomes of the

mechanism we wish to implement. However, as we allow for choice behavior possibly incon-

sistent to represent via a rational preference relation, the Nash equilibrium we use is locally

defined using the outcome function of the implementing mechanism.

For the necessity side of implementation, we show that maximal choice monotonicity is

a necessary condition when choice correspondences satisfy property α. For the sufficiency

part of implementation, we show that our notion of maximal choice monotonicity and the

no-veto power property suffice for implementation under the assumption that each agent’s

maximal choice set for every alternative is unique.

The uniqueness of maximal choice sets can be obtained by imposing Sen’s property γ on

choice correspondences. Property γ demands that if an alternative is chosen from two sets,

then it must be chosen from the union of these two sets as well. If a choice correspondence

satisfy property α and property β, then it satisfies property γ; but the other way around is
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not necessarily true. Therefore, uniqueness of maximal choice sets is a weaker requirement

that property γ. However, when property γ is satisfied, maximal choice set has a special

structure: it is equal to the union of every choice set where the alternative itself is chosen

from.

As game theory is the study of strategic interactions, it has a major role in the study of

implementation. In fact, implementation theory is often viewed as the reverse engineering

approach to game theory for the following reason: game theory models a certain environment

as a game and analyzes the possible outcomes of that game using an equilibrium concept.

On the other hand, implementation theory starts with the set of outcomes aimed to be

attained by the society and which usually have socially plausible properties. The goal of

implementation is to design the game form through which individuals will interact and the

set of equilibrium outcomes of that game will be equivalent to the outcomes desired to be

achieved in the first place. From the relation between implementation theory and game

theory, it follows that the information structure and the equilibrium concept which is used

have profound effects on the question of implementation. In this thesis, we assume complete

information, meaning that the members of the society know the true state of the world which

determines the individual preferences. We use Nash equilibrium as the solution concept,

in accordance with the complete information assumption. That is, when we question the

implementability of a social choice rule, we inquire whether a it is implementable as a Nash

equilibrium outcome of some game.

We now summarize previous literature on Nash implementation which is related to our

analysis. In Section 2 of Chapter 4, we analyze in detail how our results compare to previous

studies on behavioral implementation. Maskin (1999) showed that two conditions on social

choice rules, monotonicity and no veto power, are sufficient for Nash implementation and

monotonicity set is a necessary condition for Nash implementation.4 Maskin’s seminal paper

assumed that agents have an ordering over the set of alternatives, which implies that agents

have rational preferences i.e. preference relations that satisfy reflexiveness, completeness
4The first version of Maskin’s paper started circulating as a working paper in (1977) but it was published

in 1999. Hence the reverse chronological order.
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and transitivity assumptions. Existence of a preference relation satisfying the standard

rationality assumptions requires the underlying choice correspondence to satisfy property α

and property β.

Hurwicz (1986) noticed that Maskin (1999)’s proof did not actually use either of the com-

pleteness and transitivity assumptions. Consequently, he showed that the results in Maskin

(1999) can be extended to environments where preferences are not necessarily complete or

transitive. Furthermore, Hurwicz (1986) was the first study to introduce the choice frame-

work into implementation theory. One limitation in this study is that the domain of the

choice correspondences is restricted to one or two element subsets of the set of alternatives.

There are several different definitions that can be used when jumping back and forth be-

tween choice correspondences and preference relations. One can define the preference over

two alternatives by looking at the choices over pairs or by investigating whether one of them

is chosen in some set where the other alternative is also present. Whenever choice correspon-

dence satisfy property α and property γ, an associated preference relation exists and the two

definitions relating choice correspondences to preference relations will be equivalent. Hence,

the extension of Hurwicz (1986)’s restriction to a setting where choice correspondences are

defined from all nonempty subsets to all nonempty subsets would require the axioms of

property α and property γ.

Moore and Repullo (1990) supply a condition called condition µ which is both necessary

and sufficient for Nash implementation. The setting of Moore and Repullo (1990) is more

general than Maskin (1999), because Maskin monotonicity and no veto power together imply

condition µ but not vice versa. However, condition µ relies on the existence of two families

of sets and proving whether such sets exist can be complex. In order to overcome this issue,

Sjostrom (1991) provides an algorithm which can be applied to check for the existence of the

sets as required in condition µ.

Later on, Korpela (2012) generalizes Moore and Repullo (1990)’s condition µ to con-

dition λ which is sufficient for Nash implementation without any assumptions on choice

correspondences. Moreover, Korpela (2012) shows that condition λ is a necessary condition
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for Nash implementation when choice correspondences satisfy Sen’s property α. De Clippel

(2014) provides a more general framework by separating the three requirements in condition

µ to three conditions; namely consistency, strong consistency and unanimity. Furthermore,

De Clippel (2014) shows that the consistency is a necessary condition for Nash implementa-

tion without any restrictions on choice correspondences. De Clippel (2014) also shows that

consistency, strong consistency and unanimity together are sufficient for Nash implementa-

tion.

As both Korpela (2012) and De Clippel (2014) provide conditions following Moore and

Repullo (1990), their necessary and sufficient conditions are subject to the same problem

of checking for the existence of these arbitrary sets. In order to overcome this problem,

Korpela (2012) applies the algorithm of Sjostrom (1991) to his setting. However, the appli-

cation of the algorithm in Sjostrom (1991) requires choice correspondences to satisfy Sen’s

property α and γ. When choice correspondences satisfy these two properties, we can obtain

the associated base relation from each of the choice correspondences and Maskin (1999)’s

or Hurwicz (1986)’s implementation proof will work in exactly the same way. Then, we can

directly check for Maskin monotonicity and no veto power to see whether a social choice rule

is implementable which is easier than using an algorithm. In that regard, we emphasize that

the maximal choice set structure we use allows us to define necessary and sufficient condi-

tions following Maskin (1999) without the added complexity of checking for the existence of

appropriate choice sets that is present in Korpela (2012) and De Clippel (2014)’s setting.

This thesis is organized as follows: Chapter 2 provides two motivating examples incorpo-

rating behavior which violates the standard rationality assumptions. Chapter 3 introduces

the preliminaries for choice correspondences and implementation. Chapter 4 presents our

necessity and sufficiency results, as well as previous findings on implementation. Chapter 5

concludes.
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2 Examples with attraction effect

Decoy alternatives can cause preference reversals when they are introduced in the choice

set, resulting in a violation of standard rationality assumptions on choice correspondences.

When the decoy option is inferior to one of the alternatives, say x, in terms of all relevant

attributes and at the same time, compared to another alternative say y, it is superior in some

attributes and inferior in others, the introduction of the decoy can affect the choice of the

individual in favor of x, the non-dominated alternative. This is referred to as the attraction

effect or the asymmetric domination effect.

The following example due to Herne (1997), demonstrates how the presence of a decoy

alternative causes attraction effect in a policy-making context and how to implement socially

optimal goals in this situation. In September 1993, Finland took the decision of building a

new nuclear power plant to parliamentary vote with some people opposing to the construction

of a nuclear power plant. The main argument of the opponents of the new nuclear power plant

was to use an alternative production system where energy is generated by small capacity

power plants such as solar or wind power. However, even though those who are opposed the

new nuclear power plant did not consider coal as one of the alternatives to nuclear power,

supporters of the nuclear power plant compared coal with nuclear power. In this case, coal

is deliberately used by the supporters of nuclear power as a decoy alternative, in the sense

that it is not intended to be implemented but it is still present in the consideration set in

order to increase the attractiveness of nuclear power for the following reason: Nuclear power

dominates coal as it is more environment friendly and reliable in terms of the stability of

energy production and price. On the other hand, solar power is better for the environment
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when compared to both nuclear power and coal. But in terms of reliability, high costs of

solar panels and intermittency of the energy source make it less appealing in comparison to

both nuclear power and coal. That is, coal is dominated by nuclear power in both dimensions

while it is dominated by solar power in one dimension and it dominates solar power in the

other. Hence, coal is asymmetrically dominated by nuclear power in the presence of solar

power.

Motivated by these findings, we present two examples in both of which the social choice

rule we aim to implement consists of the Bernheim-Rangel optimal alternatives: An alterna-

tive x is Bernheim-Rangel optimal if there is no other alternative y where x is never chosen

in any subset of the set of available alternatives containing both x and y by any individual

in the society. While both examples feature two states, in the first and simple example we

limit the set of all available alternatives to nuclear power, solar power and coal and identify

a mechanism which implements the social choice rule given by Bernheim-Rangel optimal

alternatives in Nash equilibrium. Even though this example is a clear display of Nash imple-

mentation of a well-established social choice rule with agents who do not satisfy the standard

assumptions of rationality (neither property α nor γ holds in this example), it involves choice

correspondences that do not satisfy a critical assumption, the uniqueness of maximal choice

sets, which we employ in our sufficiency result. To that regard, the second example involves

four alternatives and choice correspondences that satisfy the uniqueness of maximal choice

sets while not obeying properties α and γ.

2.1 A simple example with three alternatives and two

states

Suppose that there are three relevant alternatives; solar power, nuclear power and coal.

Meanwhile, there are two possible states of the world: the first one (θ) is the “usual” state

of the world, while the second (θ′) concerns a situation where experts are warning of the

dangers and consequences of a potential earthquake prompting public discussions and news
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about the risk of a catastrophic nuclear power plant accidents.

We argue that the following summarizes this situation: Let X = {coal, solar,nuclear}

be the set of alternatives, while the set of states is given by Θ = {θ, θ′}. The choice

correspondences of agents are given as follows:

S C1(S, θ) C1(S, θ′) C2(S, θ) C2(S, θ′)

c, n, s n s n c

n, s s s s s

c, n n c n c

c, s s c, s s c

It maybe useful to point out that the above table completely describes agents’ choice in every

state. For example, agent 1 chooses alternative n in state θ from the choice set c, n, while

agent 2 chooses alternative c in state θ′ from the choice set c, n, s.

In state θ, both agents have the same choice correspondence and their behavior is subject

to attraction effect as described above; and in θ′, both agents find nuclear power undesirable.

Notice that, nuclear power is chosen from the entire set of alternatives in θ, but it is not chosen

when only nuclear power and solar power are offered. Hence, the choice correspondences of

both agents at θ violates property α. Moreover, solar power is chosen when coal and solar

power are available as well as when nuclear power and solar power are available. However,

solar power is not chosen from the union of these two sets. Thus, the choice correspondences

of both agents at θ violate property γ.

We consider the behavioral welfare analysis criterion proposed by Bernheim and Rangel

(2009) as the social choice rule to be implemented. An alternative x ∈ X is BR-efficient in

θ if there is no other alternative y ∈ X with x /∈ Ci(S, θ) for any non-empty subset S of

X with x, y ∈ S for all agents i = 1, 2. The social choice rule fBR selects all BR-efficient

alternatives at a given state of the world.

The set of fBR−optimal alternatives in state θ are nuclear power and solar energy, while

in θ′ solar energy and coal are the fBR − optimal alternatives.
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We denote agent i’s maximal choice set of alternative x in state θ by Oi(x, θ). Then,

each agent’s maximal choice sets of all alternatives in every state of the world can be derived

from their choice correspondences and are given as follows:

O1(·, θ) O2(·, θ) O1(·, θ′) O2(·, θ′)

s {n, s} and {c, s} {n, s} and {c, s} {c, n, s} {n, s}

n {c, n, s} {c, n, s} {n} {n}

c {c} {c} {c, n} and {c, s} {c, n, s}

Now, consider the following simple mechanism where the strategy set of agent 1 is S1 =

{A,B,C,D} and that of 2 is S2 = {L,M,R} while the letters inside the matrix show the

alternative assigned by the mechanism to agents’ corresponding strategies, the so-called

outcome function.

1/2 L M R

A s n c

B n s c

C s c s

D s s s

The strategy profiles (C,L), (D,L), (D,R), (A,M), and (C,R) form a Nash equilib-

rium in state θ. The outcome of these strategy profiles are either s or n which are fBR-

optimal in θ. Similarly, the following strategy profiles form a Nash equilibrium at θ′:

(A,R), (B,R), (D,L), (D,M), and (D,R) yielding an outcome of either s or c both of which

are the only fBR-optimal alternatives in state θ′.

As the set of fBR-optimal outcomes coincide exactly with the set of Nash equilibrium

outcomes of the mechanism, we say that this mechanism implements fBR in Nash equilib-

rium.

The maximal choice sets of alternatives are not unique in this example. As it is shown, this

does not prevent us from implementing socially optimal alternatives. However, our sufficiency

direction of our Nash implementation result calls for the uniqueness of maximal choice sets.
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Therefore, we present the following example where we implement BR-efficient alternatives

when choice correspondences in the society are such that property α and uniqueness of

maximal choice sets hold, while property γ is violated.

2.2 An example with four alternatives and two states

Let the set of alternatives be X = {coal,nuclear, solar,wind} while the set of states is given

by Θ = {θ, θ′}. The choice correspondences of agents are given in the following table:

S C1(S, θ) C2(S, θ) C1(S, θ′) C2(S, θ′)

c, n, s, w n n s, w c

c, n, s n n s c

c, n, w n n w c

c, s, w s s, w s, w c

n, s, w w n s, w s, w

c, n n n c c

c, s s s s c

c, w c c w c

n, s n n s s

n, w n n w w

s,w w s, w s, w s, w

Agent 1 in state θ is subject to attraction effect as it was described in the first example.

That is, the presence of an inferior alternative, coal, increases the attractiveness of nuclear

power. Hence, when nuclear power and coal are both available, agent 1 chooses nuclear

power. Moreover, agent 1 in state θ chooses nuclear power from the sets nuclear power

and solar power as well as nuclear power and wind power. However, nuclear power is not

chosen from the union of these two sets. Hence, this choice correspondence violates property

γ. Moreover, even though agent 1 chooses m from the choice set {c, n, s, w} in state θ, he
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does not choose n from {n, s, w}. As the first choice set contains the second, property α is

violated.

However, in spite of the violation of properties α and γ, each agent’s maximal choice set

of each alternative is unique. We present the resulting maximal choice sets as follows:

O1(·, θ) O2(·, θ) O1(·, θ′) O2(·, θ′)

c {c, w} {c, w} {c, n} {c, n, s, w}

s {c, s, w} {c, s, w} {c, n, s, w} {n, s, w}

n {c, n, s, w} {c, n, s, w} {n} {n}

w {n, s, w} {c, s, w} {c, n, s, w} {n, s, w}

Next, consider the following mechanism where the strategy spaces are given by S1 =

{E,F} and S2 = {A,B,C,D} and the letters inside of the matrix shows the alternative

assigned by the mechanism to agents’ corresponding strategies.

1/2 A B C D

E c s w c

F w n s n

Notice that, the strategy profiles (E,C), (F,B), (F,D) are Nash equilibria in θ, resulting

in an outcome of either n or w equaling to the BR-efficient alternatives in θ. Similarly,

(F,A), (F,C), (E,D) are Nash equilibria in θ′, resulting in outcomes w, n and c, which are

BR-efficient alternatives in θ′. Therefore, we say that this mechanism implements fBR in

Nash equilibrium.
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3 Preliminaries

Let N = {1, ..., n} be a finite set of agents with n ≥ 3; X, a finite set of alternatives;

Θ = Θ1 × Θ2 × ... × Θn, the set of all states; and C(θ) = (C1(θ), ..., Cn(θ)), the individual

choice correspondences of members of the society when the realized state is θ = (θ1, θ2, ..., θn).

Letting X be the set of all nonempty subsets of X, a choice correspondence of an agent i

in state θ is a mapping Ci(θ) : X → X such that ∀S ∈ X , Ci(S, θ) ⊆ S. In summary, the

environment is denoted by G = (N,X,Θ, C(θ){θ∈Θ}).

3.1 Choice Correspondences

We next define three properties of choice correspondences as formulated by Sen (1971) that

are critical in the analysis of classical rationality.

Property α requires that for any S, T ∈ X and for any x ∈ S, if S ⊆ T and x ∈ C(T ),

then it must be that x ∈ C(S). In fact, it imposes a restriction on choice correspondences

in terms of what is chosen when contracting the larger set to a smaller set. That is, if an

alternative is chosen from a larger set, then it must be chosen from any other set that is

obtained from removing some elements from the larger set.

On the other hand, property β demands that for any S, T ∈ X and for all x, y ∈ C(S),

if S ⊆ T , then whenever x ∈ C(T ), it must be that y ∈ C(T ). So, it restricts choice

correspondences when expanding from smaller sets to larger sets. If two alternatives are

chosen from a set S, then in any other superset of S, if one of the alternatives in C(S) is

chosen, then the other alternative in C(S) must be chosen as well.
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Property α and β are equivalent to Samuelson’s Weak Axiom of Revealed Preference: If

x, y ∈ S ∩ T, x ∈ C(S) and y ∈ C(T ), then x ∈ C(T ). Hence, when we say that an agent’s

choice behavior is rational, we mean that it satisfies property α and β.

Finally, property γ calls for the following: Let M be the any class of sets from X and

let K be the union of every set in M . Then any x that belongs to C(S) for every S ∈ M

must belong to C(K). Similar to property β, γ is an expansion consistency property. If an

alternative x is chosen from multiple sets, then it must be chosen from the union of these

sets. It is trivial to show that property α and β together imply property γ.

The preference relation obtained from the choice correspondence Ci(θ), denoted byRC
i (θ) ⊂

X ×X, is a binary relation defined on X using the following condition:

xRC
i (θ)y if and only if there exist S ∈ X such that y ∈ S and x ∈ Ci(S, θ). (3.1)

Given a choice correspondence Ci(θ) and its associated preference relation RC
i (θ), the

lower contour set of agent i of an alternative x is denoted by Li(x, θ) and equals to {y ∈ X :

xRi(θ)y}.

The choice correspondence induced by a binary relation R ⊂ X ×X, denoted by CR
i (θ) :

X → X , is defined as follows:

CR
i (S, θ) := {x ∈ S | xRi(θ)y for all y ∈ S}. (3.2)

The following result is a restatement of Theorem 9 of Sen (1971, p.314), which shows

that when choice correspondences satisfy property α and γ, we can consistently go back and

forth between choice correspondences and the associated revealed preference relations.

Theorem 1 CR = C if and only if C : X → X satisfies properties α and γ.

Proof. Suppose that CR = C. Take any x ∈ C(S). By the definition of CR, it must

be that xRy for all y ∈ S. Take any set T ⊂ S with x ∈ T , then xRy for all y ∈ T . Thus,

by the definition of CR, x ∈ C(T ). This implies that C satisfies property α. Now take any
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sets, S, T , such that x ∈ C(S) and x ∈ C(T ). Then, xRy for all y ∈ S and all y ∈ T .

Moreover, xRy for any y ∈ S
⋃
T . Hence x ∈ CR(S

⋃
T ). Thus, C satisfies property γ. For

the converse, take any C which satisfies property α and γ. Let x ∈ CR(S), by definition,

xRy for all y ∈ S. As CR satisfies property α, x ∈ C({x, y}) for any y ∈ S. By property γ,

x ∈ C(S).

When a choice correspondence satisfies property α and property γ, we can define the

associated preference relation from the choice correspondence using definition 3.1 and then

reobtain the same choice correspondence using definition 3.2. Sen (1971) refers to such choice

correspondences as normal.

3.2 Choice Sets

Next, we introduce the notion of maximal choice sets which we will employ in our construction

and proofs:

Definition 1 A maximal choice set of an alternative x ∈ X in state θ ∈ Θ of agent i ∈ N ,

denoted by Oi(x, θ), is S ∈ X such that x ∈ Ci(S, θ) and there is no set S̃ ∈ X strictly

containing S with x ∈ Ci(S̃, θ).

Our notion of a maximal choice set is related to Sugden (2004)’s opportunity criterion.

Sugden (2004) formulates the opportunity criterion in order to make normative judgments

on resource allocations in environments without using the classical assumptions of rational-

ity. In that regard, the opportunity criterion attaches value directly to the abundance of

opportunities provided to individuals. In the maximal choice set definition, we have a similar

purpose: to offer the richest set of alternatives while making sure that the alternative with

which the maximal choice set is defined will be chosen from this maximal set.

It should be pointed out that for every alternative x ∈ X and state θ ∈ Θ and agent

i ∈ N , a maximal choice set of an alternative x ∈ X in state θ ∈ Θ of agent i ∈ N must exist.

This is due to the following: x ∈ Ci({x}, θ) for all x, θ, i. If {x} is not a maximal choice

set it means there is S 6= {x} and x ∈ Ci(S, θ). If, in turn, S is not a maximal choice set
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then there is S̃ strictly containing S with x ∈ Ci(S̃, θ). Noticing that the strict containment

relation is transitive (hence, acyclic) and X being finite establishes the desired observation.

However, given x, θ, i, we may have two distinct maximal choice sets; i.e. Oi(x, θ) is not

necessarily uniquely determined. The following simple example illustrates.

Example 1 Suppose there are three alternatives, X = {a, b, c} and consider the following

choice correspondence, C({a, b, c}) = a, C({a, b}) = b, C({b, c}) = b, C({a, c}) = c and all

alternatives are trivially chosen when they are the only available alternative. Alternative b

is chosen from two sets, {a, b} and {b, c} with none of the two sets strictly containing the

other. Therefore, the maximal choice set of b is not unique and is equal to either {a, b} or

{b, c}.

We emphasize that the uniqueness of maximal choice sets is crucial in the sufficiency

direction of our construction.

Assumption 1 For every given i ∈ N and x ∈ X and θ ∈ Θ, #|Oi(x, θ)| = 1.

One way to guarantee the uniqueness of maximal choice sets is to impose property γ on

the profile of choice correspondence. Notice that, when the choice correspondence of agent

i in state θ satisfies property γ, then given an alternative x, Oi(x, θ) is uniquely determined

and equals to
⋃
S∈X
{S : x ∈ Ci(S, θ)}. However, the reverse of the statement is not necessarily

true, that is, in a given state, existence of unique maximal choice sets for every alternative

for every agent i does not imply property γ. To illustrate, we provide the following example.

Example 2 In the choice correspondence below, associated maximal choice set of each al-

ternative is unique, O(x) = {x, y, z, t}, O(y) = {y, z, t}, O(z) = {x, y, z}, O(t) = {t, z}.

However, C{x, y} = x and {x, z} = x but C{x, y, z} = z. Hence, this choice correspondence

violates property γ.
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S C(S)

x, y, z, t x

x, y, z z

x, y, t x

x, z, t x

y, z, t y

x, y x

x, z x

x, t x

y, z y

y, t y

t, z t

Therefore, uniqueness of maximal choice sets is a weaker requirement on choice corre-

spondences than property γ. When choice correspondences satisfy properties α and γ, then

by Theorem 1, there exists an associated reflexive and complete preference relation (not

necessarily transitive) from which we could build the same choice correspondences using

normality given in condition 3.2. Hence, we have the following result:

Lemma 1 Assume that choice correspondences satisfy property α and γ. Then, for any

θ ∈ Θ, x ∈ X, i ∈ N , Oi(x, θ) = Li(x, θ).

Proof. Let y ∈ Oi(x, θ). Then, there exists an S ∈ X where x, y ∈ S and x ∈ C(S).

Thus, by (3.1), xRi(θ)y; so y ∈ Li(x, θ). Now, let y ∈ Li(x, θ). Then, for some S ∈ X , it

must be that x, y ∈ S and x ∈ C(S); so S ⊆ Oi(x, θ); hence, y ∈ Oi(x, θ).

The fact that maximal choice sets and lower contour sets are not equivalent in general

can easily be seen from Example 1, where L(b) = {a, b, c} which is not a maximal choice set

of b.

We have to confess that when property α and uniqueness of maximal choice sets hold at

the same time, property γ is also satisfied. This observation is presented as follows:
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Lemma 2 Suppose that C : X → X satisfies property α and maximal choice set of each

alternative is unique, then C satisfies property γ.

Proof. Suppose not and C does not satisfy property γ. Then there exist an alternative

x and sets S and T in X with x ∈ C(S) and x ∈ C(T ) but x /∈ C(S ∪ T ). Notice

that x /∈ C(S ∪ T ) implies S * T and T * S. Because the maximal choice set of every

alternative is unique, there must exist a set K with S ⊂ K, T ⊂ K and x ∈ C(K), implying

that (S ∪ T ) ⊂ K. As x ∈ C(K), by property α, it must be x ∈ C(S ∪ T ) which is a

contradiction.

3.3 Implementation

A social choice rule f : Θ→ X assigns a nonempty subset of alternatives to each state θ ∈ Θ.

Given a state θ, the alternatives f(θ) ∈ X will be referred to as f -optimal alternatives in

state θ.

A mechanism µ = (S, g) specifies a strategy (message) space Si 6= ∅ for each agent i ∈ N

and an outcome function g : S → X where S = ×i∈NSi. Opportunity sets in a Nash

implementation framework is introduced by De Clippel (2014) and are given as follows:

Given a mechanism and a strategy profile for players j 6= i, agent i’s opportunity set consists

of all the alternatives that agent i can obtain via the outcome function of the mechanism

by changing his strategies while the other agents are to play according to the given strategy

profile. Hence, the opportunity set of an agent depends on the strategies of the other players

and the mechanism in question. Formally, given a mechanism µ and a strategy profile for

other players j 6= i, i.e. s−i ∈ S−i =
∏

j 6=i Sj, we define the associated opportunity set by

Aµi (s−i) = {g(si, s−i) ∈ X : si ∈ Si}, which is trivially non-empty as g is a function mapping

S into X. Next, using the associated opportunity set of a mechanism µ, we supply the

definition of a Nash equilibrium of the game induced by that very mechanism as follows:

Given a mechanism µ, a strategy profile s∗ ∈ S is a Nash equilibrium at θ of the mechanism

µ if for all i ∈ N we have that g(s∗i , s
∗
−i) ∈ Ci(A

µ
i (s∗−i), θ).
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We now provide the definition of Nash implementation: f is said to be Nash imple-

mentable in pure strategies if there exists a mechanism µ = (S, g) such that:

1. For every θ ∈ Θ and x ∈ f(θ), there exists a Nash equilibrium strategy profile s∗ ∈ S

such that g(s∗) = x; and

2. For every θ ∈ Θ, if s∗ ∈ S is Nash equilibrium of µ = (S, g), then g(s∗) ∈ f(θ).

Namely, the set of f -optimal alternatives at θ and the set of Nash equilibria of the mechanism

µ coincide for all θ ∈ Θ.
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4 Nash Implementation

4.1 Maximal Implementation

In this section, we show that Maskin’s well-known implementation results extend to our

setting. To that regard, first we define our maximal choice monotonicity condition using

maximal choice sets and show that it is a necessary condition for Nash implementation when

choice correspondences satisfy property α. Then, we formulate our version of the no veto

power property and prove that maximal choice monotonicity combined with no veto power

under Assumption 1 suffice for Nash implementation without the need to restrict attention

to properties α and/or γ.

Definition 2 The social choice rule f : θ � X is maximal choice monotone if for all

x ∈ f(θ) and for all i ∈ N ,

Oi(x, θ) ⊆ Oi(x, θ
′) for some θ′ ∈ Θ implies x ∈ f(θ′).

Maximal choice monotonicity condition requires that, if an alternative is f -optimal in

some state θ, and any maximal choice set of this f -optimal alternative in state θ for every

i is a subset of a maximal choice set of the same f -optimal alternative for every agent i in

some other state θ′, then that alternative must be f -optimal in θ′ as well.

The necessity direction of implementation is provided by the following theorem:

Theorem 2 Suppose that the choice correspondence of every player satisfies property α in

every state. Then, f is monotone whenever it is implementable in Nash equilibrium.
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Proof. Suppose that f is implementable in Nash equilibrium by some mechanism µ =

(S, g). Let θ, θ′ ∈ Θ and x ∈ f(θ) and assume that Oi(x, θ) ⊆ Oi(x, θ
′) for all i ∈ N .

Then, there exists a Nash equilibrium of µ at θ, denoted by s∗ such that g(s∗) = x ∈ f(θ)

and x ∈ Ci(A
µ
i (s∗−i), θ) for all i ∈ N . In fact, Aµi (s∗−i) ⊆ Oi(x, θ) because x ∈ Aµi (s∗−i)

and x ∈ Ci(A
µ
i (s∗−i), θ) and Oi(x, θ) is a maximal non-empty subset of X such that x ∈

Ci(Oi(x, θ), θ). Since Oi(x, θ) ⊆ Oi(x, θ
′) for all i ∈ N , we have Aµi (s∗−i) ⊆ S where S is

one of the maximal choice sets at θ′. Moreover, by construction of maximal choice sets,

x ∈ Ci(Oi(x, θ
′), θ′) for all i ∈ N . As choice correspondence of every agent satisfies property

α, we have, x ∈ Ci(Aµi (s∗−i), θ
′) for all i ∈ N . Hence, s∗ also forms a Nash equilibrium of µ

in state θ′. As µ implements f in Nash equilibrium, we have g(s∗) = x ∈ f(θ′).

Next, we define our version of the no veto power condition:

Definition 3 The social choice rule f : θ � X satisfies no veto power property if for all

θ ∈ Θ and for all x ∈ X and for all i ∈ N ,

Oj(x, θ) = X for all j ∈ N \ {i} implies x ∈ f(θ).

No veto power property demands that if the maximal choice set of an alternative is equal

to the entire set of all alternatives for n− 1 individuals in an n-member society for a given

state, then that alternative must be f -optimal in that state.

Now, we are ready to state and prove our sufficiency result:

Theorem 3 If n ≥ 3 and f : Θ � X is an n-person social choice rule satisfying max-

imal choice monotonicity and no veto power property and Assumption 1 holds, then it is

implementable in Nash equilibrium.

Proof. We use the standard Maskin-Repullo type mechanism, µ = (g, S), which is

defined as follows: Define the strategy space for each player i ∈ N as Si = Θ×X×N, where

Θ is the set of states, X is the set of outcomes and N is the set of natural numbers. Let the

associated outcome function g be defined by
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1. if si = (θ, x, n) for all i ∈ N and x ∈ f(θ), then g(s) = x;

2. if for all i ∈ N \ {j} for some j ∈ N we have si = (θ, x, n) 6= (θ′, x′,m) = sj with

x ∈ f(θ), then g(s) = x′ whenever x′ ∈ Oj(x, θ) and g(s) = x otherwise;

3. In the remaining cases, g(s) = x where x is the second component of the strategy

profile announced by the player who has the highest index among those who reported

the highest integer.

First, we show that for any θ ∈ Θ and any x ∈ f(θ), there is a corresponding strategy

profile which constitutes a Nash equilibrium in θ: Let θ ∈ Θ and x ∈ f(θ) and consider

the strategy profile s1 = s2 = ... = sn = (θ, x, n) which falls into (1) in the definition of

g, so the outcome is g(s) = x. Notice that, any player i ∈ N can unilaterally deviate by

announcing a different strategy (θ′, x′, n′) 6= (θ, x, n) and due to (2) of the definition of g

obtain any x′ ∈ Oi(x, θ). In other words, opportunity sets in this state of the mechanism

takes the form of maximal choice sets. By construction, x ∈ Oi(x, θ) where g(s) = x and

Oi(x, θ) = Aµi (s−i). Consequently for all i ∈ N , we have g(s) ∈ Ci(A
µ
i (s−i), θ). Hence,

(s1, s2, ..., sn) forms a Nash equilibrium at θ.

In what follows, we show that any Nash equilibrium of the game induced by mechanism

µ is f -optimal.

Observe that there can be three distinct type of Nash equilibria arising from the three

rules of the mechanism. First, suppose that s∗ is a Nash equilibrium that falls into (1) with

s∗1 = s∗2 = ... = s∗n = (θ′, x, n) and x ∈ f(θ′). In this state of the mechansim, opportunity

sets take the form of maximal choice sets and the mechanism assigns the outcome x to this

strategy profile. If θ′ is the true state of the world, we immediately have x ∈ f(θ′). Now

suppose that the true state of the world is θ 6= θ′. By hypothesis, s∗ is a Nash equilibrium

in state θ′ while the true state is θ, so it must be that x ∈ Ci(Oi(x, θ
′), θ) for all i ∈ N .

By letting S = Oi(x, θ
′) we observe that x ∈ Ci(S, θ) implies by the defining property of

the maximal choice sets that S ⊆ Oi(x, θ); hence, Oi(x, θ
′) ⊆ Oi(x, θ). Thus, x ∈ f(θ′) and

Oi(x, θ
′) ⊆ Oi(x, θ) and maximal choice monotonicity imply that x ∈ f(θ).
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Next, suppose that s∗ is a Nash equilibrium at θ that falls into (2). That is, si = (θ, x, n)

for all i ∈ N \ {j} for some j ∈ N and sj = (θ′, x′, n′) 6= (θ, x, n). Let the outcome of this

strategy profile be x̄. Then, opportunity set of agent j is equal to Oj(x, θ) while opportunity

set of any other agent i 6= j is equal X, as any i 6= j can unilaterally deviate to case (3)

and obtain any alternative. Hence, Oi(x̄, θ) = X for all i ∈ N \ {j}. Then, no veto power

property implies x̄ ∈ f(θ).

A similar argument can be made for the set of Nash equilibria that falls into case (3):

Then, s∗ is a Nash equilibrium with g(s∗) = x. In this situation, the opportunity set of any

agent is equal to the set of all alternatives. Hence, it must be that x ∈ Oi(x, θ) = X for all

i ∈ N . Then, by the no veto power property, we conclude that x ∈ f(θ).

At this point, it is necessary to explain why do we need the Assumption 1 in our sufficiency

result. To understand exactly why we need this assumption, we should take a closer look

at the part of the sufficiency proof where we show that any Nash equilibrium at θ′ with an

outcome x that falls into rule (1) must be f -optimal. Under such a strategy profile, any

agent i can unilaterally deviate to rule (2) of the mechanism µ, which assigns one of the

associated maximal choice sets of x to every agent i. If maximal choice sets were to be

multiple, then in order to use maximal choice monotonicity, we should have shown that any

maximal choice set of x at θ′ is a subset of some maximal choice set of x at θ for all i ∈ N .

However, the rule employed in our implementing mechanism does not allow for this; we can

only show that one maximal choice set of x at θ, that is used within the mechanism µ, is a

subset of one maximal choice set of x at θ′ for any i ∈ N . Hence, in order to be able to use

our maximal choice monotonicity notion with the Maskin-Repullo type mechanism defined

as in our sufficiency proof, we emphasize that we need the assumption of unique maximal

choice sets.
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4.2 Relation to Other Results

In this section, we provide definitions of comparable notions from Nash implementation

literature.

For the necessity part, we wish to emphasize that Assumption 1 is not needed for the

necessity direction of implementation. If we were to use property α and the uniqueness of

maximal choice sets for the necessity direction, by Lemma 2 we would also have property γ

satisfied. In this case, by using Lemma 1, we could have done a more restrictive version of

our necessity using lower contour sets as in Maskin (1999). That necessity result would then

be the same as in Hurwicz (1986).

To briefly summarize, Maskin (1999)’s original Nash implementation proof employing

lower contour sets can be interpreted as establishing these results for choice correspondences

satistfying property α and β. In a similar fashion, Barlo and Dalkiran (2009) provide neces-

sary and sufficiency results using semiorders which can be viewed as choice correspondences

satistfying property α, γ and δ 1 Moreover, Lemma 1 implies that Maskin (1999)’s original

proof employing lower contour sets can be generalized to a setting with choice correspon-

dences satisfying property α and γ. Ray (2010) also obtains necessary and sufficiency results

following Maskin (1999) and Hurwicz (1986). Ray (2010)’s sufficiency direction use choice

correspondences which satisfy property α and γ while the necessity direction does not impose

any restrictions on choice.

Next, we explain in detail two previous results on implementation by Korpela (2012) and

De Clippel (2014). We also wish to point out that both of these papers use the same Nash

equilibrium and Nash implementation definitions as ours.
1A choice correspondence satisfy property δ if for any sets S, T ∈ X , with S ⊂ T x, y ∈ C(S) implies

that [x] 6= C(T ). From Theorem 10 in Sen (1971, p.315), we know that if a choice correspondence satisfy
property α, γ and δ, then the strict order P we obtain from the choice correspondence is transitive.
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4.2.1 Korpela (2012)

While we provide necessary and sufficient conditions for Nash implementation following

Maskin (1999), Korpela (2012) uses the generalization of condition µ of Moore and Repullo

(1990), condition λ, which is given as follows:

Definition 4 (Condition λ) There is a set Y ⊂ X and for each i ∈ N and θ ∈ Θ and

x ∈ F (θ), there is a set Ri(x, θ) with x ∈ Cθ
i (Ri(x, θ)) such that for all θ′ ∈ Θ, the following

three conditions are satisfied:

i. If x ∈ ∩i∈NCi(Ri(x, θ), θ
′), then x ∈ f(θ′).

ii. If y ∈ Ci(Ri(x, θ), θ
′) ∩ (∩j 6=iCi(Y, θ′)), then y ∈ f(θ′).

iii. If z ∈ ∩i∈NCi(Y, θ′), then z ∈ f(θ′).

Using condition λ, Korpela (2012) obtains necessity for Nash implementation by restrict-

ing attention to choice correspondences satisfying property α, while the sufficiency is attained

without the need of restrictions on choice correspondences. As Moore and Repullo (1990)

provides a condition for Nash implementation that is both necessary and sufficient when in-

dividuals are rational (i.e. choice correspondences respect property α and β), Korpela (2012)

shows that this condition can be generalized such that we have a necessary and sufficient

condition for Nash implementation when choice correspondences respect property α. We

now provide Korpela’s necessity result.

Theorem 4 Let n ≥ 3 and all choice correspondences C : X → X satisfy property α. If a

social choice rule f is implementable in Nash equilibrium, 2 then it satisfies condition λ.

Proof. Suppose that f is implementable in Nash equilibrium by the mechanism µ =

(g, S). Define the set Y as the range of g. That is,

Y ≡ {x ∈ X | g(s) = x for some s ∈ S}
2Korpela (2012) refers to this equilibrium notion as behavioral Nash equilibrium.
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Take any state θ ∈ Θ, x ∈ f(θ) and take any Nash equilibrium, s∗(x, θ), of the game in-

duced by the mechanism µ such that g(s∗(x, θ)) = x. Define the set Ri(x, θ) ≡ Aµi (s∗−i(x, θ)),

that is the opportunity set of player i given that other players are playing their Nash equi-

librium strategies which yields an outcome of x in state θ.

Now assume that the antecedent of (i) in condition λ holds. Then, every player chooses

x from their opportunity set in state θ′. By the definition of Nash equilibrium, s(x, θ) forms

a Nash equilibrium at θ′ as well. As f is assumed to be Nash implementable, it must be that

x ∈ f(θ′).

Next, assume that the antecedent of (ii) in condition λ holds. Take si ∈ Si such that

g(si, s
∗
−i(x, θ)) = y. As y is chosen from the set Y by all players but i, by property α, it

must be that y is chosen from any subset of Y by all j ∈ N \ {i} whenever it is available.

This implies that, y ∈ Cj(Aµj (m∗−j(x, θ), θ
′) for all j ∈ N \ {i}. For player i, we already have

y ∈ Ci(Aµi (s∗−i(x, θ), θ
′). Hence, (si, s

∗
−i(x, θ)) forms a Nash equilibrium at θ′. As f is Nash

implementable, it must be that y ∈ f(θ′).

Finally, suppose that the antecedent of (iii) in condition λ holds. Then, take a strategy

profile s ∈ S with g(s) = z. By property α, it must be that z ∈ Ci(Aµi (s∗−i(x, θ), θ
′) for all

i ∈ N . Hence we have z ∈ f(θ′).

Next, we supply the sufficiency theorem and proof of Korpela (2012).

Theorem 5 If n ≥ 3 and f satisfies condition λ, then it is implemenable in Nash equilib-

rium.

Proof. Suppose that f satisties condition λ. Define the mechanism µ = (g, S), which

we will show that implements f in Nash equilibrium, as follows. Each player announces a

strategy profile (θ, x, y, n) ∈ Θ×X × Y × N with x ∈ f(θ).

Let the associated outcome function g be defined by,

1. if si = (θ, x, y, n) for all i ∈ N and x ∈ f(θ), then g(s) = x;

2. if for all i ∈ N \ {j} and for some j ∈ N we have si = (θ, x, y, n) 6= (θ′, x′, y′, n′) = sj,

then g(s) = y′ whenever y′ ∈ Rj(x, θ) and g(s) = x′ otherwise;
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3. In the remaining cases, g(s) = y where y is the third component of the strategy profile

announced by the player who has the highest index among those who reported the

highest integer.

First, we show that, for every f -optimal alternative, there is a corresponding Nash equi-

librium of the game induced by the mechanism µ. Take any θ ∈ Θ, x ∈ f(θ) and consider

the strategy profile where si = (θ, x, x, 0) for all i ∈ N . According to what the mechanism

µ permits, any player can unilaterally deviate from this strategy profile and obtain any al-

ternative in Ri(x, θ). By definition, we have x ∈ Ci(Ri(x, θ), θ). Thus, this strategy profile

forms a Nash equilibrium at θ with g(s) = x.

Next, we show that, every Nash equilibrium of the induced by the mechanism µ yields

a f -optimal outcome. There are three type of Nash equilibria that can arise from the three

states of mechanism µ. Suppose that s∗ is a Nash equilibrium that falls into (1) with

s∗i = (θ, x, y, n). If θ is the true state of the world, then we have x ∈ f(θ). Suppose the true

state of the world is θ′ 6= θ. Then, any agent i can deviate to rule (2) of the mechanism

and obtain any x ∈ Ri(x, θ). As this strategy profile forms a Nash equilibrium at θ, it also

forms a Nash equilibrium at θ′. Thus, we have x ∈ Ci(Ri(x, θ), θ
′), for all i ∈ N . By (i) of

condition λ, we have x ∈ f(θ′).

Now suppose that s∗ is a Nash equilibrium at θ that falls into (2). That is, si = (θ, x, y, n)

for all i ∈ N \ {j} and for some j ∈ N , sj = (θ′, x′, y′, n′) 6= (θ, x, y, n). Let the outcome

of this strategy profile be x̄. Notice that any i 6= j can unilaterally deviate to case (3)

and obtain any alternative in the set Y while the lone player j can obtain any alternative

in Ri(x, θ). Hence, x̄ ∈ Ci(Ri(x, θ), θ
′) ∩ (∩j 6=iCi(Y, θ′)). By (ii) of condition λ, we have

x̄ ∈ f(θ′).

Finally, suppose s∗ is a Nash equilibrium at θ′ that falls into (3) with the outcome of

this strategy profile being x̄. Then any player i ∈ N can unilaterally deviate and obtain any

alternative in Y . This implies that x̄ ∈ Ci(Y, θ′) for all i ∈ N . Then by (iii) of condition λ

we have x̄ ∈ f(θ′).
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4.2.2 De Clippel (2014)

Similar to Korpela (2012), De Clippel (2014) provides necessary and sufficient conditions

for Nash implementation in a similar fashion to condition µ of Moore and Repullo (1990).

However, instead of providing a condition that is both necessary and sufficient, De Clippel

(2014) breaks down the three conditions in condition µ, into three different conditions for

Nash implementation, namely consistency, strong consistency and unanimity. Furthermore,

De Clippel (2014) shows that the existence of consistent opportunity sets is a necessary

condition for Nash implementation, without any restrictions on choice correspondences. We

now analyze De Clippel’s notion of consistency:

Definition 5 A collection of sets O = {Oi(x, θ) : i ∈ N, x ∈ F (θ), θ ∈ Θ} is consistent with

a social choice rule f : Θ→ X if

i. x ∈ Ci(Oi(x, θ), θ) for all i ∈ N , θ ∈ Θ, x ∈ f(θ),

ii. For all θ, θ′ ∈ Θ and x ∈ f(θ) if x ∈ Ci(Oi(x, θ), θ
′) for all i ∈ N , then x ∈ f(θ′).

Theorem 6 If f is Nash implementable, then there exists a collection of opportunity sets

which is consistent with f.

Proof. Suppose that f is Nash implementable by mechanism µ = (g, S). Take any state

θ ∈ Θ, x ∈ f(θ) and take any Nash equilibrium, s∗, of the game induced by the mechanism µ

such that g(s∗) = x. This strategy profile defines an opportunity set for each player, Ai(s∗−i).

We have x ∈ Ci(Ai(s∗−i), θ) for all i ∈ N , by the definition of Nash equilibrium, so the (i) of

consistency is satisfied. Next, suppose that the antecedent of (ii) of consistency is satisfied.

Then s∗ forms a Nash equilibrium at θ′ as well. As f implementable and the outcome of this

strategy profile is x, we have x ∈ f(θ′).

Definition 6 The collection of opportunity sets O is strongly consistent with f if

i. It is consistent with f,
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ii. For all x, θ for which there exists j, θ′ and x′ ∈ f(θ′) such that x ∈ Ci(X , θ) for all

i 6= j and for player j, x ∈ Cj(Oj(x
′, θ′), θ), then it must be that x ∈ f(θ).

Definition 7 A social choice rule respects unanimity if for any x ∈ X and θ ∈ Θ, whenever

x ∈ Ci(X, θ) for all i ∈ N , then x ∈ f(θ).

Theorem 7 If f respects unanimity and there exists a collection of opportunity sets which

is strongly consistent with f, then it is implementable in Nash equilibrium.

Proof. Suppose that f satisties unanimity and there exists a collection of opportunity

sets which is strongtly consistent with f . Define the mechanism µ = (g, S), which we will

show that implements f in Nash equilibrium, as follows. Each player announces a strategy

profile (θ, x, n) ∈ Θ×X × N. Let the associated outcome function g be defined by,

1. if si = (θ, x, n) for all i ∈ N and x ∈ f(θ), then g(s) = x;

2. if for all i ∈ N \ {j} for some j ∈ N we have si = (θ, x, n) 6= (θ′, x′,m) = sj with

x ∈ f(θ), then g(s) = x′ whenever x′ ∈ Aj(s−j(x, θ)) and g(s) = x otherwise;

3. In the remaining cases, g(s) = x where x is the second component of the strategy

profile announced by the player who has the highest index among those who reported

the highest integer.

First, we show that, for every f -optimal alternative, there is a corresponding Nash equi-

librium of the game induced by the mechanism µ. Take any θ ∈ Θ, x ∈ f(θ) and consider

the strategy profile where si = (θ, x, 0) for all i ∈ N . According to what the mechanism µ

permits, any player can unilaterally deviate from this strategy profile and obtain any alter-

native in Ai(s−i(x, θ)). By (i) of consistency, we have x ∈ Ci(Ai(s−i(x, θ)), θ). Thus, this

strategy profile forms a Nash equilibrium at θ with g(s) = x.

Next, we show that, every Nash equilibrium of the induced by the mechanism µ yields

a f -optimal outcome. There are three type of Nash equilibria that can arise from the three

states of mechanism µ. Suppose that s∗ is a Nash equilibrium that falls into (1) with
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s∗i = (θ, x, n). If θ is the true state of the world, then we have x ∈ f(θ). Suppose the true

state of the world is θ′ 6= θ. Then, any agent i can deviate to rule (2) of the mechanism and

obtain any x ∈ Ri(x, θ). As this strategy profile forms a Nash equilibrium at θ, it also forms

a Nash equilibrium at θ′. Thus, we have x ∈ Ci(Ai(s∗−i(x, θ)), θ′), for all i ∈ N . By (ii) of

consistency, we have x ∈ f(θ′).

Now suppose that s∗ is a Nash equilibrium at θ that falls into (2). That is, si = (θ, x, n)

for all i ∈ N \ {j} and for some j ∈ N , sj = (θ′, x′, n′) 6= (θ, x, n). Let the outcome of this

strategy profile be x̄. Notice that any i 6= j can unilaterally deviate to case (3) and obtain

any available alternative while the lone player j can obtain any alternative in Ai(s∗−i(x, θ)).

By (ii) of strong consistency, we have x̄ ∈ f(θ′).

Finally, suppose s∗ is a Nash equilibrium at θ that falls into (3) with the outcome of this

strategy profile being x̄. Then any player i ∈ N can unilaterally deviate and obtain any

alternative in X. This implies that x̄ ∈ Ci(X, θ) for all i ∈ N . Then by unanimity we have

x̄ ∈ f(θ′).

30



5 Concluding Remarks

This thesis studies Nash implementation under compete information with boundedly ra-

tional agents. We introduce a notion called maximal choice set and define an associated

maximal choice monotonicity condition on social choice correspondences. We show that

maximal choice monotonicity is necessary for Nash implementation when choice correspon-

dences satisfy Sen’s property α. Moreover, we prove that maximal choice monotonicity and

no veto-power suffice for Nash implementation when agents have unique maximal choice sets.

In what follows, we will explain how the notions of maximal choice sets and opportunity

sets, are related in our construction. The mechanism employed in Maskin’s implementation

proof considers three distinct rules. In the first, every player reports the same strategy profile

including an alternative which is optimal with respect to the social choice rule and in this

case the outcome function of the mechanism provides that alternative. In our formulation,

the opportunity set of any agent in this situation will be equal to the maximal choice set

associated with this strategy profile. In the second rule, every player but one reports the

same strategy profile involving an alternative which is optimal with respect to the social

choice rule. Then, Maskin’s outcome function equals to the alternative chosen by all but one

player if the choice of the lone player does not involve an alternative in the lower contour

set of the alternative chosen by the other players. But, Maskin’s outcome equals to the

alternative chosen by the lone player if the choice of the lone player is an alternative in the

lower contour set of the alternative chosen by the other players. In this second rule, the

opportunity set of our mechanism will equal to the maximal choice set for the lone player;

and the set of all alternatives for the other players. The third rule contains all the other
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cases and Maskin’s outcome equals to what is chosen by the winner of the associated integer

game. In our formulation, the opportunity set of any agent in this case equals to the set of

all alternatives.

What ties our analysis to the previous work done by Korpela (2012) and De Clippel

(2014) is that we define the exact structure of the set Ri(x, θ) in condition λ of Korpela

(2012) or the collection of opportunity sets O in De Clippel (2014). The necessary and

sufficient conditions derived either of them depend on the existence of these sets. However,

it is not clear when do such sets exist. Therefore, it is important to stress that our definition

of a maximal choice set is independent from the mechanism and it is solely defined via the

choice correspondences of agents. This allows us to define the choice-based counterpart of

Maskin monotonicity and derive sufficient conditions for implementation without the added

complexity of checking for existence of opportunity sets that is present in Korpela (2012)

and De Clippel (2014)’s setting.
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