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Abstract 

Electric field control of magnetization allows further miniaturization of integrated circuits 

for binary bit processing and data storage as it eliminates the need for bulky sophisticated 

systems to induce magnetic fields. Magnetoelectric coupling inherent to the bulk of 

multiferroic films or control of spin orientation in magnetic layers via piezoelectric strain 

in dual component composites have been two approaches standing out. Another 

magnetoelectric effect is spin-dependent screening that occurs at dielectric/ferromagnet 

interfaces which is of great importance for spin selective tunnel junctions. Here, we 

analyze the spin-dependent screening of ferroelectric polarization in a film interfacing 

ferromagnetic electrodes using the continuity equations in continuum media. The 

competition between the electrostatic and the magnetochemical potential in the FM 

electrodes gives rise to a reduction in the net magnetic moment near the interface due to 

spin mixing, extending to a distance comparable to the Thomas-Fermi screening length. 

Our continuum media treatment shows that the local spin population in spin subbands 

near the interfaces can dramatically deviate from bulk, which is in qualitative agreement 

with recent first principles results. We compute the tunneling currents for majority and 

minority spins using the Wentzel-Kramers-Brillouin approximation as a function of 

ferroelectric polarization. We find that the spin polarization tends to disappear for 

increasing values of ferroelectric polarization in direct connection with the increase in 

subband spin population for minority spins at the interface.  
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Özet 

Manyetizasyonun elektrik alan ile kontrolü; veri işleme ve depolamada kullanılmakta 

olan manyetik alan indükleyen büyük ve karmaşık sistemlerin yerine daha küçük boyutlu 

entegre devrelerin kullanılmasına imkan sağlamaktadır. Multiferroik filmlerin doğasın 

bulunan magnetoelektrik eşleşme ve iki bileşenli kompozitlerde gözlemenen  manyetik 

tabakaların piezeoelektrik gerinme kaynaklı spin yöneliminin kontrolü; iki ana yöntem 

olarak öne çıkmaktadır. Başka bir manyetoelektrik etki ise spin tercihli tünel 

jonksiyonları için önem taşımakta olan dielektrik/ferromanyetik arayüzeyler arasında 

meydana gelen spin bağımlı perdelemedir. Bu çalışmada,ferroelektrik polarizasyonun 

ferromanyetik elektrotlarla biraraya getirilmiş olna ferroelektrik ince filmin 

polarizasyonunun süreklilik denklemleri ile sürekli bir ortamda spin bağımlı perdeleme 

etkisi analiz edilmiştir. Ferromanyetik elektrotlarda elektrostatik ve magnetokimyasal 

potansiyel arasındaki rekabet; Thomas-Fermi perdeleme mesafesi bağlı olarak 

arayüzeydde net manyetik momentin düşüşüne sebep olmaktadır. Sürekli ortam yaklaşımı 

arayüzey yakınlarındaki spin alt bantlarında lokal spin dağılımının katı haldeki 

özelliklerinden dikkate değer şekilde düşüş göstermektedir. Elde edilen sonuçlar, ilk-

prensip yaklaşımı ile  yapılan çalışmalarla da uyum göstermektedir. Çoğunluk ve azınlık 

spinler tünelleme akımları, ferroelektrik polarizasyonun bir fonksiyonu olarak Wentzel-

Kramers-Brillouin yaklaşımı ile hesaplanmıştır. Artan ferroelektrik polarizasyon kuvveti 

ile arayüzeydeki azınlık spin alt bantlarındanın popülasyonun artışı doğru orantılı olup, 

spin polarizasyonu zayıflama eğilimi göstermektedir.  
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“the ability to reduce everything to simple 

fundamental laws does not imply the ability 

to start from those laws and reconstruct the 

universe.” 

P.W. Anderson (1972)[1] 
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Preface 

The main focus of this thesis is to elucidate on the electric field control of magnetization 

and spin polarized tunneling behavior of artificial multiferroic devices composed of 

ferroelectric/ferromagnetic bilayers. In this work, we aim to understand the effect of spin 

dependent screening of polarization charges at a ferroelectric/ferromagnet junction from 

the perspective of electrostatic and thermodynamic relations in continuum media. 

Changes in carrier density at a metal surface in contact with a ferroelectric is well known 

since the first studies on metal/ferroelectric/metal capacitors. The electric field can 

penetrate into the metallic electrode depending on the amplitude of ferroelectric 

polarization and form what is called a “dead layer”. Thus, the screening of polarization 

by carriers does not occur right at the interface but at some distance from the interface on 

the electrode side. If the metal electrode is replaced with a ferromagnetic one, the 

screening process becomes spin dependent due to the existence of subbands of majority 

and minority spins that is determined by the strength of the exchange interaction.  

Electrostatic effects thus compete with exchange field that align spins in the magnetic 

electrodes, resulting in variation of screening of charges at the interfaces with respect to 

a conventional diamagnetic metal. Our results are expected to provide an intuitive 

understanding of results in studies focusing on use of ferroelectric layers to control spin 

degree of freedom in pin-selective tunnel junctions and magnetoresistance-based stacks.  

Chapter 1 provides a historical and conceptual development of memory devices. 

Additionally, the basic concepts are covered to comprehend magnetic and multiferroic 

tunnel junctions are constituted in historical order. This review also supplies better 

perspective for conceptual understanding for performed activity in this thesis. This rather 

comprehensive introduction is helpful to analyze performed calculations within the 

theoretical basis of this thesis within the scope of thermodynamics, electrostatics and 

magnetism. Most prominent works on multiferroicity and electric field control of 

magnetism focus on experimental results and breakthroughs in this area, however, among 

these, there are only a few which explicitly and intuitively describe the spin dependent 

screening phenomena. This chapter also will also make the theoretical results themselves 

more lucid to those who are not familiar with the concepts in the following chapters. 
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The numerical approach with which the results were obtained is the focus of Chapter 2 

and 3. These chapters describe the numerical calculations to understand the physics at the 

ferroelectric/ferromagnetic interfaces from a continuum perspective. As opposed to 

widespread belief, spin distribution of ferromagnetic layers may be weakened by 

electrostatic charge screening of ferroelectric dipoles. Understanding how 

magnetochemical potential and electrostatic charge screening impact the 

magnetoresistance of TMR stacks is a major the motivation of the thesis.  

Last chapter of the thesis is about the future projection for spin dependent tunneling and 

tunneling magnetoresistance work and additional works with different approach. 
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 Introduction and Basic Concepts 

When the time of the invention of solid-state devices by Bardeen, Brattain, and Shockley 

[2, 3], microelectronic era has started and another giant leap was supplied by integrated 

circuitry [4, 5]. Today, von Neuman architecture for computers is still active where data 

storage unit is a memory and the data must be transmitted to central processing unit (CPU) 

to perform logic transactions [6]. Transistors led to computers and implicitly 

digitalization of the knowledge and information. Figure 1 also shows the produced data 

increase and transformation of data storage from analog to digital in last three decades. 

In addition to diagram given below, telecommunication, personal electronic devices, 

general and technical purpose computing and all other data transactions show the 

importance of data storage and processing capabilities [7].  According to the report [8],  

amount of data produced only in 2013 is equal to 90% (4.4 zettabytes) of data which has 

been generated in the entire civilization history. This value is expected to be 10 times 

bigger in 2020.  

 

Figure 1.1 Analog to digital transformation of  stored data on the world [7] 

The empirical approximation on  the progress of the transistors perceived by Gordon E. 

Moore known as “ Moore’s Law” [9, 10]; number of components and performance of 

integrated circuitry should have been doubled by a year and then it was revised as “two 

years”. Nowadays, Moore’s Law technologically has started to become obsolete [11] due 
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to physical limits such as scaling limits such as Heisenberg’s uncertainty principle [12, 

13] and heat dissipation capabilities [14] against deluge of data flow of 21st century. 

Therefore, new paradigm on non-volatile memory research is expected to stabilize effect, 

predicament in computation rate and data storage [15].  

Table 1.1 shows performance of the current and in-development memory devices. In this 

manner, besides high performance, magnetic random-access memories (MRAM) and 

ferroelectric random-access memories (FeRAM) are extensive candidates for 

conventional non-volatile devices. Even, MRAM devices are maturated and 

commercialized, power consumption and relatively low recording density problems are 

important problematic to overcome. Moreover, FeRAM devices have quite low power 

consumption and high recording capacity, in contrast, main restrictions appear as 

destructive readout process, complex production line, and scalability limit.  

In next generation devices, miniaturization of devices will pave the way of tunneling 

effects on research and development of non-volatile memory devices.  

Table 1.1 Performance of the current and in development memory devices [16-22] 

 In – production In – development 

 
FeRAM MRAM NOR 

Flash 

DRAM SRAM STT-

RAM 

MeRAM 

Cell size (F2) 40-20 25 8 6-10 >30 6-30 4-8 

Read time (ns) 20-80 3-20 10 30 1 1-20 1-20 

Write time (ns) 50/50 3-20 1000 20 1 1-20 1-20 

Endurance(cycles) 1012 >1015 106-107 >1016 >1016 >1016 >1016 

Non-volatility Yes Yes Yes No No Yes Yes 

Energy/bit (fJ) 10 7000 106 1000 100 100 <1 

Data retention 10  

years 

20 

years 

10 

years 

<<second 0 10 

years 

10 years 

FeRAM: Ferroelectric random-access 

memory  

MRAM: Magnetic random-access memory 

DRAM:  Dynamic random-access memory 

 

SRAM: Static random-access memory 

STT-RAM: Spin torque transfer 

random access memory 

MeRAM: Magnetoelectric random 

access memory 
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1.1 Origins of Magnetism and Magnetic Data Storage 

Technology 

1.1.1 Origins of Ferromagnetism 

Spins of electrons and their orbital motion in the atoms carry the magnetic properties of 

materials. Properties of magnetism are determined by electronic arrangement and crystal 

structure of the material. The spin-ordering mechanisms of magnetic materials due to 

diversity in atomic arrangement and exchange interactions of atoms leads to the following 

types of magnetism: diamagnetism, ferromagnetism, antiferromagnetism, 

ferrimagnetism, and paramagnetism.  

Pauli principle [23] which asserts the condition that the perturbation of the wave function 

in spatial coordinates by symmetry of the spin variant and electrostatic interaction 

between electrons are mediately altered.  

Moreover, Hund’s rules [24] which proclaim the quantum numbers for ground states of 

atoms adopt ferromagnetism: spontaneous ordering of magnetic moments that are 

resulted in non-zero orbital momentum and electron spin in the absence magnetic field.  

d shell electrons of 3d metals, where located in the outermost shell of the atom, are carriers 

orbiting around atoms itinerantly, whereas f shell electrons of 4f rare-earth elements, 

placed relatively closer to the core, are localized at discrete atoms. Consequently, the 

magnetic moment of 4f elements is individually localized for every atom but collective 

behavior of nearly free electrons of 3d metals form band structure. Thus, a limited number 

of elements such as 3d transition metals (Co, Ni, Fe, Mn) and 4f rare-earth elements (Gd, 

Tb, Dy, etc.) as well as 5f elements present ferromagnetism among all elements in the 

periodic table.  

Namely, wave vectors of free electrons which occupy up to highest energy state called 

Fermi energy, Ef, with available quantized energy levels, called density of states g(E), and 

according to Pauli exclusion principle, each standing wave or stationary state resided in 

by two electrons with up and down spins. When a magnetic field H, with the same 

direction of + spins is applied, density of states of + and - spins will be reconfigured by 

reversing spin according to the alignment and Fermi level of the compound will be 
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equalized in between + and – spin electrons. Hence, (-) spin electrons will move to (+) 

spin band level by the phenomena called exchange interaction. + spin direction will be 

lowered by an amount that follows: 

𝐸𝐻 = 2𝜇𝐵𝐻    Equation 1.1 

where μB is Bohr magneton. Number of electrons, Δn, reflected as area change in density 

of states in between + and - spins in Fig. 1.2.  

 

Figure 1.2 Magnetization mechanism in terms of change in density of states[25] 

  𝛥𝑛 = 𝑔(𝐸𝑓) ∙
𝐸𝐻

2
= 𝑔(𝐸𝑓)𝜇𝐵H   Equation 1.2 

∆𝐼 = 2𝜇𝐵∆𝑛 = 2𝑔(𝐸𝑓)𝜇𝐵
2𝐻    Equation 1.3 

This transfer generates additional magnetization, ∆𝑰  in the system (Eq. 1.3) whereupon 

the susceptibility which is correlated to Pauli paramagnetism is given as 

𝜒𝑝 = 2𝑔(𝐸𝑓)𝜇𝐵
2    Equation 1.4 

Equation 1.4 presents that susceptibility χ is temperature-independent term while the 

Fermi level is strongly correlated to temperature as the result of Fermi-Dirac distribution 
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(Eq. 1.5). Thermal excitation affects the probability to find an electron in a state where 

energy level E, which is above the Fermi level. 

𝑓 =
1

𝑒𝑥𝑝(
𝐸−𝐸𝑓

𝑘𝑇
)+1

    Equation 1.5 

It is clearly seen that the susceptibility is function of density of states at the Fermi energy 

level. Thermal variance in the compound slightly deviates the Fermi level (Eq. 1.6) 

𝑁 = ∫ 𝑓(𝐸)𝑔(𝐸)𝑑𝐸
∞

0
    Equation 1.6 

Band splitting in ferromagnets as previously mentioned + and – spin electron distribution 

is stronger than paramagnets due to exchange field values Hm by a range of 102 -103 [25].  

Distribution and extent of magnetization is written as  

𝑁+ = ∫ 𝑔(𝐸)𝑓(𝐸𝑓 + 𝜇𝐵𝐻𝑚)𝑑
+∞

−∞
𝐸   Equation 1.7 

𝑁− = ∫ 𝑔(𝐸)𝑓(𝐸𝑓 − 𝜇𝐵𝐻𝑚)𝑑
+∞

−∞
𝐸   Equation 1.8 

𝐼 = 𝜇𝐵(𝑁+ − 𝑁−)    Equation 1.9 

By definition, ferromagnets have spontaneous magnetization where Eq. 1.7&1.8 is 

satisfied and determined by density of states at/close to Fermi level which contains the 

electrons mainly contributes to ferromagnetic behavior.  

1.1.2 Magnetic Tunnel Junctions (MTJ)  

Methods of data storage such as hard disk and magnetic bands are still concerned with 

magnetism due to the high data storing capacity and their low-cost-action. Charge-driven-

semiconductor-device memories, which are critical elements for microcontrollers, 

battery-supplied personal electronics, are utilized to store data permanently or 

temporarily, could operate relatively faster and could be smaller than magnetic devices. 

An ideal non-volatile solid-state memory would combine the best properties of two 

phenomenal trend: high speed and high-storage capacity.  

Remarkable development in magnetism in industrial, experimental, and theoretical 

research has occurred in the fourth quarter of the 20th century. One might expect that 
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novelties in magnetism-oriented research will diminish due to that all physical and 

theoretical understanding and that its limits have been already projected until now.  

Nevertheless, spin-selective conduction, suggested by Mott, and discovery of “Giant 

Magnetoresistive” (GMR) behavior between Fe/Cr multilayer by Baibich et. al. [26] and 

Binasch et. al. [27] separately, which led Albert Fert and Peter Grünberg to Nobel Physics 

Prize in 2007, are accepted as birth of “spintronic” science. GMR effect has found 

prominent ground  in the field of sensor technology dominantly hard drive heads, while 

“Tunnelling Magnetoresistance” (TMR) behavior proposed by Julierre, realization by 

other groups [28-31] has become the future of non-volatile random access memories 

starting from Datta-Das spin transistor [32] to Magnetic Tunnel Junctions (MTJ), 

MeRAM, STT-RAM and many other designs [33]. 

Origin of GMR effect arise from the electron scattering in spin-selective transport 

between FM-M-FM junctions (Fig.1.3). The parallel magnetization direction of 

ferromagnetic layers under magnetic field, spin-dependent scattering of the electrons 

converges to minimum. This state taken as “low-resistance” state whereas the opposite 

magnetization directions of the ferromagnetic electrodes results in “high resistance” state 

(maximum spin-scattering).  

 

Figure 1.3 The GMR effect in Fe/Cr superlattice (Reprinted from Ref. [26] ) 

Difference between TMR and GMR effect stem from structural difference where TMR is 

observed in FM-DE-FM which is observed in magnetic tunnel junctions (MTJ).  In 

addition to this, in conventional FM/DE/FM TMR stacks, one can obtain spin polarized 

tunnelling currents that are determined by the spin states of electrons in the FM electrodes. 
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TMR junctions consist of two FMs seperated by a thin layer of dielectric, which direction 

of magnetic spins generate high and low resistance as ON/OFF by spin-selective 

scattering .  In the case of TMR principal process conducted by quantum mechanical 

tunneling apart from GMR effect. The spin polarization and magnitude of currents across 

a TMR stack depends on the relative orientation of the magnetism in the FM electrodes 

and a bias simply controls the electrical barrier to spin tunneling via the polarization of 

the dielectric.  

These approaches triggered further works in the magnetic tunnel junction in next decades 

as seen Fig. 2.13.   Integration of crystalline MgO barrier in MTJ has increased the TMR 

values dramatically.  %220 TMR value for Fe/MgO/Fe junction was reported by Parkin 

et. al.[34], right after, Yuasa et al. reported 88% for fully epitaxial Fe(001)/MgO/Fe(001) 

stack[35].  %604 TMR value was reported via using metallic ferromagnets in 

CoFeB/MgO/CoFeB stack at room temperature[36]. Apart from ferromagnetic metallic 

electrodes; manganites has started to be the focus of novel material group as “half-

metallic ferromagnetic oxide” in 1996 by Lu et. al. [37] and Sun et. al. [38]. However, 

these efforts have only reached TMR value of % 83 at 4.2 K. Additional work of Sun et. 

al. were reported a TMR value increased to 400 % where spin polarization is 81 % [39].  

 

 

 

 

 

 

 

Figure 1.4 Room temperature TMR values of different insulating layers. [40] 

Another work constitutes LSMO/STO/LSMO stack reporting %450 TMR value at 4.2 K 

was published by Viret et. al.[41]. Subsequently, Sun. et. al.[42] and Bowen et. al.[43] 

reported dramatic increase in TMR value of %1850 which corresponds to 95 % spin 

polarization for LSMO/STO/LSMO stack. 
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1.2 Origins of Ferroelectricity and Ferroelectric Data Storage 

Technology  

Perovskite ferroelectrics are the large group of compounds with general formula of 

pseudo-cubic ABO3 where A is monovalent, divalent, or trivalent cation and B is penta, 

tetra or trivalent cation, respectively. Ferroelectricity could be defined as materials with 

reversible spontaneous polarization under zero electric field. The concept of FeRAM 

arose from the remnant polarization of the ferroelectrics corresponding to binary elements 

“1” and “0” as recording media. FeRAM devices are distinguished in the basis of readout 

techniques: Destructive readout (DRO) and non-destructive readout (NDRO)[44].  

The source of polarization in this group of materials originates from asymmetric 

arrangement of an ion in a non-centrosymmetric unit cell, which produces an electric 

dipole moment.  

Dipole moment could simply be written as  

𝑝 = 𝑞𝑑    Equation 1.10 

where q is net charge and d, vector distance directed from the negative to the positive 

charge. Summation of medium consisting of N number of polarized unit cell results in 

polarization density where  

𝑃 = 𝑁𝑞𝑑    Equation 1.11 

Net charge in a volume governed by integration of polarization charge density over unit 

volume: 

𝑄 = ∫𝜌𝑃𝑑𝑉    Equation 1.12 

where 𝜌𝑃is polarization charge and Poisson equation gives relation between charge 

density and polarization density P.  

Randomly distributed domains (P=0) are started to form towards electric field direction 

(1). Total polarization gradually increases up to saturation point (Ps) (2). Further increase 

in the electric field results in dielectric charging and additional polarization increase (3). 

When the electric field returns to zero, polarization reaches remanence value (Pr). 
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Coercive field (-Ec) is a limit point that polarization state switch suddenly. The hysteresis 

loop is closed by polarization saturation (6) at specific electric field.  

 

Figure 1.5 Ideal hysteretic behavior of the ferroelectric polarization in an applied field 

Observation of hysteresis and spontaneous polarization behavior on Rochelle salt has led 

discovery of ferroelectric phenomena by Valasek [45]. Theory of ferroelectricity was 

matured by Landau’s phenomenological theory based on Landau theory of second order 

phase transition.  Electric field can switch polarization direction where relative energy 

change in  −𝐸 ∙⃗⃗ ⃗⃗ �⃗�  was modified by these coupled terms. Order parameter in the Landau 

theory could be postulated as same transformation characteristics with polarization vector 

�⃗�  and Gibbs free energy density G is expressed in Landau-Ginzburg polynomial 

expansion  

𝐺 = 𝐹 − 𝐸𝑃 = 𝐹0 +
𝛼

2
𝑃2 +

𝛽

2
𝑃4 +

𝛾

2
𝑃6 − 𝐸  Equation 1.13 

where 𝐹0 relates free energy of paraelectric phase under zero electric field, 𝐸 is electric 

field and α, β, γ are temperature and pressure dependent expansion coefficients.  Free 

energy density minima where 
𝜕𝐹

𝜕𝑃
= 0 and 

𝜕2𝐹

𝜕𝑃2
= 0 account for equilibrium conditions 

where  

𝜕𝐹

𝜕𝑃
= 𝑃(𝛼 +  𝛽𝑃2 + 𝛾𝑃4) = 0   Equation 1.14 

𝜕2𝐹

𝜕𝑃2
= (𝛼 +  3𝛽𝑃2 + 5𝛾𝑃4) > 0   Equation 1.15 

One might distinguish the phase transition of ferroelectrics as first (e.g. BaTiO3 and other 

perovskites) and second order (e.g. triglycine sulfate (TGS)) in context of crystal structure 
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undergoing into new one via sudden or continuous change. Fig. 1.6 shows explicitly the 

phase transition kinetics upon cooling from Tc to ferroelectric phase. Above the Curie 

temperature (shown as (𝑇 ≫ 𝑇𝑐)) higher symmetry paraelectric phase is highly stable 

where P=0 at 𝛼 >0.  Metastable ferroelectric phase (±𝑃𝑠 ≠ 0) starts to nucleate along 

with paraelectric phase simultaneously while the temperature is just above the 𝑇𝑐 (shown 

as (𝑇 > 𝑇𝑐)). Paraelectric and ferroelectric phases coexist at (𝑇 = 𝑇𝑐) condition.  At a 

temperature below the Curie temperature (shown as (𝑇𝑐 > 𝑇 > 𝑇0)), non-

centrosymmetric ferroelectric phase starts to govern and also mitigated paraelectric phase 

is also observed. Spontaneous polarization arises remarkably due to discontinuity. Below 

the Curie-Weiss temperature (𝑇0), stable ferroelectric phase dictates the whole crystal 

(shown as  𝑇 < 𝑇0). Taking into consideration free energy for first order phase 

transformation with coefficients  𝛼 = 1 𝜀0𝐶
⁄ (𝑇 − 𝑇0),  𝛽 < 0 and 𝛾 ≥ 0, polarization is 

given as 

𝑃𝑠
2 =

|𝛽|+√𝛽2−4𝐶−1(𝑇−𝑇𝑐)𝛾

2𝛾
   Equation 1.16 

For second-order phase transition, free energy is expanded up to fourth order and 𝛽 > 0. 

With this assumption, polarization corresponds to either zero or  

𝑃𝑠
2 = −

(𝑇−𝑇𝑐)

𝛽𝐶
    Equation 1.17 

 

Figure 1.6 a) Free energy-polarization diagram of first-order phase transition at condition 

of T > Tc, T = Tc, and T = T0 < Tc,  b) and c) Spontaneous polarization and susceptibility 

upon temperature variation, d) Free energy-polarization diagram of second-order phase 

transition at condition of T > T0, T = Tc, and T = T < T0 , e) and f) Spontaneous polarization 

and susceptibility upon temperature variation.[46]  
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In second order phase transition phenomena, phase transition and Curie-Weiss 

temperature values are nearly same, but the crucial point is the order parameter where is 

taken 0.5. Spontaneous polarization value is directly proportional to (𝑇 − 𝑇𝑐)
𝛽.  

Polarization value goes to zero (stable minima) while the temperature is equal to phase 

transition temperature. Systematic temperature drop shifts the polarization minima to 

finite values. In brief, continuous variation in polarization, entropy, specific heat-jump 

and inversely proportional susceptibility indicates the second order phase transition 

characteristics.  

1.2.1 Ferroelectric Tunnel Junctions  

The tunnel junctions with a dielectric layer sandwiched between two metals is very well 

studied and understood and will not be given consideration here. Replacing the dielectric 

with a ferroelectric layer has a dramatic impact on the barrier the electrons see during 

tunneling. The concept of FTJ relies on thin ferroelectric being the barrier layer instead 

of insulating layers  where Esaki et al. laid the first foundations for FTJs [47]. This way, 

a new novel device architecture in the name of “polar switch” via current-voltage 

characteristics of ferroelectrics upon electric field, unlike other barrier elements. 

Polarization-reversal of FE layer upon electric field, hence the polarization charges at the 

interface, controls ON/OFF states of the junction. Technological and theoretical 

development in last two decades enabled the growth of epitaxial FE layers down to atomic 

layer scale which is critical condition for the tunneling phenomenon. As result, 

experimental realization of this phenomenon has had to wait until 2003[48].  

Most of the experimental works of FTJ includes BaTiO3, PbTiO3, and PbZrxTi1-xO3 as the 

barrier layer, besides LSMO and SRO are grown as bottom electrode due to low lattice 

mismatch which stabilizes the out-of-plane polarizability of the barrier [49-66]. Top 

electrode is either metal or another conductive oxide layer. Replacement of metal 

electrode with semiconductor layer due to the higher screening length, hence the change 

in penetration of electric field inside electrode surface was reported by Wen et. al[67]. 

Pt/BaTiO3/Nb: SrTiO3 stack reached 104 TER value due to charge 

accumulation/depletion at the semiconductor surface. Several other ultrathin ferroelectric 

layer including stacks has the effect of tunneling/tunnel junction and memristor 

behavior[60] with tunability of the resistance of junction. Moreover, latter studies have 
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clearly shown that the ferroelectric state could be preserved down to few atomic layers 

[68-72].  The driving force behind such a pursuit was that the FE polarization can 

dramatically alter the on/off ratios of currents depending on the direction of remnant 

dipoles as they can easily be switched under a few volts of bias. FE TJs sandwiched 

between metal and semiconductor electrodes have already been proven to generate on/off 

ratios reaching 103-105  [55, 63, 67, 73-76] 

Resistive switching-based approach of Contreras et. al. proved that the origin of resistance 

switching occurs via ferroelectric polarization reversal. In Fig. 1.7, the elements that 

affect the electron transport through the ferroelectric barrier are given as[77]: 

a. Strain arises from piezoelectric behavior of ferroelectric layer under applied 

electric field where the charge transport characteristics strongly correlated to the 

barrier thickness and attenuation constant. 

b. Partially screened ferroelectric bound charges where arises electrostatic potential. 

c.  Opposite polarization states govern tunneling probability through atomic orbital 

hybridization.  

 

Figure 1.7 Schematic of the origins of ferroelectric tunnel junction (FTJ) [77] 

Additional evidences of resistive switching mechanism of ferroelectric for differing 

thicknesses was reported underlying the ferroelectricity and the electron tunneling  [78, 

79]. As it is mentioned in Fig. 1.7, tunnel resistance is the function of  potential height in 

the barrier where incomplete charge screening of polarization originated charges 

controlled via ferroelectric polarization reversal [80].  However, potential height is not 
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the only element on tunnel resistance but also modulation of potential width via 

ferroelectric layer juxtaposed with two metallic layers of dissimilar screening lengths 

plays significant role on enhancement of TER.  

Ferroelectrics as wide bandgap semiconductor are subjected to Schottky characteristics 

between film and electrode interface, band parameters and other electronic properties of 

electrodes are decisive rather than the size effect [81-84]. From electrostatics approach to 

the problem starts from uncompensated charges come into play as electrostatic potential 

at the FE/electrode interface. The formation of passive layer (dead layer) due to 

uncompensated charges at the ferroelectric/electrode interface principally affects the 

screening length, hence the domain formation.  

Thomas-Fermi screening length is function of electronic density of states at the Fermi 

level. The Thomas-Fermi theory delivers an approximation where the non-interaction 

electron gas under given external potential as function of local charge density[85] in 

which Thomas-Fermi wavevector: 

𝑘0
2 = 4𝜋𝑒2

𝜕𝑛

𝜕𝜇
    Equation 1.18 

where 𝜇 chemical potential at Fermi level of the given solid,  𝑛 is electron concentration, 

𝑒 is the elementary charge.  

𝑘0
2 = 4𝜋𝑒2 𝑛 (𝑘𝐵𝑇)⁄     Equation 1.19 

1 𝑘0⁄  corresponds to Debye length. If we translate Thomas-Fermi screening vector into 

atomic units: 

𝑘𝑇𝐹
2 = 4(

3𝑛

𝜋
)     Equation 1.20 

where 𝑘0
2 = 𝑘𝑇𝐹

2(𝑚𝑒 ℏ⁄ ).The Thomas-Fermi screening length for metals in the order 

0.5-1.0 Å whereas, the Debye length for a semiconductor is nanometer level. Penetration 

of the electric field into the electrode creates passive layers inside.  

Appearance of the dead layers constitutes depolarizing field in the ferroelectric layer. 

Dissipation of the field is provided by the transformation of domain structure from single 

domain to multidomain state. Domain and domain wall formation is the material reaction 
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to reduce energy imbalance originates from depolarizing field and energy cost of the 

domain wall formation.  Depolarizing field is also result of spatial polarization instability 

of the film due to surface effects. 

It could be assumed that the single domain state could achieved when the thickness of the 

passive layer d is zero. Bratkovsky et. al. [86] has also proposed universal mechanism to 

propose direct relation between passive layer thickness d and dielectric constant of the 

passive layer 𝜀𝑔 : 

𝑑𝑃

𝑑𝐸
∝

𝜀𝑔

𝑑
     Equation 1.21 

Fig. 1.8 shows the domain with a in ferroelectric capacitor versus passive layer thickness 

d for different lengths of separation. W also shows the domain wall thickness. Inset of 

Fig.1.8 demonstrate that the ferroelectric capacitor under bias U. Sharp (exponential) 

wide domain transition could be clearly seen where the passive layer thickness goes to 

zero. The growth of a passive layer at electrode surface results in domain split in FE layer. 

These findings also is explanatory for the coercive field decrease in FE.   

 

Figure 1.8 The domain width a in a ferroelectric capacitor versus the passive layer 

thickness d for different separations between the electrode plates [86]. 

Another important findings on single domain stability is investigated by numerical 

analysis of Misirlioglu et.al. [87] in a superlattice. Variation of dielectric constant 

between the paraelectric SrTiO3 layer which has larger dielectric constant and 

ferroelectric layer BaTiO3. Expected transition trend might arise as: 
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a. Domain period of the structure is larger than the ferroelectric layer thickness (non-

Kittel regime).  This condition previously proposed for thin films [88] and also 

and ferroelectric-paraelectric superlattices[89]  

b. Quasi-Kittel regime where it was demonstrated as [90] narrow domain period 

proportional to lf
1/3 (lf is the thickness of ferroelectric layer).  

 

Figure 1.9 Analyzed superlattices in the context of this work with three repeating units: 

a) repeating bilayer unit b), c) symmetrical unit.  

Single domain and multidomain states are indicated in Fig.1.10 upon stability regions of 

ferroelectric and paraelectric state. Figure 1.9b illustrates the case of “near the electrode 

for the previously given two types of superlattices. This analysis also supports the results 

given in the work of Bratkovsky et. al. [86]. Near the electrode region, stability diagram 

drastically changes. Continuity problem arises when the stability line of SD-MD 

boundary in the ferroelectric phase is crossed, continuity starts to disappear. Finite 

amplitude of inhomogeneous polarization distribution (MD state) is observed at the point 

where the stability disappears. The stability loss arises somewhere inside the region, 

below the paraelectric-MD transition. When the free energies of two phases is equalized, 

thermodynamic temperature of the first order transition could exist at lower temperature. 
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Single domain state becomes energetically favorable equilibrium state by decreasing 

temperature. 

 

Figure 1.10 Stability map of the superlattices in the temperature (T)-layer thickness (l) 

plane: (a) of the superlattice consisting of bilayer units 1:critical thickness, 2:single 

domain-multi domain stability limit curve, 3,4: speculated variants for line of SD-MD 

first order phase transition (dashed curves). (b) The same for the superlattice consisting 

of symmetrical units with 5: critical thickness and 6: single-multi domain stability limit 

curve,7,8 is analog of 3,4. In (b), the bilayer case (solid black curve) is given for 

comparison [91]. 

Inhomogeneous Landau-Devonshire theory describes and takes in consideration the 

polarization in proximity of the surface. The free energy description given by Kretschmer 

and Binder where  

𝐹𝑓𝑖𝑙𝑚 = 𝐹𝑏𝑢𝑙𝑘 + 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒    Equation 1.22 

introduces a new term “extrapolation length (λ) “which is a measure of subsurface layer 

coupling. Local polarization values in the vicinity of the surface vary over a distance 

proportional to correlation length ξ of polarization instability [92]. Sign of the λ is positive 
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in general, however, it could be negative where the correlation length value is smaller 

than extrapolation length [93]. Several works have focused on the correlation length and 

extrapolation length on ferroelectric properties in terms of depolarizing field [94-96]. 

Numerically evaluated critical thickness values for PbTiO3 and Pb0.5Zr0.5TiO3 at 0 K are 

4 and 8 nm respectively [97]. Fig.1.11 shows the relation between extrapolation length 

and polarization along the thickness of the film.  

 

Figure 1.11 Local changes in polarization along the film thickness, blue line shows the 

positive extrapolation length and red one shows the negative extrapolation length [92]. 

Figure 1.12 indicates several mechanisms taking part to compensate in depolarizing field 

in thin films structures. Apart from atmospheric adsorption contribution, size limitation, 

in other words paraelectric-ferroelectric thickness limit is related to several phenomena 

such as characteristics of the electrode-film interface mediately boundary conditions, 

strain, domain formation [86, 98, 99]. 
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Figure 1.12 The diagram is divided into two main groups where the left side exhibits 

charge screening, allowing the ferroelectric state preserved uniformly in the sample where 

the right-hand side of the diagram illustrates conservation of ferroelectric state through 

the domain formation or rotation of polarization vector. Otherwise, the polarization is 

suppressed [100]. 

Another prominent parameter is the substrate-film and film-film interactions. Mechanical 

stresses arise from lattice mismatch and growth conditions of the thin film on the 

substrate. Additionally, these so-called misfit strains are also observed in thin film 

interlayers in multilayer stacks that can impact the transition characteristics.  

Lattice parameters are deformed by substrate-induced strain and more likely differ from 

the bulk values of the material. A misfit strain Sm is introduced into theoretical 

calculations apart from the current polarization state of the film to define the substrate as 

external factor on the ferroelectricity. Mostly used cubic substrates such as MgO, SrTiO3, 

LaAlO3 constitutes strain which is defined as  

𝑺𝒎 =
𝒃−𝒂𝟎

𝒃
    Equation 1.23 
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where b is the substrate lattice parameter and a0 is the equivalent cubic cell constant of 

the free-standing film [101]. When the critical thickness is exceeded, misfit dislocations 

emerge in the film and effective lattice parameter is modulated as b*: 

     𝑆𝑚 =
𝑏∗−𝑎0

𝑏∗
    Equation 1.24 

Thermodynamic calculations have shown that Sm is strongly effective on polarization 

direction and its magnitude[102]. In brief, ferroelectric thin film grown on tensile stress 

applying substrate which means Sm > 0, form a ferroelectric phase with in-plane 

polarization direction, whereas, compressive strain (Sm < 0) has the capability to stabilize 

out-of-plane oriented ferroelectric phase and enhanced polarization. Hence, the 

ferroelectric-paraelectric phase transition temperature also deviates from bulk value 

(Fig.1.13) [94, 95, 103].  

 

Figure 1.13 Phase diagrams of single-domain BaTiO3 (a) and PbTiO3(b) epitaxial thin 

films grown on cubic substrates under compressive and tensile stresses.[102] 

Recently, total free energy expansion of ferroelectric thin film has several internal factors 

which contribute to the entire system and several works has shown that existence of the 

ferroelectricity is down to few monolayers. The micrometer scale has reached nanometer 

level over time significantly due to improvement in theoretical predictions about 

ferroelectric by understanding the mechanical and electrical boundary conditions and the 

analytical experimental techniques.  
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FTJs, unlike regular dielectrics, can display rather arbitrary potential barrier shapes owing 

to the penetration of the ferroelectric polarization into the electrodes. Such an outcome 

often necessitates the treatment of arbitrary potential barriers that can be incorporated into 

the estimation of tunneling currents through FTJs via the WKB treatment.  

WKB approximation is a method for derivation of tunnel currents in tunneling junctions 

by treating barriers with complicated shape without extreme variation. Conductor layers 

at each side of the insulator layer has discrete energy levels, which is called Fermi level, 

(Ef_1, Ef_2) at absolute zero level. This band model proposed for a system that has different 

barrier heights of different metals as 𝜙1 and 𝜙2 . W1 and W2 represent the work functions 

of the metal where is energy minima to eject an electron from the material at 0 K. Eg and 

χ are energy gap and electron affinity of the barrier respectively.  If a bias voltage is 

applied across the barrier, Fermi levels of M1 and M2 will shift.  

 

 

Figure 1.14 Sketch of tunneling process through a insulator layer between two metallic 

electrodes. 

When the electrons are taken as wave function, there is a probability function of finding 

an electron of M1 electrode behind the insulator barrier at M2. In other words, tunneling 

phenomena is the movement of an electron which occupies an available state at M1 to 

unoccupied available state of M2.  This occurrence is also net current of electron tunneling.  
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Wavefunction for electrons in tunnel junctions derived through Schrodinger equation 

[104]: 

(
𝑝2

2𝑚
+ 𝑉)𝜓 = 𝐸𝜓    Equation 1.25 

Exponential decrease in the wave function of M1 electrons through the barrier, however, 

it might outspread significantly beyond the barrier to M2 electrode. Tunneling process 

may be divided in two main sections: Transmitted and reflected particles. Schrodinger 

equation solution for constant potential is in simple plane wave form: 

𝜓(𝑥) = 𝐴𝑒±ikx    Equation 1.26 

𝑘 =
2𝜋

𝜆
= √

2𝑚(𝐸−𝑈)

ℏ2
    Equation 1.27 

If potential varies with position, x, Schrodinger’s equation could be written in general 

form: 

𝜓(𝑥) = 𝐴𝑒i∅(𝑥)    Equation 1.28 

where ∅(𝑥) = ±𝑘𝑥. E>U and E<U cases could be defined as: 

{
 

 𝑘(𝑥) = √
2𝑚(𝐸−𝑈)

ℏ2
,                                 𝐸 > 𝑈(𝑥)  

𝑘(𝑥) = −𝑖√
2𝑚(𝐸−𝑈)

ℏ2
= −𝑖𝜅(𝑥),          𝐸 < 𝑈(𝑥) 

  Equation 1.29 

To imply these phenomena in real-life events are given in barrier potential and energy of 

the incident particle. Solution of time-dependent Schrödinger’s equation in one dimension 

is the following: 

−
ℏ2

2𝑚

𝑑𝜓(𝑥)

𝑑𝑥2
+ 𝑈(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)   Equation 1.30 

Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝑒𝑥𝑝 (−𝑖
𝐸

ℏ
𝑡)    Equation 1.31 

where E is total energy of the particle, 𝑈(𝑥) the potential energy function and 𝜓(𝑥) is the 

spatial part of the full wavefunction. 𝑚 is the mass of an electron and ℏ is the reduced 
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Planck’s constant. Substitution of potential to the general solution results in the 

differential equation below: 

𝑖
𝜕2𝜙

𝜕𝑥2
− (

𝜕𝜙

𝜕𝑥
)
2

+ 𝑘2(𝑥) = 0   Equation 1.32 

Assumption of WKB approximation is starting from the idea that the variation in potential 

values in space is relatively slow. 0th order approximation: 

𝜕2𝜙

𝜕𝑥2
= 0,

𝜕𝜙0

𝜕𝑥
= ±𝑘(𝑥) → 𝜙0 = ±∫𝑘(𝑥)𝑑𝑥 + 𝐶0  Equation 1.33 

Ψ(𝑥) = 𝑒𝑥𝑝[±𝑖 ∫ 𝑘(𝑥)𝑑𝑥 + 𝐶0]   Equation 1.34 

and 1st order approximation: 

Ψ(𝑥) = 𝑒𝑥𝑝 [±𝑖 ∫√𝑘2(𝑥) ± 𝑖
𝜕𝑘

𝜕𝑥
𝑑𝑥 + 𝐶1]  Equation 1.35 

The shape of the potential has significant role on WKB approximation since: 

𝑈(𝑥) → 𝑘(𝑥) → ∅(𝑥) → Ψ(𝑥) = 𝑒𝑥𝑝 [∫√𝑘2(𝑥) ± 𝑖
𝜕𝑘

𝜕𝑥
𝑑𝑥 + 𝐶1] Equation 1.36  

Among the several approximations, Simmons and Brinkman tunnel barrier models 

become prominent with simplified approach. Even if Simmons model [105, 106] 

disregards the data obtained from asymmetric barrier by taking the average of the barrier 

(
𝜙1+𝜙2

2
) (Fig. 1.15a), whereas Brinkman model [107] takes in consideration the 

asymmetric barrier by 𝜙 = 𝜙2 − 𝜙1 (Fig. 1.15b).  

 

Figure 1.15 Simmons (a) and Brinkman(b) simplified model for tunneling 
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For the 𝜙 ≫ 𝑒𝑉, and  
𝛥𝜙

𝜙
< 1 condition, Brinkman model proposed the approximation: 

𝑗 = ~3.16 ∙ 1010
√𝜙

𝑑
exp(−1.025 𝑑√𝜙)… 

[𝑉 − 0.0213
𝑑∙∆𝜙

𝜙
3
2⁄
𝑉2 + 0.0109

𝑑2

𝜙
𝑉3]  Equation 1.37 

These approximation is more accurate for thicker than 10 nm barriers. Rectangular barrier 

is quite limited condition where the symmetric interfaces surrounding the barrier. This 

approximation is given as: 

𝑗 = ~3.16 ∙ 1010
√Φ

𝑑
exp(−1.025 𝑑√Φ) 

[𝑉 + 0.0109
𝑑2

Φ
𝑉3 − 0.032

𝑑

Φ
3
2⁄
𝑉3]   Equation 1.38 

Tunneling through asymmetric barrier with thickness d=2a is taken as one-dimensional 

and the boundary conditions are defined as: 

 ∅ = {
       0           𝑥 < −𝑎;
       𝑈0 − 𝑎 < 𝑥 < 𝑎;
−𝑈1          𝑥 > 𝑎;

    Equation 1.39 

 Hence, the Schrodinger equations could be transformed into the form: 

{
 
 

 
 −

ℏ2

2𝑚

𝑑𝜓(𝑥)

𝑑𝑥2
= 𝐸𝜓1(𝑥)                                    𝑥 < −𝑎;

−
ℏ2

2𝑚

𝑑𝜓(𝑥)

𝑑𝑥2
= (𝐸 − 𝑈0)𝜓2(𝑥)            − 𝑎 < 𝑥 < 𝑎;  

−
ℏ2

2𝑚

𝑑𝜓(𝑥)

𝑑𝑥2
= (𝐸 − 𝑈1)𝜓3(𝑥)                         𝑥 > 𝑎;

 Equation 1.40 

 and the these transformed equations are solved in the form: 

{

𝜓1(𝑥)  = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥           𝑥 < −𝑎;

𝜓2(𝑥)  = 𝐶𝑒𝑖𝑘2𝑥 + 𝐷𝑒−𝑖𝑘2𝑥   − 𝑎 < 𝑥 < 𝑎;

𝜓3(𝑥)  = 𝐹𝑒
𝑖𝑘3𝑥 + 𝐺𝑒−𝑖𝑘3𝑥               𝑥 > 𝑎;

  Equation 1.41 

where A, B, C, D, F, G are arbitrary constants and 𝑘1 =
√2𝑚𝐸

ℏ
 , 𝑘2 =

√2𝑚(𝐸−𝑈0)

ℏ
 and 𝑘3 =

√2𝑚(𝑈1+𝐸)

ℏ
 inside the barrier. When the quantized particle has lower energy than potential 
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barrier (𝐸 < 𝑈0), 𝑘2 becomes imaginary and 𝜅 =
√2𝑚(𝑈0−𝐸)

ℏ
 becomes valid. 𝐴𝑒𝑖𝑘1𝑥, 

𝐶𝑒𝑖𝑘2𝑥 and 𝐹𝑒𝑖𝑘3𝑥 represent the waves travelling in the positive direction of 𝑥, while  

𝐵𝑒−𝑖𝑘1𝑥, 𝐷𝑒−𝑖𝑘2𝑥, and 𝐺𝑒−𝑖𝑘3𝑥 represent the negative direction for 𝑥 axis. Following 

solution taking into account the approximation above is: 

{

𝜓1(𝑥)  = 𝐴𝑒
𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥            𝑥 < −𝑎;

𝜓2(𝑥)  = 𝐶𝑒𝑖𝜅𝑥 + 𝐷𝑒−𝑖𝜅𝑥      − 𝑎 < 𝑥 < 𝑎;

𝜓3(𝑥)  = 𝐹𝑒𝑖𝑘3𝑥 + 𝐺𝑒−𝑖𝑘3𝑥               𝑥 > 𝑎;

  Equation 1.42 

At the boundaries where 𝜓(𝑥) and the its first derivative is continuous; the wavefunctions 

match and in the 𝑥 = −𝑎 condition: 

𝐴𝑒−𝑖𝑘1𝑥 + 𝐵𝑒𝑖𝑘1𝑥 = 𝐶𝑒−𝜅𝑎 + 𝐷𝑒𝜅𝑎    Equation 1.43 

𝑖𝑘1(𝐴𝑒
−𝑖𝑘1𝑎 − 𝐵𝑒𝑖𝑘1𝑎) = 𝜅(𝐶𝑒−𝜅𝑎 − 𝐷𝑒𝜅𝑎)  Equation 1.44 

For 𝑥 = 𝑎 boundary condition; 

𝐶𝑒𝜅𝑎 + 𝐷𝑒−𝜅𝑎 = 𝛽′𝑒𝑖𝑘3𝑎 + 𝛽𝑒−𝑖𝑘3𝑎    Equation 1.45 

𝜅𝐶𝑒−𝜅𝑎 − 𝜅𝐷𝑒𝜅𝑎 = 𝑖𝑘3(𝐹𝑒
𝑖𝑘3𝑎 + 𝐺𝑒−𝑖𝑘3𝑎)   Equation 1.46 

When the Eq.1.43 and 1.44 is multiplied by 𝑖𝑘1 and and 𝜅 related with Eq.1.47 and 

Eq.1.48 respectively., dependencies of A and B on C and D could be seen: 

2𝑖𝑘1𝐴𝑒
−𝑖𝑘1𝑎 = 𝐶𝑒−𝜅𝑎(𝑖𝑘1 + 𝜅) + 𝐷𝑒

𝜅𝑎(𝑖𝑘1 − 𝜅)  Equation 1.47 

2𝑖𝑘1𝐵𝑒
−𝑖𝑘1𝑎 = 𝐶𝑒−𝜅𝑎(𝑖𝑘1 − 𝜅) + 𝐷𝑒

𝜅𝑎(𝑖𝑘1 + 𝜅)  Equation 1.48 

2𝜅𝐶𝑒𝜅𝑎 = 𝐹𝑒𝑖𝑘3𝑎(𝜅 + 𝑖𝑘3) + 𝐺𝑒
−𝑖𝑘3𝑎(𝜅 − 𝑖𝑘3)  Equation 1.49 

2𝜅𝐷𝑒−𝜅𝑎 = 𝐹𝑒𝑖𝑘3𝑎(𝜅 − 𝑖𝑘3) + 𝐺𝑒
−𝑖𝑘3𝑎(𝜅 + 𝑖𝑘3)  Equation 1.50 

Relation between 𝐴 – 𝐺 and B is determined by transfer matrix method.: 

(𝐴
𝐵
) = 𝑀(𝐺

𝐹
) = (

𝑀11 𝑀12
𝑀21 𝑀22

) (𝐺
𝐹
)   Equation 1.51 

where 

𝑀11 = 
1

4
[𝑖 (

𝜅

𝑘1
+
𝑘3
𝜅
) (𝑒2𝜅𝑎 − 𝑒−2𝜅𝑎) + (1 +

𝑘3
𝑘1
) (𝑒2𝜅𝑎 + 𝑒−2𝜅𝑎)]… 

𝑒−𝑖(𝑘1+𝑘3)𝛼 = 𝑀∗
22     Equation 1.52 
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𝑀12 = 
1

4
[𝑖 (

𝜅

𝑘1
+
𝑘3
𝜅
) (𝑒2𝜅𝑎 − 𝑒−2𝜅𝑎) + (1 −

𝑘3
𝑘1
) (𝑒2𝜅𝑎 + 𝑒−2𝜅𝑎)]… 

𝑒𝑖(𝑘1−𝑘3)𝛼 = 𝑀∗
21    Equation 1.53 

Hyperbolic functions are injected into Eq.1.52 and 1.53 as 
sinh(2𝜅𝛼)=(𝑒2𝜅𝛼−𝑒−2𝜅𝛼)

2
 and 

cosh(2𝜅𝛼)=
(𝑒2𝜅𝛼+𝑒−2𝜅𝛼)

2
: 

𝑀11 =
1

2
[𝑖 (

𝜅

𝑘1
+
𝑘3

𝜅
) sinh(2𝜅𝛼) + (1 +

𝑘3

𝑘1
) cosh(2𝜅𝛼)] 𝑒−𝑖(𝑘1+𝑘3)𝛼 Equation 1.54 

𝑀12 =
1

2
[𝑖 (

𝜅

𝑘1
+
𝑘3

𝜅
) sinh(2𝜅𝛼) + (1 −

𝑘3

𝑘1
) cosh(2𝜅𝛼)] 𝑒−𝑖(𝑘1−𝑘3)𝛼 Equation 1.55 

 

The transmission and reflection coefficients of the tunneling is the following: 

𝑇 =
|𝐺|2

|𝐴|2
=

4
𝑘3
𝑘1

(
𝜅

𝑘1
+
𝑘3
𝜅
)
2
sinh2(2𝜅𝛼)+(1−

𝑘3
𝑘1
)
2
cosh2(2𝜅𝛼)+4

𝑘3
𝑘1

  Equation 1.56 

𝑅 =
|𝐵|2

|𝐴|2
=

(
𝜅

𝑘1
+
𝑘3
𝜅
)
2
sinh2(2𝜅𝛼)+(1−

𝑘3
𝑘1
)
2
cosh2(2𝜅𝛼)

(
𝜅

𝑘1
+
𝑘3
𝜅
)
2
sinh2(2𝜅𝛼)+(1−

𝑘3
𝑘1
)
2
cosh2(2𝜅𝛼)+4

𝑘3
𝑘1

   Equation 1.57 

For high and relative width barriers (2𝜅𝛼 ≫ 1), transmission coefficient is demeaned to: 

𝑇 ∝ exp(−2𝜅𝛼) ∝ 𝑒𝑥𝑝 (−2
√2𝑚(𝑈0−𝐸)

ℏ
𝑎)  Equation 1.58 

 

Eq.1.58 also indicates that the transmission shows logarithmic decrease with the barrier 

thickness and mass of the particles. Tunneling currents are determined by the barrier 

height and therefore the electrostatic potential has to be found using the Maxwell 

equations. In a ferroelectric sandwiched between metallic electrodes, the Maxwell 

equation: 

𝛻 ∙ 𝐷 = 𝜌    Equation 1.59 

has to be satisfied at everypoint under any given boundary condition. Here 𝜌 is the charge 

density and �⃗⃗�  is the dielectric displacement vector. Eq. 1.59 holds inside the FM and for 

an ideal, insulating FE , 𝜌 = 0 and thus ∇ ∙ D = 0 in the ferroelectric. Due to the symmetry 
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of the stack along the plane, we reduce the problem into 2 dimensions as shown in Fig. 

1.29. We can thus write D


as 

�⃗⃗� = [𝐷𝑥�̂� + 𝐷𝑧�̂�]    Equation 1.60 

where 

𝐷𝑥 = 𝜀0𝜀𝑏𝐸𝑥 + 𝑃𝑥 and 𝐷𝑥 = 𝜀0𝜀𝑏𝐸𝑧 + 𝑃𝑧  Equation 1.61  

in the FE layer with x and z denoting the in-plane and out-of-plane components 

respectively and, 

xrx ED  0=  and zrz ED  0=    Equation 1.62 

 

in the FM electrodes having a lattice dielectric constant of 𝜀𝑟 taken as 10. In Eqs. 1.61-

1.62, 𝜀0 is the permittivity of the vacuum and 𝜀𝑏 is the background dielectric constant of 

the FE (10 in this work [108, 109] ), 𝐸𝑥 and 𝐸𝑧 are respectively the x- and z- components 

of the electric field vector �⃗�  that can be determined from 𝐸𝑥 = −
𝜕∅

𝜕𝑥
 and 𝐸𝑧 = −

𝜕∅

𝜕𝑧
 with 

𝜙 being the electrostatic scalar potential,𝑃𝑥 and 𝑃𝑧 are the FE polarization components 

along x- and z-axes respectively. Eq. 1.59 and Eq. 1.60 is discretized below: 

𝑑𝐷𝑥

𝑑𝑥
+

𝑑𝐷𝑧

𝑑𝑧
= 𝜌    Equation 1.63 

𝜕

𝜕𝑥
(−𝜀0𝜀𝑟

𝜕𝜙

𝜕𝑥
+ 𝑃𝑥) +

𝜕

𝜕𝑧
(−𝜀0𝜀𝑟

𝜕𝜙

𝜕𝑧
+ 𝑃𝑧)   Equation 1.64 

𝜀0 (
𝜕𝜀𝑟

𝜕𝑥

𝜕𝜙

𝜕𝑥
+ 𝜀𝑟

𝜕2𝜙

𝜕𝑥2
−
𝜕𝑃𝑥

𝜕𝑥
) − 𝜀0 (

𝜕𝜀𝑟

𝜕𝑧

𝜕𝜙

𝜕𝑧
+ 𝜀𝑟

𝜕2𝜙

𝜕𝑧2
−
𝜕𝑃𝑧

𝜕𝑧
) = 𝜌  Equation 1.65 

𝜕𝜀𝑟

𝜕𝑥

𝜕𝜙

𝜕𝑥
+ 𝜀𝑟

𝜕2𝜙

𝜕𝑥2
+
𝜕𝜀𝑟

𝜕𝑧

𝜕𝜙

𝜕𝑧
+ 𝜀𝑟

𝜕2𝜙

𝜕𝑧2
=

𝜌

𝜀0

𝜕𝑃𝑥

𝜕𝑥𝜀0
+

𝜕𝑃𝑧

𝜕𝑧𝜀0
   Equation 1.66 

𝜀𝑟 (
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
) = −

𝜌

𝜀0
+

𝜕𝑃𝑧

𝜕𝑧𝜀0
+

𝜕𝑃𝑥

𝜕𝑥𝜀0
−
𝜕𝜀𝑟

𝜕𝑥

𝜕𝜙

𝜕𝑥
−
𝜕𝜀𝑟

𝜕𝑧

𝜕𝜙

𝜕𝑧
  Equation 1.67 

(
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
) = −

𝜌

𝜀0𝜀𝑟
+

1

𝜀0𝜀𝑟
(
𝜕𝑃𝑥

𝜕𝑥
+
𝜕𝑃𝑧

𝜕𝑧
) −

1

𝜀𝑟
(
𝜕𝜀𝑟

𝜕𝑥

𝜕𝜙

𝜕𝑥
) −

1

𝜀𝑟
(
𝜕𝜀𝑟

𝜕𝑧

𝜕𝜙

𝜕𝑧
)          Equation 1.68 

(
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
) −

1

𝜀0𝜀𝑟
(
𝜕𝑃𝑥

𝜕𝑥
+
𝜕𝑃𝑧

𝜕𝑧
) +

1

𝜀𝑟
(
𝜕𝜀𝑟

𝜕𝑥

𝜕𝜙

𝜕𝑥
) +

1

𝜀𝑟
(
𝜕𝜀𝑟

𝜕𝑧

𝜕𝜙

𝜕𝑧
) = −

𝜌

𝜀0𝜀𝑟
           Equation 1.69 
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To find potential value from the set of equations, Eq.1.69 is organized as given below: 

𝜙(𝑖+1,𝑗)−2𝜙(𝑖,𝑗)+𝜙(𝑖−1,𝑗)

𝜕𝑥2
+

𝜙(𝑖,𝑗+1)−2𝜙(𝑖,𝑗)+𝜙(𝑖,𝑗−1)

𝜕𝑧2
−

1

𝜀0𝜀𝑟(𝑖,𝑗)
[(
𝑃𝑥(𝑖+1,𝑗)−𝑃𝑥(𝑖−1,𝑗)

𝜕𝑥
) +

(
𝑃𝑧(𝑖,𝑗+1)−𝑃𝑧(𝑖,𝑗−1)

𝜕𝑧
)] +

1

𝜀𝑟(𝑖,𝑗)
[(
𝜀𝑟(𝑖+1,𝑗)−𝜀𝑟(𝑖−1,𝑗)

𝜕𝑥
) (

𝜙(𝑖+1,𝑗)−𝜙(𝑖−1,𝑗)

𝜕𝑥
) +

(
𝜀𝑟(𝑖,𝑗+1)−𝜀𝑟(𝑖,𝑗−1)

𝜕𝑧
) (

𝜙(𝑖,𝑗+1)−𝜙(𝑖,𝑗−1)

𝜕𝑧
)] = −

𝜌

𝜀0𝜀𝑟(𝑖,𝑗)
             Equation 1.70 

𝜙(𝑖, 𝑗) = (−
𝜕𝑥2

4
) [−

𝜌

𝜀0𝜀𝑟(𝑖,𝑗)
+

1

𝜀0𝜀𝑟(𝑖,𝑗)
[(
𝑃𝑥(𝑖+1,𝑗)−𝑃𝑥(𝑖−1,𝑗)

𝜕𝑥
) + (

𝑃𝑧(𝑖,𝑗+1)−𝑃𝑧(𝑖,𝑗−1)

𝜕𝑧
)] −

1

𝜀𝑟(𝑖,𝑗)
[(
𝜀𝑟(𝑖+1,𝑗)−𝜀𝑟(𝑖−1,𝑗)

𝜕𝑥
) (

𝜙(𝑖+1,𝑗)−𝜙(𝑖−1,𝑗)

𝜕𝑥
) + (

𝜀𝑟(𝑖,𝑗+1)−𝜀𝑟(𝑖,𝑗−1)

𝜕𝑧
) (

𝜙(𝑖,𝑗+1)−𝜙(𝑖,𝑗−1)

𝜕𝑧
)] +

1

4
(
𝜙(𝑖+1,𝑗)+𝜙(𝑖−1,𝑗)

𝜕𝑥2
+
𝜙(𝑖,𝑗+1)+𝜙(𝑖,𝑗−1)

𝜕𝑧2
)]              Equation 1.71 

Here, relaxation or (iterative finite difference) approach connected to the variational 

method to the problem brings robustness and monotonic approach to solution. 

Electrostatic potential as given above, 𝐸𝑥 = −
𝜕∅

𝜕𝑥
  and 𝐸𝑧 = −

𝜕∅

𝜕𝑧
. The Gauss’s Law 

determines the electric field where the equation turns into Laplace’s equation: 

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
= ∇2𝜙 = 0    Equation 1.72 

where it means that the concavity of 𝜙(𝑥, 𝑧) function move upwards along the given 

direction, this expansion is compensated by opposite direction concavity. As known, 

numerical solution of Laplace equation in two-dimension electrostatic potential utilizes 

non-zero 𝑑𝑥 and 𝑑𝑧 second derivatives. Symmetric evaluation of the function starts with 

the first derivative where: 

𝜕𝜙

𝜕𝑥
≈

𝜙(𝑥+1
2
𝜕𝑥)−𝜙(𝑥−1

2
𝜕𝑥)

𝜕𝑥
    Equation 1.73 

𝜕𝜙

𝜕𝑧
≈

𝜙(𝑥+1
2
𝜕𝑧)−𝜙(𝑥−1

2
𝜕𝑧)

𝜕𝑧
    Equation 1.74 

𝜕2𝜙

𝜕𝑥2
≈

𝜙(𝑥+𝜕𝑥)−𝜙(𝑥−𝜕𝑥)−2𝜙(𝑥)

𝜕𝑥
   Equation 1.75 

𝜕2𝜙

𝜕𝑧2
≈

𝜙(𝑧+𝜕𝑧)−𝜙(𝑧−𝜕𝑧)−2𝜙(𝑧)

𝜕𝑧
   Equation 1.76 
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By plugging the both results evaluated as square and cross form from Eq.1.71 and Eq. 

1.72 in the 𝜙(𝑥, 𝑧): 

𝜙𝑐𝑟𝑜𝑠𝑠(𝑥, 𝑧) =
𝜙(𝑥+𝜕𝑥,𝑧)+𝜙(𝑥−𝜕𝑥,𝑧)+𝜙(𝑥,𝑧+𝜕𝑧)+𝜙(𝑥,𝑧−𝜕𝑧)

4
  Equation 1.77 

𝜙𝑠𝑞𝑢𝑎𝑟𝑒(𝑥, 𝑧) =
𝜙(𝑥+𝜕𝑥,𝑧+𝜕𝑧)+𝜙(𝑥−𝜕𝑥,𝑧−𝜕𝑧)+𝜙(𝑥−𝜕𝑥,𝑧+𝜕𝑧)+𝜙(𝑥+𝜕𝑥,𝑧−𝜕𝑧)

4
Equation 1.78 

In any point, using Eq.1.63, average potential of the adjacent sites is obtained. 

Averaging of the electrostatic scalar potential could be inadequate to comprehend, so that, 

instead averaging values at the cross points of the given integers, square of the given 

integers substituted by particular weighted Taylor expansion where[110] : 

𝑓(𝑥)𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
4

5
 𝜙𝑐𝑟𝑜𝑠𝑠(𝑥, 𝑧) +

1

5
𝜙𝑠𝑞𝑢𝑎𝑟𝑒(𝑥, 𝑧)  Equation 1.79 

 

  is the spatial total charge density and consists of electrons and ionized ions that donate 

these electrons in the electrode: 

 𝜌 = 𝑞(−𝑛− + 𝑝+ + 𝑁𝐷
+)   Equation 1.80 

1.2.1.1 Homogeneous polarization approximation 

 In the course of the work, we noticed that there are additional complications that 

arises from possible inhomogeneities in the ferroelectric polarization of the tunnel 

junction. To be able to provide an overall view of the connection between the 

magnetoelectric coupling occuring due to spin dependent screening and polarization 

strength, we first assume a linear connection between the electric field and a uniaxial 

polarization inside the ferroelectric layer via 

𝐷𝑧 = 𝜖𝑜𝜖𝑏𝐸𝑧 + 𝑃𝑧 and 𝑑𝑖𝑣𝐷𝑧 = 0   Equation 1.81 

where we assign the polarization any value between -0.3 and 0.3 C/m2 that are well within 

the range of the zero field calculated values for homogeneously strained thin FE films 

between electrodes. Note that these values might or might not correspond to equilibrium 

(hence we call is “imposed” or “non-equilibrium” polarization) and a homogeneous 

profile of polarization across the film thickness is supposed. Despite this, the relevant 
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depolarizing field effects and their connection with the spin dependent screening under 

any bias value can be calculated: one only needs to solve tholue electric field, EZ 

everywhere inside the FM electrodes and FE. This assumption is valid for the bias 

duration being much less than polarization relaxation of the FE. Inside the FM electrodes, 

Eqs. 1.59 and 1.62 hold. To demonstrate a TJ with a linear dielectric, one only needs to 

drop the Pz term in Eq. 1.62 and replace 𝜖𝑏 with 𝜖𝑟, namely the relative dielectric constant 

of the dielectric. We skip the case of a dielectric TJ as this is well understood since 1990s 

where a releatively weak dependence on the dielectric constant of the TJ is expected. On 

the other hand, the reported bias dependence of the TMR behavior of dielectric TJs are 

somewhat paralell with that of a FE TJ as we shall show here with the difference that the 

latter has much greater on/off current ratios.  

1.2.1.2 Polarization obtained from thermodynamic equation of state 

While the electric field is connected to the dielectric properties of the electrodes 

and FE via Eqs. 1.59 (for 𝜌 = 0) and 1.61., Landau-Ginzburg Eqs. of state for polarization 

also have to be solved in the FE layer: 
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Equation 1.83 

and simultaneously satisfy Eq. 1 when 𝜌 = 0 To avoid any apriori assumptions on the 

direction of FE polarization, we considered an in-plane component of polarization, Px in 

addition to the out-of-plane component due to size effects and possibility of domain 

formation in the TJ. We, however, find a single domain uniaxial state that has been 

demonstrated in experiments focusing on tunnelling resistance. Note that thermodynamic 

stabilization of a single domain state in ultrathin FE layers can be expected due to the 

energy cost of the domain wall formation in such structures that was even reported in 

ferroelectric/paraelectric superlattices [89, 90, 111]. Hence, for sufficient compressive 

strains (> -1% or more here), one can safely eliminate the component Px in Eqs. 1.82 and 
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1.83 and solve it only for Pz in the limit of uniaxial FE polarization. In Eqs. 1.82 and 1.83 

𝛼3
𝑚,  𝛼13

𝑚, 𝛼33
𝑚, 𝛼1

𝑚, 𝛼11
𝑚, 𝛼12

𝑚, are the renormalized phenomenological 

thermodynamic coefficients [102] in SI units with 
m

1  and 
m

3  being 𝛼1
𝑚 =

𝛼(𝑇 − 𝑇𝑐) − 𝑢𝑖𝑗
𝑀(𝑄11 + 𝑄12)/(𝑆11 + 𝑆12) and 𝛼3

𝑚 =  𝛼(𝑇 − 𝑇𝑐) − 2𝑢𝑖𝑗
𝑀𝑄12/(𝑆11 +

𝑆12)  due to renormalization with misfit strain where 𝛼 = (2𝜀0𝐶)
−1, 𝛼12

𝑚 and 𝛼33
𝑚 

contain the clamping effect of the film, while  𝛼111, 𝛼112, 𝛼123 are the dielectric stiffness 

coefficients in the bulk, 𝑢𝑖𝑗
𝑀  is the misfit strain tensor for a cubic structure and is taken 

here either as -1.25% or -1.5%(negative here meaning compression) that keeps the FE 

polarization along the normal of the stack plane. The two different misfit values produce 

different polarization amplitudes allowing us to study the effect of this parameter on spin 

polarization of the tunneling currents. In Eqs. 1.82 and 1.83, G is the gradient energy 

coefficient and is assumed to be isotropic for convenience. All the phenomenological 

coefficients used in the thermodynamic calculations are for BT and are compiled from 

Ref. [102]. The polarization boundary conditions at the LHS and RHS interfaces are 

important as previously discussed [112, 113] and can be expressed as 

[𝑃𝑧 + 𝜆
𝑑𝑃𝑧

𝑑𝑧
]
𝑧=

𝐹𝑀

𝐹𝐸
.
𝐹𝐸

𝐹𝑀

= 0,  [𝑃𝑥 + 𝜆
𝑑𝑦𝑃𝑥

𝑑𝑧
]
𝑧=

𝐹𝑀

𝐹𝐸
.
𝐹𝐸

𝐹𝑀

= 0  Equation 1.84 

with z indicating the coordinates for left FM/FE and right FE/FM interfaces,  is the 

extrapolation length determining the extent of the change of polarization along the film 

normal at the interface and is a parameter implying how polarization terminates at the 

interfaces (taken as 3 nm here based on previous reports [114] ).  
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Table 1.2:Material parameters and thermodynamic coefficients for BTO and STO used 

in the calculations[102] 

. 

1.2.2 Resistive Switching in Metal/Ferroelectric/Semiconductor 

Junctions 

The destructive read-out (DRO) FeRAM devices utilizes ferroelectric layer as capacitor 

incorporating into complementary metal-oxide-semiconductor transistor. CMOS 

transistor isolates each memory cell, to distinguish individually as bits. Data storage is 

read as charge where the polarization direction of the ferroelectric in the capacitor. When 

the data is read DRO, polarization state is changed from positive to negative remnant 

polarization or vice versa. Every data reading process must restore the polarization state 

whereas in the non-destructive (NDRO) architecture; ferroelectric layers work as gate 

material in the transistor, thus no additional capacitor elements is added to the circuitry. 

Data is read through the surface conductivity of the silicon which is controlled by the 

remnant polarization of the ferroelectric layer. Differing from the DRO FeRAM devices, 

readout process does not create fatigue problems in NDRO devices. 

Due to its simple structure, low switching voltage (RRAM) stands out due to its simple 

structure, low switching voltage, fast switching speed, stability and CMOS compatibility, 

resistive switching memory became prominent candidate among various emerging 

Parameters SrTiO3 BaTiO3 

Lattice parameter (nm) 0.3904 0.4004 

TC (°C) -250 130 

C (105 °C) 8×105 1.5×105 

α11 (N m6/C4) 6.8×109 3.6×(T-175) ×108 

α12 (N m6/C4) 2.74×109 -0.0345×108 

α111 (N m10/C6) 0 6.6×109 

α112 (N m10/C6) 0 18.14×108 

α123 (N m10/C6) 0 -7.45×109 

S11 (10-12 N/m2) 5.546 8.3 

S12 (10-12 N/m2) -1.562 -2.7 

S44 (10-12 N/m2) 9.24 9.24 

Q11 (m
4/C2) 0.0457 0.11 

Q12 (m
4/C2) -0.0135 -0.043 

Q44 (m
4/C2) 0.00975 5.165×10-2 

g (10-10 J m3/C2) 6 6 

NV, NC 1025, 1025 1025, 1025 

EV, EC, ED (eV) -7.1, -3.9, -4.0 -6.72, -4.0, -4.1 
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memory technologies[115, 116]. Resistive switching is an physical phenomena where the 

resistance changes of the material under external electric field. One of the featured 

property of this process is that the resistive switching is reversible and repeatability.  

 

Figure 1.16 a-d) Resistive switching is shown in electronic level. e) I-V curve for resistive 

switching junctions. It shows resistance changes where the voltage is applied to the 

junction, current flow increases up to limit to set the area which is called LRS, when 

voltage is swept through the system, junction first goes “RESET, then HRS state. 

Resistive switching memory devices consist of electrode/oxide/electrode. Switching from 

high resistance state (HRS) to low resistance state (LRS) is known as “SET” (1).  

Reversing the resistance state from low to high is called as “RESET” (3). Switching 

modes could be generalized into two switching modes: unipolar and bipolar. In unipolar 

mode; switching occurs at same polarity (SET/RESET), whereas in bipolar switching, 

SET can be observed in one polarity and RESET in the other (Fig.1.16) 

Unipolar mode is acquired with noble metals such as Pt, Ru as both electrode sides. If the 

system is composed of oxides, charge traps and oxygen vacancy migration activated 

through the external electric field.  

 

Figure 1.17 Unipolar and bipolar resistive switching [117] 
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We also reported results on the variation of Schottky effect in sol-gel processed Ba1-

xSrxTiO3 films (BST, x =0, 0.5) grown on 0.5% Nb doped SrTiO3 semiconductor 

substrates with top Pt electrodes (NSTO/BST/Pt) [118]. I-V measurements has also 

showed magnitude of the leakage and hystereses depending on the Sr concentration in 

BaTiO3 films. It was also emphasized on the current-voltage (I-V) characteristics of our 

samples in the context of thermodynamic theory of ferroelectrics coupled with equations 

of semiconductors. Our calculations give rise to unambiguously determine the electronic 

character of the defects and related band bending effects in BT and BST samples. 

Amplitude of the ferroelectric polarization, which is a function of strontium content in 

BT, has a strong impact on leakage currents in forward bias while this effect is much 

weaker under negative bias. In the case of polarization pointing away from NSTO 

semiconducting substrate, carriers are being depleted at the NSTO interface which 

increases the resistance through the stack (Fig. 1.18). Such condition also generates larger 

energy gap between the Fermi level and the conduction bands of the films, thus reducing 

the bulk conduction through the film as well Leakage currents in thicker ferroelectric 

films also shows significant symptoms of NDRO depending on the polarization direction.  

 

Figure 1.18 Computational flat-band results obtained from thermodynamic theory for a) 

BT and BST 5050 under 0 V bias and b) when under 0.5 V bias. Notice how the CB of 

BT “submerges” into the Fermi level (EF) under 0.5 V for this composition (under 

positive bias). The shaded regions indicate the locations of free electron accumulation. 

The green arrow in (a) and (b) indicates the direction of polarization. BST 5050 is only 

slightly influenced by the positive bias with lower conduction currents expected than that 
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of in BT as also observed in experiments. Also note that the energy scales are different in 

(a) and (b) due the amount of band bending being different in both plots. 

(CB: Conduction band, VB: Valence band.) 

High quality sol-gel grown BT and Ba0.5Sr0.5TiO3 thin film samples is discussed the 

switchable Schottky effect that is accompanied by resistive switching using experimental 

and theoretical methods. Analysis of the experimental data in light of the thermodynamic 

simulations where the FE films are treated as wide bandgap semiconductors explain the 

asymmetry in the I-V curves and the current hystereses observed under positive bias that 

is a function of Sr composition. Thermodynamic calculations show that the conductivity 

of the films under the positive bias will be bulk limited and a strong function of the 

“polarization strength”, that is determined here mostly by the Sr content of the film. In 

addition to the experimental work mentioned above, under positive bias, various leakage 

measures for BT and BST films is also approved by thermodynamic theory 

approximation. The depth of charge depleted and accumulated regions in NSTO 

substrates directly correlated to the ferroelectric polarization strength. Moreover, 

hysteresis in I-V plots reveals that the effect of the stronger polarization of BT than in 

BST50.  
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Figure 1.19 (a) Plot indicates the switching in high and low resistance states.  (1) and (4) 

correspond to high-resistance and low resistance states respectively during the positive 

up-sweep and down-sweep. Switching from “up polarization” to “down polarization” 

occurs at (2). Almost no hysteresis occurs during (5) and (6) as polarization direction in 

the negative bias is fixed according to our thermodynamic calculation results. b) I-V 

quasi-static measurements in BT and BST 5050 films. Notice the hystereses in the 

positive bias regime of the BT. The up arrow indicates the jump in conductivity at the 

bias when polarization switches and starts pointing towards the NSTO interface while 

applying positive bias to top electrode. The arrow pointing down near zero bias indicates 

diminishing current while approaching zero bias after the max positive bias was already 

applied. (c) Schematic to demonstrate the direction of polarizations deduced from the 

experiments and thermodynamic calculations. Black arrow simply the polarization 

direction during the triangular bias-sweep (blue arrows). The vertical blue dashed lines 

denote the bias values where switching occurs during the sweep. Switching from “down 

polarization” to “up polarization” occurs at 2 as indicated in (a). 

As polarization pointing away from NSTO surface (negative bias), space-charge region 

in NSTO is depleted where the leakage values are apparently low. Polarization strength 

also controls the conduction where the band-bending and carrier concentration in the 

(c) 



 

 

38 

 

conduction band of FE films and bulk conduction. When the direction of ferroelectric 

polarization pointing towards the NSTO, and away from Pt electrode (positive bias), 

NSTO is in accumulation state, bulk conductivity inside the film occurs when the 

conduction band of the films enter into the Fermi level. Finite penetration length of the 

electric field into electrode layers. Mechanism lying behind electric field penetration from 

FE layer is a prominent explanation for leakage, resistive switching and the hysteresis in 

I-V curves. Dynamic and quasi-static I-V measurements are supported the 

thermodynamic simulations. Ferroelectric phase stability directly affected by the defect 

sites such as inhomogeneities and local conductive areas in the thing films. The impact 

of local microstructural properties on the results was not directly related to the finding 

where the characteristics of interface of film/electrode was referred to electronic 

interactions. Our results also indicated that the resistive switching is not limited in tunnel 

junctions but also observed in thicker films.  

Table 1.3 shows various experimental works with differing proposed mechanism. In 

thicker films (>8 nm) where the quantum tunneling rapidly decays, bulk conductivity 

starts to dictate the system as long as the function of polarization direction based 

uncompensated charges at the FE/electrode interface exist.  

Ferroelectric tunneling has been functionalized by replacing metal electrodes with 

ferromagnetic ones which transforms the junction into “composite multiferroic”[119, 

120]. Previously mentioned, composite multiferroics have higher magnetoelectric 

coupling values than single-element multiferroics.  
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Table 1.3 Review of experimental results of tunneling resistance with FTJ 
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1.3 Multiferroic Heterojunctions and Tunnel Junctions (MFTJ) 

The interplay between magnetic and electric field was first observed by Roentgen[128] 

where a dielectric moving body under the influence of electric field has indicated 

magnetization.  

Debye also pronounced “magnetoelectric” term in 1926 [129] and years after, generalized 

theory of continuous phase transitions of Landau which testifies that the ferroelectric 

order could occur under symmetry breaking operations via spin structure, in other words, 

coupling between electric polarization and magnetic order in time asymmetric media 

proposed by L. D. Landau and E. Lifshitz [130, 131]. Works of Dzyaloshinskii on 

magnetic symmetry showed that magnetoelectric effect could be experienced on 

antiferromagnetic Cr2O3 [132], which were followed by electric field induced 

magnetization and magnetic field induced electric polarization experiments [133, 134]. 

Ferroic [135, 136] term was first pronounced by Aizu but later on, correlatively refers for 

the crystals which have equivalent transition under proper external forces such as stress, 

magnetic or electric field. Under these external forces, domain structure of these crystals 

response as spontaneous deformation, magnetization, and polarization, respectively.  

In fact, single phase multiferroics are known as a material that has more than one ferroic 

parameter as mentioned, ferroelectricity, ferromagnetism or ferroelasticity (Fig.1.20). In 

contrast, the magnetoelectric coupling may emerge from magnetic-electric field 

interaction of the material or mediately several combined order parameters such as 

magnetostriction or piezoelectricity as a product of strain.  

Mechanism of ferroelectricity is contradictory with the magnetic order in materials where 

d shells must be half-filled whereas d shell of ferroelectrics is empty or full-filled where 

covalent bonding formation arise [137, 138]. A number of studies about multiferroics has 

been conducted in consideration of these inferences between the late 1950s to 1980s [139-

141]. However; these efforts had only shown the scarcity of single phase magnetoelectric 

multiferroics. Ni3B7O13I was the first multiferroic compound which ferromagnetic and 

ferroelectric behavior was observed simultaneously [142].  Experimental and theoretical 

on new perovskite type compounds such as Tb based TbMnO3, TbMn2O5 [143, 144], 
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YMnO3 [145] and Ni3V2O8 [146] paved the way for ‘renaissance’ of the magnetoelectric 

multiferroics [147]. 

Nonetheless, several magnetoelectric multiferroic research pointed out that most of the 

compounds are active below room temperature which limits their utilization in device 

application. Discovery of  the multiferroic BiFeO3 and its growth as epitaxial thin films 

made this material the first single-phase multiferroic with one of the highest Curie (1100 

K), Neel (650 K) temperatures [148]. Magnetoelectric response of BiFeO3 is above 

average of previous multiferroic materials [148, 149]. Many groups have been spending 

much effort to shed light on the structure and theoretical understanding [150-159], 

experimental techniques[160-162], and future of BiFeO3 but, magnetoelectric and 

ferroelectric responses of BiFeO3 are inadequate for attributed spin-controlled or 

spintronic device and applications. 

 

Figure 1.20 a) Classification of insulating oxides in the context of magnetic and electrical 

properties [163] and b) interaction in between stress, electric field, and magnetic field 

give rise to several coupling effects.[164] 

Single-phase magnetoelectric multiferroics were categorized[165] as mainly Type I and 

Type II which are: 

Type I Multiferroics: These elements of multiferroics are old members of ferroelectrics 

family. Critical transition temperatures of these materials are above room temperature and 

differ from each other which occurrence of both orders simultaneously beclouded, 
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therefore coupling between magnetic and ferroelectric order appears moderately weak. 

Type I multiferroics are parsed in three subclasses by ferroelectric ordering and 

mechanism:  

a. Ferroelectricity due to lone pairs: Cation located with differing valency at A 

site of this class (Bi3+, Pb3+, etc.) has 6s orbital electrons which are not bonded. 

They are called “lone pair”. These electrons are a source of ferroelectricity due to 

the capability to polarize the crystal. Another cation located at B site (Fe3+, Mn3+, 

Ni2+, etc.)  is a source of magnetism where d-shell of these transition metals are 

partially filled. Major examples of this subclass are BiFeO3, PbVO3, BiMnO3.  

b. Ferroelectricity due to charge ordering: Charge ordering occurs in 

Pr0.5Ca0.5MnO3[166-168], TbMn2O5[143, 144] and RNiO3[169, 170] due to the 

variation in valence states of transition metal cations of given compositions. 

Inequivalent charge and bonding leads to ferroelectricity in this group of 

materials. 

c. Geometric Ferroelectricity: Imposed ferroelectricity is observed in manganite 

perovskites such as YMnO3 due to the tilting in MnO5 promotes closer packing 

and oxygen ions tilted to Y ions or displacement of Y ion.  Hence, unequal charge 

distribution is concluded as dipole generation. 

Type-II multiferroics: Magnetic multiferroics: Here, existence of ferroelectricity 

emerges due to magnetic ordering of the multiferroic compound which differs from Type-

I multiferroics. Type II multiferroics can develop moderately low electric polarization 

under magnetic field. This group is divided into: 

a. Spiral type-II multiferroics:  TbMnO3, Ni3V2O6, and MnWO4 are well-known 

members of this group where the ferroelectric order induced by spin-orbit 

coupling. Sinusoidal spin flop rotation through the spiral-shaped propagation 

provoke non-zero electric polarization lies perpendicular to the propagation of 

wave vector.   

b. Collinear magnetic structures: Ferroelectricity arises under magnetic moment 

alignment along the axis, by exchange striction, since intermediate oxygen 

distances due to different valences of transition metal and metal-oxygen bond 
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angles forms exchange striction. Magnetic ordering form inversion symmetry 

breaking behavior. Well-known example of collinear magnetic structure is 

Ca3CoMnO6[171, 172].   

1.3.1 Magnetoelectric Coupling 

Magnetoelectric coupling term involves material polarization under magnetic field or 

magnetization under an electric field.  L.D. Landau laid the theoretical foundations of 

magnetoelectric coupling effect[130] in the context of free energy, F of a system where 

is represented as homogenous and stress-free under the external electric field, E and 

magnetic field, H which is 

−𝐹(𝐸,𝐻) =
1

2
𝜀0𝜀𝑖𝑗𝐸𝑖𝐸𝑗 +

1

2
𝜇0𝜇𝑖𝑗𝐻𝑖𝐻𝑗 + 𝛼𝑖𝑗𝐸𝑖𝐻𝑗 

+
𝛽𝑖𝑗𝑘

2
𝐸𝑖𝐻𝑗𝐻𝑘 +

𝛾𝑖𝑗𝑘

2
𝐻𝑖𝐸𝑗𝐸𝑘 +⋯   Equation 1.85 

where 𝜀0 is permittivity of vacuum and 𝜇0 is permeability of vacuum. 𝜀𝑖𝑗 and 𝜇𝑖𝑗 are 

relative dielectric constant and magnetic susceptibility, respectively.  𝛼𝑖𝑗 tensor 

corresponds to first order magnetoelectric coupling coefficient where the electric 

polarization induced by a magnetic field or vice versa. 𝛽𝑖𝑗𝑘 and 𝛾𝑖𝑗𝑘 tensors are quadratic 

magnetoelectric coupling coefficients. 𝐻𝑖, 𝐻𝑗,𝐻𝑘 are denoted as components of applied 

magnetic field and applied electric field whose components are denoted as 𝐸𝑖, 𝐸𝑗,𝐸𝑘 . 

Derivative of the free energy with respect to electric field results in polarization, P 

(µC/cm-2)) 

𝑃𝑖 = −
𝜕𝐹

𝜕𝐸𝑖
    Equation 1.86 

𝑃𝑖 = 𝛼𝑖𝑗𝐻𝑗 +
𝛽𝑖𝑗𝑘

2
𝐻𝑗𝐻𝑘 +⋯   Equation 1.87 

A derivative of the free energy with respect to magnetic field results in magnetization, M 

(µB per formula unit (f.u.)) 

𝑀𝑖 = −
𝜕𝐹

𝜕𝐻𝑖
    Equation 1.88 

𝜇0𝑀𝑖 = 𝛼𝑗𝑖𝐸𝑗 +
𝛾𝑖𝑗𝑘

2
𝐸𝑗𝐸𝑘 +⋯  Equation 1.89 
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Derivations are given above (Eq. 1.85-1.89) show the correlation and interaction between 

multiferroic, ferroelectric and ferromagnetic materials. Ferroic material responses to E 

and H indicate hysteretic behavior. By considering substantial depolarizing and 

demagnetizing field effect for ferroelectric and ferromagnetic materials respectively, 

coupling constants are function of temperature.  

In the single phase multiferroics, magnetoelectric coupling coefficient, 𝛼𝑖𝑗  strongly 

coupled to dielectric constant and magnetic susceptibility[173]: 

𝛼𝑖𝑗
2 ≤ 𝜀0𝜇0𝜀𝑖𝑖𝜇𝑗𝑗     Equation 1.90 

This equation (Eq.1.90) derived from Eq. 1.89 where first three terms are compelled to 

greater than zero value. One should notice that  𝜀𝑖𝑗 and 𝜇𝑖𝑗 are limiting factor on phase 

stability where drastic increase of the coupling value inclines more stable phase. New 𝜀𝑖𝑗, 

𝜇𝑖𝑗 and  𝛼𝑖𝑗 are assigned to the system according to the transformed phase. On the other 

hand, high order coupling constants 𝛽𝑖𝑗𝑘 and 𝛾𝑖𝑗𝑘 have no restriction and in some cases 

linear term 𝛼𝑖𝑗𝐻𝑗  could be dominated by 𝛽𝑖𝑗𝑘𝐻𝑗𝐻𝑘.  

Non-zero 𝛼𝑖𝑗 values could be only obtained non-centrosymmetric and time-asymmetric 

materials.  Symmetry elements are vital to elicit magnetoelectric behavior. One can 

simply be mistaken by presupposition of that all linear magnetoelectric term, 𝛼𝑖𝑗𝐸𝑖𝐻𝑗 

containing magnetoelectric materials must be multiferroic. The reverse case is also true: 

All multiferroics does not have to be magnetoelectric. Linear magnetoelectric effect of 

BiFeO3 converges to zero and only quadratic effect is active[174], or  symmetry restraint 

on  hexagonal REMnO3  restricts linear magnetoelectric effect[175]. These materials are 

ferroelectric and have antiferromagnetic Mn3+ ion alignment at below Neel temperature.  

Magnetoelectric responses of single phase multiferroics are inadequate for attributed 

spin-controlled or spintronic device and applications. This restriction led pursuit of 

enhancing magnetoelectric coupling via composite materials. Eq. 1.89 as limiting factor 

is boosted via two different optimized ferroelectric-ferromagnetic layers. 

Magnetoelectric coupling in composite materials materialize in various interfacial 

mechanisms: 

a. Strain-mediated magnetoelectric coupling 
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b. Charge-mediated magnetoelectric coupling  

c. Exchange bias mediated coupling 

1.3.1.1 Strain-Mediated Magnetoelectric Coupling 

Strain mediated coupling is product of magnetostrictive effect for magnetic medium and 

piezoelectric effect for piezoelectric media. Simply direct and converse magnetoelectric 

effect pronounced as follows[176]: 

𝐷𝑖𝑟𝑒𝑐𝑡 𝑚𝑎𝑔𝑛𝑒𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑓𝑓𝑒𝑐𝑡 (𝛼𝐻) =
𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
×
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
          Equation 1.91 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑒 𝑚𝑎𝑔𝑛𝑒𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑓𝑓𝑒𝑐𝑡 (𝛼𝐸) =
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
×
𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐
      Equation 1.92 

From Eq. 1.91 and 1.92 one can single out that large magnetoelectric coupling values 

could be reached by juxtaposing high electrostrictive and magnetostrictive materials. 

External electric field applied ferroelectric material with high electrostriction will alter its 

shape and transfer the strain to the high inverse magnetostrictive ferromagnetic surface 

which will change its magnetic anisotropy (Fig. 1.21). FeGaB/Pb(Zn1/3Nb2/3)O3-0.06 

PbTiO3(PZN-0.06PT)[177], Ni/(011)-PMN-0.32PT[178], Terfenol-D/PZT[179], 

Fe3O4/PZN-PT[180], CoFe2O4/BiFeO3[181], LCMO /PMN-PT[182] are numerous 

demonstrated strain mediated magnetoelectric coupled FE-FM interfaces in the literature.  

 

 

Figure 1.21 Strain mediated magnetoelectric coupling in composite systems composed 

ferroelectric and magnetic layers a) direct ME effect b) converse ME effect 
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As seen in the figure (Fig. 1.22a) structural phase transitions of BaTiO3 substrate 

influences coercivity of Fe due to lattice distortions at the interface. The highest change 

(%24) in the coercivity responses were obtained at orthorhombic-rhombohedral phase 

transition. This hysteretic effect under electric field (Fig 1.22b-d) related to complex 

domain switching behavior of orthorhombic and rhombohedral phases of BaTiO3 unlikely 

tetragonal phase of BaTiO3 is an attempt to control magnetization orientation thermally. 

 

 

 

 

 

  

 

 

 

 

Figure 1.22 a) Temperature dependent magnetization change upon phase transition of 

BaTiO3 b) Phase-dependent E-Hc diagram for rhombohedral, orthorhombic and tetragonal 

phases,  respectively [183].  

 

Reported relevant example is 40-nm-thick-LSMO-BTO substrate stack [182]. BTO non-

centrosymmetric phase at room temperature exhibiting in-plane (a-domain) and out-of-

plane (c-domain) domain structure under zero electric field. Under external electric field, 

in-plane domains switch to the c-domain orientation (Fig.1.23a). 

Generated local stress due to domain switching exerts strain coupling at the interface of 

the sample and magnetic fluctuation is observed at the LSMO surface (Fig 1.23b-c). 

Another important result of this work; magnetoelectric coupling value of this 

heterostructure values, 2.3x10-7 s m-1 which is greater than all single phase multiferroic 

materials.  
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Figure 1.23 a) Diffraction data of domain switching in BTO sample b)Magnetization 

change under applied electric field c) Magnetoelectric coupling variation under applied 

electric field via domain structure of BTO[182] 

FeRh/BTO interface is another example of strain induced magnetoelectric coupling[184]. 

Lattice distortions on FeRh are strongly effective on phase transitions[185], where 

orthorhombic-rhombohedral phase transitions of BTO incline ferromagnetic-

antiferromagnetic phase transition upon large strain on Ga doped FeRh [186] and there 

are additional supporting results of electric field control of FeRh/BTO interface via strain 

transfer [187, 188]. a to c domain switching of ferroelectric layer resulted in AFM phase 

of FeRh due to compressive strain and the highest inverse ME coupling coefficient 

1.6x10-5 s m-1.  

1.3.1.2 Exchange Bias Mediated Coupling  

Exchange bias emerges from exchange anisotropy between a stack of ferromagnetic (FM) 

-uncompensated FM layer of antiferromagnetic (AFM) interfaces via cooling regime of 

cooling from Curie temperature (TC) of ferromagnet to below Neel temperature (TN) of 
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antiferromagnet. Exchange bias field (HEB) arises from interfacial energy difference of 

two opposite orientations at FM layers (Eq.1.93).   

𝐻𝐸𝐵 =
∆𝜎

2𝑀𝐹𝑀𝑡𝐹𝑀
=

2𝐽𝑒𝑥

𝑎2
   Equation 1.93 

where ∆𝜎, interfacial energy difference between two oppositely oriented FM layers, 𝑀𝐹𝑀, 

magnthe etization of the ferromagnet, 𝑡𝐹𝑀, thicknethe ss of the ferromagnet, a is the lattice 

parameter and  𝐽𝑒𝑥 is exchange coupling across the interface. Magnetic hysteresis shifts 

unidirectional anisotropy induced directional exchange energy at zero field. In other 

words, compensated AFM interface has no exchange field as a result of ∆𝜎 = 0 

condition[189].  

Another proposed mechanism asserts exchange field for compensated surfaces, where 

AFM domain size and roughness results in non-zero exchange field under compensated 

charge condition, which  

∆𝜎 =
4𝑧𝐽𝑒𝑥

𝜋𝑎𝐿
     Equation 1.94 

𝐻𝐸𝐵 =
2𝑧𝐽𝑒𝑥

𝜋𝑀𝐹𝑀𝑡𝐹𝑀𝑎𝐿
      Equation 1.95 

where L is the size of the AFM domains, and z is the order of unity[190].  In the presence 

of electric field while cooling, uncompensated FM spins of AFM layer, which are located 

next to FM layer, align accordingly to FM spin orientation via exchange coupling.  When 

the opposite field is applied, rotation change is observed, AFM spin configuration remains 

constant. FM spins stand stable and ferromagnetic configuration owing to microscopic 

torque applied by AFM spins. Once field rotation has gone back to original state, AFM 

spins expedite the rotation of FM spins due to unidirectional torque.  FM hysteresis loop 

reveals shift as if a biasing field is applied (Fig. 1.24). This behavior could be defined as 

exchange bias [191, 192] 

There is a certain amount of work to realize exchange bias effect experimentally by 

coupling different surfaces where BiFeO3/CoFe heterostructures have achieved 

promising results [193, 194]. Coupled AFM and FE polarization of BiFeO3 gives control 

of AFM spin rotation via an electric field. Rotation of AFM moments ends up with the 

switching of FM layer. In-plane and out-of-plane FE polarization switching reverse the 
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oxygen octahedra where canted FM moments and  Dzyaloshinskii-Moriya vectors are 

switched and mediately 180° magnetization reversal occurs. [194]  

 

Figure 1.24 Spin configuration of FM-AFM heterostructure of an exchange biased 

hysteresis loop upon magnetization 

1.3.1.3 Charge-Mediated Magnetoelectric Coupling 

The mechanism in interfacial charge mediated artificial multiferroic structures resemble 

field-effect-transistor (FET) composed of ferromagnetic (FM) and ferroelectric (FE) layer 

where polarization charges induce magnetic properties via electron/hole density and 

density of states of the magnetic layer. Similarly, polarization charges at the gate screened 

by charge carriers which results in accumulation/depletion through the layer thickness 

governed by Thomas-Fermi screening length. 

Electrostatic control of magnetism in diluted magnetic semiconductors (DMS), complex 

oxide and transition metal magnets would be crucial for the technological and scientific 

approach to recent advances in spintronics. By applying an electric field, conductivity and 

charge density varies in semiconductors where ferromagnetic materials, mostly transition 

metals and alloys, which are good conductors with high carrier concentration, cannot be 

manipulated via charge accumulation/depletion at room temperature.  When DMS or 

magnetic complex oxides with low carrier concentration is layered with FE interface, 

problem of control of magnetic anisotropy carrier concentration at room temperature 

could be achieved.  

Modifying magnetic moment distribution via imperfect screening of FM layer occurs due 

to spin-dependent screening with respect to Coulomb and exchange interactions.  Electric 
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field induced spin imbalance[195] and mediately change in magnetoelectric coupling 

coefficient was elucidated by experimental and ab-initio calculations on bcc Fe (001), Ni 

(001) and hcp Co (0001) [196] where planar charge density over screening characteristics 

of ferromagnetic metal determines surface density of states under control of exchange 

splitting in ferromagnetic metal, and spin-dependent charge screening become obvious 

(Fig. 1.25b). In addition to this, SrRuO3/SrTiO3/SrRuO3 heterostructure (Fig. 1.25a), 

similarly, magnetic response is function of dominating spin-polarized charge according 

to the sign of  electric field  [197]. External field effect could be supplied by ferroelectric 

layer as previously mentioned resulting in change of surface magnetization by screening 

charges. Ab-initio study of SrRuO3 (SRO)/BTO interface[198] where magnetic moment 

modified 0.32 µB per Ru atom has shown that the screening charges arises from 

ferroelectric switching, contributes significantly exchange splitting by filling the spin-

dependent bands which is concordant with Stoner model (Fig.1.26a-b). 

  

 

 

Figure 1.25 a) SrRuO3/SrTiO3/SrRuO3 heterostructure under external static and high 

frequency electric field [197] b) Average electron density with respect to free-standing 

2.1 nm-thick Fe film under external electric field (E=0.1 V/nm). Dashed blue line 

represents minority spin electrons where red solid line represents majority spins. 

Obtained results confirm the effect of charge carriers or polarization switching on 

ferromagnetic oxide surfaces since ferromagnetic LSMO layer has 1021 holes cm-3 which 

its screening length is few atomic layers [199]. 

b) 
a) 
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Figure 1.26 a) Sketch of SRO-BTO heterostructure[198] with respect to different 

polarization directions b) Change in spin density of Ru atoms according to polarization 

direction c) non-spin polarized and d) spin-polarized local density of states (DOS) of Ru 

3d orbitals which are responsible of itinerant magnetization in SRO layer. Solid blue lines 

represent the condition of polarization direction towards to SRO surface where red dotted 

lines represent the condition of polarization away from SRO surface. Grey shaded area 

symbolizes the bulk DOS of Ru 3d. 

Additional artificial multiferroic FE-FM heterostructure works  are available ab-initio 

studies about  La0.66Sr0.33MnO3 (LSMO) / PbZr0.2Ti0.8O3 [200, 201], and supporting 

experimental works [202-204] of  Molegraaf et. al. and Vaz et. al. has shown that 

reversible electric field control has contribution to magnetic properties by the means of 

magnetization, magnetic ordering, and change in Curie temperature. Hence, electronic 

charge modulation of FE layer could alter magnetization of FM layer via artificial 

magnetoelectric coupling in this heterostructures [202, 204].  
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Figure 1.27 a) Magnetization of LSMO with respect to temperature under charge 

depletion accumulation states induced by PZT ferroelectric layer [202]. Inset graph shows 

M-H loop at 100 K b) Magnetoelectric hysteresis curve at 100 K, magnetic response is 

modulated via applied electric field through PZT. c) Magnetism control different cases 

where orange area symbolizes depletion and blue area symbolizes accumulation states of 

ferroelectric layer , and it is clearly seen that electric field modulate at zero magnetic field 

d) Magnetization upon depletion/accumulation states of LSMO/PZT heterostructure 

[204] e) and f) shows the magnetization-electric field hysteresis  change magnetoelectric 

coupling coefficient under different temperature conditions 

As previously mentioned, LSMO is sensitive to charge density either doping or attained 

electric field, hence; magnetic construction of the structure and mediately phase 

transitions could be manipulated at FM-FE interface. Ab-initio results comprise zero 

temperature calculation and interfacial strain effects, while all the experiments and their 

results are measured above 0 K, where Sr doping up to x=0.5 in La1-xSrxMnO3 is even 

proposed metallic FM at room temperature. This approach results in discrepancies in the 

comparison between theoretical and experimental works.  Another conflict about FM-FE 

interface is about carrier control mechanism of magnetism in LSMO.  

Research in charge screening on LSMO, hence magnetization behavior has very limited 

works. One of the works about magnetization control upon the electric field on LSMO 

has been searched by Brivio et al. [199, 205]. Gold (Au)/STO/LSMO and 
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LSMO/STO/Niobium doped STO heterostructures were investigated through charge 

induced per unit surface in the LSMO layer upon attained electric field: 

𝜎 =
𝜀0∆𝑉

𝛿𝑆𝑇𝑂 𝜀𝑆𝑇𝑂+𝜆𝐿𝑆𝑀𝑂⁄
    Equation 1.96 

where ε0 and εSTO are the vacuum and static STO permittivities, respectively. δSTO is the 

insulating barrier thickness, λLSMO is the LSMO screening length.   According to the 

Thomas–Fermi theory, the induced volume charge density in LSMO decays exponentially 

moving away from the surface ρ0 exp (z/λLSMO) where z is the distance from the surface 

and   ρ0 =σ/ λLSMO is the “surface” modification of the charge density. Electrons are then 

injected in LSMO, which has 6×1021 cm3 hole concentration, with a concentration being 

1.5×1021 cm-3 when it is juxtaposed with SrTiO3 (STO) and 2×1020 cm3 one-unit cell away 

from LSMO/STO interface, where the second plane of Mn atoms is placed.   It is proposed 

that the injected electrons fill holes in Mn4+ ions, thus compensating the effect of chemical 

doping, applied potential in the order of 2.5 V, produces a decrease in the hole doping on 

the order of 25% and 3.3% on the first and second plane of Mn atoms, respectively.  

Another achieved the important result of this work is gating geometry. Modification in 

magnetism was only influenced by a top-gated system where the bottom-gated geometry 

ingenerated 2-nm magnetic dead layer at the bottom of LSMO interface. 

Lu et. al. [206]  showed magnetization change (10 %) upon polarization direction 

enhancing hole accumulation inversely proportional to thickness and electric field 

affected layer of LSMO extends to 3 nm.  

However, contrary to popular understanding, enriched magnetization upon hole 

accumulation approach [53] in FE-FM interface has been collapsed by assertion several 

works[207, 208].  
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Figure 1.28 a) Schematic of the effect of depletion and accumulation states spin 

configurations for LSMO in polarization direction change of  PZT interface, showing the 

changes in the Mn and O orbital states and the expected changes in the magnetic moment 

per layer. The Mn d orbitals are shown orange and grey, and the p orbitals are shown 

around the oxygen atoms (red) [207] b) Distance dependent  magnetization vs. nSLD 

result for STO/LSMO and STO LSMO/PZT stack is shown. c)Suppressed 

magnetization at the STO/LSMO interface is shown for both samples, whereas the 

LSMO/PZT/LSMO sample shows enhanced and diminished magnetization. Comparison 

with the LSMO/LAO/LSMO sample, which shows lower magnetization at the 

LSMO/LAO interface, confirms the field effect as the primary role for enhanced 

magnetization in LSMO in PZT/LSMO heterostructures [208] 

Theoretical and experimental results of charge-mediated coupling has guided the basis of 

the multiferroic tunnel junctions, such that interfacial charge compensation at the 

barrier/electrode interface via charge accumulation/depletion states forms spin-dependent 

current flow through the barrier under interplay between electrostatics and 

magnetostatics.  

 

(b) (c) 

(a) 
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1.3.2 Multiferroic Tunnel Junctions (MFTJ) 

Interplay between electrical and magnetic properties of natural or artificial multiferroics 

combines and reveals innovative design ideas apart from ferroelectric tunnel junctions 

with capability to control not only electron transport/tunneling but also spin state of the 

electron in tunneling process [77]. MFTJ is the concept where ferroelectric layer acts as 

a tunneling barrier instead of insulating layer between ferromagnetic thin films or FTJ 

with ferromagnetic electrodes.  

The main difference from other types of tunnel junctions is that MFTJ simultaneously 

have TMR and TER effect [80, 119, 209]. In addition to this, the power of MFTJ 

originates from the control of spin-polarized charge current via polarization direction or 

current dependence of the barrier. Polarization bound charges are compensated or 

screened asymmetrically at the electrode/barrier interface upon polarization direction 

which resistive switching and memristor behavior survives their validity.  
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Table 1.4 Review of experimental results of tunneling resistance with MFTJ 
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1.3.2.1 Magnetoelectric Coupling Due to Spin Dependent Screening 

Spin-selective tunneling originates from transport inequality between up- and down- spin 

electrons of magnetic electrodes through an insulating barrier. Experimental realization 

of spin-dependent tunneling has waited until 1970s[229-232]. 

 

Figure 1.29 Spin-selective tunneling in FM-I-FM stack. a) Magnetization of electrodes 

are parallel to each other b) Magnetization of electrodes are anti-parallel to each other.  

Conductance process in spin-selective surfaces is ingenerated via two conductance 

channels composed of up- and down- spin electrons of the material. Julierre’ s assumption 

proposes a model that an electron arises from one spin state, is only transported to 

available spin state of the other layer. Fig. 1.29 illustrates the parallel and antiparallel 

magnetization of electrodes, where the tunneling current is strongly coupled to relative 

magnetization alignment of surfaces. 

 𝑃:
𝑁↑(𝐸𝐹)−𝑁↓(𝐸𝐹)

𝑁↑(𝐸𝐹)+𝑁↓(𝐸𝐹)
    Equation 1.97 

The relative resistance or tunneling magnetoresistance change upon parallel (𝐺𝑃) and 

antiparallel (𝐺𝐴𝑃) alignment of magnetization is given as the following formula and the 

Fig 1.30: 

𝐺𝑃 ∝ 𝜌1
↑𝜌2

↑ + 𝜌1
↓𝜌2

↓    Equation 1.98 

𝐺𝐴𝑃 ∝ 𝜌1
↑𝜌2

↓ + 𝜌1
↓𝜌2

↑   Equation 1.99 

𝑇𝑀𝑅 =
∆𝑅

𝑅𝑃
=

𝐺𝐴𝑃−𝐺𝑃

𝐺𝑃
=

𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
=

2𝑃1𝑃2

1−𝑃1𝑃2
  Equation 1.100 

where 𝑃1 and 𝑃2 are the spin polarizations the FM electrodes, respectively. 

a) b) 
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Figure 1.30 Tunneling magnetoresistance depending on up and down spin alignment 

(or parallel and antiparallel alignment) of the layers. 

More accurate explanation for tunneling behavior in magnetic tunnel junctions proposed 

by Slonczewski [233] including a parabolic band structure of the FM electrodes:  

𝑃𝑒𝑓𝑓 =
𝑘↑−𝑘↓

𝑘↑+𝑘↓
∙
𝜅2−𝑘↑𝑘↓

𝜅2+𝑘↑𝑘↓
    Equation 1.101 

where 𝜅 = √
2𝑚(𝜑−𝐸𝐹)

ℏ
 is wavevector inside the insulating layer of MTJ and 𝜑 is the 

barrier height and 𝑚 is electron mass. 𝑘↑ 𝑎𝑛𝑑 𝑘↓ are the wavevectors of up- and down- 

spin electrons. In this model, barrier height is taken into account for the calculation. 

However, both models neglect the potential and temperature as a function of the 

mechanism where the bias originated band bending and shifts were pointed out by 

subsequent researches [30, 234]. 

Spin polarization simply propounds the measurement of majority spin carrier ratio 

at Fermi level. Probability of finding electron of a conducting material behind an 

insulating barrier is explained by overlap of the wavevector of the electron, moreover, if 

these conducting surfaces are ferromagnetic, exchange interaction comes into play for 

electronic band structure. To account for spin selective transport, one needs to know the 

majority spin and minority spin band DOS and the corresponding population density 

(determined by the Fermi-Dirac distribution) only. 
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We consider an ultrathin FE layer sandwiched between two FM electrodes as 

shown schematically in Fig. 1.32. The FM electrodes are assumed to be sufficiently thick 

that away from the FE interface the bulk properties are recovered. The FE layer sees the 

bias via assigning a desired electrical potential to the left FM electrode between –L and –

d/2 (See Fig. 1.31).  

 

Figure 1.31 The schematic of the FM/FE/FM stack used to compute the spin dependent 

screening process. The single dashed line on the RHS FM electrode denotes the Fermi 

level of the stack. The arrow on the LHS FM electrode indicates the shift of the 

electrostatic potential on this electrode depending on the sign of applied bias V (upper 

dashed line is negative bias, lower dashed line is positive bias for electrons). 

For demonstrative purposes one can also analyze a DE layer sandwiched between FM 

electrodes where one only has to drop the Pz term from the equations and assign a linear 

dielectric displacement to the TJ. We fixed the FE thickness to 3.2 nm as this fall into an 

approximate median of many experimental works [50, 213, 217, 235]. For the case of FE 

in thermodynamic equilibrium, we assign a small compressive misfit to the FE layer 

structure allowing us to treat the FE regime with the polarization pointing along the 

normal of the TJ layer.  We mention this point here as we compute the spin population 

near the Fermi level for non-equilibrium (or “imposed”) polarization and polarization 

obtained from thermodynamic theory in previous section. The effect of ferromagnetism 

can be accounted for in the calculations of the charge distribution. We treat the FM 

electrode as a medium with positively ionized donors and a large density of states near 
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the Fermi level (1027 m-3, similar to that of DFT results yield for Fe, [236]) with electron 

population that fill these available states (fig.1.32). 

 

Figure 1.32 The schematic for (a) the spin subband DOS, (b) shift of spin subband DOS 

near the interface with respect to the bulk and (c) resulting spatial spin distribution near 

the interface for majority (white arrow) and minority (red arrow) spins 

The effect of ferromagnetism can be accounted for in the calculations of the charge 

distribution. We treat the FM electrode as a medium with positively ionized donors and a 

large density of states near the Fermi level (1027 m-3, similar to that of DFT results yielded 

for Fe, [236]) with electron population that fill these available states (See Fig. 2 for the 

schematic). The latter is a common phenomena in 3d transition metals and 4f lanthanides 

exhibiting magnetic ordering where the net spin can be maximized in accordance with the 

Hund’s rule as the very large DOS in the 3d and 4f bands permit this. In the bulk of the 

FM the electric field is zero and thus 𝜌 = 0. Here, the carrier distribution as well as the 

DOS in the bands involve the presence of the magnetic exchange giving rise to FM state 

that can be accounted for in a fashion similar to the Pauli paramagnetism. We follow a 

route identical to the approximation outlined in Ref. [25] where the DOS in a band can 
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be thought of as 2 subbands, namely DOS for up-spins and DOS for down-spins. The 

mean exchange field aligns the spins where one sign of spin is favored over the other thus 

generating a net non-zero magnetic dipole moment density inside the electrode. From 

here onwards we will call up-spins “majority spins” and down-spins “minority spins”. 

The pseudospins in the real lattice pointing in any crystallographic direction consists of 

majority and minority spins that form the basis states, thus the difference between the 

majority spin and minority spin concentrations caused by the mean exchange field is the 

origin of FM behavior. Note that we are not concerned with the crystallographic direction 

of magnetism as this consideration is related to what one calls “pseudo spin” orientation 

that can be expressed in terms of the majority spin and minority spin basis states via the 

Pauli matrices. To account for screening effects, one needs to know the majority spin and 

minority spin band DOS and the corresponding population density (determined by the 

Fermi-Dirac distribution) only. In this context, the number of available states per unit 

volume for each spin subband )(Eg  near the Fermi level (Ef) can be approximated as 

𝑔(𝐸)↑ =
1

2
∫ (𝑁𝑐 + 𝑔(𝐻𝑚𝜇𝑏))𝑑𝐸
𝐸𝑓+𝑘𝑇

𝐸𝑓
  Equation 1.102 

for the up-spins (majority spins) and  

𝑔(𝐸)↓ =
1

2
∫ (𝑁𝑐 − 𝑔(𝐻𝑚𝜇𝑏))𝑑𝐸
𝐸𝑓+𝑘𝑇

𝐸𝑓
  Equation 1.103 

for the down (minority) spins. Here, 𝑁𝑐 is the DOS at the Fermi level in the paramagnetic 

state, 𝐻𝑚 is the mean exchange field inside the magnetic medium, 𝜇𝑏 is the Bohr 

magneton, 𝑔(𝐻𝑚𝜇𝑏) represent the DOS corresponding to an energy 𝐻𝑚𝜇𝑏 near Fermi 

level. The 𝑔(𝐻𝑚𝜇𝑏)  term is added to the majority spin DOS and is subtracted from the 

minority spin DOS as there is a transfer of available states corresponding to an energy of 

bmH   for a positive mH , i.e., the magnetochemical potential determines the shift of 

subbands of spins. In a FM metal such as Fe, this shift can be quite strong due to the 

strength of the internal exchange field (at the order of 500 T). We here approximate this 

shift to be occurring only near the Fermi level as 𝑔(𝐻𝑚𝜇𝑏)  ≪ 𝐸_𝐷𝑂𝑆_𝑡𝑜𝑡𝑎𝑙 where 

DOS_total is the energy range of the total density of states in the relevant band. The mean 

exchange field, mH , is of quantum mechanical origin and is assumed constant inside the 

bulk of the FM medium where 𝐸 = 0. Considering the dependence of the FM order on 
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carriers, namely the itinerant contribution, 𝐻𝑚 is naturally sensitive to carrier, hence, spin 

density and can be modified approximately for charge redistribution in case of electric 

field penetration into the magnetic medium as 

𝐻𝑚 = 𝐻0 +w𝜇𝑏(𝑛↑
+ − 𝑛↓

+)   Equation 1.104 

for a material such as Fe or Co, 𝐻0 is the mean exchange field in the bulk of the FM, FM, 

w is a coupling coefficient (taken as unity here, See Ref. [25]). The approach laid above 

is sometimes known as the Stoner-Wohlfarth model to introduce the spin dependence of 

DOS, i.e., the subband available states. In the FM electrode the Fermi level lies inside the 

conduction band. The majority spins aligned parallel to 𝐻𝑚 will have a larger share of the 

band states than those that are antiparallel to 𝐻𝑚. One can thus write 𝑛−(namely the 

population density) and 𝑁𝐷
+ terms in Eqs. 1.105-107 as 

𝑁𝐷
+ = 𝑁𝐷 [(𝑒𝑥𝑝 (

𝑞(𝐸𝐷−𝐸𝐹−𝜙)

𝑘𝑇
) + 1)

−1

]   Equation 1.105 

𝑛↑
− = 𝑔(𝐸)↑ (𝑒𝑥𝑝 (

𝑞(𝐸𝐶−𝐸𝐹−𝜙)−𝜇𝑏𝐻𝑚

𝑘𝑇
) + 1)

−1

 Equation 1.106 

𝑛↓
− = 𝑔(𝐸)↓ (𝑒𝑥𝑝 (

𝑞(𝐸𝐶−𝐸𝐹−𝜙)−𝜇𝑏𝐻𝑚

𝑘𝑇
) + 1)

−1

 Equation 1.107 

at a given coordinate inside the FM electrode. In Eqs. 1.105-107 𝑁𝐷
+ (𝑁𝐷) is the ionized 

(total) donor density in the FM electrode of the FE film.  𝑛− is the electron density written 

for the majority spin and minority spin subbands, 𝑔(𝐸) have their usual meanings as 

denoted in Eqs. 102,103. 𝐸 is the energy of an electron at the top of the valence band at a 

given coordinate in the FM electrode, 𝐸𝐹 is the Fermi level, 𝜙 is the local electrostatic 

potential,  𝜇𝑏 𝐻𝑚 is the magnetochemical potential a carrier feels depending on its spin. 

The sign of this term is – for majority spins and + for minority spins. All the band 

parameters for FM and the FE are given in Table 1.5 The Fermi level of the stack is 

assumed to be equal to that of the FM electrode, which we take as that of Fe here. 
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Table 1.5 Band parameters for FE and FM 

 g(EF) (m-3), Ef, Ec, Ev (eV) H0 (T) ND (m-3) 

FM 1027, 1027 * -4.5 500 1027 

FE Not considered (insulator limit) -5.0, -3.2, -5.5 - - 

 Electrostatic (for the potential) and non-electrostatic boundary conditions (for the 

polarization) are needed to obtain solutions to the above equations. The boundary 

conditions for the electrostatic potential is: 

∅𝑭𝑬 = ∅𝑭𝑴| 𝒛=−𝒅
𝟐
,
𝒅

𝟐

  and   
𝑑∅

𝑑𝑧
= 0|

−𝐿,+𝐿
   Equation 1.108 

implying the continuity of the potential at the FE/FM interfaces, where ∅𝐹𝐸 and ∅𝐹𝑀 are 

the electrostatic potentials inside the FE and the FM electrodes respectively and second 

differential BC in Eq. (108) indicates the absence of electric field away from the FE/FM 

interfaces. Polarization BCs are given in the Sect. 1.3. The bias forming the electric field 

on the system is always assigned to the LHS FM electrode while the RHS electrode is 

kept grounded, similar to experiments. Periodic boundary conditions (BCs) are employed 

along the plane of the structures for both the electrostatic potential and polarization. One 

can approximate the volumetric magnetic dipole moment density obtained from  

𝑀 = 𝜇𝑏(𝑛↑
− − 𝑛↓

−) + 𝜇𝑏𝑁𝑑
+   Equation 1.109 

where the first term on the rhs is the itinerant contribution and the second term is the 

contribution from ionic sites in the lattice. One would thus expect a competition between 

electrostatic screening and M through the charge distribution function noting that 𝐻𝑚 =

𝜇𝑏𝐻0 + 𝑤𝜇𝑏(𝑛↑
− − 𝑛↓

−). Throughout the work, the value of mH  has the same sign in the 

LHS and RHS FM electrodes corresponding to parallel magnetization as this allows us to 

identify FE polarization effects distinctly. Different signs of mH  would mean different 

relative orientation of the magnetization in the layers corresponding to different subband 

DOS in the FM electrodes. The effect of relative magnetic orientations on 

magnetoresistance is well-understood since the first papers of Fert group and Grünberg 

group [26, 27, 237] and is not considered here. We shall, however, show in Results and 

Discussion that FE polarization impacts locally the subband DOS hence the spin 
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population at the interfaces for positive mH  on LHS and RHS FM electrodes, changing 

the local magnetization amplitude of FM electrodes. 

The tunneling currents for the majority spins and minority spins across the FE TJ can be 

calculated using the dual spin channel approximation where the current for a given sign 

of spin depend on the population density of that spin at the interface as well as the barrier 

modified by the magnetochemical potential for that spin and the relative ratio of the 

subband available states in the opposite electrodes. The total current J is then 

𝐽 = 𝐽↑ + 𝐽↓    Equation 1.110 

where  

𝐽↑ = 𝑁↑𝑇↑(𝐸)𝑣 and 𝐽↓ = 𝑁↓𝑇↓(𝐸)𝑣   Equation 1.111 

In Eq.1.111 above, 𝑁↑ and 𝑁↓ are the population densities of majority and minority spins 

at the FE/FM interface on the FM side (RHS electrode in Fig. 1.32 taken as the reference), 

𝑇↑(𝐸) and 𝑇↓(𝐸) are the transmission probabilities of the up- and minority spins and υ is 

the Richardson velocity found from  𝑣 = √2𝑘𝑇/𝑚∗where 𝑚∗ is the effective mass of the 

electrons near the bottom of the conduction band of BT. 𝑇↑(𝐸) and 𝑇↓(𝐸) are obtained 

from the previously derived WKB approach for an arbitrary potential barrier at any 

coordinate r, 𝑉(𝑟) inside of the turning points of the electrostatic potential given by 

𝑇↑(𝐸) =
𝑔(𝐸)↑

𝑔(𝐸)↑+𝑔(𝐸)↓
𝐴∏ 𝑒𝑥𝑝 (

∆𝑑

ℏ
√2𝑚∗(𝑉↑(𝑟) − 𝐸(𝑉𝑎𝑝𝑝))

𝑑/2
−𝑑/2   Equation 1.112 

𝑇↓(𝐸) =
𝑔(𝐸)↓

𝑔(𝐸)↑+𝑔(𝐸)↓
𝐴∏ 𝑒𝑥𝑝 (

∆𝑑

ℏ
√2𝑚∗(𝑉↓(𝑟) − 𝐸(𝑉𝑎𝑝𝑝))

𝑑/2
−𝑑/2  Equation 1.113 

with the only difference being the local potential 𝑉(𝑟) an electron feels at the interface 

which could depend on the sign of its spin, 𝐸(𝑉𝑎𝑝𝑝) is the energy of an electron under an 

applied potential drop Vapp, g(E) are calculated from Eqs. 1.102-103, ℏ is the reduced 

Planck constant. The constant A is 

𝐴 =
16𝐸

𝑉0
(1 −

𝐸

𝑉0
)       Equation 1.114 

The prefactors concerning the subband LDOS stand for the effect of this term on 

transmission, i.e., if there is a great mismatch between the subband LDOS at the interfaces 
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between the LHS and RHS FM electrodes for a given spin sign, there is reduced tunneling 

current with that spin polarization. We give the WKB formula above in its discrete form 

to be able account for the “arbitrariness” of the electrostatic potential across the barrier as 

this barrier can have significant variations as a function of polarization (even when 

homogeneous) and applied field, unavoidable necessitating a numerical treatment to 

calculate the currents in the spin channels. The spin-dependent potential barriers, 𝑉↑(𝑟) 

and 𝑉↓(𝑟) can be expressed in terms of the band parameters modified by the electrostatic 

and magnetochemical energies as: 

𝑉↑,↓(𝑟) = 𝐸𝐶
𝐹𝐸 − 𝐸𝐹 − ∅(𝑟)∓𝜇𝑏𝐻𝑚   Equation 1.115 

where 𝐸𝐶
𝐹𝐸  is the energy of the bottom of the conduction band of the FE layer, ∅(𝑟) is the 

local electrostatic potential at a coordinate r inside the FE layer, the ∓𝜇𝑏𝐻𝑚 term denotes 

the magnetochemical potential in the majority and minority spins near the Fermi level, 

Ef, in the FM electrode. Majority and minority spins have, in fact, separate E-k curves and 

form seperate “conduction subband” curves as demonstrated via first principles 

calculations for FM materials [238] The amount of “conduction subband” separation 

along easy axis such as [110] reported for Fe, Ni and Co vary from 2 eV to 0.6 eV [239] 

in very close proximity to the value we compute in this paper (~ 0.85 eV) considering 

only the spin population near the Fermi level. A separation of subband energies directly 

mean that the majority and minority spins “see” different barriers during tunneling. The 

FE TJ acts as an electrostatic barrier with the barrier height determined with respect to 

the energies of the majority and minority spins inside the conduction band of the FM 

metal under a given bias on the LHS electrode. In the calculations of the currents, ∅(𝑟) 

and 𝐻𝑚 (See Eq. 105) are found numerically from the solution of Eq. 1.59 that contains 

the terms in Eqs. 1.80 and 1.105-107 assuming the condition that the polarization of the 

FE layer remains unchanged due to the great difference in the timescales of ferroelectric 

polarization dynamics and tunneling phenomena under pulsed bias. The charge 

distribution, 𝜌, however, will adapt rapidly to the applied bias and will be near-

equilibrium as carrier relaxation times in a metallic medium is on the order of 10-14 

seconds compared with bias durations of a few nanoseconds. 

We employ a finite difference discretization in 2D and carry out a Gauss-Seidel iterative 

scheme to solve the coupled Eqs.1.59, 1.80, 105-107 and 82-83 simultaneously subject to 
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the relevant BCs provided above in the case of homogeneous and equilibrium polarization 

states whose results we discuss in the next sections. The computation grid consists of 200 

x 400 points where h is the distance between the nearest nodes both along x- and z-axes 

with a value equal to the unitcell of  BCC Fe (~ 2 angstrom), where n is the number of 

nodes whose sum gives the FM/FE/FM trilayer thickness (40 nm total). We terminate the 

solution after 10000 iterations that yield a difference of less than 10-4 for ∅ and P between 

two consecutive steps. All results here are provided for room temperature calculations.  
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 Results and Discussion 

 The spin polarization and magnitude of currents across a TMR stack depends on 

the relative orientation of the magnetism in the FM electrodes and a bias simply controls 

the electrical barrier to spin tunneling via the polarization of the ferroelectric layer. The 

driving force behind such a pursuit was that the FE polarization can dramatically alter the 

ON/OFF ratios of spin currents depending on the direction of remnant dipoles as they can 

easily be switched under a few volts of bias.  TMR in FE TJs has been studied but similar 

to the TMR effect in FM/DE/FM stacks with the DE as the TJ, loss of spin polarization 

in tunnelling currents at moderate to high bias values is a persisting problem[240-242] 

even in the case of magnetization being parallel in the FM electrodes. The origins of such 

an outcome has been discussed extensively by a few authors for DE TJs. [243-246] The 

flipping of the spins of “hot” electrons (those who have gained energy above the Fermi 

level of the FM electrodes) following tunnelling, magnon excitations and scattering 

events from defects inside the TJ that induce spin flips were discussed as major scenarios 

degrading the TMR effect. The changes in interface states in TJ/FM junctions has been 

mentioned in a few works. [199, 246] From the continuum media perspective, one would 

expect the electrostatic potential dominate over the magnetochemical potential an 

electron feels near a dielectric/FM interface under bias, keeping in mind 

magnetochemical potential promotes carriers to higher energies and charge distribution 

occurs always to minimize electrostatic energy. The finite penetration of the electric field 

to the surface of a metallic FM in a dielectric/FM junction under a potential drop will 

mostly be screened by majority spin electrons of the FM near the Fermi level. Strong 

electric fields could require carrier densities much greater than the population density 

allowed by the subband DOS of the majority spins. It can thus be expected that minority 

spin carriers can take effect and participate in the screening process as long as the energy 

difference between the spin subbands is not extreme such as in the case of half-metals. 

FEs can generate very strong fields near a metallic or semiconductor interface and pave 

a way to effectively manipulate carriers as well as their spins.   

 Here, we present the results of the effect of the electrostatic screening process of 

FE polarization charges on magnetoresistive effects. For this purpose, we study a 

FM/FE/FM stack using the continuity equations in continuum media and study the spin 

dependent screening at the FM interfaces that has important implications for obtaining 
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the TMR effect from such structures. The competition between the electrostatic and the 

magnetochemical potential of carriers at the FE/FM interfaces is demonstrated. Spin 

mixing, namely reduction of the majority/minority spin population ratio, occurs at the 

interfaces where the local density of states (LDOS) for minority spins is greater than in 

that of the bulk. This is driven by the need to screen polarization charges if the FE layer 

has a relatively strong polarization or is under a strong bias. By considering majority and 

minority spin channels, we try to quantify the limits of FE polarization and applied bias 

beyond which spin polarized currents are unlikely that would result in reduction of the 

TMR. We prove so by directly computing the tunnelling currents for majority and 

minority spin channels using the Wentzel-Brillouin-Kramers (WKB) approximation. The 

difference in the population densities of majority and minority spins at the interface tend 

to disappear (spin mixing) along with an increase in LDOS at the FM/FE interface of the 

other electrode to which electrons tunnel. Such a phenomena naturally leads to the 

disappearance of the spin polarization of the tunnelling currents. In addition, we calculate 

an abrupt change in barrier heights the spins feel under moderate bias (0.25-0.5V) that is 

also expected to degrade spin polarization in currents. 

2.1 FM/FE/FM with FE having homogenous polarization 

We first discuss the numerical results we obtained by imposing a homogeneous 

polarization to the FE layer in the FM/FE/FM stack. The direction of the Pz is fixed at all 

times with dipoles pointing from the LHS electrode to the RHS to induce accumulation 

on the RHS electrode (tunnelling is therefore expected to occur from RHS FM to the LHS 

FM) as we always apply the a positive bias to the LHS electrode (See Fig. 1.32). The 

opposite configuration (Pz pointing from RHS to LHS) will also yield exactly the same 

results owing to the symmetry of the stack and is not necessarry to discuss. Poisson 

equation is solved along with the charge terms in Eq. 1.80 under fixed homogeneous Pz. 

FE polarization on its own would simply be expected to generate significant electric field 

penetration into the electrodes and therefore depolarizing fields inside the FE but our 

focus here is on the FM electrodes and the spin distribution.  

The spin-dependent spatial carrier accumulation for various values of Pz both for 

zero and non-zero bias are provided in Fig. 2.1. Note in this plot that minority spin 

population away from the interfaces is not zero (red lines) but several orders of magnitude 

less than majority spin population. It is immediately visible in Fig. 2.1c that larger Pz 
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values lead to minority spin accumulation at the interface in a FM electrode that contains 

otherwise majority spin electrons. This is a consequence of the electrostatic screening 

process and it is this very process that also leads to spin-mixing. With increasing bias, the 

region in which minority spins accumulate grows. For fixed Pz, the linear field dependent 

part of dielectric displacement, Dz, is the only bias sensitive part. This condition can be 

justified based on the approximation that most tunnelling experiments are measured under 

rapid pulsed voltages where Pz has no time to adapt to the rapidly changing voltage drops 

across the system. The carriers in a metallic medium, however, have relaxation times on 

the order of 10-12 seconds or less and will quickly establish their equilibrium distribution 

satisfying Poisson equation(Eq.1.80) for pulsed bias durations of a few nanoseconds.   

Spin mixing occuring at the FE/FM interfaces is strongly driven by the change in the 

subband DOS near the interfaces due to the need for electrostatic screening of the FE 

dipoles. The need arises because the electrostatic energy an electron would feel under the 

potential of unscreened polarization bound charges is several times more than the local 

magnetochemical potential. For electron energies limited to values around the Fermi 

energy, a strong local potential drop caused by the partially screened FE polarization 

charges could require carrier densities exceeding the subband states for the majority spins 

available in bulk. 
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Figure 2.1 Average carrier population density at the RHS FE/FM interface induced by 

homogeneous Pz for (a) Pz = 0.1 C/m2, (b) Pz = 0.2 C/m2 at 0V bias, (c) Pz = 0.2 C/m2at 

0.5V bias, (d) Pz = 0.3 C/m2 at 0V bias and (e) Pz = 0.3 C/m2 at 0.5V bias. Notice the 

minority spin acccumulation for increasing Pz as well as bias. For the case of Pz = 0.1 

C/m^2 no plot when under bias is given as there is no considerable change in minority 

spin population at the interface. 
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Looking at Fig. 2.2, for weak FE polarization in the TJ, we do not observe any change in 

the subband available states at the interfaces, which we call from here onwards local 

available states (LAS, given in density units of m-3, see Eqs. 1.102 and 1.103 ) with 

respect to interior of the FM, hence a spin mixing will not be expected near the interface 

(See Fig. 2.2a for population density distribution). This is because the subband available 

states for the majority spins can accomodate sufficient local electron density (the 

population density) for screening of FE polarization and the subband LAS for all spins 

remain almost unchanged at zero to moderate bias (< 0.5V). On other hand, the subband 

LAS near the interfaces start to change for the case of moderate Pz amplitude (approx. 0.2 

C/m2 here) and upon applying a low-to-mid positive bias to the LHS FM electrode, the 

region where the minority available states is comparable to majority ones extends slightly. 
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Figure 2.2 Average subband LDOS at the RHS FE/FM interface induced by 

homogeneous Pz for (a) Pz = 0.1 C/m2, (b) Pz = 0.2 C/m2 at 0V bias, (c) Pz = 0.2 C/m2 at 

0.5V bias, (d) Pz = 0.3 C/m2 at 0V bias and (e) Pz = 0.3 C/m2 at 0.5V bias. Notice the 

minority subband LDOS increasing at the interfaces for increasing Pz as well as bias 
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Very importantly, the same conclusion was reached by first principles study in Ref. [247] 

wherein it was shown that the minority and majority subband LDOS near Fermi energy 

at the interface differ considerbly from bulk for Fe 3d states in the same manner we show 

in this work (see Fig.2.3), i. e., the minority spin subband available states increases at the 

interface compared to bulk values. The increase in the minority spin population near the 

Fermi level should be expected at the expense of increase in magnetochemical potential 

of carriers as further accumulation of majority spins for screening of polarization charges 

would mean electrons populating higher energies and is not electrostatically favorable. 

 

Figure 2.3  a) Atomic structure of Fe-4 layer of BaTiO3 structure. b) Orbital-resolved 

DOS for interfacial atoms in a 4 layer of BaTiO3 (a) Ti 3d, (b) Fe3d, and (c) O 2p. 

Majority- and minority-spin DOS are shown in the upper and lower panels, respectively. 

The solid and dashed curves correspond to the DOS of atoms at the top and bottom 

interfaces, respectively. The shaded plots are the DOS of atoms in the central monolayer 

of (b) Fe or (a),(c) TiO2 which can be regarded as bulk[247] 

To provide a graphical guide to identify the possible regimes of FE polarization that allow 

spin polarized tunnelling and when spin polarization would disappear, we give the plot in 

Fig. 2.4. The averages of the majority and minority spin population density at the right 

FE/FM interface coordinate are provided along with the spin subband LAS near the Fermi 

level on the left FE/FM interface coordinate as a function of Pz at zero bias. In this plot, 

the population density is given in the positive axis and the subband LAS near the Fermi 

level on the LHS FM is in the negative axis for convenience of comparison. Despite the 
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obvious fact that precise numerical values here might differ for real experiments, it is 

clear that with increasing Pz, the spin polarization of the currents is expected to disappear 

as population densities of majority and minority spins become identical in the RHS FM 

interface. In addition, note that, according to Eq. 1.115, the minority spins feel a “higher 

potential” that causes an approx. 0.85 eV decrease in barrier for these carriers as well 

(relative to the majority spins), allowing easier tunnelling for these carriers at any given 

bias, further diminishing the TMR. Voltage dependence of the spin polarization 

emanating from the different barriers the spins penetrate during tunnelling has been first 

explicitly analyzed in Ref. [199]. In addition to the information given in that work, we 

argue that this difference in barrier heights tends to disappear for increasing Pz in the case 

of a FE TJ in the coming paragraphs. 

 

 

Figure 2.4 Avergage population density (positive vertical axis) at the RHS FE/FM 

interface and the subband LDOS (given in the negative vertical axis) at the LHS FM/FE 

interface as a function of Pz. The blue arrow denotes indicates that almost fully spin 

polarized tunnelling will occur from RHS FE/FM interface states to subband LDOS of 

the LHS FM/FE interface states. Beyond values of Pz around 0.15 C/m2 loss of spin 

polarization is expected as minority spin population starts to build up on the RHS FE/FM 

interface along with an increase in the minority subband LDOS on the LHS FM/FE 

interface as indicated by the shorter red arrow. 
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As majority spins dominate the population density of the RHS FE/FM interface at low 

polarization (until around 0.15 C/m2), there will be mostly majority spin tunneling below 

this regime to the available subband LAS at the RHS interface in the RHS FM electrode 

indicated by the thick blue arrow. The subband LAS near the Fermi level on the LHS 

electrode are at a maximum below 0.15 C/m2 (See Fig. 2.4 ). Once Pz is higher than this 

value, a gradual increase in minority spin population starts along with an increase in 

subband LAS of the minority and majority spins on the LHS electrode to which the 

tunnelling would be expected to occur, indicated by the red arrow. Strong amplitudes of 

Pz causes further spin mixing at the RHS and the subband LAS at the interface of the LHS 

electrode are almost identical, indicating that the tunnelling currents will not be spin 

polarized in this regime. In fact, moderate-to-strong applied bias (0.5-1 V) for when Pz is 

less than the critical value of 0.15 C/m2 here generates a similar effect: A bias of such 

magnitude can cause loss of spin polarization even if Pz is relatively weak analogus to the 

observations in dielectric TJs between FM electrodes.While bias can cause spin mixing 

at the interface causing reduction in spin polarization, current amplitudes are expected to 

scale exponentially with applied bias. Pz determines both the spin polarization at the FM 

interfaces as well as the tunnel current amplitude in a symmetric FM/FE/FM stack. A 

strong Pz in the FE layer generates a “deeper” penetration of the electric field into the 

LHS electrode, effectively increasing the barrier width. We give Fig.2.5 to display the 

extent of field penetration that causes the exposure of positive charges on the LHS FM 

electrode and carrier accumulation on the RHS FM electrode interface. Electric field 

exposes the positive ions in the lattice on the RHS FM deeper into the electrode with 

increasing Pz, thereby increasing effective barrier width. The left FM/FE interface 

undergoes carrier depletion as the negative pole of the FE polarization terminates at this 

interface thus repelling electrons away from the interface exposing the FM metal ions. 

Strong Pz values, apart from generating spin mixing, could thus cause reduction in the 

tunnelling currents in the FE TJ for a given bias. This outcome is on top of the 
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disappearance of the TMR effect in the tunnelling current amplitudes for majority and 

minority spin electrons as we discuss in the next paragraph.  

 

Figure 2.5 Total charge density across the trilayer indicating the exposed positive ionic 

sites on the LHS FM/FE interface and the carrier accumulation near the RHS FE/FM 

interface for 2 different Pz values. Stronger Pz  causes a deeper penetration of the electric 

field to the RHS FM electrode increasing the effective barrier width to tunnelling for 

carriers on the LHS FE/FM interface.  

The fundamental mechanism behind the spin mixing at the RHS FE/FM interface 

is therefore simply the “need for electrostatic screening”, which becomes dominant over 

the magnetic ordering of carriers in the FM. In other words, minimization of the 

electrostatic energy via screening of FE polarization charges via the carriers overwhelms 

the magnetochemical energy favoring magnetic order and could locally diminish 

magnetism on the RHS right FE/FM electrode interface. Considering, in addition, the spin 

sign dependence of the barrier, we calculated the average barrier heights for minority and 

majority spins as a function of Pz in the FE TJ from Eq. 23 and are displayed in Fig. 2.5. 

The different barrier heights for both spins follow a very gradual increase with increasing 

polarization in the TJ until around 0.15 C/m2.  
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Figure 2.6  Average potential barrier height for minority (down) and majority (up) spins 

as a function of Pz for 0V bias and 0.5V bias. The potential barrier for both type of carriers 

is reduced by the application of bias as expected. The sudden change in the barrier heights 

correspond to the regime when minority spin carriers participate in the screening of Pz.  

This is the onset of minority spin accumulation that becomes energetically feasible 

near the interfaces, which then suddenly changes the electrostatic barrier for both majority 

and minority spins after which both carrier types experience similar barriers. A positive 

bias on the LHS FM electrode lowers the entire barrier regime as expected that drives the 

tunnelling currents. Both for zero and non-zero positive bias, the sudden shift of the 

barriers occuring at a critical Pz value, however, is not accompanied by a sudden change 

in tunnelling currents (Fig. 2.7) obtained by the WKB method outlined in Sect. 1.3 As 

explained in the previous paragraph, increasing the polarization value widens the 

effective physical barrier thickness due to the carrier depletion on the LHS FM/FE 

interface that counteracts the lowering of the electrostatic barrier, making the results of 

the WKB calculation vary smoothly with bias. It can immediately be noted from Eqs. 

1.112-1.113 that an increase in the barrier thickness will dominate the currents as the 

exponent term in T(E) depends on barrier thickness linearly while it depends on square 

root of the potential barrier. Both channels of spin currents therefore diminish for stronger 

Pz as seen in Fig. 2.7.  
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Figure 2.7 Tunnelling currents for minority and majority spins calculated using the WKB 

approximation for various homogeneous values of Pz (non-equilibrium, imposed Pz). As 

Pz gets stronger, mixed spin currents occur. For low Pz values (such as Pz = 0.1 C/m2 

here) we find the current to be completely spin polarized and the down spin polarized 

currents are almost absent that cannot be plotted in the vertical log axis.  

The relative difference in the magnetization orientation of the electrodes can 

generate reduction in current magnitudes but such effects are due to the subband DOS 

altered by an externally applied magnetic field, which is the basis for the GMR effect.  

2.2 FM/FE/FM with FE having polarization obtained from 

equation of state 

The non-equilibrium homogeneous polarization case was analyzed to provide 

insight into the spin dependent screening process at the FM electrode interfaces. We now 

give the results for Pz obtained by solving Eqs. 1.59, 1.82 and 1.83 as well as the charge 

distribution inside the FM electrodes at zero and finite bias. A multidomain state is highly 

feasible due to the finite penetration of the electric field into the FM electrodes. However, 

the asymmetric charge accumulation at the LHS FM/FE appears to be imposing a self-

bias on the FE layer. Whether the formation of the single domain state is stable or 

metastable is a seperate phenomena and we take as reference the single domain state 

yielding results identical to experimental observations with FE TJs. When under bias, 

identical to the non-equilibrium homogeneous case, FE polarization is assumed to be 
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fixed, non-responsive to the bias applied on the LHS electrode and only the linear term 

in Eq. 1.61 is changing in relation to Eq. 1.59. We first spontaneously solve the Pz along 

with the charge distributions inside the electrodes at zero bias and take this state as 

reference for further calculations under bias. As expected, a size effect is observed where 

the value of Pz strongly depends on thickness and the misfit introduced. Two different 

values of misfit are imposed on the FE layer as these allow us to compare the effect of 

two different Pz amplitudes and profiles. Although the in-plane component Px was 

explicitly taken into account (See Eqs. 1.82 and 1.83), this component converged to zero 

implying a stable uniaxial FE for both misfit values. The misfit can vary in such structures 

depending on relaxation processes and defect content and the latter are kept outside the 

scope as they would seriously complicate the discussion. BaTiO3 composition was used 

as a demonstrative case. We noted that the stability of sign of Pz is rather delicate due to 

the low thickness and the finite screening lenghts of the electrodes. In fact, during the 

numerical solution of the potential, the direction of Pz and, therefore, the spin dependent 

carrier densities could alternate from left to right or vice versa.  To remove this 

degeneracy condition seperated by a low energy barrier in the double-well Landau 

potential, a small bias  (0.01V) was imposed to stabilize the polarization that make it point 

from the LHS to the RHS electrode for which all discussions are carried out. We note that 

rather small polarization values are reported for FE TJs due to thickness effects [71, 78, 

248], which appears to be in favor of spin polarized tunnelling in FM/FE/FM type stacks 

as discussed in Sect. 3a due to relatively low electric fields expected at the interfaces. 

Identical trends in the spin distributions near the interfaces are obtained compared to the 

homogeneous polarization case with the difference that the near-equilibrium polarization 

has a curved profile (See Fig. 2.8). The inhomogeneous profile of Pz impacts the way 

dipoles terminate at the interfaces and has some influence on the interface carrier densities 

on the FM electrodes but does not change the physics discussed in the previous section. 

Overall, the qualitative behavior of the FE TJ with equilibrium inhomogeneous 

polarization is the same as that of the homogeneous non-equilibrium polarization, making 

the discussion in the previous section applicable here, too. Small polarization values in 

the FE allow easier tunnelling and spin mixing at the interface from which tunnelling 

occurs is absent at small bias. For relatively weak polarization, the distance between the 

turning points which we take as reference for barrier width to carry out the WKB 

calculations for the spin channels is also shorter as the field penetration into the LHS 
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electrode is small. FE polarization determines the carrier accumulation/depletion at the 

interfaces and a bias (applied on the LHS FM electrode) does not change the qualitative 

picture.  Large bias that exceed the portions of the FE barrier profile in absolute value 

have been kept outside the scope of this work as the WKB calculations enter a different 

regime where 𝑞𝑉 − 𝐸 > 0. Experimentally, however, one should expect the tunneling 

currents to follow the same trend as for the case 𝑞𝑉 − 𝐸 < 0 considered here where the 

loss of the spin polarization is already demonstrated.  

 

Figure 2.8  Tunneling currents for minority and majority spins calculated using the WKB 

approximation for values of  Pz obtained from equations of state for 2 different misfit 

strains, (b) the Pz profiles across the thickness of the FE and (c) the profile of the barrier 

obtained by superimposing the solution of ∅ on the conduction band profiles of the stack. 

The shaded area on the LHS of the FM/FE interface denotes the region of carrier 

depletion, increasing effective barrier thickness.  
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 Conclusions 

In this work, we numerically studied the spin dependent screening process of FE 

polarization in FM/FE/FM TJs that are currently of interest for TMR-type devices and 

spintronics. Parallel magnetization of both FM electrodes was assumed. We demonstrated 

that the spin population at the interfaces is a strong function of the FE polarization and 

the applied bias on the system. The dependence of the TMR effect on FE polarization is 

an intrinsic response of the FM/FE/FM system and directly influences the states between 

which tunnelling occurs before considering any defect mediated spin flips and magnon-

driven processes. With increasing values of FE polarization either due to the inherent 

composition of the FE or due to external bias, conservation of majority spin density at the 

interfaces becomes difficult, making spin-mixing inevitable. This occurs due to the need 

of the system to screen the FE polarization charges and reduce electrostatic energy. To 

fulfill this need, the majority and minority spin subband LAS near the Fermi level at the 

interfaces change to allow higher carrier population to be accomodated. This outcome is 

in excellent qualitative agreement with previous first principles results: The subband 

LDOS in Fe 3d band at the interface changes in favor of minority spins and decrease 

slightly for majority spins (with respect to bulk) when FE polarization points towards this 

interface. Our work thus provides an intuitive understanding of the dramatic effect of 

local electrostatic effects of the FE polarization on LDOS. While it could very well be 

said that FE polarization allows magnetization control along the FM interface, whether a 

strong FE behavior is desired for TMR device design is questionable. As we write this, 

we keep in mind that a great variety of results have been reported in literature for FE 

junctions in TMR studies but a general understanding of the trends in these systems is 

still lacking. Various FE compositions studied as TJs in TMR stacks are probably one 

cause of this lack of understanding: experimental results as a function of “FE polarization 

strength” can vary greatly as we show here. In fact, we explicitly reveal here that any 

parameter inducing strong electric fields at the interfaces will lead to spin mixing at the 

interfaces, hence a reduction in TMR. We were also able to, therefore, demonstrate the 

connection between the spin dependent screening process at FE/FM interfaces and the 

variations of the TMR effect when under bias in such structures. 
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 Future Work 

Additional works will be conducted in the perspective of antiparallel alignment of 

ferromagnets. These results may have already published as theoretical and experimental 

works to the scientific community, still have shaded areas about the electrostatics point 

of view. In our work, we focused on tunneling in parallel alignment of ferromagnetic 

electrodes where the density of states of majority spin electrons favor the spin-dependent 

tunneling, although under increasing ferroelectric strength and bias, spin mixing is 

observed and spin-selective tunneling probability has decreased upon the calculations. 

For antiparallel state, we will also try to investigate the probability of tunneling and local 

density of states for minority and majority spins depending on antiparallel states of 

ferromagnetic electrode between ferroelectric barrier. These results also may show the 

tunneling magnetoresistance (TMR) of FM/FE/FM tunnel junctions. Local opposite 

ferroelectric and ferromagnetic states elucidate the four state multiferroic device 

principle.  

Multiferroic FET (field effect transistor) designs which are composed of diluted magnetic 

semiconductor (such as GaMnAs) as conducting channels in ferroelectric-gated FET 

structure. In this system, Mn doped GaAs acts as both p-type semiconductor and diluted 

magnetic material. The control of ferromagnetism with ferroelectric gate or spin polarized 

gate control will also be analyzed in the light of information obtained in the context of 

this thesis. 

A detailed study would focus on the idea that the order of magnetic spins and ferroelectric 

dipoles might have circular or toroidal geometry in circular capacitors. Although, this 

vortex domain-prediction for ferromagnets dates back to 1940s, there are limited 

theoretical and experimental works about vortex domains of ferroelectrics. These toroidal 

ferroelectric domains are sensitive to size effect and boundary conditions and 

magnetoelectric coupling in multiferroics. Toroidal domains of ferroelectrics are stable 

for microseconds and these domains has stability issues against decays under the certain 

conditions which are different from ∇ × 𝐷 = 0. Although the vortex domains have short 

life-time (<1 second), this time period is orders of magnitude longer than when it is 

compared with ferroelectric domain formation. Using Landau-Ginzburg thermodynamic 

theory, the relation between in-plane and out-of-plane domain structures of these 

ferroelectrics under the bias will be evaluated within the scope of local defects and 
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differing boundary conditions. Pseudo-spin characteristics of ferroelectrics also might be 

investigated upon the scope of this work. This work also may pave the way of analysis of 

natural multiferroics through the continuum equations in continuum media. 

Understanding the multiferroic tunnel junctions might strengthen the capability of 

tailoring of their properties which along with improvements on stability and reliability 

can lead to performing multifunctional spintronic devices. 
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