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ABSTRACT

MAXIMALLY RANDOM SYSTEMS, MAXIMALLY DEGENERATE ORDERING,
AND

LOWER LOWER-CRITICAL SPIN-GLASS DIMENSION

BORA ATALAY

M.Sc. Dissertation, July 2018

Thesis Supervisor: Prof. A. Nihat Berker

Keywords: Renormalization-group theory, quenched random systems, maximal
randomness, maximal degeneracy, mixed-spatial dimensions, lower-critical dimension

Discrete-spin  systems  with  maximally  random  nearest-neighbor  interactions  that  is
symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal
disorder,  are  studied,  for q=3,4 states in  d dimensions.  Using renormalization-group
theory, for all d≥1 and all noninfinite temperatures, the system eventually renormalizes
to a  random single state, thus signaling q×q degenerate ordering, which is maximally
degenerate ordering. For high-temperature initial conditions, the system crosses over to
this  highly  degenerate  ordering  only  after  spending  many  renormalization-group
iterations  near  the disordered  (infinite-temperature)  fixed point.  Thus,  a  temperature
range  of  short-range  disorder  in  the  presence  of  long-range  order  is  identified,  as
previously  seen  in  underfrustrated  Ising  spin-glass  systems.  The  entropy  behaves
similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative
maximum  at  the  short-range  disordering  temperature.  As  expected,  the  system  is
disordered at all temperatures for d =1 .
By quenched-randomly mixing local units of different spatial dimensionalities, we also
have  studied  Ising  spin-glass  systems  on  hierarchical  lattices  continuously  in
dimensionalities 1≤d≤3. The global phase diagram in temperature, antiferromagnetic
bond concentration, and spatial dimensionality is calculated. We found, the spin-glass
phase disappears  to  zero  temperature at  the lower-critical  dimension d c=2.431. This
sets an upper limit to the lower-critical dimension in general for the Ising spin-glass
phase.  As  dimension  is  lowered  towards  dc, the  spin-glass  critical  temperature
continuously goes to zero, but the spin-glass chaos fully sustains to the brink of the
disappearance of the spin-glass phase. The Lyapunov exponent, measuring the strength
of chaos, is thus largely unaffected by the approach to dc and shows a discontinuity to
zero at dc. 
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ÖZET

AZAMİ RASTGELE SİSTEMLER, AZAMİ YOZ DÜZENLEŞİM,
VE

DÜŞÜK ALTKRİTİK SPİN-CAMI BOYUTU

BORA ATALAY

Yüksek Lisans Tezi, Temmuz 2018

Tez Danışmanı: Prof. A. Nihat Berker

Anahtar Kelimeler: Renormalizasyon-grup teorisi, donmuş rastgele sistemler, azami
rastgelelilik, azami yozluk, birleştirilmiş uzamsal boyutlar, altkritik boyut.

Simetrik  veya  asimetrik,  ferromanyetik  veya  antiferromanyetik  en  yakın  komşu
etkileşimlerinin  azami  ölçüde  rastgele  olduğu  kesikli-spin  sistemleri,  köşegen  dışı
düzensizlik  de dahil  edilerek, q=3, 4 durum için  d boyutta  incelendi.  İncelememizde
hiyerarşik örgüler için tam ve hiperkübik örgüler için yaklaşık (Migdal-Kadanoff) olan
renormalizasyon-grup teorisi kullanıldı. Bulgularımıza göre böyle sistemler tüm d≥1
boyutlar  ve  sonsuz  olmayan  sıcaklıklar  için  nihayetinde  tek  bir  rastgele  duruma
renormalize olarak q×q yoz düzenleşim oluşturuyor. Dikkat ediniz ki bu azami ölçüde
yoz  düzenleşimdir.  Yüksek  sıcaklıktaki  başlangıç  koşullarında,  sistem  ancak  nice
renormalizasyon-grup  iterasyonunu  düzensiz  (sonsuz-sıcaklık)  sabit  noktası  (fixed
point) civarında geçirdikten sonra azami yoz düzenleşime doğru yöneliyor. Dolayısıyla,
altbunalımlı Ising spin-camlarında da görülen, uzun-menzilli düzenlilik yapısı altında
kısa-menzilli  düzensizliğe  ait  bir  sıcaklık  menzili  bulunmuştur.  Tüm sıcaklıklar  için
entropi hesaplanmış olup, ferromanyetik ve antiferromanyetik sistemlerde entropinin eş
davranışlı  olduğu,  ve  kısa-menzilli  düzensizlik  sıcaklığında  bir  türev  maksimumuna
sahip olduğu bulunmuştur. Sistem, 1+ ϵ boyut için bariz bir zıtlıkla birlikte, d =1 boyut
için beklenildiği gibi her sıcaklıkta düzensiz durumdadır.
Ayrıca,  farklı  uzamsal  boyutluluklardaki  bölgesel  birimler  donmuş  rastgelelilikle
birbirine  bağdaştırılarak,  Ising  spin-camları 1≤d≤3 sürekli  boyutlarındaki  hiyerarşik
örgülerde incelendi. Sıcaklık, antiferromanyetik bağ yoğunluğu, ve uzamsal boyutluluk
cinsinden  genel  faz  diyagramı  hesaplandı.  Bulgularımıza  göre,  spin-camı  fazı  sıfır
sıcaklıkta d c=2.431 altkritik boyutunda ortadan kalkıyor. Sistemimiz fiziksel anlamda
gerçeklenir bir sistem olduğundan, bu bulgu genel anlamda Ising spin-camı fazı için
altkritik boyuta bir üst limit koymuştur. Boyut,  dc altkritik boyutuna doğru azaldıkça
spin-camı kritik sıcaklığı sıfıra sürekli olarak yaklaşırken, spin-camı kaosu spin-camı
fazı  ortadan  kalkana  dek  devam  etmektedir.  Dolayısıyla,  kaosun  güç  ölçeği  olan
Lyapunov  üsteli  dc boyutuna  yakınlaşmadan  pek  etkilenmemekte,  ve  dc boyutunda
süreksizlikle sıfıra inmektedir.
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Chapter 1

INTRODUCTION

Spin-glasses can be nonchalantly expressed as a type of disordered magnetic systems

where its constituents have an irregular magnetic spin alignment. That being said, while

the studies on spin-glasses and critical phenomena not only enabled the development of

thriving theoretical and numerical techniques with which we understand the physics of

such systems better, these techniques turned out to have far reaching applications besides

magnetic systems, and boosted the studies on biological evolution, neural networks, ma-

chine learning, financial and social systems, and many other complex systems.

In this work we have started fromwholesome beginnings and achieved challenging re-

sults for discrete-spin systems using renormalization-group theory. In the first study, we

allowed each spin site to randomly favor one of the available states for its interaction with a

nearest neighbor, thereby allowing the system to form both asymmetric and symmetric in-

teractions and enabling maximal randomness throughout the system. In the second study,

by quenched-randomly mixing local units of different spatial dimensionalities, we have

studied Ising spin-glass systems, chaotic behavior, and emergence of spin-glass phase on

hierarchical lattices in continuous dimensionalities. Both works demonstrate the versatil-

ity of renormalization-group theory in pursuit of solving physical systems. Although the

results we obtain here are most general in itself, our approach and setting have a room for

further development in systems with different Hamiltonians.
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Chapter 2

MAXIMALLY RANDOM

DISCRETE-SPIN SYSTEMSWITH

SYMMETRIC AND ASYMMETRIC

INTERACTIONS AND MAXIMALLY

DEGENERATE ORDERING

2.1. Introduction: Asymmetric and Symmetric

Maximally Random Spin Models

Spin models such as Ising, Potts, ice models show a richness of phase transitions and

multicritical phenomena [1, 2] that is qualitatively compoundedwith the addition of frozen

(quenched) randomness. Examples are the emerging chaos in spin glasses with compet-

ing ferromagnetic and antiferromagnetic (and more recently, without recourse to ferro-

magnetism vs. antiferromagnetism, competing left and right chiral [3]) interactions, the

conversion of first-order phase transitions to second-order phase transitions, and the in-

finite multitude of accumulating phases as devil’s staircases. In the current study, frozen

randomness is taken to the limit, in q = 3, 4 state models in arbitrary dimension d and

the results are quite unexpected. Thus, changes in the critical properties and the phase-

transition order are the effects quenched randomness, as well as the appearance of new

phenomena such as chaotic rescaling and devil’s staircase topologies of phase diagrams.

A keymicroscopic ingredient in these phenomena is the occurrence of frustration, in which
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all interactions along closed paths in the lattice cannot be simultaneously satisfied. The

renormalization-group transformation that we use in this study is equipped to study frus-

trated systems (and thus has been extensively used in spin-glass systems), as can be seen

below by from the equivalent hierarchical lattice where closed loops occur corresponding

to bond-moving following decimation. The systems that we study are quenched maxi-

mally random q-state discrete spin models with nearest-neighbor interactions, with Hamil-

tonian

−βH = −
∑
⟨ij⟩

βHij, (2.1)

where the sum is over nearest-neighbor pairs of sites < ij >.

The maximal randomness is best expressed in the transfer matrix Tij , e.g., for q = 3,

Tij ≡ e−βHij =
1 eJ 1

1 1 eJ

eJ 1 1

 ,


1 1 eJ

eJ 1 1

1 eJ 1

 ,


eJ 1 1

1 1 eJ

1 eJ 1

 ,


1 1 eJ

1 eJ 1

eJ 1 1

 ,


1 eJ 1

eJ 1 1

1 1 eJ

 , or


eJ 1 1

1 eJ 1

1 1 eJ

 , (2.2)

where each row and each column has, randomly, a single eJ element, so that there are

6 such possibilities (for q = 4, also studied here, there are 24 such possibilities), and

J > 0 or J < 0 respectively for ferromagnetic or antiferromagnetic interactions, both

of which are treated in this study. The last matrix corresponds to the usual Potts model.

In fact, taken by itself as a pure (non-random) model, each of these transfer matrices can

be mapped to a Potts model by relabeling the spin states in one of the two sublattices,

in hypercubic lattices and corresponding hierarchical lattices. Thus, for the ferromagnetic

case, for d > 1, a low-temperature ferromagnetic phase and a high-temperature disordered

phase occurs. For the antiferromagnetic case, the low-temperature phase is a critical phase

and appears at a higher dimension.[4, 5]

In Hamiltonian terms, the currently studied, quenched random model is

−βHi,j = Jδσi,P (σj), (2.3)

3



where P is a random permutation of {a, b, c}. Thus, at a given site i, for a given spin state,

say si = a, randomly any one of the spin states sj = a, b, or c of the nearest-neighbor

site j is energetically favored (unfavored) for ferromagnetic (antiferromagnetic) interac-

tions. This favor (unfavor) is independently random for each of the nearest-neighbors j.

Under renormalization-group transformation, all elements of the transfer matrices across

the system randomize. Therefore, we have not included in our renormalization-group ini-

tial conditions the cases where there is a difference between the less favored two states,

to keep the enunciation of the model simple. However, since our renormalization-group

trajectories traverse the latter states, we are confident that our results will not be affected

by such a sub-discrimination.

The first two possible transfer matrices on the right side of Eq.(2.2) represent asym-

metric interaction, in the sense that the nearest-neighbor states (si, sj) = (a, b) and (b, a)

have different energies, where si = a, b, or c are the q = 3 possible states of a given

site i. Asymmetric interactions occur in neural network systems [6] and are largely unex-

plored in statistical mechanics. On the other hand, the last four possible transfer matrices

on the right side of Eq.(2.2) exemplify symmetric interaction, the nearest-neighbor states

(si, sj) = (a, b) and (b, a) having the same energies. As also explained below, even when

starting with only symmetric interactions (the last four matrices), asymmetric interactions

are generated under renormalization-group transformations (as can be seen, e.g. by mul-

tiplying the third and fifth matrices in Eq.(2.2), corresponding to a renormalization-group

decimation) and the same ordering results are obtained. Thus, asymmetric interactions are

generated by off-diagonal (symmetric) disorder. The generalization of the above model

to arbitrary q is obvious.

2.2. Renormalization-Group Transformation

The renormalization-group method is readily implemented to the transfer matrix form

of the interactions. The quenched randomness aspect of the problem is included by ran-

domly creating 500 transfer matrices from the 6 possibilities of Eq.(2.2) and perpetuating

these random 500 transfer matrices throughout the renormalization-group steps given be-

low. Note that we start with a single initial value of J , which is proportional to the in-

verse temperature. Quenched randomness comes from the positioning within the matrix.
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Under renormalization-group transformation, each matrix element evolves quantitively

quenched randomly.

The renormalization-group transformation begins by the ”bond-moving” step in which

bd−1 transfer matrices, each randomly chosen from the 500, have their corresponding ma-

trix elements multiplied. This operation is repeated 500 times, thus generating 500 new

transfer matrices. The final, ”decimation” step of the renormalization-group transforma-

tion is the matrix multiplication of b transfer matrices, again each randomly chosen from

the 500. This operation is also repeated 500 times, again generating 500 renormalized

transfer matrices. The length rescaling factor is taken as b = 2 in our calculation. At

each transfer-matrix calculation above, each element of the resulting transfer matrix is di-

vided by the largest element, resulting in a matrix with the largest element being unity.

This does not affect the physics, since it corresponds to subtracting a constant from the

Hamiltonian. These subtractive constants (the natural logarithm of the dividing element)

are scale-accumulated, as explained below, for the calculation of entropy.

The above transformation is the approximate Migdal-Kadanoff [7, 8] renormalization-

group transformation for hypercubic lattices and, simultaneously, the exact renormalization-

group transformation of a hierarchical lattice [9, 10, 11]. This procedure has been ex-

plained in detail in previous works.[3] For most recent exact calculations on hierarchical

lattices, see Ref.[12, 13, 14, 15, 16, 17, 18, 19], including finance [18] and DNA-binding

[19] problems.

2.3. Asymptotically Dominant All-Temperature

Freezing in d > 1 with High-Temperature Short-Range

Disordering

Figure 1.1 shows the renormalization-group trajectories for the systemwith q = 3 states

in d = 3 dimensions, starting at three different temperatures T = J−1, where J refers

to the renormalization-group-trajectory initial conditions shown in Eqs.(2.2,2.3). Shown

are the second (J2) and third (J3) largest values of the energies (dimensionless, being

temperature-divided) that appear exponentiated in the transfer matrix elements,

Jij = ln(Tij), (2.4)

5



Figure 2.1: Renormalization-group trajectories for the system with q = 3 states in d = 3 dimensions,
starting at three different temperatures T = J−1 from Eqs.(2.2,2.3), namely starting with (a) J = 0.02,
(b) J = 0.20, (c) J = 0.50. Shown are the second (J2), third (J3) largest values and the matrix average
of the eight non-leading energies < J2−9 > of the transfer matrix (Eq.(2.4)), averaged over the quenched
random distribution. The leading energy is J1 = 0 by subtractive choice. The different starting values
can be seen on the left axis of each panel (corresponding to renormalization-group step 0). Starting at any
non-zero temperature, the system renormalizes to a state in which the leading energy is totally dominant,
all other energies renormalizing to−∞. The matrix position of the single asymptotically dominant element
occurs randomly among the q× q possibilities including off-diagonal and therefore necessarily asymmetric,
but is the same across the quenched random distribution. However, starting at high temperatures, as seen
e.g. in the left and center panels in this figure, the system spends many renormalization-group iterations
near the infinite-temperature fixed point (where all energies are zero), before crossing over to the ordered
fixed point. Since the energies at a specific step of a renormalization-group trajectory directly show the
effective couplings across the length scale that is reached at that renormalization-group step, this behavior
indicates islands of short-range disorder at the short length scales that correspond to the initial steps of a
renormalization-group trajectory. These islands of short-range disorder nested in long-range order have been
explicitly calculated and shown in spin-glass systems in Ref. (20). These islands of short-range disorder
occur in the presence of long-range order, since the trajectories eventually flow to the strong-coupling fixed
point. As temperature is increased (changing the renormalization-group initial condition), these short-range
disordered regions order, giving rise to the smooth specific heat peak, but no phase transition singularity, as
there is no additional fixed-point structure underlying this short-range ordering.

averaged over the quenched random distribution, where Tij are the elements of the q × q

transfer matrix Tij . The matrix average of the eight non-leading energies < J2−9 >,

averaged over the quenched random distribution, is also shown. The leading energy is

J1 = 0 by subtractive overall constant, as explained above. As seen in this figure, starting

at low temperature T = 2, the system renormalizes to a state in which the leading energy is

totally dominant, all other energies renormalizing to−∞. Thematrix position of the single

asymptotically dominant element occurs randomly among the q×q possibilities including

off-diagonal and therefore necessarily asymmetric, but is the same across the quenched

random distribution. The number of possible dominant transfer-matrix elements gives the

degeneracy of the ordered phase, so that with q × q, maximal degeneracy is achieved. A

diagonal element of the transfer matrix being dominant means that one state, e.g. si = c

dominates at the strong coupling fixed point and characterizes the ordered phase. This does

have the usual permutational symmetry of the Potts model, being physically equivalent to

all diagonal elements dominating, but with non-diagonal elements zero so that only one

spin state dominates the entire physical system. The equivalence is not complete only

6



in the fact that the latter picture allows different domains in the system, where as the

former does not. A non-diagonal element Tkm = 1 being dominant maintains itself by

having Tim, Tkj , where i ̸= k, j ̸= m, being small, decreasing under renormalization-

group, but non-zero. The corresponding spin state is highly degenerate, as can be seen

from the renormalization-group solution, where each spin has a degeneracy of 2 (still

less than the disordered number of q), seen at decimation transformations, and the system

is randomly populated by two spin states corresponding to the indices k and m of the

dominant Tkm. Moreover, starting at high temperatures, as seen e.g. in the left and center

panels of Fig. 2.1, the system spends many renormalization-group iterations near the

infinite-temperature fixed point (where all energies are zero), before crossing over to the

ordered fixed point. This signifies short-range disorder, in the presence of long-range

order, as also reflected in the specific heat peaks caused by short-range disordering as

discussed below. A similar smeared transition to short-range disorder in the presence of

long-range order has previously been seen in underfrustrated Ising spin-glass systems.[22]

We have repeated our calculations for non-integer spatial dimensions approaching d =

1 from above, by keeping the bond-moving number bd−1 = 2 and increasing the decima-

tion number b. The behavior described above obtains for all d & 1, albeit with an increas-

ing high-temperature range of short-range disorder, and higher number of renormalization-

group steps to strong coupling, as d = 1 is approached. At d = 1, the infinite-temperature

fixed point is the sole attractor and the system is disordered at all temperatures.

2.4. Free Energy, Entropy, and Specific Heat

The renormalization-group solution gives the complete equilibrium thermodynamics

for the systems studied. The dimensionless free energy per bond f = F/kN is obtained

by summing the additive constants generated at each renormalization-group step,

f =
1

N
ln
∑
{si}

e−βH =
∑
n=1

G(n)

bdn
, (2.5)

whereN is the number of bonds in the initial unrenormalized system, the first sum is over

all states of the system, the second sum is over all renormalization-group steps n, G(n) is

the additive constant generated at the (n)th renormalization-group transformation aver-

aged over the quenched random distribution, and the sum quickly converges numerically.

7



Figure 2.2: Calculated free energy per bond as a function of temperature T = J−1. The curves are, from
top to bottom, for (q = 4, d = 2), (q = 3, d = 2), (q = 4, d = 3), (q = 3, d = 3). The expected T = ∞
values of f = F/kN = ln q/(bd − 1) are given by the dashed lines and match the calculations.

From the dimensionless free energy per bond f , the entropy per bond S/kN is calcu-

lated as
S

kN
= f − J

∂f

∂J
(2.6)

and the specific heat C/kN is calculated as

C

kN
= T

∂(S/kN)

∂T
= −J

∂(S/kN)

∂J
. (2.7)

Figures 2.2-2.4 give the calculated free energies f , entropies S/kN , and specific heats

C/kN per bond as functions of temperature T = J−1, for q = 3, 4 states in d = 3, 4

dimensions. The expected T = ∞ values of f = ln q/(bd− 1) and S/kN = ln q/(bd− 1)

are given by the dashed lines and match the calculations.

As explained in Fig. 2.1, the specific heat maximum occurs at the temperature of the

short-range disordering. In this figure, starting at high temperatures, as seen e.g. in the left

and center panels in this figure, the system spends many renormalization-group iterations

near the infinite-temperature fixed point (where all energies are zero), before crossing over

to the ordered fixed point. Since the energies at a specific step of a renormalization-group

trajectory directly show the effective couplings across the length scale that is reached at

that renormalization-group step, this behavior indicates islands of short-range disorder

at the short length scales that correspond to the initial steps of a renormalization-group

trajectory. These islands of short-range disorder nested in long-range order have been

explicitly calculated and shown in spin-glass systems in Ref. (20). These islands of short-

8



Figure 2.3: Calculated entropy per bond as a function of temperature T = J−1, for q = 3, 4 states in
d = 3, 4 dimensions. The curves are, from top to bottom, for (q = 4, d = 2), (q = 3, d = 2), (q = 4, d =
3), (q = 3, d = 3). The expected T = ∞ values of S/kN = ln q/(bd − 1) are given by the dashed lines
and match the calculations.

range disorder occur in the presence of long-range order, since the trajectories eventu-

ally flow to the strong-coupling fixed point. As temperature is increased (changing the

renormalization-group initial condition), these short-range disordered regions order, giv-

ing rise to the smooth specific heat peak, but no phase transition singularity, as there is no

additional fixed-point structure underlying this short-range ordering. Specific heat max-

ima away from phase transitions, due to short-range ordering, have been calculated in a

variety of systems [21, 22].

Figure 2.4: Calculated specific heat as a function of temperature T = J−1, for q = 3, 4 states in d = 3, 4
dimensions. The curves are, from top to bottom, for (q = 4, d = 2), (q = 3, d = 2), (q = 4, d = 3), (q =
3, d = 3). A specific heat maximum occurs at short-range disordering.
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Figure 2.5: Calculated specific heat as a function of temperature T = |J |−1 for ferromagnetic (J > 0), full
curves, and antiferromagnetic (J < 0), dashed curves, systems, for q = 3, 4 states in d = 3, 4 dimensions.
The curves are, from top to bottom in each panel, for d = 2 and d = 3. The quantitatively same short-range
disordering behavior is seen for both ferromagnetic and antiferromagnetic systems.

2.5. Antiferromagnetic Maximally Random Systems

We have repeated our calculations for antiferromagnetic (J < 0) systems and obtained

quantitatively similar behavior. Fig. 2.5 shows the calculated specific heats as a function

of temperature T = |J |−1 for ferromagnetic (J > 0) and antiferromagnetic (J < 0) sys-

tems, for q = 3, 4 states in d = 3, 4 dimensions. The full-temperature range (T < −∞)

maximally degenerate long-range ordering and a quantitatively same short-range disor-

dering at high temperature is seen for both ferromagnetic and antiferromagnetic systems.

2.6. Conclusion

We have studied maximally random discrete-spin systems with symmetric and asym-

metric interactions and have found, quite surprisingly, (1) quenched random long-range

order at all non-infinite temperatures for d > 1, (2) short-range disordering at high temper-

atures, via a smeared transition and a specific-heat peak, while sustaining long-range order.

The latter behavior has also been seen in underfrustrated Ising spin-glass systems[22].
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Chapter 3

A LOWER LOWER-CRITICAL

SPIN-GLASS DIMENSION FROM

QUENCHED MIXED-SPATIAL

DIMENSIONAL SPIN GLASSES

3.1. Introduction

The lower-critical dimension dc of an ordering system, where the onset of an ordered

phase is seen as spatial dimension d is raised, has been of interest as a singularity of a

continuous sequence of singularities, the latter being the phase transitions to the ordered

phase which change continuously as d is raised from dc. The lower-critical dimension

of systems without quenched randomness has been known for some time as dc = 1 for

the Ising-type (n = 1 component order-parameter) systems, dc = 2 for XY, Heisenberg,

... (n = 2, 3, ..) systems, highlighted with a temperature range of criticality at dc = 2 of

the XY model [23, 24]. In systems with quenched randomness, a marvelous controversy

on the lower-critical dimension of random-field Ising system has settled for dc = 2.[25,

26, 27, 28, 29, 30, 31, 32] Quenched bond randomness affects the first- versus second-

order nature of the phase transition into an ordered phase that exists without quenched

randomness (such as the ferromagnetic phase), rather than the dimensional onset of this

ordered phase.
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Figure 3.1: Local graphs with d = 2 (bottom) and d = 3 (top) connectivity. The cross-dimensional hierar-
chical lattice is obtained by repeatedly imbedding the graphs in place of bonds, randomly with probability
1− q and q for the d = 2 and d = 3 units, respectively.

The situation is inherently different with an ordered phase that is caused by the quenched

randomness of competing ferromagnetic-antiferromagnetic (and more recently right-left

chirality or helicity [3]) interactions, namely the Ising spin-glass phase. Replica-symmetry-

breaking mean-field theory yields dc = 2.5 [33] this being of immediate high interest as

the first known example of a non-integer lower-critical dimension. Numerical fit to spin-

glass critical temperatures [34] and free energy barriers [35] for integer dimensions also

suggests dc = 2.5. Numerical fits to the exact renormalization-group solutions of two

different families of hierarchical lattices with a sequence of decreasing dimensions yield

dc = 2.504 [36, 37] and dc = 2.520 [38], which are of further interest by being non-

simple fractions. The strength of hierarchical lattice approaches is that they present exact

(numerical) solutions [9, 10, 11], but they involve non-unique continuations between in-

teger dimensions, being based on different families of fractal graphs. However, in the

hunt for the lower-critical dimension, since each hierarchical lattice constitutes a physical

realization, calculating a finite-temperature spin-glass phase at d automatically pushes the

lower-critical dimension to dc < d, which is an important piece of information. The ex-

act numerical renormalization-group solution of hierarchical lattices, used in the current

study, has been fully successful in all aspects of lower-critical-dimension behavior men-

tioned in the first paragraphs of this Section. Whereas previous studies with hierarchical

lattices have used in each calculation a lattice with the same dimensionality at every lo-

cality (these include but are not confined to hierarchical lattices that are simultaneously

approximate solutions [7, 8] for hypercubic and other Euclidian lattices), we quenched

randomly mix units with local dimensionality d = 2 and d = 3. By varying the relative

concentration of these two units, we continuously span from d = 2 to d = 3. In this phys-
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ically realized system, we find dc = 2.431, lower than previously found values and thus

setting an upper limit to the actual lower-critical dimension of the Ising spin-glass phase.

Figure 3.2: Calculated exact global phase diagram of the Ising spin glass on the cross-dimensional hierar-
chical lattice, in temperature 1/J , antiferromagnetic bond concentration p, and spatial dimension d. The
global phase diagram being symmetric about p = 0.5, the mirror image portion of 0.5 < p < 1 is not
shown. The spin-glass phase is thus clearly seen, taking off from zero temperature at dc = 2.43.

Furthermore, as our spin-glass phase disappears at zero-temperature at dc = 2.431, it

is fully chaotic, with a calculated Lyapunov exponent of λ = 1.56 (this exponent equals

1.93 at d = 3), which is in sharp contrast to the disappearance, as frustration is microscop-

ically turned off, of the spin-glass phase to the Mattis-gauge-transformed ferromagnetic

phase, where the Lyapunov exponent (and chaos) continuously goes to zero[22]. In the

current work, we also obtain a global phase diagram in the variables of temperature, anti-

ferromagnetic bond concentration, and spatial dimensionality.

3.2. Model and Method: Moving between Spatial

Dimensions through Local Differentiation

The Ising spin-glass system has Hamiltonian

−βH =
∑
⟨ij⟩

Jijsisj (3.1)
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where β = 1/kT , at each site i of the lattice the spin si = ±1, and ⟨ij⟩ denotes sum-

mation over all nearest-neighbor site pairs. The bond Jij is ferromagnetic +J > 0 or

antiferromagnetic −J with respective probabilities 1− p and p.

Figure 3.3: Constant dimensionality d cross sections of the global phase diagram in Fig. 3.2. The cross
sections are, starting from high temperature, for d = 3, 2.9, 2.8, 2.7, ..., 2.1, 2. It is seen that, as the dimen-
sionality d approaches dc from above, the spin-glass phase disappears at zero temperature.

This Hamiltonian is lodged on the hierarchical lattice constructed with the two graphs

shown in Fig. 3.1. The lower graph has a length rescaling factor (distance between the

external vertices) of b = 3 and a volume rescaling factor (number of internal bonds) of

bd = 9. Thus, self-imbedding the lower graph into its bonds ad infinitum results in a d = 2

spatial dimensional lattice that is numerically exactly soluble. The upper graph similarly

yields d = 3. Other graphs can be used to systematically obtain intermediate non-integer

dimensions.

For recent exact calculations on hierarchical lattices, see Refs.[12, 13, 14, 15, 16, 18,

19, 39, 40]. Thus, previous works have generally used a hierarchical lattice generated

by a single graph and spatial dimensionality that is microscopically uniform throughout

the system. By contrast, we mix the two graphs with local d = 2 and d = 3 in frozen

randomness and definite proportionality: Starting with either graph (in the thermodynamic

limit, this choice does not matter), each bond is replaced by the d = 2 or d = 3 graph,

with probability 1−q and q, respectively. This random imbedding is repeated ad infinitum.

Thus, the dimensionality of the macroscopic system is (1− q)× 2 + q × 3 = 2 + q.
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Figure 3.4: Zero-temperature phase diagram of the Ising spin glass on the cross-dimensional hierarchical
lattice, in antiferromagnetic bond concentration p and and spatial dimension d. The lower-critical dimension
of dc = 2.431 is clearly visible.

The exact renormalization-group solution of this system works in the opposite direc-

tion from the lattice construction just described. As described after Eq.(2.1), we start with

the double-valued distribution of+J or−J bonds, with probabilities 1− p and p respec-

tively, on a d = 2 or d = 3 unit with probabilities 1 − q and q respectively. The local

renormalization-group transformation proceeds by bd−1 bond-movings followed b = 3 (to

preserve the ferromagnetic-antiferromagnetic symmetry) decimations, generating a distri-

bution of 500 new interactions, which is of course no longer double valued.[40] (In fact,

for numerical efficiency, these operations are broken down to binary steps, each involving

two distributions of 500 interactions.) In the disordered phase, the interactions converge

to zero. In the ferromagnetic and antiferromagnetic phases, under renormalization-group,

the interaction diverges to strong coupling as the renormalized average J ′ ∼ by
F
RJ , where

the prime refers to the renormalized system and yFR > 0 is the runaway exponent of the

ferromagnetic sink of the renormalization-group flows. In the spin-glass phase, under

renormalization-group, the distribution of interactions continuously broadens symmetri-
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cally in ferromagnetism and antiferromagnetism, the absolute value of the interactions

diverging to strong coupling as the renormalized average |J | ′ ∼ by
SG
R |J |, where ySGR > 0

is the runaway exponent of the spin-glass sink of the renormalization-group flows. The

runaway exponents yFR and ySGR are given below as a function of dimensionality d.

3.3. Transitional Dimensional Global Phase Diagram

and Full Chaos Even at Spin-Glass Disappearance

Figure 3.2 shows our calculated global phase diagram in the variables of temperature

1/J , antiferromagnetic bond concentration p, and spatial dimensionality 2 ≤ d ≤ 3.

In addition to the high-temperature disordered phase, ferromagnetic, antiferromagnetic

(the phase diagram being ferromagnetic-antiferromagnetic symmetric about p = 0.5, the

mirror-image antiferromagnetic part of p > 0.5 is not shown; however, see Figs. 3.3 and

3.4), and spin-glass ordered phases are seen.

As dimensionality d is lowered, the spin-glass phase disappears at zero temperature at

the lower-critical dimension of dc = 2.431. Constant-dimension d cross sections of the

global phase diagram are in Fig. 3.3, where the gradual temperature-lowering of the spin-

glass phase, as the lower-critical dimension dc = 2.431 is approached from above, is seen.

However, such gradual disappearance is not the case for the chaos [41, 42, 43] inherent

to the spin-glass phase, as seen below. Fig. 3.4 shows the calculated zero-temperature

phase diagram in thevariables of antiferromagnetic bond concentration p and spatial di-

mensionality 1 ≤ d ≤ 3. For this Figure, the calculation is continuously extended down

to d = 1 by again quenched-randomly mixing our d = 2 graph (Fig. 3.1) and a linear

3-segment strand. The smoothness of the boundaries at d = 2 validates our method. The

independence of dc from p is noteworthy.

An inherent signature of the spin-glass phase is the chaotic behavior [41, 42, 43, 44,

45, 46, 47, 48] of the interaction at a given locality as a function of scale change, namely

under consecutive renormalization-group transformations. This chaos is shown in Fig.

3.5 for a variety of dimensions, including the lower-critical dimension dc = 2.431. For
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each chaos, the Lyapunov exponent

λ = lim
n→∞

1

n

n−1∑
k=0

ln
∣∣∣dxk+1

dxk

∣∣∣ (3.2)

where xk = J(ij)/|J | at step k of the renormalization-group trajectory, measures the

strength of the chaos, and is calculated and shown for the spatial dimensions in Fig. 3.5.

Figure 3.5: The chaotic renormalization-group trajectory of the interaction Jij at a given location < ij >,
for various spatial dimensions between the lower-critical dc = 2.431 and d = 3. Note that strong chaotic
behavior, as also reflected by the shown calculated Lyapunov exponents λ, nevertheless continues as the
spin-glass phase disappears at the lower-critical dimension dc, as also seen in Fig. 3.6.

It is seen that the system shows strong chaos (positive Lyapunov exponent λ = 1.56)

even at dc = 2.431, namely at the brink of the disappearance of the spin-glass phase, after

an essentially slow numerical evolution from the d = 3 value of λ = 1.93. This is in sharp

contrast with the disappearance of the spin-glass phase, into a Mattis-gauge-transformed

ferromagnetic phase, as frustration is gradually turned off microscopically, where chaos
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Figure 3.6: Spin-glass critical temperature TSG
C at p = 0.5, spin-glass chaos Lyapunov exponent λ, spin-

glass-phase runaway exponent ySG
R and ferromagnetic-phase runaway exponent yFR , as a function of dimen-

sion d. Note that the ferromagnetic phase runaway exponent yFR correctly tracks d− 1.

gradually disappears and the Lyapunov exponent continuously goes to zero, as seen in

Fig. 3.6 of Ref. [22]. As seen in Fig. 3.6, the Lyapunov exponent, shown continuously as

a function of dimension, is essentially unaffected by the disappearance of the spin-glass

phase and thus shows a discontinuity at dc. The runaway exponent of the spin-glass phase,

on the other hand, correctly goes to zero at dc, as is expected by the renormalization-group

flow structure. Also seen in Fig. 3.6 is the spin-glass critical temperature going to zero at

dc.

3.4. Conclusion

By quenched-randomly mixing local units of different spatial dimensionalities, we have

studied Ising spin-glass systems on hierarchical lattices continuously in dimensionalities

1 ≤ d ≤ 3. We have calculated the global phase diagram in temperature, antiferro-

magnetic bond concentration, and spatial dimensionality. We find that, as dimension is

lowered, the spin-glass phase disappears at zero temperature at dc = 2.431. Our system

being a physically realizable system, this sets an upper limit to the lower-critical dimen-

sion of the Ising spin-glass phase. As dimension is lowered towards dc, the spin-glass

critical temperature continuously goes to zero. The Lyapunov exponent, measuring the

strength of chaos, is on the other hand largely unaffected by the approach to dc and shows

a discontinuity to zero at dc.
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Chapter 4

CONCLUSION

In this thesis we have studied maximally random discrete-spin systems, and Ising spin-

glass systems on hierarchical lattices continuously in dimensionalities 1 ≤ d ≤ 3.

In Chapter 2, we have investigated discrete-spin systems with nearest-neighbor inter-

actions, where we allowed each spin site to randomly favor one of the available states for

its interaction with a nearest neighbor, thereby allowing the system to form both asym-

metric and symmetric interactions and enabling maximal randomness throughout the sys-

tem. We have found that such systems exhibit short-range disordering in the presence of a

long-range order, and ultimately flow towards the ordered fixed point, at any non-infinite

temperature, and for both integer and non-integer spatial dimensions for d & 1. At order,

the dominant interaction is any and only one of the q×q equally-weighted outcomes, thus

maximally degenerate. The implacable long-range ordering is only belated at high temper-

atures, where the system spends many renormalization-group iterations near the infinite-

temperature fixed point - a smeared transition into short-range disorder, likewise seen in

the maxima of calculated specific heat diagrams. Keeping the temperature constant, this

behavior is also observed if we approach d = 1 from above where we see increase in the

high-temperature range of short-range disorder. The triumph of disorder only occurs at

d = 1 where the system is disordered at any temperature, since the infinite-temperature

fixed point becomes the sole attractor. We also considered the antiferromagnetic case

(J < 0), and obtained quantitatively similar behavior.

In Chapter 3, by quenched-randomly mixing local units of different spatial dimension-

alities, we have studied Ising spin-glass systems on hierarchical lattices continuously in

dimensionalities 1 ≤ d ≤ 3. We have calculated the global phase diagram in tempera-

ture, antiferromagnetic bond concentration, and spatial dimensionality. We find that, as

dimension is lowered, the spin-glass phase disappears at zero temperature at dc = 2.431.
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Our system being a physically realizable system, this sets an upper limit to the lower-

critical dimension of the Ising spin-glass phase. As dimension is lowered towards dc,

the spin-glass critical temperature continuously goes to zero. The Lyapunov exponent,

measuring the strength of chaos, is on the other hand largely unaffected by the approach

to dc and shows a discontinuity to zero at dc.
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