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ABSTRACT 

 The current dominating communication system is 4G. However, with the increase in 

the data rate and in the number of users in the world, the 4G communication system has 

started to saturate and couldn’t manage to keep up with user demands and there is less 

room for progress at 4G systems. In search of finding a system that covers the future 

interests of users, a new communication scheme is being processed as 5G. The next 

generation systems require wider bandwidth, high spectral efficiency, and less latency.  For 

these goals, designs with higher frequency and full-duplex operation mode have been 

started to gain attention. Developments in SiGe HBT technologies -higher fT and fmax- 

make them suitable for these challenges. Considering these trends which lead to the future 

of communication systems, in this thesis the design of Ka-band (25-32GHz) SiGe full 

duplex system with electrical balance duplexer for 5G applications is presented. This 

system is created by integrating. a duplexer, an LNA, and a PA. 

 The electrical balance duplexer is realized by a hybrid transformer and a balancing 

network. The impedance of the antenna is mimicked by tuning the balancing network to 

provide high isolation between transmitter and receiver blocks. All the ports have better 

than 10dB return loss. Duplexer provides measured 39dB peak isolation at 28GHz, with 

3.8dB insertion loss from the transmitter to the antenna and 4.7dB insertion loss from the 

antenna to receiver. The LNA achieves the measured gain of 15dB, NF of 3.5dB and 

OP1dB of 13.5dBm at 28GHz by including an input and an output BALUN transformer. 

The PA provides measured gain of 17dB and OP1dB of 14dBm at 28GHz. 
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ÖZET 

 Günümüzde hakim olan iletişim sistemi 4G'dir. Veri kullanımdaki ve dünyadaki 

kullanıcı sayısındaki artışla birlikte, 4G iletişim sistemi kullanıcıların isteklerine karşılık 

verememeye başlamıştır ve 4G teknolojilerinde gelişimin sonuna gelmiştir. Kullanıcıların 

gelecekteki isteklerini kapsayan bir sistem bulmak için, yeni bir iletişim sistemi 

geliştirilmelidir ve bu sistem 5G olarak belirlenmiştir. Yeni nesil sistemler daha yüksek 

bant genişliği, yüksek spektral verimlilik ve daha az gecikme gerektirmektedir. Son 

yıllarda, bu hedefler için daha yüksek frekanslı ve tam dupleks modlu tasarımlar ilgi 

toplamaya başlamıştır. SiGe HBT teknolojilerindeki gelişmeler -daha yüksek fT ve fmax- bu 

teknolojiyi yeni nesil tasarımlara uygun hale getirmiştir. Haberleşme sistemlerinin 

geleceğine yön veren bu eğilimler göz önünde bulundurularak, bu tez, 5G uygulamaları için 

elektrik dengesi duplekseri ile Ka-band (25-32GHz) SiGe tam dupleks sisteminin 

tasarımını sunmaktadır. Bu sistem bir dupleksleyici, bir LNA ve bir PA’den oluşmaktadır. 

 Elektriksel denge dupleksleyici bir hibrit transformatör ve bir dengeleme ağı ile 

tasarlanmıştur. Verici ve alıcı blokları arasında yüksek izolasyon sağlamak için anten 

empedansının dengeleme ağının ayarlanmasıyla takip edilmesi gerekmektedir. Tüm portlar 

10dB’den daha iyi geri dönüş kaybına sahiptir. Dupleksleyicinin vericiden antene simüle 

edilmiş kaybı 3.8dB, antenden alıcıya simüle edilmiş kaybı ise 4.7dB’dir. 28 GHz'de 39 dB 

maksimum izolasyon sağlamaktadır. LNA, giriş ve çıkış BALUN transformatörleri içerir 

ve ölçülmüş sonuçları 28GHz'de 15dB kazanç, 3.5dB'lik NF ve 13.5dBm'lik OP1dBdir. 

PA, 28GHz'de 17dB kazanç sağlar ve 14dBm'lik OP1dB çıkış gücüne ulaşmaktadır. 
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1 Introduction 

1.1 5G 

Wireless technologies and communication system had become mainstream for people 

a long time ago. They took a great place in every aspect of life such as high-quality data 

transfer, cloud operations, vehicle-to-vehicle or vehicle-to-infrastructure communication, 

virtual/augmented reality applications, automation of industrial devices, smart 

houses/cities, personal healthcare applications and the unlimited number of examples can 

be given for applications of the wireless systems. From the emerging point of 

telecommunication until now; there is a rapid improvement and development in the field of 

communication systems. During this period, communication systems completely evolved 

and changed not once but several times [1].  

Today the most recent technology is the fourth-generation mobile phone standards 

(4G). For instance; today, with 4G’s high data transfer rate, it is providing high-quality 

video and audio streaming. However; even 4G structures can’t handle today’s user demand 

and there is only fractional room is left for development. The most important problem for 

4G is the increase in both demand and device numbers. The demand for data is growing not 

linearly but exponentially with each year. From 2015 to 2016, mobile data transfer rate is 

increased by 63% from 4.4 exabytes to 7.2 exabytes. The data transfer growth in 2016 can 

be seen in Figure 1. Also, the number of active devices raised from 7.6 billion to 8 billion 

in only one year. In 2021, the expected number of mobile devices is 11.6 billion [2]. The 

disadvantages of 4G can be explained as follows: Firstly, even though 4G has a large 

bandwidth, they are not used by all of the world. These bandwidths are specialized to 

different locations and mobile devices can’t operate in every single one of them due to the 

electronic component limitation. Secondly, the 4G communication system is not 

compatible with Wi-Fi structures. Being suitable with Wi-Fi technology could create great 

benefits for bandwidth and it would relax the bandwidth requirements. Also, with the 

introduction of more and more internet of things (IoT) devices to the market, wireless 

systems became more important. Finally, 4G will not be able to provide the sufficiently low 

latency values (~1ms) especially for IoT devices [3].  
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Figure 1: Mobile data traffic growth in 2016 [2] 

Until now 4G met the demands of the users; however, due to the reason that has been 

mentioned above, the technology needed a brand-new communication system called 5G. 

While thinking about the requirements of 5G structure, the inadequacies of the 4G system 

can be taken as references. First one is latency and the second one is cost and efficiency. 

The last and most important of the requirements is the high data rate. 5G is promising the 

data rate which thousand times of 4G. One of the key steps that make this available is 

increasing the operation frequencies of the communication systems. The frequency 

spectrum that is common today is almost full and communication requires new bandwidth. 

It is the most effective way to provide large bandwidth for the users. For this purpose, 

millimeter wave (mmWave) frequencies come into consideration. However, these 

frequencies were not thought of as suitable for communication systems. Basically, because, 

they are hard to propagate. Few of the reasons for this property can be given as path loss, 

low penetration to walls, atmospheric and rain absorption [4]. In recent years, several 

different ways to overcome these problems emerged. For example, keeping the antenna 

sizes which are used for smaller frequencies may be a solution for higher frequency 

applications. These large arrays can eliminate the frequency dependence of the propagation 

path loss. Another way can be smaller cells with narrower beams with their low 
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interference behavior [5]. An additional challenge with working at higher frequency is how 

can the integrated circuit technology satisfy the high-frequency operation. As the size of the 

chips becomes smaller and smaller, and as the fT’s of the transistor becomes higher, the 

complexity of chip fabrication increases drastically and this leads to the higher prices for 

the production of circuits. 

1.2 Duplexing 

Apart from higher spectrum range; another important aspect of communication with 

the increase in user and devices numbers is the spectral efficiency. Today, the most 

common way of how designers use the communication systems is half-duplexing which 

means that using the same antenna for transmitting or receiving the signals but not 

concurrently or with the same frequency. Receiving and transmitting operations happen one 

at a time. This operation is named as time division duplexing (TDD).  Generally, there is a 

single pole double throw (SPDT) switch placed between the antenna and 

transmitter/receiver. In one operation mode of the SPDT; while receiver block is active, 

transmitter operation is suppressed. In the other mode of SPDT, the operations will be 

reversed. Another common method is using frequency division duplexing (FDD). Also, in 

this case, the same antenna is used for both operations; however, with different frequency 

values. These two different frequency values enable using different filters between antenna 

and transmitter/receiver blocks. Transmitter signal converted into a signal that the receiver 

can detect in base stations. The working principle of TDD and FDD can be seen in Figure 

2. 

As explained before, both TDD and FDD are working on half-duplex mode. 

However, in this condition, the resources can’t be used at their full efficiency potential. 

Therefore, designers started to consider systems that able concurrent transmit and receive 

operations with the same frequency band; in order to increase the spectral efficiency when 

compared to half-duplex systems. These structures are named as full-duplex (FD) or in-

band full duplex (IBFD) systems. Being able to transmit and receive at the same time with 

the same frequency band, is theoretically doubling the spectral efficiency of the system 

when compared to half-duplex systems. 
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Figure 2: a) Block diagram of TDD b) Block diagram of FDD 

 

 

Figure 3: Depiction of working principal of a) TDD b) FDD c) IBFD 

 Figure 3 shows the type of operation in TDD, FDD and IBFD systems with respect to 

time. In this figure, green blocks show the transmit operation and blue blocks denote the 

receive operation. As explained before; in TDD systems, transmit and receive operations 

are controlled with an SPDT switch and they are working in order. There is a gap between 

each operation because of the delays in the switch and also to ensure that system is working 

in a safe manner. In FDD systems, they operate the incoming and outgoing signals at the 

same time but with different frequencies. Lastly, for IBFD both transmit and receive signal 

-with the same frequency- is processed concurrently. With using same frequency bands, FD 

systems do not consume frequency space like FDD systems. This creates opportunity for 

other applications to use those unused frequency bands. Properties of IBFD’s like increased 
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spectral efficiency and generous usage of frequency bands, full-duplex systems become 

suitable for 5G applications; because of the requirements mentioned above. 

 Another design necessity of 5G operations is decreased latency in operations such as 

IoT devices. Since there is no switch between antenna and circuits in FD systems, there is 

no need to divide the operation into time steps. This will lead to decrease in latency. 

Another benefit provided with this property is that there will be no package collision. 

Because, a received signal can still be detected while the system is transmitting. Small cells 

with massive multiple-input multiple-output (MIMO) systems will be important structures 

for 5G applications. This will also increase the channel capacity. Using one antenna while 

maintaining both operations concurrently will make FD systems suitable for MIMO 

structures. 

 Although FD systems provide higher spectral efficiency; they have some drawbacks 

and challenges. In FD systems, there is a huge self-interference from structure’s own 

transmit blocks to the receiver. If this self-interference is not dealt with, the channel 

capacity of the FD system can even fall behind of their HD counterparts. This interfered 

signal is large in amplitude when compared to receiver’s input signal at any given time. 

This behavior can cause degradation in the sensing performance of receivers, because the 

received signal will be negligible against that self-interference signal. It is considered as 

canceling can be achieved by subtracting this signal from itself. However, this approach is 

not feasible. For instance, if this cancellation is wanted to be done in digital domain, the 

amount of dynamic range required for analog-to-digital converters (ADC) will be high. For 

cancellation in RF domain; oscillator phase noise and sub-block’s non-linearities will create 

problems. So, for years, designers have searched for other ways to cancel the self-interfered 

signal. These applications can be classified into two sections: passive cancellation and 

active cancellation. Passive cancellation includes directional suppression (the radiation 

lobes of transmit and receive operations are separated) and antenna separation (increasing 

the loss between transmit and receive antennas). Active cancellation is achieved through 

analog cancellation (a copy of transmit signal is obtained and with correct amplitude and 

phase values, it is cancelled with receiver port) and digital cancellation in the digital 

domain. However, all of these applications have their flaws and couldn’t meet the desired 

specifications for 5G full-duplex operations [6]. Using duplexer between antenna and 
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transmit/receive modules provides non-complex, cheap, and effective way to cancel the 

interfered transmitter signal. 

  

1.3 SiGe/BiCMOS Technology 

Today, integrated circuit industry dominated by three fabrication processes and 

technologies. These are III-V group technology, CMOS and SiGe/BiCMOS. Almost all the 

integrated circuit such as transceivers are realized using these processes. When compared 

between them, III-V technology is the oldest and most mature technology of all. III-V 

transistors such as gallium arsenide (GaAs) or indium phosphate (InP) have the best 

performance with respect to other -in gain, noise figure and most importantly output power 

aspects-. Most of the applications that require very high output power are realized with 

power amplifiers whose transistors belong to III-V technology.  

Another important positive side this technology is very small process variations. Even 

though III-V group fabrication results in best performance, there are severe drawbacks that 

make this technology unfavorable in various situations. This technology is expensive when 

compared to other processes. Also, integration possibility with digital domain is non-

existing. These problems make III-V group technologies less appealing and create demand 

for other fabrication processes.  

Until now, CMOS technology stayed behind from other processes in performance; 

however, with the recent developments, it started to show comparable performance with 

others. CMOS technology offers little lower performance with cheaper fabrication. CMOS 

technology also dominates the digital integrated circuit domain today with smaller gate 

sizes almost every 2 years. The downside of CMOS technology is the process variations. 

The performances of the transistors or the values of passive structures may differ from 

process to process. The expected simulated results can’t be acquired consistently with this 

technology.  
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Table 1: Comparison of different integrated circuit technologies with respect to different 

performance metrics (++: Very good, +: Good, 0: Average, -: Decent, --: Poor) [23] 

Performance 

Metric 

SiGe 

HBT 

SiGe 

BJT 

Si 

CMOS 

III-V 

MESFET 

III-V 

HBT 

III-V 

HEMT 

Frequency Response + 0 0 + ++ ++ 

1/f and Phase Noise ++ + - -- 0 -- 

Broadband Noise + 0 0 + + ++ 

Linearity + + + ++ + ++ 

Output Conductance ++ + - - ++ - 

Transconductance ++ ++ -- - ++ - 

Power Dissipation ++ + - - + 0 

CMOS Integration ++ ++ N/A -- -- -- 

IC Cost 0 0 + - - -- 

 

Lastly, SiGe/BiCMOS technology stay at the middle of these two technologies in 

both by performance and cost senses. With improvements in the technology, 

SiGe/BiCMOS comes into a place that it can race with the performance of III-V. Although 

it is expensive from CMOS technology with a little margin, SiGe/BiCMOS is greatly 

cheaper than III-V. Another upside of SiGe is its integration possibility with digital domain. 

Also, the process variations and yield number for this technology is greater than its CMOS 

counterpart. Today, in the literature, there can be found integrated circuit studies with state-

of-the-art performance values which are utilized with silicon germanium heterojunction 

bipolar transistors (SiGe HBT) of the SiGe/BiCMOS technology. 

While selection of the technology for aimed operation, a series of important 

specifications of a process should be considered. Two important points of these properties 

are fT and fMAX of the transistors of the technology. fT is the cut-off frequency of a given 

transistor. It shows the frequency which at current gain (β) of the transistor is unity. fMAX is 

the maximum oscillation frequency of a transistor. It represents the frequency where power 

gain of the transistors becomes unity. These two values are important especially for the 

high frequency integrated circuit applications such as 5G communication systems; because 
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with higher fT and fMAX values, transistors provide more gain and low noise figure values at 

the higher frequencies.  

In order to increase the performance of the transistor, bandgap engineering is applied 

to the bases of the HBT’s. To realize the bases of those transistors SiGe alloys are grown 

epitaxially. While silicon has the bandgap voltage of 1.12eV, germanium’s is only at 

0.66eV. By using a material with smaller bandgap voltage than silicon, electron injection is 

increased; therefore, the current gain of the transistors. Germanium does not only increase 

the β but also creates electric field inside of the transistor. This leads to an increment in the 

speed of the carriers in other words effecting base-transit time (τB). All of these aftermaths 

of introducing germanium doping to the silicon improves the fT of the transistors. Relation 

can be seen in the following equation. 

 𝑓𝑇 =  
1

2𝜋
(𝜏𝐵 + 𝜏𝐶 +  

1

𝑔𝑚
(𝐶𝜋 + 𝐶𝜇) + (𝑟𝑒 +  𝑟𝑐)𝐶𝜇)

−1
           (1) 

 Where the τC denotes the collector transit time, gm is the transconductance, Cπ and Cµ 

are the parasitic capacitances from base to emitter and base to collector, respectively and 

lastly, re and rc are parasitic resistances at emitter and collector, in order. As can be seen at 

the (1) fT performance of transistors increases with lower τB and higher gm. As highlighted 

before, another important metric for transistors is fMAX. Its formulization can be given as 

following. 

𝑓𝑀𝐴𝑋 =  √
𝑓𝑇

8𝜋𝐶𝜋𝑟𝑏
                                                (2) 

 Where rb is the parasitic base resistance. Germanium doping to the silicon decreases 

the parasitic base resistance without affecting current gain in a bad manner; therefore, 

transistors with germanium doping provides better noise performance when compared to 

their Si counterparts. In short, germanium doping to the base of the transistors improve 

every single important performance specification of the transistors.  
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Figure 4: Cross section of IHP 0.13µm SiGe HBT Technology [24] 

Today, applications that require ultra-high accuracy and performance, such as 

military purposes, are still using III-V technology; because in those domains, expenses and 

integration properties are secondary concerns. Unlike III-V, SiGe is more favorable for 

commercial usages such as communication systems, short range vehicular radars, RFIDs, 

and biological research. To summarize, SiGe/BiCMOS offers good performance with 

excellent cost and integration properties. With SiGe/BiCMOS fully integrated system-on-

chip devices can be realized in microwave and mm-Wave frequencies with low cost and 

high performance. 

 

1.4 Motivation 

With the increase in demand for higher data rate and efficient usage of frequency 

spectrum, 5G and full-duplex concepts started to gather attention by both academia and 
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industry, because they carry the possibility of effecting every aspect of daily or domain 

specific aspects of people’s life by creating powerful, efficient and fast transceivers. 

Current applications of duplexing are generally done with bulky, complex, non-flexible and 

expensive components. Also, the integration problems are severe. Recently, integrated 

tunable duplexers got popular in designs. On-chip, tunable duplexers have huge challenges 

in their designs, yet, they can lead to cheaper and effective solutions. 

The objective is this thesis is to design a core chip block prototype for in band full-

duplex operated transceiver modules, which operates between Ka-band for 5G applications 

with using IHP 0.13µm SiGe/BiCMOS technology. This core chip includes an on-chip 

hybrid transformer, a balancing network, a low noise amplifier and a power amplifier. This 

thesis aims to present the design steps of these blocks and discuss/analyze the measurement 

result for each block and whole system as well. 

 

1.5 Organization 

This thesis is organized as follows: Chapter 2 explains the fundamentals of the 

duplexer theory by giving the meaning of the duplexing with duplexer types first. Then 

electrical balance duplexers are analyzed from the basic of transformers and hybrid-

transformer necessities. Lastly, balance networks and their properties are explained. 

Chapter 3 starts with design considerations for full-duplex stroke. First, design steps 

of hybrid transformer are explained. Second, the balance network which help hybrid 

transformer while operating as a duplexer is discusses. Other blocks of the system -PA and 

LNA- are stated. All of these blocks simulation and measurement results are shown in 

Chapter 3. The proposed system is shown and the measurement results are represented and 

explained. Lastly, the performance of the full-duplex system is compared with other 

reported works. 

Finally; chapter 4 gives a summary of the thesis and discusses some other challenges 

that are encountered through designs. Also, possible future variations and designs on this 

topic are discussed. 
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2 Fundamentals of Duplexers 

2.1 Introduction 

 In this chapter, the fundamental properties of the duplexers are explained. First, the 

purpose of the duplexers is discussed with the basic performance necessities for reasonable 

operation. Secondly, different types of duplexers are covered, and their 

advantages/disadvantages are discussed. Then, with the basics of transformer design, 

hybrid transformers are analyzed through their three important metrics in order. This starts 

with bi-conjugacy between the ports of the hybrid transformers and continues with the 

power splitting and 180º phase shift properties with using auto-transformer theory. 

 

2.2 Duplexers 

 

Figure 5: Block diagram of transceivers with duplexers 
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 Duplexing means using the same antenna for both transmit and receive operations. 

Duplexing is achieved via duplexers which are one of the most essential sub-blocks of the 

communication and the radar systems which operates in almost all the frequency bands. 

Duplexers are used just before the antennas in order to use the same antenna for both 

transmitted and received signal as can be seen from Figure 5 while blue arrows denote the 

signal flowing from the transmitter block to the antenna, green arrows depict the received 

signal which is coming from the antenna, red line shows the leakage signal from the end of 

the transmitter to the receiver side and finally black arrows shows the transmitted and 

received signals by the antenna. However; even though duplexers enable designers to use 

the same antenna for both transmit and receive mode, there are challenges in duplexer 

design and they need crucial specifications to be operable in transceiver modules.  

 First of all, while providing simultaneous operation with one antenna, duplexers need 

to prevent out-of-band signals to propagate to the system. Secondly, due to their positions 

in transceiver modules, their performance is affecting the specifications of the systems, 

severely. The loss that is introduced from antenna to receiver, directly adds up to the noise 

figure performance. Also, the loss that comes from transmitter to antenna connection is 

degrading the signal power that arrives at the antenna. Another necessity for the duplexers 

is their power handling capacities. Duplexers must be able to work on high power signals 

and shouldn’t add any non-linearities that will deteriorate the performance while operating 

at high power. Lastly; and most importantly; a duplexer should provide high isolation 

between the output of the transmitter and the input of the receiver in a relatively wide signal 

bandwidth. Due to the imperfections, there will be signal leakage from the transmit side to 

the receiver. If this leakage can’t be blocked or canceled out by the duplexer, it will distort 

the incoming signal to the receiver and even saturate the LNA input which damages the 

linearity. In order to duplex the systems, several different methods have been used to this 

date; such as circulators, orthomode transducers, surface acoustic wave (SAW) filters, 

electrical balance duplexers (EBD). 
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Figure 6: Block diagram of the circulators (clock-wise operation) 

2.2.1 Circulators 

 Circulators are non-reciprocal components that have 3-ports and transfer signal in 

clockwise or counter clockwise directions as can be seen in Figure 2 while the arrows 

depict the direction of propagating signals in a circulator. In other words (for clockwise 

rotation); a signal from Port-A will only flow to Port-B, a signal from Port-B will only flow 

to Port-C and finally a signal from Port-C will only flow to Port-A. For transceiver 

applications, an antenna can be connected to the Port-B, transmitter circuitry can be 

connected to Port-A and receiver block can be connected to Port-C. By this way, the 

duplexing operation can be achieved. However, any reflected signal from the entrance of 

the receiver can leak to the transmitter and deteriorate the overall system performance so it 

should be considered in designs. The important design metrics of the circulators are high 

isolation and low insertion loss between ports. 

Circulators can be used as external ferrite-based circulators or as on-chip quasi-

circulators in full duplex transceiver systems [7], [8]. Even though external circulators have 

low loss property, they are bulky, expensive, non-flexible and non-integrable. On-chip  
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Figure 7: Fabricated orthomode transducers [9] 

circulators provide compact and low-cost designs, but they come with high insertion loss 

between the ports and narrow-band operation drawbacks.  

 

2.2.2 Orthomode Transducer 

Orthomode transducers are waveguide components and can be used as duplexers in 

transceiver systems and an example to them can be seen in Figure 7. Their behavior 

depends on the polarization of the signals. Orthomode transducers are separating two 

signals with the same frequency but with different orthogonal polarizations. This property 

can lead to the full duplex usage of a transceiver system. Orthomode transducer duplexers 

have low insertion loss and high isolation between their ports; however, they are external 

hardware so that they are costly, hard to integrate and bulky. 

 

2.2.3 Surface Acoustic Wave (SAW) Duplexers 

SAW duplexers are also 3-port devices like the circulators and widely they are widely            
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Figure 8: An example of SAW duplexer [10] 

used in the communication systems that use frequency division duplexing. Figure 8 

represents the schematic of an example of SAW duplexers. Their operation depends on the 

signals’ transition from the electrical domain to the acoustic domain with using 

piezoelectric materials such as quartz, lithium tantalite etc...  The insertion loss from the 

port which is utilized for antennas differs for two separate frequency band. By this way, 

two signals with different frequencies can be lead to the other desired ports. SAW 

duplexers provide high isolation between their ports. 

Recently, bulk acoustic wave (BAW) duplexers have been started to be used instead 

of SAW duplexers [11]. They take up smaller area when compared to SAW duplexers, they 

have sharper filtering behaviours. Also, integration property of BAW duplexers is 

available, unlike their SAW counterparts. However, BAW duplexers are costlier than SAW 

duplexers; because of their complex fabrication steps. 

2.2.4 Electrical Balance Duplexer (EBD) 

Recently, duplexing and duplexers became a center of interest for circuits that 

operates at mm-wave frequencies. (30GHz – 300GHz). Even though SAW provides high  
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Figure 9: Block diagram of EBD's 

isolation between transmitter and receiver ports while maintaining low insertion loss; as the 

number of bands needed for communication system increases, the design and the 

integration of SAW’s to the integrated circuits become much more complex than SAW’s 

integrated circuit counterparts. Because the performance of SAW’s depends on the material 

type and their operating frequency is fixed, so that the cost and area factors make SAW’s 

less reliable [12], [13].  Due to these drawbacks of conventional structures, nowadays 

EBD’s became an alternative to SAW’s with their comparable performance metrics –

 transmitter-receiver isolation, insertion loss – and their high-frequency range and 

integration possibility with CMOS/BiCMOS technologies [14]. 

EBD’s are designed as 4-port devices which of these ports are transmitter port (TX-

port), receiver port (RX-port), antenna port (ANT-port) and impedance balancing 

port (BAL-port) as can be seen from Figure 9. A 4-port hybrid transformer (junction, 

network) serves as the core of the duplexing operation for EBD’s. In EBD structures, 

isolation is provided between TX-and RX-ports by damping the leakage signal from the 
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transmitter side to the receiver side through cancelling that signal [11]. In order to provide 

the isolation between TX- and RX-ports, the impedance of the ANT-port should be 

matched to the impedance of the BAL-port. Unfortunately, the antenna impedance at the 

ANT-port is not constant in real-time settings. The impedance seen from the ANT-port will 

change with respect to the operating point and the environment of the user such as 

frequency, surroundings and human body [13]. For example; while the user is talking with 

his/her mobile phone, user’s hand and head will show the behavior of lossy dielectrics. This 

effect will lead to crucial changes in the antenna efficiency and the antenna impedance 

[15]. Due to these real-time changes in the ANT-port impedance, the provided isolation 

between TX- and RX-ports will be degraded drastically and to be able to create sufficient 

isolation, the impedance of the BAL-port must track the ANT-port impedance with high 

resolution and range in all operating points and circumstances. The value of the isolation 

depends on how well BAL-port can mimic the impedance of the ANT-port. The perfect 

isolation condition varies with different topologies which will be discussed later. 

 

2.3 Transformers 

Transformers as components had been started to be used at the beginning of telegraph 

era when their RF behavior is considered. Transformers are passive electrical components 

that consist of two or more conductive coils which are adjacent yet electrically isolated 

from each other. Alternating current at primary coil generates magnetic flux and that flux 

effects the secondary coil, causing induced current and voltage across the ports of 

secondary coil. In other words, transformers couple the signal from the primary coil to the 

secondary coil with minimum signal loss possible. Transformers are also used for 

impedance transforming. Electrically isolated property of the transformers allows both coils 

to be biased at different voltage levels [16].  

Design and operation of transformers depend on two important electrical 

characteristic and properties which are turn ratio between coils and magnetic coupling 

coefficient. The schematic of a transformer can be seen at Figure 10. In Figure 10; P and S  
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Figure 10: Schematic of a transformer 

shows the terminals of the primary and the secondary coils. n depicts the ratio of turn 

number of the secondary coil to the primary coil, VP and VS denote the voltage levels, iP and 

iS are the current levels of primary and secondary coils respectively.  The turn ratio affects 

the current and the voltage levels of primary and secondary coils. The relation is described 

with the following equation. 

𝑛 =  
𝑉𝑆

𝑉𝑃
=  

𝑖𝑃

𝑖𝑆
=  √

𝐿𝑆

𝐿𝑃
=  √

𝑍𝑆

𝑍𝑃
                                   (3) 

Where LP and LS show the self-inductance values of the relative coils and, ZP and ZS 

are the impedance seen from the input of primary and secondary coil, in order. 

Magnetic coupling coefficient depicts how two coils affect each other magnetically. 

Coupling coefficient km is given by; 

𝑘𝑚 =  
𝑀

√𝐿𝑃𝐿𝑆
                                                        (4) 

Where M is the mutual inductance between primary and secondary coils. Ideally, for 

transformers km should be equal to 1. If two lines is not coupled to each other by any means 
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km will be equal to 0. In imperfect, real conditions; M will be always smaller than √𝐿𝑃𝐿𝑆 

which makes; 

0 < 𝑘𝑚 < 1                                                             (5) 

With the imperfections in the coupling between the two conductors, a new term 

emerges from previously mentioned turn ratio, n, which is effective turn ratio, neff. Effective 

turn ratio can be expressed as; 

𝑛𝑒𝑓𝑓 =  𝑘𝑚√
𝐿𝑆

𝐿𝑃
                                                         (6)               

This approach will take the non-idealities in the coupling into account. (6) shows us 

every transformer will operate like as if the turn ratio is smaller than the expected value. 

 

2.4 Hybrid Transformers  

Hybrid transformers had been started to come in use in early years of telephone 

technology in order to provide an isolation between speakers and listeners to prevent the 

interception of the received signal to the transmitted signal or vice versa [17]. They are 4-

port reciprocal structures that create isolation with cancelling the leaked signal with its own 

sample. Hybrid transformers can act as component which can combine or separate signals 

without causing crucial damage. In Figure 11, the usage of hybrid transformers as duplexer 

can be seen. PA denotes a power amplifier that can be connected to the transmit port and 

LNA depicts a low noise amplifier at the start of receiver block. 

Before taking hybrid transformers into account, the concept of autotransformer must 

be explained. Autotransformers are one conductive coil which is skewed with a tap port 

from anywhere in the middle as can be seen from Figure 12. In this figure M denotes the 

mutual inductance between primary and the secondary coils. 
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Figure 11: Hybrid transformer as duplexer 

 

 

Figure 12: Schematic of an autotransformer 
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Figure 13: Double tapped autotransformer 

The position of the skew determines the turn ratio, n, in other words inductance 

values of primary and secondary windings. These parameters have an important role for 

division of the signal power.  

Another usage of the autotransformers can be seen at Figure 13 as double tapped 

autotransformer. In this case, another tapped transformer placed to a position that creates 

magnetic coupling with the first one. In this figure, M1 shows the mutual inductance 

between L1 and L2, M2 shows the mutual inductance between L2 and L3 and finally M3 

depicts the mutual inductance between L1 and L4. Both the autotransformers and the double 

tapped autotransformers are used in hybrid transformer design. However; when compared 

to the autotransformers, the double tapped ones provide better common mode isolation 

between TX- and RX-ports. Important design specification of the hybrid transformers are 

bi-conjugacy and isolation between ports, impedances seen from each port and finally, the 

power splitting ratio for desired operation [17].  
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Figure 14: Currents in TX-RX bi-conjugacy analysis 

 

2.4.1 Bi-Conjugacy of Hybrid Autotransformers 

Bi-conjugacy is a crucial aspect of any hybrid transformer. Explaining this concept is 

much clearer when taking hybrid autotransformers into account so this section will analyze 

the bi-conjugacy of the hybrid autotransformers. 

In the concept of hybrid autotransformers, bi-conjugacy means the electrically 

isolated state of two ports from each other. Hybrid autotransformers have 2 pairs of bi-

conjugate ports which are ANT-port and BAL-port, TX-port and RX-port. This property 

arises from the balanced state of voltages and currents with 180º degree phase difference 

between two differential arms of the RX-port. In order to reach the perfect bi-conjugacy 

and maximum isolation; 4-ports of the hybrid transformer must fulfill a special condition of 

following equation [17], [18].  
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𝑍𝐴𝑁𝑇 =  𝑍𝐵𝐴𝐿 =  
𝑍𝑅𝑋

2
= 2𝑍𝑇𝑋                                            (7) 

Where ZANT depicts impedance seen from ANT-port, ZBAL depicts impedance seen 

from BAL-port, ZRX shows the impedance of RX-port and ZTX denotes the impedance of 

TX-port. 

The logic of achieving bi-conjugacy of two pairs of the hybrid autotransformers have 

a similar yet different approach. The bi-conjugacy of the TX- and RX-ports is achieved 

through currents with the same amplitude. These currents can be observed in Figure 14. In 

Figure 14, iANT denotes the current flowing inside the TX-, ANT-port loop and iBAL shows 

the current flowing inside the TX-, BAL-port loop. If ZANT = ZBAL condition can be met, the 

current flowing from the TX-port will divide into two and it will flow from the center tap of 

the autotransformer to the two opposite sides of the conductor coil. These separated 

currents with the same amplitudes will generate two magnetic fluxes with an also same 

amplitude. These coupled currents effectively will cancel out each other’s effect. With this 

property there will be no voltage at the RX-port. The VRX at Figure 14 will be zero which 

concludes to their bi-conjugate state.  

Electrically isolated state of ANT- and BAL-ports is also depending on the 

impedance ratio at (7) and the quality of the transformer. When the transformer supplied 

from the ANT-port, where will be currents flowing to both RX and the upper side of the 

inductor coil. If we assume that the transformer is ideal, in other words, km= 1, the current 

of the coil will create its mirror image at the secondary coil of the autotransformer with the 

same amplitude but opposite direction as can be seen in Figure 15. iRX denotes the current 

flowing through the RX-port. Also, at the center tap of the autotransformer, exactly half of 

the RX-port voltage will be seen. The opposite current will have the same property with the 

current from RX-port to the secondary coil. Finally, if the impedance ratio criteria at (7) is 

sufficed properly, there will be 2iRX flowing through the TX-port. With these properties, 

KVL and KCL balance will be achieved and there will be no flowing current to the BAL-

port, which makes ANT- and BAL-ports electrically isolated, in short bi-conjugate [18].  
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Figure 15: Currents in ANT-BAL bi-conjugacy analysis 

Any non-idealities in the autotransformer, distort this bi-conjugacy which will lead to 

undesired current flow to other terminals than the bi-conjugate pairs. This leakage will 

decrease to the power transfer and decrease to the system performance so that they need to 

be dealt with cautiously. 

 

2.4.2 Power Splitting of Hybrid Transformers 

Hybrid transformers, due to their nature and non-idealities, are undoubtedly lossy 

components and designers must deal with these imperfections carefully so that another 

important aspect of the hybrid transformers is how fine it splits the transmitted or received 

signal favorably for the desired operation. Also, like it is explained previously, as duplexers 

hybrid transformers should have low insertion loss from TX- to ANT-port and ANT- to RX  
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Figure 16: Power splitting ratios of an EBD 

-port in order not to degrade transmitted signal power and not to contribute to noise figure 

parameter drastically relatively.  

In the previous section, the bi-conjugacy concept is explained. If the required 

impedance conditions and the balance state between ANT- and BAL-ports met, the hybrid 

transformer is classified as bi-conjugate. If the hybrid transformer is skewed from the exact 

center of the TX-port side, the requisitions that mentioned previously is required to reach 

bi-conjugacy and balance. In this case, the ANT- and BAL-port will split the incoming 

signal power from the TX-port equally. In an ideal state, there will be 3dB insertion loss 

from TX- to ANT-port. 

However, this 3dB insertion loss may be unsuitable for various operations. In this 

case, the location of the skew at the TX-port can be changed [18]. This change may be 

towards ANT- or BAL-port depending on the operation. In this state, ANT- and BAL-ports 

will not divide the incoming TX-port signal equally but will split with a ratio as following 

equation [19], 
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𝑟 =  
𝑃𝑇𝑋−𝐴𝑁𝑇

𝑃𝑇𝑋−𝐵𝐴𝐿
=  √

𝐿𝐴𝑁𝑇

𝐿𝐵𝐴𝐿
                                                           (8) 

𝐿𝐴𝑁𝑇 = 𝑡𝐿                                                                        (9) 

𝐿𝐵𝐴𝐿 = (1 − 𝑡)𝐿                                                               (10) 

0 < 𝑡 < 1                                                                    (11) 

Where r is defined as power ratio, PTX-ANT is power transferred from TX- to ANT-

port, PTX-BAL is power transferred from TX- to BAL-port, L is the total inductance of 

autotransformer, t is the ratio of primary coil to the secondary coil and LBAL and LANT are the 

inductance values of BAL- and ANT-port inductors, respectively. If t value is changed in to 

favor of ANT- or BAL-port, the impedance conditions must be revised. These properties 

can be also observed in Figure 16. In Figure 16, the red lines demonstrate the path of the 

received signal from the antenna to the system. Also, red ISOLATED tag highlights the bi-

conjugacy between ANT- and BAL-ports. Similarly, blue lines in Figure 16, denotes the 

path of to-be-transmitted signal in the system. In this case, the RX-port will be isolated with 

respect to the TX-port.  

Like TX- and RX-port bi-conjugacy, the ANT- and BAL-ports are electrically 

isolated from each other. The signal coming from the ANT-port is divided between TX- 

and RX-port. In ideal conditions, center tapped (r = 1) and with km of 1, the signal will be 

split into two equal powers. Nonetheless, if the skew location is changed from the center to 

ANT- or BAL-port side there will be exact opposite response of the TX insertion loss at the 

RX insertion loss value. This behavior can be summarized with the following equations 

[19]. 

𝑟 =  
𝑃𝑅𝑋−𝐵𝐴𝐿

𝑃𝑅𝑋−𝐴𝑁𝑇
                                                         (12) 

𝐼𝐿𝑇𝑋 [𝑑𝐵] =  10 log (1 +
1

𝑟
)                                         (13) 
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𝐼𝐿𝑅𝑋 [𝑑𝐵] =  10 log(1 + 𝑟)                                          (14) 

𝑍𝐴𝑁𝑇 =  𝑟𝑍𝐵𝐴𝐿                                                     (15) 

Where PRX-ANT is power transferred from RX- to ANT-port, PRX-BAL is power 

transferred from RX- to BAL-port and ILTX and ILRX denotes the insertion loss value from 

TX- to ANT-port and ANT- to RX-port, in order. Insertion losses of both RX- and TX- 

paths with respected to the power ratio according to equations (13) and (14) can be seen in 

Figure 17. 

 

Figure 17: TX and RX insertion loss values with respect to changing power ratio 
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2.4.3 180º Phase Difference 

In hybrid junctions, there is 180º phase difference at one of the port-to-port transitions. 

Figure 18 depicts the phase differences of the split signals. Red lines are TX mode signals 

and there is no phase difference with the one that goes to the ANT-port  

 

Figure 18: Phase differences between ports 

and with the one which flows to BAL-port. Blue lines denote RX mode signals. In this 

case, there should be 180º phase difference between two signals. 

 

2.4.4 Hybrid Transformers Operating Principle 

Hybrid transformers are constructed with one autotransformer and another center 

tapped (ground-tapped) inductor in magnetic coupling range. However, for this topology, 

the RX-port is not directly connected to the ANT-port; rather it is connected to ANT-port 

via the effect of magnetic flux of these two coils. In this case, the impedance requirement 

(7) will be changed due to the additionally introduced RX-port coil. This topology can be 



29 

 

manipulated like autotransformers in the sense of location of the TX-port. The skewed 

point of the autotransformer can be at the center or in the favor of either ANT- or BAL-

port. The final formula for impedance balance condition for the hybrid transformers is the 

following. 

𝑍𝐴𝑁𝑇 =  
𝑍𝐵𝐴𝐿

𝑟
=  (

1 + 𝑟

𝑟
) 𝑍𝑇𝑋 =  (

1

1 + 𝑟
) (

𝐿1 + 𝐿2

𝐿3
)

2

𝑍𝑅𝑋                       (16) 

 

Figure 19: Hybrid transformer and currents 

 In Figure 19, a hybrid transformer and the currents flowing on the coils can be seen. 

i1 and i2 denote the coupled currents from L1 and L2 to L3. The magnitudes of these currents 

depend on coupling coefficient between inductors and the position of the taps. The relation 

can be formulized as following equations. 

𝑖1 =  𝑘𝑚1−3√
𝐿1

𝐿3
𝑖𝐴𝑁𝑇                                                   (17) 
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𝑖2 =  𝑘𝑚2−3√
𝐿2

𝐿3
𝑖𝐵𝐴𝐿                                                   (18) 

 Where km1-3 and km2-3 are the coupling coefficients between L1-L3 and L2-L3, 

respectively. If the position of the taps are selected to create almost perfect symmetry, the 

magnitudes of i1 and i2 will be equal but their directions will be opposite to each other and 

they will cancel each other out. Another approach for this topology is voltage waveform 

analysis and this approach clarify the working principal if hybrid transformers as duplexers. 

  

 

Figure 20: Common mode signals in TX mode 
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Figure 21: Differential signals in RX mode 

Figure 20 shows the behavior of the hybrid transformer with an incoming signal from 

the TX-port. A signal generated from the TX-port is divided into two identical signals 

which are flowing into ANT- and BAL-ports. These signals create two common mode 

signals at the two end of the coil L3. In this analysis, the effective voltage at the differential 

RX-port is basically voltage difference between each terminal of L3. Due to this property, 

the common leakage to the RX-port can be diminished [19].  

 Figure 21 depicts the signal flows while considering RX mode operation in the 

duplexer. A portion of the received signal from the antenna will leak to the TX-port. Also, 

that received signal creates two differential signals at the terminal of RX-port with the help 

of grounded center tap at the coil L3. This creates an opportunity to design a differential 

amplifier for the RX-port.  
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2.5 Balancing Network 

As explained before, the impedance seen from ANT-port is changing continuously 

due to the environmental changes of the user and device. In order to properly isolate the 

EBD and provide the balance condition, the impedance of the BAL-port must follow the 

ANT-port’s impedance. For hybrid transformer’s BAL-port, a balancing network is used to 

mimic the impedance of the ANT-port. While matching the ANT-port’s impedance 

according to previously mentioned impedance requirements, the balance network must 

have crucial specifications such as wide impedance tuning range and high tuning resolution 

to be able to catch small differences in ANT-port impedance to sufficiently provide EBD 

isolation in any given time Wideband impedance match and high-power handling capacity 

are other considerations for balancing networks. All of these requirements are specific to 

antenna type and desired operation.  

This network can be designed with resistor-capacitor tanks [19], inductor-capacitor 

tanks with tunable capacitors and fixed/tunable resistors or inductors.  

The isolation value 𝐼𝑆𝑂𝑇𝑋−𝑅𝑋 between TX- and RX-ports is a function of frequency, 

ZBAL, ZANT, and the power ratio r. The relation can be expressed with the following formula 

[13].  

𝐼𝑆𝑂𝑇𝑋−𝑅𝑋 = 20 log {|Γ𝐴𝑁𝑇(𝜔) −  Γ𝐵𝐴𝐿(𝜔)| −  
1 + 𝑟

√𝑟
} [𝑑𝐵]                (19) 

Where; 

Γ𝐴𝑁𝑇(𝜔) =  
Z𝐴𝑁𝑇(𝜔) −  𝑍0

Z𝐴𝑁𝑇(𝜔) +  𝑍0
                                            (20) 

Γ𝐵𝐴𝐿(𝜔) =  
Z𝐵𝐴𝐿(𝜔) −  𝑍0

Z𝐵𝐴𝐿(𝜔) +  𝑍0
                                            (21) 

And where, Z0 denotes the characteristic impedance (which is generally 50Ω in 

integrated circuit design industry), Γ𝐴𝑁𝑇(𝜔) and Γ𝐵𝐴𝐿(𝜔) are the frequency dependent 
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reflection coefficients of ANT- and BAL-ports, respectively. The important part of the (19) 

is the |Γ𝐴𝑁𝑇(𝜔) − Γ𝐵𝐴𝐿(𝜔)|; because it defines a circle in the Smith Chart. This means that, 

for a given ANT-port impedance, the provided isolation from the duplexer is almost the 

same for a circle of BAL-port impedance around the ANT-port impedance on the Smith 

Chart. 

While explaining the balancing network and the isolation provided by it, two other 

terms are needed to be described. These are impedance resolution and isolation bandwidth. 

Impedances of the balancing network is changing both in real and imaginary planes and 

impedance resolution is the step size between two adjacent impedance values which are 

achieved by tuning the balance network. Isolation bandwidth is the frequency range that 

pre-determined isolation value is provided with a state of the impedance tuner. 
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3 Full Duplex System with Electrical Balance Duplexer 

3.1 Introduction 

In this thesis, a core chip block prototype for in band full-duplex operated transceiver 

modules, which operates at Ka-band for 5G applications, is proposed. The sub-blocks of 

the core chip block are a hybrid transformer, a balance, a low noise amplifier (LNA) and a 

power amplifier (PA). Block diagram of the overall system can be seen at Figure 22. All 

the sub-blocks are designed and combined as integrated circuits. All of the work had been 

fabricated by IHP Microelectronics with 0.13µm SiGe/BiCMOS technology (SG13S). 

 

Figure 22: Block diagram of full-duplex core circuitry 

The EBD structure is the most important block of the system; because its 

performance will affect all of the performance specifications of the whole system such as 

proper signal transfer between ports, transmitted output power, noise figure and area. The 

EBD’s performance is determined by both hybrid transformer and balancing network. 
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While designing the hybrid transformer, considered specifications were the bi-conjugacy 

impedance requirement, TX- to RX-port isolation, area, low TX- to ANT-port insertion loss 

to not to degrade the transmitted output power and low ANT- to RX-port insertion loss to 

keep the minimum detectable noise level of the system low, in order. At the BAL-port of 

the EBD a balancing network, at the TX-port of the EBD a PA and at the RX-port of the 

EBD an LNA is connected. Balancing network required high impedance range, high 

impedance resolution and digital control of the tuner. PA design considerations were high 

gain and high output compression point and lastly, LNA design considerations were high 

gain, high output compression point and low noise figure values. 

 

3.2 EBD Design 

3.2.1 Hybrid Transformer Design 

The part of the design of the hybrid transformers or generally all transformers 

depends on invariable process metrics like the technology specifications such as metal 

thicknesses, metal resistances, the minimum distance value between each layer of metals, 

the dielectric constant of the substrate etc. The designer must take the impedance 

transformation ratio, inductances of each coil, the mutual inductances and the insertion 

losses into consideration while determining the geometry of the transformer. The schematic 

of the hybrid transformer can be observed in Figure 21. 

To start the hybrid transformer design, the first step was determining the most 

important geometric property, the turn ratio. The duplexer and the balance network are 

dominating the area of the core full-duplex structures; because of that the turn ratio for this 

work’s transformer selected as 1:2. The small turn ratio is increasing the insertion loss from 

ANT- to RX-port, therefore the noise figure parameter [14]. However; it will provide a 

significantly smaller area when compared to its counterparts. According to the (7) for bi-

conjugacy; if we select the 50Ω impedance as the reference for both ZANT and ZBAL, there 

will be differential 100Ω and singular 25Ω impedances at the RX-port and TX-port, 

respectively. These impedance values are also operable for their follower circuitries. The 
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differential 100Ω is an impedance which is favourable for LNA’s gain and noise figure 

parameters, the singular 25Ω is relaxing the high output power requirement of the PA’s 

either. 

While working on transformers the first milestone was utilizing a frequency 

dependent component model of a randomly drawn transformer so that we can built the 

desired transformer onto this component model. In order to do so, a transformer with 2:1 

turn ratio is drawn with using ADS Layout tool and EM simulations were made with ADS 

Momentum. The simulations were 4-port simulations. One port of each coil set as a 

reference node for the other terminal of the same coil. The performance metrics of the 

transformers such as inductance of each coil and mutual inductance.  

𝐼𝑛𝑑 = 109  ×  
𝑖𝑚𝑎𝑔(𝑍(1,1))

2𝜋 × 𝑓𝑟𝑒𝑞
                                              (22) 

𝐼𝑛𝑑𝑀𝑈𝑇 =  −109  ×  
𝑖𝑚𝑎𝑔(𝑍(2,1))

2𝜋 × 𝑓𝑟𝑒𝑞
                                      (23) 

 Where Ind represents the inductance value in pH scale, while IndMUT denotes the 

mutual inductance between two coils. Z(X, X) shows an element of the Z-matrix of 

simulated structure.  Lastly, freq show the frequency value which inductance value is 

calculated at.  

After getting the results from the EM simulator, the low-frequency model of the 

transformer was tried to match with ADS Schematic Simulation Tool. In the schematic 

simulations, the model in Figure 23 had been used. Here, rP and rS denote the parasitic 

resistances of the primary and the secondary coil, in order. LkP represents the leakage 

inductor and LM shows the mutual inductance. Their values are given by following 

equations. 

𝐿𝑘𝑃 = (1 −  𝑘𝑚
2 )𝐿𝑃                                                        (24) 

𝐿𝑀 = 𝑘𝑚
2 𝐿𝑃                                                               (25) 
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Figure 23: Schematic model of a transformer [16] 

For the ideal transformer part of the low-frequency model, the ideal transformer 

component from ADS Library had been used. After being sure that the component model’s 

schematic results are matching the EM simulation results; the desired performance of the 

transformer was set via low-frequency model. 

After getting the inductance results from the schematic simulations, next thing done 

was doing various iterations in the design of the transformer using the EM simulator to able 

to determine the geometric shape of the transformer -square, hexagon, octagon-, the turn 

numbers, which metal to use, the metal widths and how the metals separation should be. 

The transformer has one turn for its primary coil and two turns for the secondary coil. In 

order to realize the transformer, mainly, the TopMetal2 thick metal layer of SG13S 

technology is used for both the primary and the secondary coils. For the overlapping parts 

for the continuity of the turns, TopMetal1 is used. When TopMetal1 layer was in the way, 

the Metal5 layer is used. In the design of the transformer, top three layers of the SG13S 

technology have been used. TopMetal2 and TopMetal1 layers are the top and the thickest 

metals of the technology. They have 3µm and 2µm thickness, respectively. This property of 

them providing less parasitic resistance when compared to their thinner counterparts; 

therefore, they are introducing lesser loss to a signal flowing through them. The Metal5 

layer is one the thin metals of the technology; however, it is their highest thin metal and has 
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the thickness of 0.49µm.  When compared to other thin metal layers; its position 

contributes to Metal5 layer’s favourability by decreasing the capacitive coupling to the 

substrate. All the properties of these highest layers are helping to avoid the parasitic effects 

that might harshly deteriorate the overall system performance. 

In the design of the transformer, for both of the coils 8µm metal width had been used 

and the metal separation was done with 3µm. The primary coil has the self-inductance 

value of 243pH, quality factor of 13.64 and the secondary coil has the self-inductance of 

558pH, quality factor of 13.5. Where the quality factor of the inductor (QL) is given by the 

following formula. 

𝑄𝐿 =  
𝑖𝑚𝑎𝑔(𝑍𝐿)

𝑟𝑒𝑎𝑙(𝑍𝐿)
                                                           (26) 

Where ZL denotes the impedance of an inductor, imag and real notation show the 

imaginary and real part of an impedance, respectively. 

The coupling coefficient km is equal to 0.64. The transformer has inner diameter of 

76µm and outer diameter of 136.44um which leads to area of slightly under of 0.03mm². A 

ground layer is added from 30µm away from each outer metal lines of the transformer in 

order to mimic the post-fabrication conditions. 

After adjusting the monolithic transformer; the next step was making the necessary 

changes to realize the hybrid transformer. In order to do so; the distance between the 

terminals of the secondary coil is increased and from the exact middle of the secondary coil 

a centre tap is created for the TX-port with TopMetal1 layer. The metal width of this centre 

tap is also 8µm. The other terminals of the secondary coil are utilized for ANT- and BAL-

ports. For the primary coil, a grounded centre tap was required in order to create a 180° 

phase difference between the differential ports of the RX side. To able to create the 

grounded centre tap the middle part of the primary coil is moved to the Metal5 layer; 

because of the TopMetal1 line for the TX-port. The Metal layer is changed with via-stacks 

of 8x8um² from TopMetal2 to Metal5. The ground is carried to the primary coil with a 9µm  
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Figure 24: EM view of the designed hybrid transformer 

width Metal1 layer which lies from the most left ground layer of the transformer to the 

most right. In order to ground the Metal5 layer via-stack of 8x9um² from Metal5 to Metal1 

layer is used. However; the grounding wasn’t done at the exact middle of the primary coil. 

To get the phase difference as close as to the 180° and to compensate for the imperfection 

in the symmetry, the tap had been realized slightly above of the exact centre. The final 

geometric shape of the hybrid transformer can be seen in Figure 24. 

The ANT- and BAL-port are matched to 50Ω impedance with series capacitors to 

build the work on top of them easier. These capacitors are realized by cmim components of 

SG13S technology which are metal-insulator-metal (MIM) capacitors. Their values are 

134fF with the dimensions of 9.385x9.385um². The RX-port is matched to differential 

100Ω impedance with two shunt capacitances from each terminal of the primary coil. These 

capacitors are also realized with cmim component of SG13S. Their values are 216fF with 

the dimensions of 11.875x12um².  With these requirements met, the TX-port was matched 

to 25Ω impedance. 
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Figure 25: Simulated reflection coefficient seen from ports of hybrid transformer a) dB 

scale b) Smith Chart representation 

 

 

Figure 26: Simulated TX-RX isolation with fixed resistances at ANT- and BAL-port 
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Figure 27: Simulated TX- to ANT-port and ANT- to RX-port insertion loss values 

 

Figure 28: Simulated phase difference between two differential terminals of RX-port 
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In Figure 25, the simulated reflection coefficients of ANT-, TX- and RX-ports can be 

seen. The RX-port is matched to differential 100Ω, the ANT-port is matched to 50Ω and 

lastly, TX-port is matched to 25Ω. These impedance values are also met the (7). For all of 

the ports and their respective matched impedance values, reflection coefficients are smaller 

than -10dB in all of the aimed frequency bandwidth. Figure 26 shows the simulated TX- to 

RX-port isolation value. It is better than 50dB in all of the frequency band and peaking at 

around 28GHz with 68dB; however, for this case at the ANT- and BAL-ports, there are 

fixed resistors. This is the reason for the large bandwidth. Figure 27 depicts the simulated 

TX- to ANT-port and ANT- to RX-port insertion losses. TX-ANT path has around 3.8dB 

loss at 28GHz and ANT-RX path has 4.7dB insertion loss. Figure 28 shows the simulated 

phase difference value between the differential terminal of the RX-port. It is almost 

identical to the ideal phase difference of 180º with the maximum of 0.5º difference. 

In this condition of the hybrid transformer, it was not possible to measure; due to the 

necessity of having differential (GSGSG) probe for contacting the differential RX-port. In 

order to overcome this problem at the differential RX-port; a balance-to-unbalance 

converter (BALUN) which is a transformer, had been used. This transformer was 

previously designed by İlker Kalyoncu. With the help of the BALUN transformer; the 

differential 100Ω impedance is converted to the singular 50Ω impedance which is suitable 

for our measurement system.  

To measure the performance of the hybrid transformer with a BALUN transformer at 

its RX-port is prepared for fabrication. For getting the initial performance results such as 

the TX- and RX-port impedances, matching and the achievable isolation between the TX- 

and RX-port; fixed impedances are connected to the ANT- and BAL-ports. These 

impedances are real impedances, resistances, and their values are 50Ω and 51.5Ω, in order. 

Even though initially the power ratio, r, selected as one; due to the parasitic effects and the 

small variances in the symmetry, there is a small difference between the resistances that are 

connected to ANT- and BAL-ports. The chip photograph of the structure can be seen at 

Figure 29. 
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Figure 29: Chip photo of fabricated hybrid transformer combined with BALUN 

transformer 

In the layout, the resistances are placed parallel with higher resistance values; in order 

to decrease the effects of any process variations which is common due to the fabrication 

steps. For the ANT-port, two 100Ω rppd component of SG13S technology is used. Their 

dimensions are 4x1.325um². For the BAL-port four 206Ω rppd component of SG13S 

technology is used. Their dimensions are 4x3um². These resistances are selected; because 

in the EM simulations, they were providing the maximum available isolation. This 

approach is not the best way to deduce the performance metrics of a hybrid transformer; 

because in real life cases, the seen impedances will not be purely real and have their 

imaginary parts. This effect will change the behaviour of the hybrid transformer, due to the 

frequency dependent manner of imaginary impedances. Even though, the value of the 

maximum isolation can be seen in both purely real and imaginary impedances; there will be 

a drastic change in the isolation bandwidth. However, this approach will give a sense about 

the overall performance of the hybrid transformer. 
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Figure 30: Measured S11 and S22 behavior of the hybrid transformer-BALUN structure 

 

Figure 31: Measured TX-RX isolation value of the hybrid transformer-BALUN structure 
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 For this sub-block, two-port S-parameter measurement is done. In Figure 30, S11 and 

S22 performance of the hybrid transformer-BALUN structure can be seen. The simulation 

and the measurement result are almost identical for this figure with small measurement 

error for S22. Figure 31 shows the measured TX-RX isolation for this structure. Despite the 

fixed resistances at ANT- and BAL-ports; due to the process mismatches, there is a 

difference between simulated and measured values. However, even in this case, the 

isolation is better than 45dB in the whole band. 

 

3.2.2 Impedance Tuner 

3.2.2.1 Variable Components 

As it mentioned previously, the EBD’s need a balance network at their BAL-port to 

follow the impedance seen from the ANT-port to provide the TX- to RX-port isolation. As 

a balance network, an impedance tuner can be used. In order to fully design an impedance 

tuner, the behaviour of the antenna at the desired operation frequency should be known. 

However, for this work there was not a pre-determined antenna; so that the other important 

performance metrics of the impedance tuners are considered. These are high impedance 

tuning range, high tuning resolution, and power handling capacity of the tuner. While 

designing the impedance tuner, the nominal impedance of the ANT-port selected as 50Ω 

and tried to cover as much area in the Smith Chart as possible around the 50Ω centre with 

as dense impedance steps as probable. 

There are different types of balance networks in the literature that uses various 

tuneable components such as variable inductors, resistors, and capacitors. These can be 

implemented with analog controlled networks through components such as varactors. In 

order to digitally control these systems, switches and component arrays can be used. Even 

though analog control provides clearer impedance steps, it is hard to modify the control 

settings in a system. On the other hand, the digitally controlled tuner is friendlier in both 

the way user switches the impedances and the system integration convenience. One type of 

the balance network is constituted with variable resistor and capacitor banks; [19] however, 

using variable resistors are decreasing the linearity performance of the hybrid transformer 
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[20]. Apart from the varactors and switchable resistors, also variable inductor can be used; 

but they are both bulky and hard to design elements. Therefore; in this work as a balance 

network, digitally controlled LC tanks with switch capacitors had been used. 

To design the switched capacitors, the first thing done was determining the step size 

and selecting the minimum and the maximum capacitance values. From the schematic 

simulations on ADS, the step size was determined as 30fF. To ensure that wide range of 

impedance covered in the most efficient way, the mentality of passive phase shifters is 

used. Other capacitance values in a single switched capacitor bank were 60fF, 120fF and 

240fF. By this way, a switched capacitor bank which consists of four capacitors and four 

switches could sweep from 30fF to 450fF with 30fF capacitance steps which was enough to 

capture any antenna impedance variation around 50Ω. For the capacitors with the values of 

60fF, 120fF and 240fF cmim component of the SG13S technology had been used and their 

dimensions were 6.26x6.26um², 8.88x8.88um² and 12.58x12.58um², respectively. 

However; for the 30fF, using cmim capacitor of the technology was not feasible; because 

the small dimension that corresponds to such small capacitance value. The small 

dimensions mean that it would be relatively more sensitive to any process variations when 

compared to its higher-valued counterparts. Moreover; in this balancing network case, the 

smallest capacitor is the most important one; because if it appears as higher or lower value, 

the equal steps between the impedances will change and there will be an undesired 

accumulation of impedance values at certain locations. The structure and its comparison 

with ideal component of the 30fF MOM capacitor can be observed at Figure 32. 

After determining the capacitance values, the next step was realizing NMOS switches 

on the each of the capacitances. In relatively high-power operations, designers analysed the 

effect of high voltages on the balance network’s linearity and reliability. However, in this 

work the aimed TX-port power level is 15dBm and with an ideal loss of 3dB from TX- to 

BAL-port; there will be 12dBm signal power at the BAL-port at maximum. This 

corresponds to approximately 0.9V voltage in a 50Ω system so that it won’t affect the 

behaviour of the balance network.  
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Figure 32: a) Layer view of the MOM capacitor b) Comparison of MOM capacitor with 

ideal component 

While determining the width of the NMOS’s the trade-off in increasing the width is 

considered. In order to understand the trade-off, both the ON and the OFF state of these 

switches should be analysed. In the OFF state, if the transistor width is large, the junction 

capacitances will act as parasitic effects which dominate the linearity behaviour so that for 

better OFF state performance smaller NMOS’ are favourable. However; when the switch is 

at ON state, the internal open state resistances (RON) of the transistors will affect linearity 

behaviour in a bad manner. Therefore, the ON state favours larger transistors [20]. The 

transistor sizes for this work selected as a middle ground for these both cases.  

For switches; nmos component of the SG13S technology is used. Moreover; with the 

pre-determined layers defined by the technology, the NMOS transistors realized as isolated 

transistors. The isolated NMOS’s means that the p-doped substrate of the transistors is 

separated from the main p-doped substrate with an n-doped isolation well. In this case, the 

body terminal of the transistors can be set to a floating state. The body floating 

implementation of the transistor leads to decreased insertion loss through the switches and 

improves the linearity performances of the NMOS transistors. In this work, the body 

terminals of each switch NMOS’s floated with 50kΩ resistor which is connected to the 

ground layers. The cross-section can be seen on Figure 33. The transistor widths are 
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selected as 30µm with 8 gates to keep each terminal of the transistor equal at any given 

time and the length remained as 0.13µm. Figure 34 shows the schematic of the impedance 

tuner. 

 

Figure 33: Isolated NMOS cross-section 

 

Figure 34: Schematic of impedance tuner block 
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The final capacitor tank consists of four different switchable capacitors; 30fF, 60fF, 

120fF, 240fF and can be considered as 4-bit digitally controlled varactor which varies from 

30fF to 450fF with 30fF fine steps. At the biases of the switch transistors, high resistance 

valued components (50kΩ rhigh resistor components of the SG13S technology) are used to 

prevent RF leakage to bias paths. Apart from the gates of the switches, their source and 

drain terminals are also biased with DC voltages; but their values are the exact opposite of 

the bias voltage of the gate terminals. While biasing the transistors, 1.2V digital logic is 

used. All of the four variable capacitor tanks are identical and each of them controlled with 

a digital block. The inductors L1 and L2 set to the values that provide the clearest changes in 

both real and impedance axis with maximum area coverage on the Smith Chart.  Their 

values are 70pH and 105pH, respectively. At the end of the balance network, a 50Ω 

resistance is placed as three150Ω rppd components in parallel. Their dimensions are 

1.7x0.75um². These resistors ensure that the impedance is seen from the balance network to 

have a starting point in the Smith Chart. Finally; inductor Lm and capacitor Cm are placed at 

the start of the balance network; in order to carry the scanned impedance area around the 

50Ω centre. Their values are 160pH and 130fF, respectively. Figure 37 shows the swept 

impedance values of the individual variable capacitor bank. 

Simulations of the impedance tuner are completed by ADS using the EM model of 

the layout. To get the results, each voltage settings of the tuner is swept by S-Parameter 

simulation. The layout of the tuner which had been drawn on Cadence can be seen in 

Figure 35. 

 

Figure 35: Layout of the impedance tuner 
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3.2.2.2 Digital Block 

When fully implemented, this impedance tuner block requires 4-bit control from four 

identical capacitor banks. In order to deal with all of the switches, using sixteen different 

DC bias paths is bulky and costly. That would increase the area of measurement prototype; 

because it would require sixteen different pads just for these DC biases. Also, in system 

integration sense; routing sixteen DC bias path will be both inefficient and area consuming. 

Therefore; to able to control the impedance tuner a digital serial to parallel interface (SPI) 

block had been designed. In SPI standards, generally one input is taken each clock cycle, 

however; for this case, supplying 16-bit data will take sixteen clock cycles which is quite 

long. The longer time required for creating an impedance setting would increase the overall 

measurement time of this balance network by an ample amount when the total number of 

impedance settings is considered -24 ∗ 24 ∗ 24 ∗ 24-. So that instead of taking 1-bit input 

per clock cycle, the digital block is designed to work sequentially and to take 4-bit input in 

each clock cycle; in other words, in four clock cycles, digital blocks pushes all the valid 

data required for an impedance setting. The smaller time required for each measurement 

will lead to the larger possible sample size which means more accurate results for the 

balancing network. 

The digital control block is firstly designed and simulated with Verilog using Xilinx 

ISE Design Suite. It works sequentially and works on simple two staged state machine. The 

code has four inputs namely; data_In, clk, start, lead and reset. data_In is the 4-bit input 

signal which will be supplied every clock cycle, clk is the clock of the code, reset is the flag 

that resets the system and finally start is the flag that is supplied by the user to imply that 

code should start to work. First, the user should use reset signal to reset the control code. 

Then, when the user is ready to supply 4-bit inputs, the start flag should be set to 1. In that 

state, a lead flag is raised so that incoming data can be pushed to the output. In four clock 

cycles, the code generates the two 16-bit outputs which are data_Out and 

data_Out_inverse. The data_Out signal is supplying the gates of the switches and the 

data_Out_inverse signal is supplying the voltage to the source and the drain terminals of 

the switch transistors. 
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After implementing and simulating the Verilog code, the next step was generating the 

netlist of the code to extract the layout. The netlist of the code generated with Synopsis. 

Later on, with generated netlist file and the design files (.lef files) of the IHP 

Microelectronics the layout of the digital block is generated via Cadence Encounter. Again, 

for this block, the standard cells of the SG13S technology had been used. These standard 

digital cells work with 1.2V digital logic. The dimensions and the pin locations of the 

digital block specified in the Cadence Encounter so that it can directly fit the overall system 

layout. 

At the final stage of the layout; the electrostatic discharge (ESD) protection is added 

to the pads that are connected to the digital block so that ESD won’t damage the already 

fragile transistors in the control circuitry. In order to do so, for each of the pads, two diodes 

back-to-back are placed. The chip photo of the impedance tuner can be seen in Figure 36. 

 

Figure 36: Chip photo of the impedance tuner 

Figure 38 shows the measured and simulated impedance values seen from the input of 

the impedance tuner. The simulated graph shows all 216 states of the block. Light blue dots 

show each impedance is seen and dark blue circle depicts the VSWR 2 circle. As can be 

seen from the simulated values in the Smith Chart, the tuner can provide a large range of 

impedance values while providing the high resolution. The measured results show a subset 

of the all possible results due to the infeasibility of measuring all different states. Measured 

results show a thousand results from the whole set. As can be seen, the measured results 

follow the pattern of the simulation side and provide the desired impedances. 
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Figure 37: Simulated impedances swept by an individual variable capacitor bank 

 

Figure 38: Comparison of a) measured and b) simulated impedance values for states of the 

balance network 
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Figure 39: Chip photo of the fabricated EBD 

 

Figure 40: Simulated values of TX- to RX-port isolation for each state of the tuner 
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 Figure 39 shows the fabricated chip photo of the final duplexer. The balance network 

block is integrated with BALUN transformer by connecting it to the hybrid transformer’s 

BAL-port. The measured isolation values can be observed at Figure 40. The EBD can 

provide higher than 35dB in the whole frequency range with at least 3GHz bandwidth. 

 

3.3 LNA Design 

For this thesis, an LNA which will be used at the RX-port of the EBD is designed and 

implemented. The expected results for the LNA were while achieving high output power 

with low noise figure value and low power dissipation while maintaining the reasonable 

gain level. Due to its location on the EBD system (RX-port), the LNA designed as pseudo-

differential configuration. In order to reach the design goals, two-stage common emitter 

topology selected and later on two of the same LNA design connected to differential RX-

port reversed by the x-axis. In the design of this LNA, high performance npn13p BJT 

transistors of the SG13S technology has been used. Even though common emitter amplifier 

topology causes lower gain and lower reverse isolation when compared to its cascode 

counterpart, it provides less noise figure and creates the opportunity of reaching high power 

levels without dissipating large DC power thanks to its lower collector voltage than cascode 

topology necessity due to the transistor breakdown voltages. The schematic of the LNA is 

depicted in Figure 41. In this figure, B.C. is the acronym for bias circuit. 

The first stage of the LNA was designed to achieve low noise figure while achieving 

a certain saturation power value. Because the common emitter topology with 0.13µm SiGe 

BiCMOS technology and at the 28GHz frequency can provide 7 – 9dB gain per stage. To 

be able to reach 15dBm output power at the end of the second stage, the first stage of the 

LNA must achieve around 9 – 10dBm signal power at its collector node. For this operation 

20x transistors with 910mV as their base bias voltage is found to be optimum and as 

collector voltage, 1.6V is supplied because it is the given breakdown voltage of npn13p 

transistor by technology. As the input signal power increases the collector current (IC) will 

increase, therefore there will be more current supplied from the base bias (IB). If a resistor 

is used as RF open, the increased IB will cause a voltage drop across the base resistor and 
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will decrease the voltage at the base terminal of the transistors. Therefore, the linearity 

performance of the circuitry will degrade. Because of this reason, an inductor has been used 

to create RF open for the base bias. However, in this case the base node of transistors 

become unprotected, due to the almost zero resistance from bias voltage. 

To fix this problem, the bias is supplied via a bias network. Also, between the inductor and 

the bias network, a 1pF shunt capacitor is used to short any low-frequency leakage to the 

ground. With these bias settings, there was 18mA of IC was flowing through the transistors. 

Simultaneous power and noise matching had been done at the input of the first stage. At the 

start of the first stage, a 2pF capacitance is used as a DC block. The shunt inductor that 

goes to the bias circuit also helps to match the imaginary impedance that is seen through 

the base. A degenerate inductor had been used at the emitter node so that the real part is 

moved to a close position to 50Ω. While doing the matching an inductor series to the base 

terminal is avoided to not to increase the noise figure with the help of transistor numbers. 

The output of the first stage matched to a different value of 50Ω which relaxes the burden 

on the output matching for the ability to provide enough power to the second stage. 

The second stage design is aimed to reach as high 1dB output compression point 

(OP1dB) as possible while providing reasonable gain. For this stage, 32x transistor is used 

with 852mV as their base voltage. 1.6V collector voltage is supplied to the second stage. At 

these bias points, 8mA current flows through the collector. The input of the second stage 

was matched to the complex conjugate value of the impedance at the second stage’s output 

node. The other concerns in the second stage about base bias are also valid for the second 

stage. The output of the second stage was matched to 25Ω, to relax the matching condition 

at the output. Also, before the bias pads of both first and the second stage multiple 

capacitors with different sizes and values are placed as shunt to the ground in order to 

create an RF short. These are shorting low-frequency oscillations to the ground and making 

the circuitry invulnerable to any outside effects such as bonds, DC probes that come into 

contact with the bias pads. 
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Figure 41: Schematic of the LNA design 

After the design of two-stage common emitter LNA, to create the differential status 

two of the same design placed on top of each other with one of them reversed. However, in 

this case, the same problem with the hybrid transformer measurement occurs which is not 

being able to measure differential terminals without GSGSG probes. Again, to overcome 

this issue, two different BALUN transformers had been placed at the input and the output. 

The input BALUN is the same as the one used for the hybrid transformer which transforms 

100Ω differential terminal to singular 50Ω. At the output, due to the matched to the 25Ω 

impedance state of the circuit, the located transformer designed to transform differential 

50Ω to singular 50Ω. This transformer was also previously designed by İlker Kalyoncu. 

All of the inductors are designed custom via Sonnet with using the same layer map of 

SG13S IC technology. The EM simulations of other lines and the integration of different 
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parts of the circuit are done via ADS Momentum. The important portions of the ground 

layers such as the portion that emitter inductors are connected are simulated carefully; 

because even though the ground layer contains all of the metal layers and wide, it still 

introduces parasitic inductance to the system and this can change the circuit behaviour 

drastically. For instance, it could increase the emitter degenerate inductor unintentionally so 

that the matching, gain, linearity behaviours can shift. Finally, the layout of the LNA 

completed with using Cadence Virtuoso. The chip photograph of the LNA can be seen in 

Figure 42. 

Apart from the two-port S-parameter measurements that have done to the fabricated 

LNA; noise figure (NF) and 1dB compression point (OP1dB) measurements are also 

completed Figure 43 and Figure 44 depicts the measurement setups for these 

measurements, respectively. For the NF measurement; first, the noise source is calibrated 

with the spectrum analyser. Excess Noise Ratio (ENR) of the noise source and cable losses 

are introduced to the spectrum analyser. In order to do so the loss of the two cables together 

is measured with probes by contacting a through in a calibration kit. Then, that value 

divided into two and these values are determined as input and output cable losses.  

For OP1dB, a signal is supplied to the circuits at 28GHz via the signal generator and 

from the spectrum analyser the output power values are observed. After the measurement, 

the input and output cable losses are considered while evaluating the results. 
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Figure 42: Chip photo of fabricated LNA 

 

 

Figure 43: NF measurement setup for LNA 
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Figure 44: OP1dB measurement setup for LNA and PA 

 

Figure 45: Measured S11 and S22 behavior of the designed LNA 
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Figure 46: Measured gain of the designed LNA 

 

Figure 47: Measured NF performance of the designed LNA 
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Figure 48: Measured 1dB compression point of the designed LNA 

 

Figure 49: Simulated IIP3 value of the LNA w/o input BALUN 
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 The measured values for the LNA can be seen in Figure 45-48. Input and output 

reflection coefficients are better than -10dB from 25GHz to 32GHz. LNA has 15dB gain at 

the center frequency of the 28GHz. While the peak gain is 17dB, lowest gain point in the 

frequency band is 13dB. The measured NF value at 28GHz is 3.5dB. Finally, the LNA 

compresses at around -2dBm input power while supplying 13.5dBm output power. 

Measurement results are following the behavior of the simulations with small errors. It 

should be noted that all of these results are including the input and output BALUN 

transformer losses. Figure 49 shows the IIP3 performance of the LNA. 

 

3.4 PA Design 

For this thesis, a PA that will be connected to TX-port of the EBD had been designed 

and implemented. The only design considerations for the PA was high output power with 

reasonable gain value. The high performance npn13p BJT transistors are also used for this 

design. The PA is also designed as 2 stages; however as different from the LNA, in this 

case, the first stage is implemented with the common emitter and the second stage is 

implemented with the cascode topologies. The second stage is cascode. Due to the nature of 

the EBD, an incoming signal to the antenna splits into RX- and TX-ports. In order to 

prevent the signal leakage to the interstage of the PA, the cascode topology becomes 

favourable due to its high reverse isolation property even though it increases the overall 

power consumption. Furthermore, the DC power dissipation was not a concern of this 

design. 

The first stage of the design act as a driver amplifier for the second stage. The input, 

output matching and biasing concerns are same with the LNA for both first and the second 

stage. At the first stage, 24x transistor used with their base bias’s at 900mV and the 

collector voltage for this part set to 1.6V. With these bias points the IC of this stage is 

18mA. The schematic of the PA can be seen at Figure 50. 
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Figure 50: Schematic of the PA design 

The second stage is where the circuits reach to its desired high power. For the second 

stage two 48x transistors connected as cascode. For the 48x transistor below; the base point 

selected as 920mV. The base biases of the common base transistors are supplied with 2.2V 

and finally the collector node is given 3.2V as bias points. With these conditions, IC of this 

stage is 59mA. The base of the common base part of the cascode topology comprises an 

important point in itself. At that terminal before the base entrance of the transistor, there 

must be shunt capacitor that can create an RF short state -especially in high power 

operations- so that the possible leaked signal from the collector node to the base can be 

shorted. Otherwise, it will create a strong oscillation in the circuit. When the parasitic 

inductance seen from the ground layers meets with this capacitor, the self-resonance 

frequency of the capacitor can be greatly decreased or even the capacitor can enter in a 

series resonance state with this parasitic effect in the desired frequency range and create an 

RF open so that, the value of this shunt capacitor can’t be picked as an arbitrary large 

capacitance value and must be carefully dealt with. In order to overcome this problem, 

whole ground layer that will be seen by this capacitance simulated and the capacitor 

selected with an optimal value that can create the RF short. For this case a 350fF shunt 

capacitor had been used. 
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Figure 51: Chip photo of the fabricated PA 

 

Figure 52: Measured S11 and S22 behavior of the designed PA 
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Figure 53: Measured gain performance of the designed PA 

 

Figure 54: Measured 1dB compression point of the designed PA 
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Fabricated chip of the PA can be seen in Figure 51. Again, all EM simulations and 

passive characterizations made with ADS Momentum and Sonnet. The layout of the PA 

prepared to fabrication via Cadence Virtuoso. For the fabricated PA, two-port S-Parameter 

and OP1dB measurement are realized with the same techniques explained above. The 

measurement result can be seen in Figure 52-54. Input and output return losses are better 

than -10dB from 28GHz to 32GHz. PA reaches to 17dB of gain at 28GHz. The power 

amplifier is compressing at -2.5dBm input power with 14dBm signal power at its output. 

 

3.5 Full Duplex System 

The fabricated chip photo of the full duplex system can be seen in Figure 55. In order 

to create the system structure all of the previously mentioned sub-blocks are integrated in a 

chip. The PA is placed at the TX-port, the LNA is placed at the RX-port. At the BAL-port, 

balancing network is connected. A RF connecting pad is placed at the ANT-port, to be able  

 

Figure 55: Chip photo of the full-duplex system 

to measure the performance of transmit and receive mode separately with RF probes. 

Various modification has been done at the blocks to eliminate the changes that comes with 

the integration. For instance, the capacitances at the end of each terminal of the hybrid 

transformer are changed with respect to increases in the lengths of the transmission lines. 

The BALUN transformer which is placed at the input of the LNA to measure it by itself, is 

removed to connect it to the differential RX-port. DC pads of different sub-blocks are not 
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merged to follow the DC current values of each block separately and clearly and see if they 

are matching to their simulation values.  

In order to measure the system, the chip was sent to a professional bonding company. 

From there, the chip is received as bonded to a QFP208 package. Later, that package was 

soldered to PCB board which is designed to supply DC voltages properly. With setup, S-

parameter, OP1dB point and noise figure measurements were conducted for TX- to ANT 

path and ANT- to RX path, separately. For each measurement, previously mentioned 

techniques have been used. 

The measurement results for the PA that is placed at the TX-ANT path can be seen at 

Figure 56-58. Both input and output return losses of this path is better than -10dB in the 

whole frequency band. A small oscillation behaviour can be observed around 29GHz, due 

to the RF cables and probes that had been used during the measurement. Figure 55 shows 

the gain of the amplifier is 14.7dB at 28GHz. Even though expected gain drop from the 

individual measurement (Figure 51) is 3.8dB (Figure 27), there is only 2dB loss that was 

caused by the hybrid transformer.  

 

Figure 56: Measured input and output reflection coefficients of TX-ANT path 
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Figure 57: Measured gain of TX-ANT path 

 

Figure 58: Output power graph of TX-ANT path with respect to input power 
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Reasoning for this behaviour is the badly matched balance network. During 

measurements, the impedance of the balance network couldn’t be matched to the perfect 

value so that there is an impedance difference between ANT- and BAL-port. This will 

cause the output signal of the PA to not to divide equally. In this case, higher portion of the 

signal is flowing to the ANT-port. Figure 58 shows the OP1dB of TX-ANT path. The 

output compression point dropped by 3dB when compared to PA’s individual measurement 

(Figure 54). It is 1dB higher than the gain loss.  

The rest part of the circuit meant to be measured however due to bonding of the chip 

part of the transistors in the circuit is broken. Simulated performance of the ANT-RX path 

can be seen from Figure 59-62. For these results, post-layout simulation results of the 

hybrid transformer at its highest isolation setting and post-layout simulation results of the 

LNA without its input BALUN transformer. Even though, these graphs don’t represent real 

measurements, they can give hints about the performance. The calculated results that have 

been gathered in the light of measured results can be seen at Table 2. 

 

Figure 59: Simulated input and output return losses of the ANT-RX path 



70 

 

 

Figure 60: Simulated gain performance of the ANT-RX path 

 

 

Figure 61: Simulated NF behavior of the ANT-RX path 
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Figure 62: Simulated 1dB compression point performance of the ANT-RX path 

In the simulations both the ANT-port and the output of the LNA have return losses 

better than 10dB in whole frequency range. The gain has been dropped by around 4.8dB 

which is in line with the RX insertion loss of hybrid transformer (Figure 27). The NF of the 

system is first decreased with absence of the input BALUN transformer but increased with 

the loss from the hybrid transformer and reached to 6.8dB at 28GHz. Also, in the 

simulations, LNA reaches to 12dBm OP1dB. 

 

3.6 Comparison 

Table 2 shows the comparison of this thesis work with other reported designed. This 

study is one of the few works on EBD concept which operates higher than 2.5GHz. The 

frequency spec is creating the biggest challenge on hybrid transformer and balance network 

design. Also, this work is representing the results of a system which includes not only 

hybrid transformer and balance network, but LNA and PA as well. When compared to 

other works, the EBD occupies much less area with frequency component is considered. 

Even though isolation from TX- to RX-port is relatively small, it has the highest isolation 

bandwidth of all. 
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4 Conclusion & Future Work 

4.1 Summary of the Work 

The next generation communication systems require high data rate, wider bandwidth, 

high spectral efficiency, and lower latency to meet the demands of users as number of 

devices/users and data requirement increase. Therefore, technology is moving forward to 

systems that operates at higher frequencies to increase the bandwidth so that newly 

designed transceiver circuits have been started to design with such centre frequencies. The 

other requirements such as spectral efficiency and latency, full-duplex structures can offer a 

solution; because, these types of systems allow transceiver blocks to operate at transmit and 

receive modes concurrently while using same frequencies in their designs. The recent 

progresses in the SiGe BiCMOS technology makes this process suitable for this type of 

applications not just with their high fT and fmax and cheaper fabrication cost with respect to 

other common processes as well. 

In this thesis, a Ka-band (25GHz – 32GHz) full-duplex system for 5G applications is 

presented.  Each block of this system is fabricated, analysed and measured separately. 

These blocks are a hybrid transformer, a balancing network, an LNA and a PA. In order to 

provide full-duplex operation, a four ports hybrid transformer with balancing network is 

used as duplexer between transmitter, receiver, and antenna ports. The hybrid transformer 

has 1:2 turn ratio, to create desired impedances at each of its terminals and to acquire less 

area. The balancing network is designed to provide high impedance range without large 

gaps between each impedance value. It is designed with switched capacitor technique and 

for switches isolated NMOS transistors have been used. To efficiently sweep the states of 

this tuner with lesser DC pads, a digital block is designed and synthesized.  For LNA, two 

common emitter amplifiers are cascaded and later connected to the differential ports of 

receiver port of the hybrid transformer. Common emitter topology has been selected to 

decrease the power consumption even though it would lead to less gain. First stage is 

designed to get lower noise figure while second stage was aimed to reach high output 

compression point. For PA a common emitter topology is selected for the first stage and 

cascode topology for the second. Cascode topology is used to because of its high reverse 



74 

 

isolation property that can prevent the signal coming from the antenna to leak to the 

entrance of the PA. In chapter 3, the design steps and measurement results are explained 

and discussed. Finally, the full-duplex system which includes the hybrid transformer, the 

balancing network, the PA and the LNA; is integrated and the measurement results are 

represented. 

 

4.2 Future Work 

The first short-term future work for this study is more detailed measurements of the 

system to fully understand the positive and negative sides of the design clearly to 

compensate these flaws or boost the plusses in later batches. The second short-term future 

work for this study is further optimization of the EBD through more detailed 

characterization with other simulation tools. Isolation walls between the blocks of the 

system can be placed in order to block the signal that leaks to the substrate. These isolation 

walls can be created by via stacks from the highest metal of the technology to the substrate. 

Apart from the characterization, the placement of the blocks can be altered to acquire less 

area than before. 

As a long-term future work, this system can be modified to be suitable for flip-chip 

bonding. With such a high frequency like 28GHz it is hard to propagate the input or output 

RF signals to a board. Flip-chip bonding is one of the most popular bonding methods for 

circuits that operate at high frequencies. So that the integration capability of the circuitry to 

a larger scale system can be furtherly increased.  
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