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Abstract

A partition � = (�1,�2, . . . ,�n) of a positive integer N is a lecture hall partition of

length n if it satisfies the condition

0 
�1
1


�2
2
· · · 

�n
n
.

Lecture hall partitions are introduced by Bousquet-Mélou and Eriksson, while

studying Coxeter groups and their Poincaré series. Bousquet-Mélou and Eriksson

showed that the number of lecture hall partitions of length n where the alternating

sum of the parts is k equals to the number of partitions into k odd parts which are less

than 2n by a combinatorial bijection.

Then, Yee also proved the fact by combinatorial bijection which is di↵erently defined

for one of the bijections that were suggested by Bousquet-Mélou and Eriksson. In this

thesis we give Yee’s proof with details and further possible problems which arise from

a paper of Corteel et al.



Amfi Parçalanış Teoreminin Bousquet-Mélou ve Eriksson İnceltmesi için Yee’nin Bire

Bir Eşlemeli Kanıtı
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Tez Danışmanı: Doç. Dr. Kağan Kurşungöz
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Özet

Eğer bir pozitif tamsayı N ’in bir tam sayı parçalanışı olan � = (�1,�2, . . . ,�n),

0 
�1
1


�2
2
· · · 

�n
n

koşulunu sağlyorsa � n uzunluğunda bir amfi parçalanışıdır.

Amfi parçalanışları ilk olarak Bousquet-Mélou ve Eriksson tarafından Coxeter gru-

plar ve onların Poincaré serileri araştırılırken tanımlanmıştır. Bousquet-Mélou ve Eriks-

son N ’in n uzunluğundaki kısımlarının alternatif toplamı k olan amfi parçalanışlarının

sayısıyla 2n’den küçük k tane tek kısımdan oluşan parçalanışlarının sayısının eşitliğini

bir kombinatorik eşleme ile göstermişlerdir.

Daha sonra Yee bu özdeşliği Bousquet-Mélou ve Eriksson’ın önerdiği kombinatorik

eşlemelerden birinin farklı tanımlayarak kanıtlamıştır. Bu tezde detaylarıyla Yee’nin

kanıtı ve ayrıca Corteel ve diğerleri tarafından yazılan bir makaleden ortaya çıkan olası

problemler verilmiştir.
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CHAPTER 1

Introduction

An integer partition is a way to split an integer into integer parts. By the definition

in [4], the reordering of the parts does not change the partition, hence we can order

the parts from the smallest to the largest. More precisely, a partition of length n of a

positive integer N is a finite nondecreasing sequence of positive integers, so that the

sum over the elements of the sequence is equal to N . The elements of the sequence are

called parts. For example, � = (1, 1, 3, 4, 5) is a partition of N = 14 of length n = 5

since
5X

i=1

�i = �1 + �2 + · · ·+ �5 = 1 + 1 + 3 + 4 + 5 = 14 = N

Note that all parts of the partition are positive integers. Sometimes we loosen this

requirement and allow zeros. For example in lecture hall partitions we can have a

sequence of zeros as smaller parts of the partition.

�1�2 . . .�k �k+1 . . .�n| {z }
`(�)

number of positive parts

where �i = 0 for i = 1, 2, . . . , k. Hence our concept of “length of partition” becomes

“number of non-zero parts” in the context of the lecture hall partitions.

p(N) is the partition function which counts the number of partitions of N , for

example p(N) = 7 for N = 5 since 1+1+1+1+1, 1+1+1+2, 1+2+2 1+1+3, 2+3, 1+4

and 5 are the partitions of N = 5. This function appears with a condition on parts

mostly, i.e., p(n|condition). For example, p(N |odd parts) is the number of partitions

of N into odd parts.

The equalities between the number of partitions of di↵erent types are called iden-

tities. In the theory of partitions, Euler proved the first partition identity in 1748[23].

Theorem 1.0.1 (Euler) The number of partitions of N into odd parts, p(N |odd parts),

is equal to the number of partitions of N into distinct parts, p(N |distinct parts).

Example 1.0.1 Let N=5. Then 1+1+1+1+1, 1+1+3 and 5 are the partitions of 5

into odd parts hence, p(5|odd parts) = 3. Also, 1+4, 2+3 and 5 are the partitions of 5

1



into distinct parts so p(5|distinct parts) = 3. Therefore

p(5|odd parts) = 3 = p(5|distinct parts).

Euler’s identity can be proven by constructing a bijection between the set of par-

titions of given types. The procedure is basic merging (from odds to distincts) and

splitting (from distincts to odds) process. When we find two identical parts, we merge

them until all parts are distinct and for inverse we are splitting all even parts into half

until we have no even parts. We can take the partitions in the previous example.

1 + 1 + 1 + 1 + 1 ! 2 + 2 + 1 ! 4 + 1

1 + 1 + 3 ! 2 + 3

5 ! 5

As you can see from the example above, we can find a one to one correspondence

between partitions into odd parts and partition into distinct parts.

Euler’s identity has the following q-series version

P
n�0 p(n|odd parts)qn =

Q
n�1

1
1�q2n�1

=
Q

n�1
1�q2n

1�qn

=
Q

n�1(1 + qn)

=
P

n�0 p(n|distinct parts)q
n

In [28], a refined version of Euler’s theorem has been proven by J.J. Sylvester.

Theorem 1.0.2 (Sylvester) Let Ak(N) be the number of partitions of N using ex-

actly k di↵erent odd parts (repetitions are allowed), and Bk(N) the number of partitions

of N into k separate sequence of consecutive integers. Then,

Ak(N) = Bk(N).

Note that this theorem is a refined version of Euler’s theorem since

p(n|odd parts) =
1X

k=0

Ak(N) and p(n|distinct parts) =
1X

k=0

Bk(N).

Example 1.0.2 Let N = 15 and k = 3. Then we have the following lists ;
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the number of partitions of N = 15 using exactly k = 3 di↵erent odd part sizes:

11+3+1,

9+5+1,

9+3+1+1+1,

7+5+3,

7+5+1+1+1,

7+3+1+1+1+1+1,

7+3+3+1+1,

5+5+3+1+1,

5+3+3+3+1,

5+3+3+1+1+1+1,

5+3+1+1+1+1+1+1+1,

the number of partitions of N = 15 into k = 3 separate sequence of consecutive

integers:

11 +3 +1,

10 +4 +1,

9 +5 +1,

9 +4 +2,

8 +6 +1,

8 +5 +2,

8 +4 +2+1,

7 +5 +3,

7 +5 +2+1,

7 +4+3 +1,

6+5 +3 +1.

Note that the number of partitions in both lists are 11.

Not all partition identities come from purely combinatorial or partition theoretic

concerns. Theory of partitions is enriched by interactions between di↵erent areas of

mathematics. The lecture hall partitions is an example of this. We will give some basic

definitions and notions of Coxeter group theory in order to give deeper understanding

for background of lecture hall partitions.

Cn, finite Coxeter group, is the finite Euclidean reflection group (A group generated

by a set of reflections of a finite dimensional Euclidean space.). C̃n, a�ne Coxeter

group, are not finite themselves, but each contains a normal Abelian subgroup such

that the corresponding quotient group is finite. By Poincaré series of these groups,

one means the length generating functions.

Cn(q) =
X

⇡2Cn

q`(⇡)

and

C̃n(q) =
X

⇡2C̃n

q`(⇡).

In [15], Bott gave a generalization of Poincaré series of a�ne Coxeter groups such

that

C̃n(q) =
Cn(q)

(1� q)(1� q3) . . . (1� q2n�1)
.

After realizing the similarity of the denominator and the generating function of

a partition function, Bousquet-Mélou and Eriksson gave a combinatorial proof of the

3



equivalence of Bott’s generalization and lecture hall theorem. They proved

X

⇡2C̃n/Cn

q`(⇡) =
1

(1� q)(1� q3) . . . (1� q2n�1)
.

In order to conclude that two theorems are equivalent it is necessary to find a bijection

between C̃n/Cn and Ln, which is the set of lecture hall partitions of length n, such

that `(⇡) = |�(⇡)|. Their candidate was

�i =
iX

j=1

Ii,j(⇡)

where Ii,j(⇡) is the number of (i, hji)-class inversions, which satisfies `(⇡) = �1 + �2 +

· · · + �n = �(⇡). They showed that � is a bijection between C̃n/Cn and Ln by using

the properties of Ii,j(⇡) such that

(i) Ii,j � Ii�1,j with equality if i lies directly to the right of i� 1 in ⇡,

(ii) If the member of hji in the window of ⇡ containing i is to the left of i then

Ii,j = Ii,i must hold, and otherwise Ii,j = Ii,i � 1.

Note that by using (i) and (ii) in order, we get

�i
i
=

Pi
j=1 Ii,j

i
�

Ii,i +
Pi�1

j=1 Ii�1,j

i
�

Pi�1
j=1 Ii�1,j

i� 1
=

�i�1

i� 1
.

Notice that � satisfies lecture hall condition, as desired. After lecture hall partitions

were introduced by Bousquet-Mélou and Eriksson, it is also shown that the number

of lecture hall partitions of length n of a positive integer N whose alternating sum,

|�|a = �n � �n�1 + · · ·+ (�1)n�1�1, is k equals to the number of partitions of N into k

odd parts less than 2n. In [29], Yee proved this partition identity by a combinatorial

bijection. The aim of this thesis is redoing Yee’s proof in detail.
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CHAPTER 2

Preliminaries

A partition � = (�1,�2, . . . ,�n) of length n of a positive integer N is a finite

nondecreasing sequence of nonnegative integers that sums up to N . Although the

usual convention is to arrange parts in non-increasing order [1, 16, 17, 18], writing

parts in non-decreasing order will be more suitable for our studies. The point is that

reordering parts does not give a new partition. A lecture hall partition of length n is

� = (�1,�2, . . . ,�n) that satisfies the following condition

0 
�1
1


�2
2

 ... 
�n
n
. (2.1)

For a partition � = (�1,�2, ...,�n), with some �i possibly equal to 0, we say that

(i) �i and �i+1 satisfy lecture hall condition if they satisfy the following inequality

�i
i


�i+1

i+ 1
.

(ii) � satisfies the lecture hall condition if �i and �i+1 satisfy the lecture hall con-

dition for all i = 1, 2, . . . , n� 1.

Lecture hall partitions were first defined in [16] and some properties of lecture hall

partitions are examined in [17, 18]. Let Ln be the set of lecture hall partitions of length

n. Bousquet-Melóu and Eriksson in [16] showed that the generating function of the set

Ln is

X

�2Ln

t|�|aq|�| =
n�1Y

i=0

1

1� tq2i+1
(2.2)

where |�|a is the alternating sum of parts, i.e., |�|a = �n � �n�1 + · · ·+ (�1)n�1�1 and

|�| is the weight of the partition, i.e., |�| = �1 + �2 + · · · + �n. By taking the limit

when n approaches to infinity, Sylvester’s refinement of Euler’s identity [28] can be

obtained. Note that, as n tends to infinity, the right hand side of the identity (2.2) is

the generating function of the set of partitions into odd parts and counting the number

of parts, as well. On the left hand side since we have lecture hall partitions, the parts

will satisfy the inequality (2.1). Let’s consider the following limit:

lim
n!1

✓
�n�1

n� 1

�n
n

◆
.
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It is same as the following one:

lim
n!1

✓
�n�1

�n


n� 1

n

◆
.

Hence as n tends to infinity the last limit gives us

0  lim
n!1

✓
�n�1

�n

◆
< 1

and this inequality shows that the fraction between the consecutive parts will be strictly

less than 1 therefore they must be distinct. Also, we necessarily have a ”long” list of

zeros at the beginning of the partition, so it is sensible to discard the zeros altogether

when taking the limits, and focus on the non-zero parts.

X

µ2D

t|µ|aq|µ| =
X

µ2O

t`(µ)q|µ| (2.3)

Above, D is the set of partitions into distinct parts, O is the set of partitions into odd

parts and `(µ) is the number of parts in the partition µ. The identity in (2.3) is proven

combinatorally by Sylvester[28], Bessenrodt[14] and Kim and Yee[25] but these proofs

are not applicable for the finite version.

The aim of this thesis is redoing Yee’s proof of the identity that guarantees the

equality of number of lecture hall partitions � = (�1,�2, . . . ,�n) of length n, where

|�|a = k and the number of partitions of N into k odd parts which are less than 2n, in

detail.

In Chapter 3 we will define a deletion map and an insertion map, then define

two bijections which are defined recursively by the deletion and the insertion maps.

Throughout the proof we will check the consistency of our definitions, show the prop-

erties of our defined maps and we will end up with the fact that the two bijections

are inverses of each other. The purposes of lemmas, corollaries and theorems are given

after the proofs of them.

Finally in Chapter 4, we will mention the guidelines for partition analysis that

are given by Corteel, Lee and Savage in [21]. This is because we want to find other

bijections, and this paper is a fruitful source of identities such that many of them

lack bijective proofs. Also, the five guidelines for partition analysis is an algorithmic

approach to systematically produce lecture hall type identities.

6



CHAPTER 3

The Bijection

If we define On as the set of partitions into odd parts which are less than 2n, then

the identity can be written as follows:

X

�2Ln

t|�|aq|�| =
X

�2On

t`(�)q|�|. (3.1)

For a combinatorial proof of the identity (3.1) where |�|a is alternative sum of the

parts, `(�) is the number of parts in � and |�|(or |�|) is the positive integer partioned

as � (or �), we will define two bijections namely  n : Ln ! On which takes a lecture

hall partition of length n and gives an odd partition whose parts are less than 2n, and

inverse of  n, �n : On ! Ln which takes an odd partition whose parts are less than

2n gives a lecture hall partition of length n.

3.1. Definition of Maps

3.1.1 Definition of the Map  n

Given a partition ⌧ = (⌧1, ⌧2, . . . , ⌧n) 2 Ln, we need a deletion map first. We begin

with a lecture hall partition and construct smaller lecture hall partitions by deleting

odd number of cells one by one starting from the largest part until we reach the lec-

ture hall partition consisting of n zeros. For a partition � = (�1,�2, . . . ,�k) 2 Lk,

�0 = (�01,�
0

2, . . . ,�
0

k) is a smaller lecture hall partition of length k if �i � �0i
8 i = 1, 2, . . . , k. For example �0 = (0, 1, 3, 4, 5) is a smaller partition than

� = (0, 1, 3, 5, 7) since �i � �0i for i = 1, 2, 3, 4, 5 .

First we define the deletion map  n. The deletion map  n takes ⌧ 2 Ln and deletes

one cell from all large parts of ⌧ until

• we have enough number of deleted cells,

or

7



• we meet a pair (⌧i, ⌧i+1) such that the pair (⌧i � m, ⌧i+1 � m � 1) also satisfies

the lecture hall condition.

For defining  n, we need to know two things at the beginning, which are the starting

point of deletion, the part of the given lecture hall partition where we start deletion

(b) and the number of cells we will delete (k).

Let ⌧ = (⌧1, ⌧2, . . . , ⌧n) 2 Ln with the convention that ⌧0 = 0, `(⌧) be the number

of nonzero parts of ⌧ and kj be the smallest positive integer k > j such that, for all

0  j < d`(⌧)/2e,
⌧n�2j�1 � (k � j � 1)

n� 2j � 1

⌧n�2j � (k � j)

n� 2j
.

For example, for ⌧ = (0, 1, 9, 12), n = 4 and `(⌧) = 3. Then for j = 0, ⌧3�k+1
3 

⌧4�k
4 ,

where ⌧3 = 9 and ⌧4 = 12, implies that 4  k and k0 = 4. For j = 1, ⌧1�k+2
1 

⌧2�k+1
2 ,

where ⌧1 = 0 and ⌧2 = 1, implies that 2  k and k1 = 2.

Also note that writing

⌧i = i

⇠
⌧i
i

⇡
� (i� ri)

where ri is the remainder of the corresponding part and 1  ri  i transforms the

lecture hall condition into

l⌧i
i

m
=
l ⌧i+1

i+ 1

m
and ri < ri+1

or l⌧i
i

m
<
l ⌧i+1

i+ 1

m
.

Let us define the following set

A =

⇢
0  j < b`(⌧)/2c :

⇠
⌧n�2j�1

n� 2j � 1

⇡
=

⇠
⌧n�2j

n� 2j

⇡
and rn�2j�1 + 1 = rn�2j

�
.

Therefore, if j 62 A, then kj = j + 1. In this case,

⇠
⌧n�2j�1

n� 2j � 1

⇡
<

⇠
⌧n�2j

n� 2j

⇡

and so
⌧n�2j�1

n� 2j � 1
<

⌧n�2j

n� 2j
.

If j 2 A, then kj = rn�2j + j. In this case,

⇠
⌧n�2j�1

n� 2j � 1

⇡
=

⇠
⌧n�2j

n� 2j

⇡
and rn�2j = rn�2j�1 + 1.

So our final choices are k = min{kj : j < d`(⌧)/2e} and b = min{j : kj = k}.

For ⌧ = (1, 2, 8, 11), A = {0, 1} and k0 = r4 = 3, k1 = r2 + 1 = 3. This implies that

k = 3, b = 0.

8



Now we can define the deletion map  n from ⌧ . Let µ = (µ1, µ2, . . . , µn) be the

sequence defined by

µn�i = ⌧n�i � 1 for 0  i  2b� 1;

µn�2b = ⌧n�2b � (k � b);

µn�2b�1 = ⌧n�2b�1 � (k � b� 1);

µn�i = ⌧n�i for 2b+ 2  i < n.

Then define  n(⌧) = (µ, 2k � 1). Note that for b = 0 the first line becomes vacuous.

However, the µ values can be fully determined by starting to calculate from the second

line of the sequence.

Example 3.1.3 For ⌧ = (1, 2, 8, 11), `(⌧) = 4 and A = {0, 1}. We need to find

k and b values. For j = 0, since 0 2 A, k0 = r4 = 3 and by the same reasoning

k1 = r2 + 1 = 3. Therefore, k = 3 and b = 0. The sequence defined above will give us

the following:

µ4�2.0 = µ4 = ⌧4 � (3� 0) = 8

µ4�2.0�1 = µ3 = ⌧3 � (3� 0� 1) = 6

µ4�2 = µ2 = ⌧2 = 2

µ4�3 = µ1 = ⌧1 = 1

⌧ = (1, 2, 8, 11), n = 4, k = 3, b = 0  4(⌧) = ((1, 2, 6, 8), 5)

Table 3.1: Young diagrams for ⌧ and  4(⌧)

The dashed cells will be deleted and  4(1, 2, 8, 11) = ((1, 2, 6, 8), 5).

Iteration of the deletion map  n, until reaching the partition of length n with

all parts equal to zero, will give us the definition of bijection  n from Ln to On.

For a given lecture hall partition � = (�1,�2, . . . ,�n) 2 Ln, let �(0) = �, then for

each i = 1, 2, . . . , |�|a, we recursively define �(i) and �i by  n(�(i�1)) = (�(i), �i). By

iteration of  n we will end up with lecture hall partitions �(1),�(2), . . . ,�|�|a and odd

integers �1, �2, . . . , �|�|a . Then we define

 n(�) = �1�2 . . . �|�|a

9



Example 3.1.4 In Example 3.1.1, we have found that  4(1, 2, 8, 11) = ((1, 2, 6, 8), 5).

Then iteration of the deletion function will give us  4(1, 2, 6, 8) = ((0, 0, 5, 7), 5),

 4(0, 0, 5, 7) = ((0, 0, 3, 4), 5) and  4(0, 0, 3, 4) = ((0, 0, 0, 0), 7). Therefore,

 4(1, 2, 8, 11) = (5, 5, 5, 7).

3.1.2 Definition of the Map �n

Since  n is defined by iteration of the deletion map  n, first we need to define the

inverse of the deletion map. Recall that the deletion map takes a lecture hall partition

and gives us a smaller lecture hall partition and an odd integer, which is the number of

the deleted cells. Hence, the inverse of  n must take a pair (µ, 2k � 1), where µ 2 Ln

and k is an positive integer less than n+ 1, and insert 2k � 1 cells to µ.

For defining the insertion map, �n , we need to decide on the part of the given

lecture hall partition µ to start insertion. As in the deletion map, �n will add one cell

each to the largest parts of µ until we run out of cells or we meet a pair (µn�2c�1, µn�2c)

such that
µn�2c�1

n� 2c� 1
=

µn�2c

n� 2c
.

If we meet a pair as above, we add (k�c�1) and (k�c) cells to the pair (µn�2c�1, µn�2c),

respectively.

Note that c is the corresponding value for the starting point of deletion (b) with

suitable kj values. Let c be the minimum of the set

⇢
j :

µn�2j�1

n� 2j � 1
=

µn�2j

n� 2j
, 0  j < bn/2c

�
[ {k � 1}.

Let ⌧ = (⌧1, ⌧2, . . . , ⌧n) be the sequence defined by

⌧n�i = µn�i + 1 for 0  i  2c� 1;

⌧n�2c = µn�2c + (k � c);

⌧n�2c�1 = µn�2c�1 + (k � c� 1);

⌧n�i = µn�i for 2c+ 2  i < n

Then define �n(µ, 2k � 1) = ⌧ .

Example 3.1.5 For µ = (0, 0, 1, 5, 7), n = 5 and k = 2. So we need to find the c

value. Note that µ1/1 6= µ2/2 and µ3/3 6= µ4/4. So c = k � 1 = 1.

10



The sequence defined above will give us the following:

⌧5�0 = ⌧5 = µ5 + 1 = 8

⌧5�1 = ⌧4 = µ4 + 1 = 6

⌧5�2.1 = ⌧3 = µ3 + (2� 1) = 2

⌧5�2.1�1 = ⌧2 = µ2 + (2� 1� 1) = 0

⌧5�4 = ⌧1 = µ1 = 0

µ = (0, 0, 1, 5, 7), n = 5, k = 2, c = 1 �4(µ, 2k � 1) = (0, 0, 2, 6, 8)

Table 3.2: Young diagrams for µ and �4(µ, 2k � 1)

So �4(µ, 2k � 1) = (0, 0, 2, 6, 8).

Now we can define �n, which is the inverse of  n, recursively. Let �(0) be the

partition that consists of n zeros. If �(i) 2 Ln, then we recursively define �(i+1)
2 Ln

for i = 0, 1, . . . , `�1 by �(i+1) = �n(�(i), �`�i) where � = �1�2 . . . �` 2 On. By iteration

of �n, we can define �n : On ! Ln as

�n(�) = �(`).

Example 3.1.6 For given � = 1, 3, 3, 5, 5, we will start with �(0) = (0, 0, 0, 0, 0). Then

�(1) = �5(�
(0), �5 = 5) = (0, 0, 0, 2, 3)

�(2) = �5(�
(1), �4 = 5) = (0, 1, 2, 3, 4)

�(3) = �5(�
(2), �3 = 3) = (0, 1, 3, 4, 5)

�(4) = �5(�
(3), �2 = 3) = (0, 1, 3, 5, 7)

�(5) = �5(�
(4), �1 = 1) = (0, 1, 3, 5, 8)

Therefore �5(�) = (0, 1, 3, 5, 8).
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3.2. Properties of the Deletion and Insertion Maps

Lemma 3.2.1 For a given lecture hall partition ⌧ 2 Ln, let  n(⌧) = (µ, 2k�1). Then

µ is a lecture hall partition of length n.

Proof : Let b be the starting point of deletion. We want to show that the pair

(µn�h, µn�h+1) satisfies the lecture hall condition for h = 1, 2, . . . , n � 1. We exam-

ine the pairs depending on the values of h, therefore we have three cases as follows:

(i) 1  h  2b� 1, (ii) 2b+ 3  h, (iii) 2b  h  2b+ 2.

Note that the cases look like

µ1 µ2 . . . µn�2b�3| {z }
(ii)

?????µn�2b�2 µn�2b�1 µn�2b| {z }
(iii)

?????µn�2b+1 . . . µn| {z }
(i)

Case(i): 1  h  2b� 1

Since ⌧ 2 Ln, it satisfies the lecture hall condition. Also by definition of the deletion

map, µn�h = ⌧n�h � 1 for the chosen values of h. Therefore, since

⌧n�h

n� h


⌧n�h+1

n� h+ 1
,

we have that
⌧n�h � 1

n� h

⌧n�h+1 � 1

n� h+ 1

and this implies
µn�h

n� h


µn�h+1

n� h+ 1
,

the pair (µn�h, µn�h+1) satisfies the lecture hall condition.

Case(ii): 2b+ 3  h

We know that the pair (⌧n�h, ⌧n�h+1) satisfies the lecture hall condition and by

definition of  n, ⌧n�h = µn�h for 2b+2  h. So it is already true for 2b+3  h. Hence

(µn�h, µn�h+1) satisfies the lecture hall condition.

Case(iii): 2b  h  2b+ 2

We have three di↵erent values for h: 2b, 2b+ 1 and 2b+ 2.

h = 2b : Recall that ⌧n�2b and ⌧n�2b+1 satisfy the lecture hall condition, and

k � b � 1. By definition of  n,

µn�2b = ⌧n�2b � (k � b) and µn�2b�1 = ⌧n�2b�1 � 1.
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Since the pair (⌧n�2b, ⌧n�2b+1) satisfies the lecture hall condition, we have

⌧n�2b

n� 2b


⌧n�2b+1

n� 2b+ 1
,

and since k � b � 1 we have

⌧n�2b � (k � b)

n� 2b

⌧n�2b+1 � 1

n� 2b+ 1
.

By definition of µn�2b and µn�2b+1, and by the last inequality above the pair (µn�2b, µn�2b+1)

satisfy the lecture hall condition.

h = 2b+ 1 : By definition of the deletion map

µn�2b�1 = ⌧n�2b�1 � (k � b� 1) and µn�2b = ⌧n�2b � (k � b).

Since we have
⌧n�2b�1

n� 2b� 1


⌧n�2b

n� 2b
and k � b � 1,

(µn�2b�1, µn�2b) satisfies the lecture hall condition

⌧n�2b�1 � (k � b� 1)

n� 2b� 1

⌧n�2b � (k � b)

n� 2b
.

h = 2b+ 2 : Since

µn�2b�2 = ⌧n�2b�2 and µn�2b�1 = ⌧n�2b�1 � (k � b� 1),

we need to examine two cases as b = k � 1 and b < k � 1.

If b = k � 1, then we have

µn�2b�2 = ⌧n�2b�2 and µn�2b�1 = ⌧n�2b�1.

Since (⌧n�2b�2, ⌧n�2b�1) satisfies the lecture hall condition, (µn�2b�2, µn�2b�1) satisfies

it, too.

If b < k � 1, then we have two cases to consider: b + 1 2 A or not. Let b + 1 2 A.

Then kb+1 = rn�2b�2 + b+1 then by minimality of k we get rn�2b�2 + b+1 � rn�2b + b

which implies that rn�2b�2 � rn�2b�1 = rn�2b�1 where rh is the remainder of ⌧h. Hence

⇠
⌧n�2b�2

n� 2b� 2

⇡
<

⇠
⌧n�2b�1

n� 2b� 1

⇡

since ⌧ is a lecture hall partition.

Now let b + 1 62 A. Then kb+1 = b + 2 and b + 2 � rn�2b + b, so 2 � rn�2b and

2 = rn�2b = rn�2b�1 + 1. Since µn�2b�2 = ⌧n�2b�2 and we assume that b < k � 1,

µn�2b�1 = (n� 2b� 1)

✓⇠
⌧n�2b�2

n� 2b� 2

⇡
� 1

◆
.
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Recall that ⌧ is lecture hall partition which satisfies

⌃ ⌧n�2b�2

n� 2b� 2

⌥
<
⌃ ⌧n�2b�1

n� 2b� 1

⌥
.

Hence, µn�2b�2

n�2b�2 
µn�2b�1

n�2b�1 is obtained.

2

By Lemma 3.2.1, we have that we can iterate  n, since it takes a lecture hall

partition, ⌧ , and returns the pair (µ, 2k � 1) where µ is a lecture hall partition and

k 2 Z+.

Example 3.2.7 Let ⌧ = (0, 1, 3, 4, 5). Then `(⌧) = 4 (Recall that `(⌧) is defined as

number of non-zero parts in ⌧ .) so we need to check if j = 0 and j = 1 are in the set

A or not. Since
⇠
⌧4
4

⇡
=

⇠
4

4

⇡
=

⇠
5

5

⇡
=

⇠
⌧5
5

⇡
and r4 + 1 = 4 + 1 = 5 = r5,

j = 0 2 A. By similar reasoning j = 1 /2 A. (Note that
⌃
⌧2
2

⌥
=
⌃
1
2

⌥
=
⌃
3
3

⌥
=
⌃
⌧3
3

⌥
but

r2 + 1 = 1 + 1 6= 3 = r3.)

Now we need to calculate the corresponding kj values. By definition of kj, for

j = 0 2 A k0 = r5 = 5 and for j = 1 /2 A k1 = 1 + 1 = 2. Recall that

k = min
n
kj : j <

l`(⌧)
2

mo
,

then k = min{k0, k1} = min{5, 2} = 2. Also by definition of b, for this example b = 1.

By considering the the determined values of k and b, it is possible to write the

following sequence,

µ5�0 = µ5 = ⌧5 � 1 = 4

µ5�1 = µ4 = ⌧4 � 1 = 3

µ5�2.1 = µ3 = ⌧3 � (2� 1) = 2

µ5�2.1�1 = µ2 = ⌧2 � (2� 1� 1) = 1

µ5�4 = µ1 = ⌧1 = 0

(i) From the sequence (µ4, µ5) = (3, 4), so
⌃
3
4

⌥
= 1 =

⌃
4
5

⌥
and r4+1 = 3+1 = 4 = r5.

Thus (µ4, µ5) satisfy the lecture hall condition.

(ii) For (µ0, µ1) = (0, 0) we can easily conclude that the pair satisfies the lecture

hall condition.

(iii) If h=2, then we have the pair (µ3, µ4). Recall that (⌧3, ⌧4) satisfies the lecture

hall condition then since µ3 = ⌧3 � (2 � 1) and µ4 = ⌧4 � 1, (µ3, µ4) also satisfies the

lecture hall condition.
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If h = 3, then we have the pair (µ2, µ3). We have that µ2 = ⌧2 � (2 � 1 � 1) and

µ3 = ⌧3 � (2� 1) so the pair (µ2, µ3) satisfies the lecture hall condition.

Finally, if h = 4, the we need to examine the pair (µ1, µ2). Since we are in the case

b = k � 1 (recall that k = 2 and b = 1) then we have µ1 = ⌧1 = 0 and µ2 = ⌧2 = 1.

The inequality
⌃
0
1

⌥
= 0 < 1 =

⌃
1
2

⌥
implies that the pair (µ1, µ2) satisfies the lecture hall

condition.

Thus, µ is a lecture hall partition since (µi, µi+1) satisfies the lecture hall condition

for all i = 0, 1, 2, 3 and 4.

Lemma 3.2.2 For a given lecture hall partition ⌧ 2 Ln such that |⌧ |a > 1, let

 n(⌧) = (µ, 2k � 1) and  n(µ) = (⇢, 2m� 1). Then k  m.

Proof : Let

A =

(
j <

�
`(⌧)

2

⌫
:

⇠
⌧n�2j�1

n� 2j � 1

⇡
=

⇠
⌧n�2j

n� 2j

⇡
and rn�2j�1 + 1 = rn�2j

)

and

B =

(
0, 1, 2, . . . ,

⇠
`(⌧)

2

⇡)
\ A.

Also let A0 and B0 be the respective sets for µ, and r0n�h be the remainder of µn�h.

Let b and b0 be the starting point of deletion from ⌧ and µ, respectively.

By definition of the number of cells that will be deleted,

k = min
�
{rn�2j + j : j 2 A} [ {j + 1 : j 2 B}

�
and

m = min
�
{r0n�2j + j : j 2 A0

} [ {j + 1 : j 2 B0
}
�
.

Then we have three cases depending on the relation between b and b0.

For h � n � 2b + 1, ⌧h � 1 = µh and r0n�2j = rn�2j � 1, by the definition of the

deletion map. By minimality of k, for all j < b, we have that rn�2j + j > k and hence

r0n�2j � k. The last inequality proves that k  m, if b > b0.

Now, for h  n � 2b � 2, ⌧h = µh and r0n�2j = rn�2j. By minimality of k, for all

j > b, we have k  j+1 if j 2 B and k  rn�2j + j if j 2 A. Similarly for all j > b, we

have k  j + 1 if j 2 B0 and k  r0n�2j + j if j 2 A0. This shows that k  m if b < b0.

Finally, if b = b0 and k = b + 1, then k  m. If b = b0 and k = rn�2b + b, then

b 2 A0 and m = r0n�2b + b = (n� 2b) + b � k.

2

Lemma 3.2.2 shows that parts of � are weakly increasing, since iteration of  n

gives us the parts of �. So we have showed that  n is given by the iteration of the

deletion map  n by Lemma 3.2.1, and the parts of the partition constructed by  n(�)

are weakly decreasing by Lemma 3.2.2. Hence we have the following theorem.

Theorem 3.2.3 For a given � 2 Ln,  n(�) is a partition whose parts are odd integers

less than 2n, and so  n is well-defined.
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Lemma 3.2.4 For a given �1�2 . . . �` 2 On such that �1 = 2k � 1, suppose that

�n(�(i), �`�i) = �(i+1) is a lecture hall partition for all i = 0, 1, . . . , ` � 1, where

�(0) = (0, 0, . . . , 0) 2 Ln. Then, for all j = 0, 1, . . . , k � 2,

⇠
�(`)n�2j�1

n� 2j � 1

⇡
=

⇠
�(`)n�2j

n� 2j

⇡
and rn�2j�1 + 1 = rn�2j (3.2)

where rh is the remainder of �(`)h .

Proof : We prove the statement by induction on `. As a basis step if ` = 0, then there

is nothing to insert and since �(0) = (0, 0, . . . , 0) is lecture hall partition, it satisfies the

conditions in (5).

Suppose that the statement is true for ` � 1. Let c be the starting point of

the `th insertion. Note that c < k and � is weakly increasing. Firstly it must be

shown that, for any j, 0  j  c � 1, �(`�1)
n�2j�1 is a multiple of (n � 2j � 1) if

and only if �(`�1)
n�2j is a multiple of (n � 2j). Assume that �(`�1)

n�2j�1 = q(n � 2j � 1)

where q 2 Z+. Then rn�2j�1 = n � 2j � 1. The induction hypothesis implies that

�(`�1)
n�2j = q(n� 2j) and rn�2j = n� 2j = rn�2j�1 + 1. similarly, it can be shown that if

�(`�1)
n�2j is a multiple of (n�2j), then �(`�1)

n�2j�1 is a multiple of (n�2j�1). By minimality

of c, �(`�1)
n�2j�1 and �(`�1)

n�2j cannot be multiple of (n � 2j � 1) and (n � 2j), respectively.

Thus for 0  j  c� 1,

⇠
�(`)n�2j�1

n� 2j � 1

⇡
=

⇠
�(`�1)
n�2j�1

n� 2j � 1

⇡
and rn�2j�1 + 1 = r0n�2j

where r0h is the remainder of �(`)h . Hence for 0  j  c � 1, the statement is true for

�(`) by the induction hypothesis.

For c  j < k � 1, we need to consider two cases as c = k � 1 and c < k � 1.

If c = k � 1, then the conclusion is trivial. Assume that c < k � 1, so the pair�
�(`�1)
n�2c�1,�

(`�1)
n�2c

�
is critical. Hence the pair is multiple of the pair (n� 2c� 1, n� 2c),

respectively. This implies that there is an integer q such that �(`�1)
n�2c�1 = q(n� 2c� 1)

and �(`�1)
n�2c = q(n � 2c). By definition of the insertion map, we have that �(`)n�2c�1 =

q(n� 2c� 1) + (k� c� 1) and �(`)n�2c = q(n� 2c) + (k� c). Hence �(`) is a lecture hall

partition. This implies that k � c  n � 2c, so that rn�2c = rn�2c�1 + 1 = k � c. So,

for j = c the condiditons (5) holds. For h � 2(c + 1), �(`)n�h = �(`�1)
n�h by definition of

the insertion map.

2

Recall the definition of set A from the deletion map,  n. Lemma 3.2.4 guarantees

that the partitions which are obtained by the insertion map, �n, can be an input for

the deletion map  n.
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Corollary 3.2.5 Let � = �1�2 . . . �` 2 On. Assume that �n(�(i), �`�i) = �(i+1) is a

lecture hall partition for all i < `. Let c be the starting point of the insertion for �(`).

Then for 0  h  2c� 1, �(`)n�h is not a multiple of (n� h).

Note that proof of the Corollary 3.2.5 is given in the proof of the Lemma 3.2.4 and

the result will be used in the upcoming properties.

Lemma 3.2.6 For a given � = �1�2 . . . �` 2 On such that �1 = 2k � 1, suppose

that �n(�(i), �`�i) = �(i+1) is a lecture hall partition for all i = 0, 1, ..., ` � 1, where

�(0) = (0, 0, . . . , 0) 2 Ln. For all j = 0, 1, ..., k�2, if �(`)n�2j > 0 , then rn�2j�1 � k�j�1

and rn�2j � k � j, where rh is the remainder of �(`)h .

Proof : We prove the statement by induction on `. As a basis step, if ` = 0, similar

to the proof of the previous lemma, since there is nothing to insert, remainders will

satisfy the given conditions.

Assume that the statement is true for `� 1. Let c be the starting point of the `th

insertion. So we have three di↵erent cases depending on the values of h: (i) h � 2(c+1),

(ii) h < 2c, (iii) h = 2c, 2c+ 1.

Note that the cases look like

�(`�1)
1 �(`�1)

2 . . . �(`�1)
n�2c�2| {z }

(i)

?????�
(`�1)
n�2c�1 �

(`�1)
n�2c| {z }

(iii)

?????�
(`�1)
n�2c+1 . . . �(`�1)

n| {z }
(ii)

Case(i): h � 2(c+ 1)

By definition of the insertion map we have that �(`)n�h = �(`�1)
n�h . Since � is weakly

increasing, the induction hypothesis implies that the statement is true for c < j < k�1.

Case(ii): h < 2c

By Corollary 3.2.5, �(`�1)
n�h is not multiple of n � h for chosen values of h. This

implies that r0n�h < n�h, where r0n�h is the remainder of �(`�1)
n�h , and after `th insertion

rn�h = r0n�h +1. By the induction hypohesis, and the fact that � is weakly increasing,

the statement is true.

Case(iii): h = 2c, 2c+ 1

If c = k�1, then we have r0n�2c�1 � 0 and rn�2c � 1 and we are done. So we need to

prove that the pair (�(`)n�2c�1,�
(`)
n�2c) satisfies the statement. Since

�(`)n�2c�1 = �(`�1)
n�2c�1 + (k � c � 1), �(`)n�2c = �(`�1)

n�2c + (k � c) and �(`) is a lecture hall

partition, rn�2c�1 = (k � c� 1) and rn�2c = (k � c).

2

Lemma 3.2.7 For a given � = �1�2 . . . �` 2 On such that �1 = 2k � 1, suppose

that �n(�(i), �`�i) = �(i+1) is a lecture hall partition for all i = 0, 1, ..., ` � 1, where
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�(0) = (0, 0, . . . , 0) 2 Ln. Let �n(�(`�1), �1) = �(`). Then for all h = 1, 2, . . . , n,

⇠
�(`)h

h

⇡


⇠
�(`�1)
h

h

⇡
+ 1

Proof : Let c be the starting point of the `th insertion. By Corollary 3.2.5, we have

that �(`�1)
h cannot be a multiple of h for h � n � 2c + 1. Since the definition of the

insertion map implies that �(`)h = �(`�1)
h + 1, we have the inequality in the statement

already. So by the definition of the insertion map we have that

8
>>><

>>>:

⇠
�
(`)
h
h

⇡
�

⇠
�
(`�1)
h
h

⇡
if h = n� 2c� 1, n� 2c

⇠
�
(`)
h
h

⇡
=

⇠
�
(`�1)
h
h

⇡
if h  n� 2c� 2

Therefore the statement holds for h  n � 2c � 2 and we need to prove for

h = n� 2c� 1, n� 2c. Assume on the contrary that

⇠
�(`)n�2c

n� 2c

⇡
>

⇠
�(`�1)
n�2c

n� 2c

⇡
+ 1.

This assumption implies that k � c � 2. So we get k � c > n � 2c. Let us consider

r0n�2c+2 which is the remainder of �(`�1)
n�2c+2. By Lemma 3.2.6 we have r0n�2c+2 � k�c+1.

Now, we compute the di↵erence between n� 2c+ 2 and r0n�2c+2:

We have the inequality

n� 2c+ 2� r0n�2c+2  n� 2c+ 2� (k � c+ 1)

since r0n�2c+2 � k � c+ 1 by Lemma 3.2.6.

Also

n� 2c+ 2� (k � c+ 1) < n� 2c+ 2� (n� 2c+ 1) = 1

by considering k � c > n� 2c. Thus,

n� 2c+ 2� r0n�2c+2 < 1

and this strict inequality implies that n�2c+2 = r0n�2c+2. Hence �
(`�1)
n�2c+2 is a multiple

of n� 2c+ 2 which contradicts the fact we proved in Corollary 3.2.5.

Assume that ⇠
�(`)n�2c�1

n� 2c� 1

⇡
>

⇠
�(`�1)
n�2c�1

n� 2c� 1

⇡
+ 1.

This assumption implies that k � c � 1 � 1. So we get k � c � 1 > n � 2c � 1.

Let us consider r0n�2c+1 which is the remainder of �`�1
n�2c+1. By Lemma 3.2.6 we have

r0n�2c+1 � k � c + 1� 1. Now, the di↵erence between n� 2c + 1 and r0n�2c+1 will give

us:

n� 2c+ 1� r0n�2c+1  n� 2c+ 1� (k � c)
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since r0n�2c+1 � k � c by Lemma 3.2.6.

Besides,

n� 2c+ 1� (k � c) < n� 2c+ 1� (n� 2c) = 1

by the fact that k � c > n� 2c. Hence,

n� 2c+ 1� r0n�2c+1 < 1

and this implies that n� 2c+ 1 = r0n�2c+1. Then we have that �(`�1)
n�2c+1 is a multiple of

n� 2c+ 1 which gives a contradiction.

2

Notice that this lemma gives a bound for the increment in the hth part, which is h,

after `th insertion.

Lemma 3.2.8 For a given � = �1�2 . . . �` 2 On such that �1 = 2k � 1 > n, suppose

that �n(�(i), �`�i) = �(i+1) is a lecture hall partition for all i = 0, 1, ..., ` � 1, where

�(0) = (0, 0, . . . , 0) 2 Ln. Then there is a j 2 {1, 2 . . . , bn/2c � 1} satisfying that

�(`)n�2j�1

n� 2j � 1
=

�(`)n�2j

n� 2j
. (3.3)

In the definition of starting point of insertion, c, we have the following set
(
j :

µn�2j�1

n� 2j � 1
=

µn�2j

n� 2j
, 0  j < bn/2c

)
.

Lemma 3.2.8 guarantess the existence of such j values.

Proof : Recall that in the proof of the Lemma 3.2.1, we showed that �(`)n�2j�1 is a

multiple of n � 2j � 1 if and only if �(`)n�2j is a multiple of n � 2j. Hence the equality

(3.3) holds. Now, we need to consider two cases depending on the parity of n.

Case(i): n is even.

The equality (3.3) holds for j = (n/2)� 1 as �(`)1 is multiple of 1.

Case(ii): n is odd.

If n is odd, then n � 2j � 1 will be even. Now, we consider �(`)2 . If �(`)2 = 0, then

�(`)2 is multiple of 2, hence the equality (3.3) holds. Assume �(`)2 > 0, then by Lemma

3.2.6,

r2 � k �
n� 3

2
� 1, (3.4)

since for j = n�3
2 , n� 2j � 1 = 2. By assumption 2k� 1 � n+1 but since n is odd we

have

2k � 1 � n+ 2 (3.5)
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instead. So combining (3.4) and (3.5) implies that

r2 � k �
n� 3

2
� 1 � k �

2k � 6

2
� 1 = k � k + 3� 1 = 2.

Hence �(`)2 is multiple of 2, and the pair (�(`)2 ,�(`)3 ) satisfies the equation (3.3).

2

Theorem 3.2.9 For any � 2 On, �n(�) is a lecture hall partition.

Proof : Let � = �1�2 . . . �` and �1 = 2k � 1 for some k 2 Z+. We will apply

induction on `. Suppose that �n(�2�3 . . . �`) = �(`�1) is a lecture hall partition and

c is the starting point of `th insertion. Then we have the following three cases de-

pending on the values of h, where �(`�1)
n�h , (i) 0  h  2c � 1, (ii) 2c + 3  h < n,

(iii) h = 2c, 2c+ 1, 2c+ 2.

Case(i): By Corollary 3.2.5, for 0  h  2c � 1, �(`�1)
n�h is not multiple of n � h.

Thus, ⇠
�(`)n�h

n� h

⇡
=

⇠
�(`�1)
n�h

n� h

⇡
and r0n�h + 1 = rn�h

where r0n�h and rn�h are remainders of �(`�1)
n�h and �(`)n�h, respectively. Since �(`�1) is

lecture hall partition and by induction assumption �(`)n�h and �(`)n�h+1 satisfy the lecture

hall condition for 1  h  2c� 1.

Case(ii): For 2c + 2  h < n, �(`)n�h = �(`�1)
n�h by definition of the deletion map.

Then by induction hypothesis �(`)n�h and �(`)n�h+1 satisfy the lecture hall condition.

Case(iii): For h = 2c + 2, since �(`)n�2c�2 = �(`�1)
n�2c�2 and

�(`)n�2c�1 = �(`�1)
n�2c�1 + (k � c � 1), the pair (�(`)n�2c�2,�

(`)
n�2c�1) satisfies the lecture hall

condition. (Note that here we have k > c.)

For h = 2c+1, by Lemma 3.2.7 �(`)n�2c�1 and �(`)n�2c satisfy the lecture hall condition.

Finally, for h = 2c, we need to show that �(`)n�2c and �
(`)
n�2c+1 satisfy the lecture hall

condition. By Corollary 3.2.5, �(`�1)
n�2c+1 is not multiple of n� 2c+ 1. Then we need to

consider the cases that �(`�1)
n�2c is not a multiple of n� 2c and it is.

If �(`�1)
n�2c is not a multiple of n � 2c, then �(`)n�2c = �(`�1)

n�2c + 1. Also we have

�(`)n�2c+1 = �(`�1)
n�2c+1 + 1. So rn�2c = r0n�2c + 1 and rn�2c+1 = r0n�2c+1 + 1. Therefore,

�(`)n�2c and �
(`)
n�2c+1 satisfy the lecture hall condition.

If �(`�1)
n�2c is a multiple of n� 2c, then

⇠
�(`�1)
n�2c

n� 2c

⇡
<

⇠
�(`�1)
n�2c+1

n� 2c+ 1

⇡

since �(`�1) is lecture hall partition. Assume that �(`)n�2c and �
(`)
n�2c+1 do not satisfy the

lecture hall condition, i.e.,
⇠
�(`)n�2c

n� 2c

⇡
>

⇠
�(`)n�2c+1

n� 2c+ 1

⇡
and rn�2c � rn�2c+1.
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From Lemma 3.2.7, we can obtain rn�2c = k� c. From Lemma 3.2.6 and the definition

of the insertion map implies that rn�2c+1 = r0n�2c+1 + 1 � m � c + 1 where m 2 Z+

such that �2 = 2m� 1. Therefore,

rn�2c = k � c � rn�2c+1 = r0n�2c+1 + 1 � m� c+ 1 > m� c so, k > m

which gives a contradiction since � is weakly increasing.

2

Lemma 3.2.10 For any � = �1�2 . . . �` 2 On, where On is the set of partitions whose

parts are odd and less than 2n, such that �1 = 2m � 1, let µ = �n(�). Then for any

k = 1, 2, . . . ,m,

 n(�n(µ, 2k � 1)) = (µ, 2k � 1).

Proof : Let ⌧ = �n(µ, 2k � 1) and c be the starting point of insertion. We need to

prove that c is the starting point of deletion and  n removes 2k�1 cells from ⌧ . Let ri
and r0i be the remainders of µi and ⌧i, respectively. By Lemma 3.2.6, for all µn�2j > 0,

where j = 0, 1, . . . ,m � 2, we have that rn�2j � m � j. By definition of insertion for

j < c, we have ⌧n�2j = µn�2j + 1 and also for j < c, µn�2j is not multiple of n� 2j by

Corollary 3.2.5. So,

8
><

>:

r0n�2j + j = rn�2j + j + 1 > m � k for j < c,

r0n�2j + j = rn�2j + j + 1 � m � k for j > c,
(3.6)

since m � k and by our assumption on c.

By Lemma 3.2.4, for 0  j  k � 2,

⇠
⌧n�2j�1

n�2j�1

⇡
=

⇠
⌧n�2j

n�2j

⇡
, and r0n�2j�1 + 1 = r0n�2j.

Recalling the definition of the set A, gives us that for j  k � 2, j 2 A. By definition

of k and (3.6), we have that kj > k for j < c and kj � k for k� 2 � j > c. If j � k� 1

,i.e., j 2 A, we have kj � j + 1 � k.

Now we need to show that kc = k. For showing that consider the following two

cases: (i) c < k � 1 and (ii) c = k � 1.

Case(i): c < k � 1

We meet a pair such that we can add one more cell to the larger part than the smaller

one (µn�2c�1, µn�2c). By definition of the insertion map we have

⌧n�2c�1 = µn�2c�1 + (k � c� 1) and ⌧n�2c = µn�2c + (k � c). Hence

⌃ ⌧n�2c�1

n� 2c� 1

⌥
=
⌃ ⌧n�2c

n� 2c

⌥

and

r0n�2c�1 + 1 = r0n�2c = k � c.

Thus c 2 A, kc = rn�2c + c = k.
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Case(ii): c = k � 1

In this case, ⌧n�2c�1 = µn�2c�1 and ⌧n�2c = µn�2c + 1. By definition of kc, we have

kc = c+ 1 = k � 1 + 1 = k.

Hence, kc = k and we have  (⌧) = (µ, 2k � 1), in any case.

2

Lemma 3.2.11 Given any ⌧ 2 Ln, where Ln is the set of lecture hall partitions of

length n, �n( n(⌧)) = ⌧ .

Proof : Let (µ, 2k � 1) =  (⌧) and b be the starting point of deletion. We need to

prove that b is also the starting point of insertion. Let ri and r0i be the remainders of µi

and ⌧i, respectively. The following two observations can be made from the definition

of b: any j < b, j 2 A hence
⇠

⌧n�2j�1

n� 2j � 1

⇡
=

⇠
⌧n�2j

n� 2j

⇡
and r0n�2j�1 + 1 = r0n�2j

and also r0n�2j > 2. So, for i � n� 2b+1, ri = r0i� 1 by definition of the deletion map.

Hence, rn�2j = r0n�2j � 1 < n � 2j. Note that (µn�2j�1, µn�2j) is a pair such that we

can add one more cell to the larger partition than the smaller one. Now we have two

cases: (i) b = k � 1 and (ii) b < k � 1

Case(i): b = k � 1

Then b = k� 1 must be the starting point of insertion, since we do not meet a pair

(µn�2j�1, µn�2j) such that
µn�2j�1

n� 2j � 1
=

µn�2j

n� 2j
.

Case(ii): b < k � 1

Then from the definition of the deletion map

µn�2b�1

n� 2b� 1
=

µn�2b

n� 2b
.

So (µn�2b�1, µn�2b) is the pair that we searching for, with c = b.

Hence, �(µ, 2k � 1) = ⌧ in all cases.

2

Lemma 3.2.10 and Lemma 3.2.11 showed that the defined deletion and insertion

maps are inverses of each other. Also these two lemmas imply the following theorem.

Theorem 3.2.12 The map  n : Ln ! On is the inverse of �n : On ! Ln.

Proof : Let � 2 On.To show that  n(�n(�1�2 . . . �`)) = �1�2 . . . �` we apply induc-

tion on `. If ` = 1, then by Lemma 3.2.10

 n(�n(�`)) =  n(�n(�`)) = �`.

Suppose that  n(�n(�2 . . . �`)) = �2 . . . �`. Let

�n(�2 . . . �`) = ⌧ and �n(�1�2 . . . �`) = �.
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By Lemma 3.2.10, we have that �n(⌧, �1) = � and  n(�) = (⌧, �1). Since

�n(�1�2 . . . �`) = �n(⌧, �1) = � and  n(�) = �1 n(⌧) = �1�2 . . . �`,

 n � �n(�) = �. Similarly we can show that �n( n(�)) = �. 2

Example 3.2.8 Recall that in Example 3.1.4 we found the �5(�), for � = (1, 3, 3, 5, 5),

by iteration of the insertion map �5. Now, note that for � = (0, 1, 3, 5, 8),

 5(�
(0)) = (�(1), �1) = ((0, 1, 3, 5, 7), 1)

 5(�
(1)) = (�(2), �2) = ((0, 1, 3, 4, 5), 3)

 5(�
(2)) = (�(3), �3) = ((0, 1, 2, 3, 4), 3)

 5(�
(3)) = (�(4), �4) = ((0, 0, 0, 2, 3), 5)

 5(�
(4)) = (�(5), �5) = ((0, 0, 0, 0, 0), 5)

and so  5(�) = (1, 3, 3, 5, 5) which is exactly the same partition that �5 takes as input

in Example 3.1.4.

3.3. Comparison of Weights, Lengths and Alternative Sums

At the beginning our claim was the equality of the number of lecture hall partitions

of length n, with |�|a = k and the number of partitions into k odd parts which are less

than 2n. Note that this claim gives us the following two equalities:

|�| = |�| and `(�) = |�|a.

Now, we will show that the defined bijections by deletion and insertion maps preserve

the given two equalities.

First note that |⌧ | = |µ| + 2k � 1, where ⌧ = �n(µ), since for 0  i  2c � 1 we

add one cell to each µi, for i = 2c we add (k � c) cells to µ2c, for i = 2c + 1 we add

(k � c � 1) cells to µ2c+1 and for 2c + 2  i < n we did not add any cell to any µi.

Thus, in total we add 2k � 1 cells to µ. For �n, we are starting with the partition

�(0) = (0, 0, . . . , 0) 2 Ln. Therefore, in each insertion we are adding 2ki � 1 cells to �i

for 0  i  ` where 2ki � 1’s are the parts of � = (�1, �2, . . . , �`) 2 On. After the `th

insertion increment in |�(0)| will be |�|, hence |�(`)| = |�|.

To show that |⌧ |a = |µ|a + 1 we will use the definition of �n as in the previous case

and compute the change in the alternating sum of µ as follows:
 

2c�1X

i=0

(�1)i1

!
+ (�1)2c(k � c) + (�1)2c+1(k � c� 1) +

n�1X

i=2c+2

(�1)i0.
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Notice that the first summand in the above sum will give 0 since we have c many

(�1,+1) pairs. Since 2c is an even number, the second summand will be equal to

(k � c) and by a similar reasoning the third summand will be equal to (�k + c + 1).

Finally, the fourth summand will be equal to 0. Therefore, increment in the alternating

sum of µ is equal to 0+(k�c)+(�k+c+1)+0 = 1. Since �n defined as the recursion

of �n, increment in the alternating sum, by one after each insertion, counts the number

of insertions which is equal to number of parts in �, `(�).

We need to show that the deletion map  n and the bijection  n satisfy the same

properties. For showing that |µ| = |⌧ |�2k+1 again we use the definition of  n. Since,

for 0  i  2b�1 we delete one cell from each ⌧i, decrement in |⌧ | will be 2b. For i = 2b

and i = 2b + 1 we delete (k � b) and (k � b� 1) cells from ⌧2b and ⌧2b+1, respectively.

Finally for 2b + 2  i < n we do not change ⌧i. Hence, decrement in |⌧ |, in total, is

equal to 2k�1. For  n, we are starting with ⌧ 2 Ln and recursively apply the deletion

map  n. Since for one deletion process decrement in the weight of ⌧ is 2ki � 1 and

2ki � 1’s are the parts of the constructed partition, �(`), by  n,

|⌧ | =
X̀

i

2ki � 1 = |�(`)|.

Finally, we will show that |µ|a = |⌧ |a � 1. Similar to the insertion map case we will

examine the decrement in the alternating sum of ⌧ . By definition of the deletion map

we have the following sum that is equal to decrement in |⌧ |a:

 
2b�1X

i=0

(�1)i1

!
+ (�1)2b(k � b) + (�1)2b+1(k � b� 1) +

n�1X

i=2b+2

(�1)i0

Note that the first summand is equal to zero by a similar reasoning in the case for �n.

The second and the third summands are equal to (k� b) and (�k+ b+1), respectively,

since 2b is and even number while 2b+ 1 is an odd one. Thus, in total, the decrement

in |⌧ |a is equal to 0+ (k� b)+ (�k+ b+1)+0 = 1. Since  n is defined recursively, by

 n, the decrement in the altenating sum, by one in each deletion, counts the number

of parts in �, `(�).
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CHAPTER 4

Partition Analysis and Future Studies

4.1. The Five Guidelines

In the paper of Corteel, Lee, and Savage [21], the weight of a sequence

� = (�1,�2, . . . ,�n) where each �i 2 Z�0 for i = 1, . . . , n is defined the same as

our definition of weight of a partition �, i.e., |�| = �1 + �2 + · · ·+ �n. Also a sequence

� = (�1,�2, . . . ,�n) is called composition if all �i 2 N for 1  i  n, and if �i � �i+1

for all 1  i  n� 1, then � is a partition.

For a given r⇥ n integer matrix C = [ci,j] they define SC as the set of nonnegative

integer sequences � satisfying the following constraints:

ci,0 + ci,1�1 + ci,2�2 + · · ·+ ci,n�n � 0 for 1  i  r (4.1)

They try to find the full generating function

FC(x1, x2, . . . , xn) =
X

�2SC

x�1
1 x�2

2 . . . x�n
n . (4.2)

Note that

• the coe�cient of qN in FC(qx1, qx2, . . . , qxn) is a listing of all nonnegative integer

solutions to (4.2)

• the coe�cient of qN in FC(q, q, . . . , q) is the number of solutions in the list

In another paper by Corteel, Savage and Wilf [22], it is shown that for homogeneous

systems, if the constraint matrix C is an n ⇥ n invertible matrix, and if all entries of

C�1 = B[bi,j] are nonnegative integers then

FC(x1, x2, . . . , xn) =
nY

j=1

1

1� x
b1,j
1 x

b2,j
2 . . . x

bn,j
n

This theorem helps the enumeration of the followings and provides bijections as

well as generating functions.
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• Hickerson partitions [24]

Let � = (�1,�2, . . . ,�n), where �1 � �2 � · · · � �n, be a partition of N such that

for 1  i  n� 1, �i � r�i+1 where r is a positive integer.

Example 4.1.9 For N=12 and r=1, � = (4, 3, 3, 2) is a Hickerson partition,

since

�1 = 4 � 1.3 �2 = 3 � 1.3 �3 = 3 � 1.2

If f(r, n) denotes the number of partitions of n of the form n = b0+ b1+ · · ·+ bs,

where, for 0  i  s� 1, bi � rbi+1, and g(r, n) denotes the number of partitions

of n, where each part is of the form 1+ r+ r2 + r3 + · · ·+ ri for some i � 0, then

f(r, n) = g(r, n).

The combinatorial proof and proof by generating functions of the above identity

is given by Hickerson in[24].

• Santos’ interpretation of Euler’s family [26]

Let � = (�1,�2, . . . ,�n) be a partition of N such that the inequality

�1 > 2�2 +
X

i�3

�i

holds.

Example 4.1.10 Let N = 44. � = (26, 8, 4, 2, 2, 1) will satisfy the given condi-

tion since 26 > 2.8 + 4 + 2 + 2 + 1 = 25.

Santos proved that the number of partitions of N into odd parts equals to the

number of partitions of N of the form � = (�1,�2, . . . ,�n) where �i � �i+1 in

which the largest part is at least

n�n + (n� 1)(�n�1 � �n) + (n� 2)(�n�2 � �n�1) + · · ·+ 2(�2 � �3).

• Super-concave partitions [27]

� = (�1,�2, . . . ,�n) is super-concave if and only if for all positive integers

i < j < k  n

�i(k � j) + �j(i� k) + �k(j � i) � 0.

Example 4.1.11 � = (7, 5, 3, 1), N = 16, and n = 4. The set of all possi-

ble triples (i, j, k) is {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}. All inequalities that the
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parts of � should satisfy are the followings:

�1 � 2�2 + �3 � 0

2�1 � 3�2 + �4 � 0

�1 � 3�3 + 2�4 � 0

�2 � 2�3 + �4 � 0

From above inequalities the parts of � should satisfy

(�1 + �4)� (�2 + �3) � 0.

Hence, choosen � is a super-concave partition.

Canfield et al [19] have studied partitions with non-negative mth di↵erences.

Specializing their results to the case m = 2, Snellman and Paulsen conclude:

There is a bijection between partitions of n into triangular numbers and super-

concave partitions.

However, since this technique can fail in some cases, i.e., either the constraint matrix is

not invertible or integer matrix, Corteel et. al.[21] propose five guidelines to compute

the full generating function FC where C is system of linear diophantine inequalities.

Their main goal is using guidelines for derivation of recurrence relations for FCn , where

{Cn|n � 1} is an infinite family of constraint systems.

They showed an application of guidelines which is derivation of full generating func-

tion of generalization of Ln. For deriving the full generating function of generalization

of Ln, they used the truncated lecture hall partitions, which are defined as the integer

sequences satisfying the following constraints:

Ln,k =

"
�1
n

�
�2

n� 1
� · · · �

�n
1

� 0

#

In[20], they showed that if

L̄n,k =

"
�1
n

�
�2

n� 1
� · · · �

�n
1

> 0

#

then the generating function is

L̄n,k(q) = q(
k+1
2 )

n

k

�

q

(�qn�k+1; q)k
(�q2n�k+1; q)k

(4.3)

where 
n

k

�

q

=
(q�n�1)k(�1)kqnk�k(k�1)/2

(q)k
.
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Note that putting k = n and dividing by q(
n+1
2 ) gives

X

�SLn

q|�| =
nY

i=1

1

1� q2i�1
.

At last they proved a proposition which states that the generating function for

truncated lecture hall partitions satisfies

L̄n,k(x1, . . . , xk) =
xkL̄n,k�1(x1, . . . , xk�1)

1� xk
�

L̄n,k�1(x1, . . . , xk�2, xk�1xk)

1� xk

�
zn,kL̄n,k�1(x1, . . . , xk�2, xk�1xk)

1� zn,k

with zn,k = xn
1x

n�1
2 . . . xn�k+1

k .

As it can be seen clearly the guidelines are advantageous for deriving recurrence

relations for full generating functions and solving them, however the guidelines do not

provide bijective proofs. Since the guidelines for partition analysis do not produce

bijective proofs, our goal is searching for bijections or classes of bijections for partition

identities provided by the guidelines for partition analysis. This looks feasible after

getting su�cient knowledge about partition analysis from the series of papers [2, 3, 5,

6, 7, 8, 9, 10, 11, 12, 13] which are written by Andrews, Paule and Riese.
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