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lab, Begüm, for understanding me without any words, my event mate Can, for buying

our tickets and my roommate Yelda, for giving me fashion advices, and also Adil,
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ABSTRACT

SCALABLE MONTE CARLO INFERENCE IN

REGRESSION MODELS WITH MISSING DATA

Markov chain Monte Carlo (MCMC) and Stochastic Gradient Langevin Dynamics

(SGLD) algorithms comprise a basis for this thesis. These methods are studied in

detail and combined for handling incomplete and large datasets. Two algorithms,

which are based on Metropolis-Hastings (MH) and SGLD, are proposed to improve the

performance of regression with missing data.

We introduce an SGLD algorithm for large datasets with missing portions. The

algorithm approximates the gradient of the log-likelihood of a subset of the data with

respect to the unknown parameter by using samples for missing components obtained

with MH moves.

We implemented these methods for a logistic regression model to obtain param-

eter estimations. We worked with two different datasets with missing features and

compared their performances. The first dataset is artificially generated from a logis-

tic regression model where the features are normally distributed, whereas the second

dataset is a real categorical data.
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ÖZET

EKSİK VERİ İÇEREN REGRESYON MODELLERİ İÇİN

ÖLÇEKLENEBİLİR MONTE CARLO ÇIKARIMI

Markov zinciri Monte Carlo (MCMC) ve Stokastik Gradient Langevin Dinamik-

leri (SGLD) algoritmaları bu tez için bir temel oluşturmaktadır. Bu yöntemler, eksik

veri içeren ve geniş ölçekli veri setlerinin ele alınması için ayrıntılı olarak incelenip,

bir araya getirilmiştir. Büyük ölçekli veri setlerinde eksik verilerle regresyonun per-

formansını iyileştirmek için Metropolis-Hastings ve SGLD temelli iki yeni algoritma

geliştirilmiştir.

Eksik kısımlar içeren büyük veri setleri için SGLD algoritması geliştirilmiştir.

Bu yöntemde, veri setinin rastgele seçilmiş bir alt kümesi kullanılarak, bilinmeyen

parametrelerin logaritmik olasılık türevlerinin yaklaşık değerleri hesaplanmaktadır. Bu

yaklaşımlar hesaplanırken, veri içerisindeki eksik bileşenler MH adımları ile tahmin

edilmiştir.

Bu metotlar, parametre tahminleri üretebilmek için lojistik regresyon modelleri

üzerine uygulanmıştır. Algoritmalar, eksik değişkenler içeren iki farklı veri seti üzerinde

denenmiş ve performansları karşılaştırılmıştır. İlk veri seti yapay bir şekilde lojistik

regresyon modelinden üretilmiş olup, değişkenler normal dağılımdan gelmektedir, öte

yandan ikinci veri seti gerçek ve kategorik bir veridir.
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1. INTRODUCTION

Missing data [1] is a problem that occurs in almost all empirical research. The

main concern is that, if the data were complete, would the results of the research be

different [2, 3]? This question does not have an obvious answer, since incompleteness

causes a decrease in the performance of parameter estimation and sensitivity of the

method. If the missing data pattern is nonrandom, there is an additional concern

that arises from bias. In this context, bias results in the failure of observed data to

represent the incomplete parts [2]. In recent years, the interest in handling missing

data mechanisms has increased and different techniques are introduced [4].

In the literature, there are various strategies to handle missing data problem [5].

The first approach, called listwise deletion (or complete case analysis), proposes to

consider only observed variables, and do the calculations through the available parts

of the data [6]. Although this idea is easy to implement, it loses the track of the un-

available parts as well as ignores the possible differences between the characteristics

of the observed and unobserved parts of the data. The second approach proposes the

single imputation idea in which the missing components are replaced by the mean of

observed variables. Since single imputation cannot reflect the uncertainty of imputa-

tions, Rubin (1987) have introduced the multiple imputation idea, where all possible

values for the latent variables are evaluated, and each one of them is used in parameter

estimation [2, 5, 7].

Another well-known missing data handling technique is Expectation Maximiza-

tion (EM). The foundations of EM framework is first laid down by Little and Ru-

bin [8]. In this technique, maximum likelihood estimates are calculated for incomplete

data [5]. As the name implies, the EM algorithm consists of two steps: Expectation

and Maximization. The first (expectation) step calculates the conditional log-likelihood

expectation of the observed data, when the observed data and the first parameter esti-

mations are given, while the second step calculates the maximum log-likelihood of the

expectation yielded by the first step, in order to obtain the parameter updates. The
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cycle of expectation and maximization continues iteratively, until the convergence is

attained [2].

1.1. Motivations and Contributions of the Thesis

This thesis investigates the Bayesian methods for incomplete data problems.

Our motivation is to utilize the Metropolis-Hastings (MH) and Stochastic Gradient

Langevin Dynamics (SGLD) methods in order to address incomplete data problems in

large-scale datasets. The main contribution of this thesis is as follows: We have shown

that using gradient estimates instead of the exact sampling methods [9,10] provides an

efficient way to handle missing data. In SGLD framework, a Bayesian learning is iter-

atively performed from large-scale datastes via small mini-batches. The mini-batches

are used to approximate gradients and then the parameter updates are generated using

the gradient information. Since the algorithm does not require computations over the

whole dataset, a significant amount of time has saved, especially when the data size

becomes larger. Another contribution of the thesis is to use MH sampling to replace

latent variables in the dataset. MH [11, 12] is an efficient sampling method which en-

ables us to draw samples for the cases where the full conditional distributions are not

easy to sample from.

We introduce two approaches to the literature: The first approach uses MH idea

for parameter estimation, whereas the second approach uses the SGLD idea. We have

compared the performances of the algorithms, as well as we compare these methods

with a method that proposes to consider only observed variables. The similar results

are obtained by the implementations of three algorithms, and one can prefer one of

them considering the advantages and disadvantages of the methods according to her

preferences.

1.2. Scope of the Thesis

Chapter 2 provides a theoretical background for the readers. First the sampling

problem is stated, then the Bayesian inference and the Markov chain Monte Carlo
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methods are introduced. Chapter 3 introduces the incomplete data problem. The

existing ways of handling this problem, especially in big datasets, are provided. This

chapter concludes by proposing two MCMC-based methods to handle the incomplete

data problem in big datasets. In Chapter 4, numerical results of the two proposed

algorithms and a listwise deletion (or complete case analysis) algorithm on a Gaussian

distributed synthetic incomplete dataset are shown with the methodology. Similarly,

in Chapter 5, the proposed methods and complete case analysis method are applied on

a real dataset, the methodology and results are also given. Finally, in Chapter 6, the

results are discussed and possible future works are suggested.
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2. MARKOV CHAIN MONTE CARLO METHODS

Markov chain Monte Carlo (MCMC) methods are mostly used to approximate

the probability densities by a finite number of samples. Through this method, one can

characterize a distribution even though the mathematical properties and the param-

eters of the distribution are not completely known. As the name implies, an MCMC

method is the combination of Monte Carlo and Markov chain approaches. Monte Carlo

is the part where properties of a distribution is estimated by drawing samples and ex-

amining them, while Markov chain part provides the memorylessness property in which

each new sample depends only on the one before it [13].

An MCMC method depends on an ergodic Markov chain whose stationary distri-

bution is π. If an ergodic Markov chain with stationary distribution π is simulated for

long enough time, it will converge to π. This convergence property makes it possible to

sample the estimated parameters from a Markov chain with the stationary distribution

being the target distribution π [14].

2.1. The Sampling Problem

Let us suppose we have N random samples X(1:N) = X(1), X(2), ..., X(N) from a

set X . The samples are independent and identically distributed with respect to some

unknown probability distribution π. We can notate this as

X(1), X(2), ..., X(N) i.i.d.∼ π.

Although the probability distribution P is unknown, we can approximately calculate

its mean value (the expectation of X) via these samples X(1:N). The expectation can

be written as

Eπ(X) =

∫
X

xπ(x)dx, (2.1)
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where π is also used as the probability density function of π. An approximation for

this expression is given as

Eπ(X) ≈ 1

N

N∑
i=1

X(i). (2.2)

We can modify (2.2) for a certain function ϕ of X with respect to π:

Ep(ϕ(X)) ≈ 1

N

N∑
i=1

ϕ(X(i)). (2.3)

One can calculate (2.3) without knowing anything explicitly about π. The samples

X(1:N) are sufficient to evaluate the integral.

However, if we know about P but we are not given any samples from it, then we

cannot calculate the integral in (2.3). In order to handle this problem and estimate

(2.3), we can generate our own samples from π. The main idea behind the Monte Carlo

methods is that we can avoid the implementation of π if we generate samples from it.

2.2. Bayesian Estimation

Bayesian parameter estimation which gives weight to prior knowledge and reweights

it with the available data, is an example where sampling methods are used. In Bayesian

estimation the distribution of interest is π(x) = p(x|y), the conditional distribution of

the unknown parameter given the observed variable y.

p(x|y) =
p(x)p(y|x)

p(y)
, (2.4)

Here, p(x|y) is the posterior probability density, p(x) is the prior probability density

and p(y|x) is the likelihood function. Since p(y) does not depend on the variable of

interest x, in Bayesian literature it is usually neglected and (2.4) can be written as

p(x|y) ∝ p(x)p(y|x). (2.5)
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In simple words, the Bayesian idea is

posterior distribution ∝ prior distribution× likelihood function

The expression in (2.5) consists of the prior density p(x), which is an estimated descrip-

tion of where the parameters are located before the data is analyzed, and the likelihood

p(y|x) which represents the modelling of the data [15]. The Bayesian framework states

that a posterior distribution that contains all available knowledge about parameters

can be constructed when prior information is shaped by the available data, i.e. the

likelihood function [16]. In this thesis, the likelihood function is chosen from regression

models to make parameter estimations from the observed data.

2.3. MCMC Methods

Markov chain Monte Carlo is a generic method to draw samples of x from ap-

proximate distributions and correcting these samples to obtain better approximations

for the target distribution π. The samples come sequentially, in which the distribution

of last sample depends on the previous one. Thus a Markov chain is formed by these

samples.

The idea behind MCMC is to construct a Markov chain whose stationary distri-

bution is π and simulate it long enough time that the distribution of current samples

converge to the target distribution. The convergence of MCMC methods has been

proven in the literature, even though the samples generated from the Markov chain

are not independent and identically distributed. MCMC methods are mostly used in

applications where there are intractable densities which are approximated by finite

number of samples [12].

Let us suppose that the probability distribution of state is denoted by π(t)(x) at

iteration t. The objective is to build a Markov chain such that π(t)(x) converges to the

target distribution π, as t goes to infinity. We need to specify a transition probability

T (x′;x) to define such a Markov chain. The probability distribution of the Markov
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chain at iteration t+ 1 is calculated as

π(t+1)(x′) =

∫
x

π(t)(x)T (x′;x)dx. (2.6)

There are several requirements that we need to satisfy when designing an MCMC

method. The first one is that the desired distribution should be an invariant distribu-

tion of the Markov chain. The second condition states that the Markov chain should

be ergodic. The chain should be aperiodic and irreducible to provide ergodicity.

One way to ensure the invariance of the target distribution is to show that the

detailed balance property holds for the transition kernel. The detailed balance property

is given as [17]:

T (xa;xb)π(xb) = T (xb;xa)π(xa), ∀xa, xb ∈ X .

2.3.1. Metropolis-Hastings Method

The Metropolis-Hastings algorithm is a well-known MCMC method devised by

Metropolis and Ulam [18] and improved by Hastings [19].

The algorithm uses a Markov transition kernel q on X , in order to propose new

values from the old ones. The proposal values, x′, are chosen from these simpler

proposal distributions, often in the neighborhood of current parameters, x.

The algorithm draws a starting point x0 from a starting distribution which might

be based on an approximation. Then for every iteration t, a new value x′ is proposed

by sampling from the proposal distribution q, i.e. x′ ∼ q(·|x(t−1)). The proposed value
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is accepted as the new value of x, with the acceptance probability α(x, x′) where

α(x, x′) = min

{
1,
π(x′)q(x|x′)
π(x)q(x′|x)

}
, x, x′ ∈ X .

If the proposal is accepted, then the algorithm sets the value of x(t) as x′, and if the

proposal is rejected the algorithm sets the value of x(t) as x(t−1). Even if the proposal

value is rejected at iteration t, it is still counted as an iteration. Given the current

value x(t−1), the transition kernel qt(x
(t)|x(t−1)) of the Markov chain is a combination

of a point mass at x(t−1) = x(t), and a weighted version of the proposal distribution

q(x(t)|x(t−1)), which adjusts the acceptance probability [12]. Algorithm 1 shows the

steps of the Metropolis-Hastings method.

The ratio in the acceptance probability α is called the acceptance ratio or accep-

tance rate:

r(x, x′) =
π(x′)q(x|x′)
π(x)q(x′|x)

.

If the proposal distributions are equal, i.e. q(x|x′) = q(x|x′), then the algorithm is

called Metropolis method.

Algorithm 1 Metropolis-Hastings

1: Begin with some x0 ∈ X

2: for t = 1, 2, ..., N do

3: Sample x′ ∼ q(x′|x(t−1))

4: Set x(t) = x′ with probability

α(x(t−1), x′) = min

{
1,

π(x′)q(x(t−1)|x′)
π(x(t−1))q(x′|x(t−1))

}
,

5: Else set x(t) = x(t−1).

6: end for
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2.3.2. Gibbs Sampling

The Gibbs framework is one of the most well known MCMC sampling methods,

which can be used when the the random variable X is multi-dimensional. The idea

behind the method is drawing samples from complete (or full) conditional distributions

sequentially, thereby producing a Markov chain by updating one parameter at a time

with the posterior density as its stationary distribution [20]. The foundations of Gibbs

sampling idea were laid down by Stuart Geman and Donald Geman, and its name was

dedicated to physicist J. W. Gibbs due to the similarities between sampling algorithm

and the statistical physics [17].

Let X = (x1, x2, ..., xd) be a random variable (vector) with density π(X) =

π(x1, ..., xd). Assume further that one can sample for π(x) from the conditional densi-

ties πi(xi|x1, ..., xi−1, xi+1, ..., xd), i = 1, 2, ..., d, but not from π itself. A successively im-

plemented Gibbs method will provide samples from the conditional densities π1, ..., πn

by conditioning on the latest samples.

The sampling procedure of the Gibbs sampling at iteration number t is given by

the following:

x
(t)
1 ∼ π1(x

(t−1)
1 |x(t−1)

2 , x
(t−1)
3 , ..., x

(t−1)
d )

x
(t)
2 ∼ π2(x

(t−1)
2 |x(t−1)

1 , x
(t−1)
3 , . . . , x

(t−1)
d )

...

x
(t)
d ∼ πd(x

(t−1)
d |x(t−1)

1 , x
(t−1)
2 , ..., x

(t−1)
d−1 ).

It is guaranteed that the samples come from the exact distribution P (x) as the number

of iterations goes to infinity. Algorithm 2 shows the steps of the Gibbs sampling

method.
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Algorithm 2 Gibbs Sampling

1: Begin with some X0 ∈ X

2: for t = 1, 2, ..., N do

3: for i = 1, 2, ..., d do

4: Sample x
(t)
i ∼ πi(·|x(t−1)

1 , ..., x
(t−1)
i−1 , x

(t−1)
i+1 , ..., x

(t−1)
d ).

5: end for

6: end for

Gibbs sampling can be considered as a special type of MH method [12], where

the acceptance probability is always one.

2.3.3. Metropolis-Hastings within Gibbs

As we can see from the previous sections, Gibbs and Metropolis-Hastings algo-

rithms can be used in various combinations in order to draw samples from the distri-

butions that we cannot directly calculate. The simplest method is the Gibbs method

in which direct samples are drawn from the conditional posterior distributions. On

the other hand, MH algorithm is mostly used for the cases where the full conditional

distributions are not tractable.

If, in a model, some of the conditional posterior distributions can be calculated

directly, whereas some of them cannot be calculated, the Metropolis-Hastings within

Gibbs idea is used to perform the sampling. The components are updated one at a

time with Gibbs sampling method if possible, and with Metropolis-Hastings moves

otherwise [12]. The Algorithm 3 provides the steps for Metropolis-Hastings within

Gibbs method.
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Algorithm 3 Metropolis-Hastings within Gibbs

1: for i = 1, 2, ...N do

2: for i = 1, 2, ..., d do

3: Update xi by a Metropolis-Hastings move that targets

πi(·|x1, ..., xi−1, xi+1, ..., xd)

4: end for

5: end for

2.3.4. Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) algorithm is an iterative sub-

sampling based technique for Bayesian learning from large-scale datasets, first proposed

by Welling and Teh (2011). The main idea of the SGLD algorithm is combining stochas-

tic optimization algorithms, in which small mini-batches are used to approximate gra-

dients, with Langevin Dynamics approach, in which the updates for the parameters

are generated using the gradient information. Langevin dynamics introduces noise to

the parameter updates that make the parameters converge to the samples from the full

posterior distribution, while stochastic optimization provides an optimized likelihood

and approximation to the Markov chain [21]. In general, the algorithm is a transition

from stochastic optimization to a Bayesian method that samples from the posterior

distribution.

Stochastic Optimization in SGLD. Let θ be the vector of parameters, and Y be

the random varible whose dimensions n × d. We can define the posterior distribution

of n data items, Y = (y1, y2, ..., yn), as

p(θ|Y ) ≈ p(θ)
n∏
i=1

p(yi|θ).

A simple procedure of stochastic optimization method is given below [22]:
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• A subset of m data items, Y (t) = {y(t)
1 , y

(t)
2 , ..., y

(t)
m } is provided for each iteration

t,

• The parameters in the randomly selected subset are updated according to the

following equation:

θ(t+1) = θ(t) + ∆θ(t), (2.7)

∆θ(t) =
ε(t)

2

(
∇ log p(θ(t)) +

n

m

m∑
i=1

∇ log p(y
(t)
i |θ(t))

)
. (2.8)

where εt is the step size and its choice has an important role to ensure convergence.

The constraints that step sizes are required to meet are:

∞∑
t=1

ε(t) =∞,
∞∑
t=1

(ε(t))2 <∞. (2.9)

The parameters can attain the high probability regions without considering their ini-

tialization through the first constraint, and it is guaranteed that they will converge to

the point through second constraint [21].

Langevin Dynamics in SGLD. Langevin dynamics idea introduces a normally

distributed noise term to the stochastic gradient optimization method. Adding appro-

priate amount of noise term and choosing step-sizes that satisfy the conditions in (2.9)

will ensure that the parameters will converge to the samples of the posterior distribu-

tion. In order to obtain samples that come from the posterior, the gradient step-sizes

and the variance of the noise term are matched. Injecting Gaussian noise into the

parameter update given in (2.8) yields a new update:

∆θ(t) =
ε(t)

2

(
∇ log p(θ(t)) +

n∑
i=1

∇ log p(y
(t)
i |θ(t))

)
+ η(t), (2.10)

where η(t) ∼ N (0, ε(t)).
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Since Langevin dynamics simply aim to discretize a stochastic differential equa-

tion with an equilibrium distribution coming from the posterior, (2.10) can be con-

sidered as a proposal distribution. Then Metropolis-Hastings decides whether this

proposal is accepted or rejected to correct the error arisen from the discretization [21].

Another method that corrects the discretization error is Hamiltonian Monte Carlo

where Metropolis-Hastings framework is still applied, but instead of coming from a

random walk, the proposals are chosen such that they enable more efficient transitions

between the states via the momentum variables [23].

Combining SG with LD. The stochastic gradient optimization provides estimates

for the gradient information using a subset of the dataset, without considering the un-

certainty, while Langevin dynamics approach handles with the parameter uncertainty

and data over-fitting problems processing the whole dataset. Combining the expedient

properties of these two techniques helps improve the performance of the parameter

estimation, especially when we have a large-scale dataset. SGLD framework provides

Bayesian learning from huge datasets using small mini-batches iteratively. The pa-

rameter update of SGLD algorithm which is a combination of (2.8) and (2.10), is the

following:

∆θ(t) =
ε(t)

2

(
∇ log p(θ(t)) +

n

m

m∑
i=1

∇ log p(y
(t)
i |θ(t))

)
+ η(t), (2.11)

where η(t) ∼ N (0, ε(t)) and the step-sizes satisfy (2.9), i.e. converge to zero.

The decay of step-sizes makes the rejection ratio of MH close to zero. Thus we

do not need to go over the whole dataset and calculate the probabilities to obtain

acceptance ratios of Metropolis-Hastings algorithm.
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Algorithm 4 SGLD

1: Input: a, b, γ

2: for t = 1, 2, ..., T do

3: Choose a random subset of m data items y(t) = (y
(t)
1 , ..., y

(t)
m ) ∈ Y

4: Calculate the step size

ε(t) = a(b+ t)−γ and η(t) ∼ N (0, ε(t)),

5: Set

θ(t+1) = θ(t) +
ε(t)

2

(
∇ log p(θ(t) +

n

m

m∑
i=1

∇ log p(y
(t)
i |θ(t)))

)
+ η(t)

6: end for
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3. MISSING DATA PROBLEMS IN REGRESSION

MODELS

3.1. Regression Models

Regression is a method of modelling a target value based on independent predictor

values, mostly used for explaining the causal relationship between the variables. The

number of independent and dependent random variables, and the type of relationship

between them are the two factors that determine the regression technique [12]. A

simple structure of a regression model is depicted in Figure 3.1.

Figure 3.1: Schematic of a Regression Function.

3.1.1. Linear Regression

Linear regression is a simple regression analysis where there is one independent

random variable which is linearly related to the dependent variable. In linear regression,

input and output values are both numeric.

The linear equation assigns one scale factor to each input value (or column) called

coefficient. An additional coefficient that gives one more degree of freedom is added.

The added coefficient is often called the bias coefficient that helps move the model up
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or down. A generalized linear regression model is defined as

y = Xθ + ε,

where y = (y1, y1, ..., yn)T is an n×1 dependent variable (output) vector, X is the inde-

pendent n×d random variable (input) matrix, θ = (θ1, θ2, ..., θd)
T are the corresponding

coefficient values of X, and ε is an n-dimensional error term.

The model for predicting a single component, say ith component, of X can be

written as

yi = xiθ + εi, (3.1)

where yi is a scalar value, ith element of y, xi = (xi,1, xi,2, ..., xi,d) is a 1× d vector (ith

row of X), and εi is the corresponding scalar value of error term [24].

The aim of learning a linear regression model is to estimate the values of coef-

ficients used to represent the available data. There are various estimating methods

based on the dimension of the variables, such as ordinary least squares and gradient

descent.

3.1.2. Logistic Regression

Logistic regression is a binary classification method that measures the relationship

between a binary dependent variable and one or more independent variables. The

dependent variable is restricted to binary values, while independent variables can be

continuous. Logistic regression model, which uses the sigmoid function to estimate the

probability of occurrence of an event for a single variable, is defined as

p(yi = 1|xi, θ) =
1

1 + e−xiθ
, (3.2)
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where yi is the binary response variable (or outcome of an event), and xi is the ith

row of X given in Section 3.1.2, and θ = (θ1, θ2, ..., θd)
T is the parameter vector of the

logistic regression model [25]. The graph of sigmoid function and visual representation

of logistic regression model is depicted in Figure 3.2.
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Figure 3.2: Graph of a Logistic Regression Function.

Logistic regression modelling is a widely-used and efficient technique since it does

not require too many computations or input features to be scaled as well as it is easy to

interpret. On the other hand, logistic regression can be applied only on the data which

already has clearly identified independent variables. It is also vulnerable to over-fitting,

which is the problem of failing to represent additional components of the data, due to

the production of a rule that extremely corresponds to a particular set of data [26,27].

3.2. Missing Data

Incomplete data problem may arise naturally or intentionally. The dataset can

contain latent variables because of the design of the researcher or noncompliance of

respondents [7]. As an example, portion of a census data, which aims to predict whether

a person’s income exceeds $50,000 per year or not, with some missing values is shown in

Table 3.1. Since incompleteness increases the complexity of the data analysis, studies

have been conducted to analyze the missing data patterns deeply, and understand
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their effects on the results of regression models. Incompleteness patterns are basically

categorized into two: missing at random and missing at nonrandom. The nonrandom

pattern may cause the additional problem of bias, which is the failure of observed data

to represent the unobserved parts of the data. Thus, it is more difficult to handle [2].

workclass education marital-status sex native-country income

1 State-gov Bachelors Never-married Male US ≤ 50K

2 Private Doctorate Married Male US ≥ 50K

3 Private High school Never-married Female ? ≥ 50K

4 ? Some college Divorced Female US ≤ 50K

5 Self-emp Masters Never-married Male China ≤ 50K

6 Private Bachelors Married-spouse-absent Male Cambodia ≥ 50K

7 ? High school Divorced Female England ≤ 50K

Table 3.1: Adult data for income level, ’?’ represents the missing parts

3.3. Previous Methods in Literature

The first proposed procedure for handling missing data is excluding the missing

components of the data and using only the observed ones. Although this procedure is

easy to implement, it loses the information of incomplete cases. Since the approach

ignores the possible differences between missing and observed parts of the data, the

resulting inference may fail to reflect the complete dataset. Another approach proposes

to substitute a predicted value for each missing component in dataset. For example,

the mean of observed components can be used to replace the missing values. The

algorithm is called single imputation that applies standard statistical procedure to

newly predicted complete dataset. Since single imputation performs as if there is no

missing value in dataset, it cannot reflect the uncertainty of predictions for missing

values, and it can produce biased resulting variances of estimated variables which tend

to converge to zero [5]. Rubin [8] has proposed a strategy called multiple imputation.

Multiple imputation procedure imputes each missing component with a set of possible

values. Through these multiple values offered, the uncertainty of missing variables can

be represented. The algorithm performs the standard data analysis procedure to each
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filled dataset. Then it combines and compares the results for the inference.

3.3.1. Non-MCMC Methods

The non-MCMC procedures for handling missing data generally can be assorted

into two categories which are regression-based and neighbor-based approaches [28].

A regression-based approach uses linear or logistic regression model to obtain

missing variables. The missing variables are assumed as response variables (dependent

variables), whereas the observed ones are assumed as predictor variables (independent

variables). The strategy produces imputations which are defined as samples from pos-

terior predictive distributions specified by the regression model. The iterative imputing

procedure continues by overwriting previously sampled values [29].

A neighbor-based approach uses a certain distance function to predict the missing

values in the data. The distance function is supposed to determine the closest vector in

order to impute the missing vector. The closest vector is the one whose characteristics

are similar to the incomplete vector [28, 30].

3.3.2. MCMC Methods

The main idea of MCMC approach to handling missing data is that the values are

generated via a statistical model that describes the distribution of the complete data.

An improved version of this approach uses Bayesian networks. A Bayesian network

provides a natural way to encode the relations between and within the variables. In

order to comprehend the theory behind the MCMC methods with Bayesian inference

for handling missing data, it will be helpful to clearly provide the definition of posterior

distribution using the prior and joint densities.

Suppose that we have an n×d matrix X, that consists of observed and unobserved

variables, such that X = (Xmiss, Xobs), its corresponding d-dimensional parameter

vector for the given model is θ = (θ1, θ2, ..., θd)
T, and the n-dimensional output vector
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of the model is Y = (y1, y2, ..., yn)T . Using the Bayesian idea described in Section 2.1,

we can write the conditional probability of of Xmiss:

π(θ,Xmiss) = p(θ,Xmiss|Xobs, Y ) ∝ p(θ,Xmiss, Xobs, Y )

= p(θ)
n∏
i=1

p(xmiss,i, xobs,i|θ)p(yi|xmiss,i, xobs,i, θ),

where we assume X is independent of θ, i.e.

p(xmiss,i, xobs,i|θ) = p(xmiss,i, xobs,i) = p(xi),

p(yi|xmiss,i, xobs,i, θ) = p(yi|xi).

The procedure starts with Bayesian learning for variables, and then an MCMC tech-

nique is employed to draw samples from the probability distributions learned by the

Bayesian network. The algorithm continues iteratively, until the convergence is reached.

This method provides unbiased estimates, as well as the confidence levels of the impu-

tation results [31].

Data Augmentation. Data augmentation is another traditional multiple impu-

tation algorithm based on MCMC technique [32]. Parameter estimates are produced

by repeating substitution conditionally on the prior value, constructing a stochastic

process called Markov chain [33]. Suppose we have a dataset X = (Xmiss, Xobs), its

parameter vector θ = (θ1, θ2, ..., θd)
T and Y = (y1, y2, ..., yn)T, like in the previous

sections. Then, the procedure of data augmentation algorithm can be written as

X
(t+1)
miss ∼ π(Xmiss|θ) = p(Xmiss|Xobs, θ

(t), Y ), (3.3)

θ(t+1) ∼ π(θ|Xmiss) = p(θ|Xobs, X
(t+1)
miss , Y ). (3.4)
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The imputation step is given in relation (3.3), where predicted values are generated

from prior conditional distribution of missing values given the observed values and the

parameter values at tth iteration. Relation (3.4) is the parameter update part, where

parameter values are generated from the posterior distribution, given the observed

values and replaced values of X at the (t + 1)th iteration. This procedure continues

iteratively until its convergence is attained. The multiple imputation can be performed

in two different ways. The first method runs a single chain for all iterations and takes

every tth prediction for Xmiss, whereas the second method runs for parallel chains and

takes the last values for replacing from these chains Xmiss [32].

Metropolis-Hastings for Imputation and Parameter Estimation. Here, we note

a contribution to the approach described in the previous section for the cases, where

the full conditional distributions are not easy to sample from. We propose to use

Metropolis-Hastings idea for imputation of missing variables. Especially for the cases

where drawing samples is not possible or computationally efficient, making MH moves

and updating Xmiss will improve the performance of regression with missing data.

Suppose that X is the data matrix whose dimensions are n × d, which contains

missing variables in it, and its parameter and outcome vectors are the same with

the ones defined in Section 3.2. The proposed algorithm for imputing missing data

and estimating parameters is as follows: At every iteration t, an inner loop performs

to impute the missing values in ith row of X, where i = 1, 2, ..., n, by making MH

moves for latent variables, while θ is supposed to be fixed. The proposal values for

missing variables are updated according to the acceptance ratio of MH algorithm. In

the experiments we have conducted, we choose the kernel proposal distribution q as

symmetric random walk. So, the q ratio for Xmiss is simply one. After the imputation

period is completed in the inner loop, the provided X value is fixed and used to

estimate parameters of the model. The algorithm estimates θ by MH moves again,

using imputed version of X(t). The proposal kernel distribution for θ is also chosen

as symmetric random walk giving the q ratio is one. This iterative process continues

until convergence is obtained. Algorithm 5 shows the steps of the introduced method



22

for data augmentation and parameter estimation.

Algorithm 5 Metropolis-Hastings with Missing Data

1: Begin with some X(0) ∈ X

2: for t = 0, 1, ..., T do

3: for i = 1, 2, ..., n do

4: Sample x′miss,i ∼ q(x′miss,i|x
(t)
miss,i)

5: Set x
(t+1)
miss,i = x′miss,i with probability

α(x
(t)
miss,i, x

′
miss,i) = min

{
1,
π(xmiss,i|θ)q(x(t)

miss,i|x′miss,i)

π(x
(t)
miss,i|θ)q(x′miss,i|x

(t)
miss,i)

}
.

6: Else set x
(t+1)
miss,i = x

(t)
miss,i.

7: end for

8: Sample θ′ ∼ q(θ′|θ(t))

9: Set θ(t+1) = θ′ with probability

α(θ(t), θ′) = min

{
1,

π(θ′|X(t)
miss)q(θ

(t)|θ′)
π(θ(t)|X(t)

miss)q(θ
′|θ(t))

}
.

10: Else set θ(t+1) = θ(t).

11: end for

3.4. SGLD Method for Missing Data in Big Datasets

Unlike typical optimization-based methods where point-wise estimations for pa-

rameters are aimed to obtain, Bayesian methods attempt to provide the full posterior

distribution of parameters based on the available data and the prior distribution. In

this way, better characterizations are obtained, and the uncertainty is captured. Even

though Bayesian methods provide these advantages, they are not popular in large-scale

machine learning problems. The main reason for that is that a typical Markov chain

Monte Carlo algorithm requires computation over the entire dataset at each iteration.

Previous studies conducted with the big datasets including missing components
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such as internet traffic and network data or survey results have shown that Bayesian

estimations is a feasible approach to handle the missing data problem. Ni and Leonard

(2005) introduced the idea of using Markov chain Monte Carlo methods for sampling

and imputing missing data [31], and then using the imputed data to estimate param-

eters. Their experiments have shown that MCMC methods are successful to estimate

parameters when the data is not complete.

We aim to utilize the advantages of MCMC methods for handling the incomplete

data problem by introducing the SGLD framework. As it is mentioned before, the

SGLD method provides learning from large-scale datasets based on iterative learning

from small mini-batches. We propose a hybrid algorithm that combines the Metropolis-

Hastings idea with SGLD. The hybrid algorithm makes an SGLD move for θ using an

estimate of gradient log-likelihood of a randomly selected subsample, while taking MH

steps for unobserved elements of X. The imputation of X is performed by an inner

loop, where the latent variables in the subsampled matrix are imputed line by line.

After the imputation period, the parameter estimation is performed via averaging the

gradients calculated with completed X whose missing components are sampled with

MH moves. The procedure of the MH-SGLD algorithm is outlined in the Algorithm 6.

Here we have a small notation change. In this context, let u denote the missing

variables in ith row of X, i.e. u = xmiss,i, and z denote the combination of the observed

variables in ith row of X with the corresponding output, i.e. z = (xobs,i, yi). Then the

derivations for the gradient of log-likelihood for incomplete data is calculated by the

following:

∇ log pθ(z) =

∫
∇ log pθ(u, z)p(u|z)du,
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where the gradient of pθ(u, z) is calculated as

∇ log pθ(u, z) = ∇ log(p(u)pθ(z|u))

= ∇ log p(u) +∇ log pθ(z|u)

= ∇ log pθ(z|u).

Since prior probability distribution of u is independent of θ, its derivative with respect

to θ is zero. Thus, the second line is followed by the third line.

When exact sampling is not possible, MH can be employed to draw samples

u(1), u(2), ..., u(N)

from pθ(u|z) so that the gradient of log-likelihood is approximated as

∇ log pθ(z) ≈ 1

N

N∑
i=1

∇ log pθ(u, z).

We have conducted some experiments in order to observe and compare the perfor-

mances of two approaches that we propose. The imputation part given in (3.3) is the

same for both MH and SGLD algorithms, whereas the parameter updates are differ-

ent. The main question is: Can we obtain similar results with MH sampling, if we use

gradient approximations of a small subset of the data for parameter estimations? In

this way, we aim to enhance the performance of regression with missing data according

to time and efficiency measures.
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Algorithm 6 SGLD with Missing Data

1: Input: a, b, γ

2: Start with an initial value X(0) ∈ X

3: for t = 1, 2, ..., T do

4: Choose a random subsample U ⊂ {1, 2, ..., n} such that the size of U is m.

5: for u = 1, 2, ...,m do

6: x
(0)
u = x

(t−1)
u

7: for j = 1, 2, ..., J do

8: Update x
(t,j)
u,miss → x

(t,j−1)
u,miss given (yu, xu,obs, θ)

9: Set x
(t,j)
u = (x

(t,j)
u,miss, x

(t)
u,obs)

10: end for

11: Calculate

∇ log p(yu|x(t)
u,miss, θ) =

1

J

J∑
j=1

∇ log p(yu|x(t)
u , θ)

12: end for

13: Calculate

ε(t) = a(b+ t)−γ and η(t) ∼ N (0, ε(t)),

14: Set

θ(t+1) = θ(t) +
ε(t)

2

(
∇ log p(θ(t)) +

n

m

m∑
i=1

∇ log p(yu|x(t)
u , θ

(t))

)
+ η(t)

15: end for
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4. EXPERIMENTS WITH SYNTHETIC DATA

In this chapter, the applications of two proposed methods on an artifical dataset

are presented. In addition to this, another missing data algorithm mentioned in Section

3.3 is implemented in order to compare the performances of proposed algorithms with

an existing algorithm. Methodology and the derivations are also provided.

4.1. Data Description

We generate a data matrix X whose dimensions are n × d. The variables in X

has Gaussian distribution with mean and covariance parameters denoted by µx and Σx,

respectively. Since the aim is to measure the performances of algorithms for large-scale

datasets, we choose n = 500, 000 and d = 5. In order to obtain missing variables in X,

we produce a response indicator matrix A with the same dimensions of X. We mask

some random variables by pointwise multiplication of X by A, whenever X is observed,

A is equal to one; otherwise A is equal to zero. The sparsity of A can be adjusted so

that one can obtain different ratio of unobserved values to observed ones and observe

the effect of missingness on parameter estimation. The n-dimensional output vector

Y is obtained by applying the logistic regression function to X and its given initial

parameter vector. The parameter vector for logistic regression function is denoted by

θ = (θ1, θ2, ..., θd)
T. It is supposed that the initial parameter vector is distributed from

normal distribution with mean and covariance denoted by µθ and Σθ accordingly.

4.2. Methodology

As it is stated in the previous chapter, the proposed algorithm completes unob-

served parts of the data by making MH moves. Since we aim to introduce a framework

that utilizes the Metropolis-Hastings and SGLD ideas, instead of the whole dataset, we

work with the randomly selected subset of X. The algorithm chooses a random subset

at each iteration and completes the unobserved parts of only this subset. The algorithm

assumes that the variables are independent and identically distributed. Therefore, we
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can work with each element in a row separately, and we can suppose that replacing

one element with a proposed value does not affect the probability of others.

4.2.1. Imputation of Missing Components

The imputation is necessary when the subsampled predictor matrix has missing

values. The location of the missing variables in X is indicated by zeroes in a binary

matrix, say A, whose variables are 0 to represent missing components in X. We provide

the prior parameters for X, and the algorithm performs Metropolis-Hastings move for

the missing variables in the predictors of a logistic regression model.

We use the logarithmic values of prior conditional probabilities and proposal dis-

tributions in order to make calculations conveniently. For our case, ratio r(xmiss,i, x
′
miss,i)

in the acceptance probability α(xmiss,i, x
′
miss,i) is defined as

r(xmiss,i, x
′
miss,i) =

π(x′miss,i|θ)q(xmiss,i|x′miss,i)

π(xmiss,i|θ)q(x′miss,i|xmiss,i)
.

The q ratio is one since proposal kernel is chosen as a symmetric random walk and the

conditional probabilities are calculated by the Bayesian approximation. That is

π(x′miss,i|θ) = p(x′miss,i|θ, yi, xobs,i) ∝ p(θ, x′miss,i, yi, xobs,i) = p(x′i)p(yi|x′i, θ),

π(xmiss,i|θ) = p(xmiss,i|θ, yi, xobs,i) ∝ p(θ, xmiss,i, yi, xobs,i) = p(x′i)p(yi|x′i, θ),

where x′i = (x′miss,i, xobs,i). So we obtain the acceptance ratio as

r(xmiss,i, x
′
miss,i) =

p(x′i)p(yi|x′i, θ)
p(xi)p(yi|xi, θ)

.

We consider the ratio of priors and the ratio of likelihood terms separately.
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Calculation of Prior Probability Ratio. The logarithmic ratio of prior probabil-

ities of xmiss,i and x′miss,i can be defined as

log
p(x′miss,i)

p(xmiss,i)
= log p(x′miss,i)− log p(xmiss,i)

= −1

2

(
(x′miss,i − µx)Σ−1(x′miss,i − µx)T − (xmiss,i − µx)Σ−1(xmiss,i − µx)T

)
.

(4.1)

The evaluation of the expression in (4.1) requires calculations for each row of X (xi)

separately, which means that we need to perform n operations in one iteration. In

order to avoid deceleration in the algorithm caused by these row operations, we apply

the Cholesky decomposition to the covariance matrix Σx. We can write Σx = CTC

where C is the Cholesky factor of Σx. If we represent (xmiss,i − µx) by Z, then the

logarithm of the prior probability ratio can be expressed as

log
p(x′miss,i)

p(xmiss,i)
+
= −1

2
(ZC−1)(ZC−1)T, (4.2)

which can be evaluated by taking the square of product of two matrices, instead of

evaluating each row of Xmiss individually.

Calculation of Likelihood Ratio. The second part of the acceptance rate is the

ratio of logistic regression functions evaluated at the current and the proposed values

for X. Again we take the logarithm, and define the likelihood ratio vector as

log
p(yi|x′i, θ)
p(yi|x′i, θ)

= log p(yi|x′i, θ)− log(p(yi|xi, θ). (4.3)

We plug the logistic regression function, and after simple calculations, obtain the like-

lihood vector as

log
p(yi|x′i, θ)
p(yi|xi, θ)

= −(x′i − xi)θ(1− yi)− log(1 + e−x
′
iθ) + log(1 + e−xiθ). (4.4)



29

Obtaining the ratio vectors defined in (4.1) and (4.4) and taking the summation

of them yield the logarithm of the acceptance rate. The algorithm updates missing

variables of X according to this acceptance rate in an inner iteration that we call burn-

in. Thus the first imputations for Xmiss are discarded and more reliable replacements

are presented. The sampling of missing variables in Xmiss is completed at this point.

4.2.2. Parameter Update Using MH

After sampling and replacing missing X components for each iteration, we es-

timate the parameter θ when we suppose that X and Y are given. We propose a

value for next value of θ that also comes from random walk and calculate the ratio of

conditional densities as

π(θ′|X)

π(θ|X)
=
p(θ′)

∏n
i=1 p(yi|xi, θ′)

p(θ)
∏n

i=1 p(yi|xi, θ)
,

where θ
′

= θ + z is the proposed value of θ, and z ∼ N(0,Σq) is the random walk

step with zero mean and variance Σθ. Since proposal kernel is symmetric random

walk, q ratio is one again. We apply the same procedure with X, which is taking the

logarithms and calculating prior probability ratio vector and likelihood ratio vector

separately. Then, the combination of these vectors provide acceptance probability

vector of MH algorithm for parameter update.

Since θ is supposed to be normally distributed with mean µθ and covariance Σθ,

we can calculate the logarithm of its prior probabilities as

log
p(θ′)

p(θ′)
= log p(θ′)− log p(θ)

= log
(
e−0.5(θ′−µθ)Σ−1

θ (θ′−µθ)T
)
− log

(
e−0.5(θ−µθ)Σ−1

θ (θ−µθ)T
)

= −0.5(θ′ − µθ)Σ−1
θ (θ′ − µθ)T + 0.5(θ − µθ)Σ−1

θ (θ − µθ)T. (4.5)
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The log-likelihood ratios for parameters of the logistic regression function is

log
p(yi|xi, θ′)
p(yi|xi, θ)

= log p(yi|xi, θ′)− log p(yi|xi, θ)

= −(θ′ − θ)xi(1− yi)− log(1 + e−xiθ
′
) + log(1 + e−xiθ), (4.6)

4.2.3. Parameter Update Using SGLD

The first part of the algorithm provides a complete subset of the data that we

use to estimate the parameters for the logistic regression model. In this second part

of the method, incompleteness is not considered and the algorithm makes an SGLD

move for θ using an approximate value of gradient log-likelihood of a randomly selected

subsample. The gradient estimation is performed via averaging the gradients calculated

with complete X, whose missing components are sampled with MH moves.

The algorithm first calculates the estimates for gradient of prior distribution,

which is the first part of (2.11). In order to make calculations more conveniently,

we prefer to use the logarithmic values of priors. Since we have normally distributed

parameter vector, we define its gradient of log-prior as

∇θ log p(θ) = ∇θ log
(
e−

1
2

(θ−µθ)TΣ−1(θ−µθ)
)

= ∇θ

(
−1

2
(θ − µθ)TΣ−1(θ − µθ)

)
= −Σ−1

θ (θ − µθ). (4.7)

The second part of SGLD update for theta in (2.11) is the summation of posterior
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probabilities. The sum-log-posterior is derived by the following:

m∑
i=1

∇θ log p(yi|xi, θ) =
m∑
i=1

∇θ log
e−xiθ(1−yi)

1 + e−xiθ

=
m∑
i=1

∇θ

(
−xiθ(1− yi)− log(1 + e−xiθ)

)
=

m∑
i=1

(
−xi(1− yi) +

e−xiθ

1 + e−xiθ

)
, (4.8)

where m denotes the sub-sample size.

Now, we need to introduce an appropriate amount of noise term to guarantee

that the obtained θ values will converge to samples from true posterior distribution.

The stepsize parameters are adjusted so that the noise term satisfies the required

condition. The stepsize also needs to obey the convergence itself, and it is restrained

by the constraints given in (2.9). The definitions of stepsize and noise term for each

iteration t are

εt = a(b+ t)−γ and ηt ∼ N (0, εt),

where a, b and γ are the stepsize parameters. Combining the gradient of log-priors

(4.5), and the summation of log-posteriors (4.8), and adding the Gaussian noise term

we obtain θ update within (3.4) as

∆θt =
εt
2

(
−Σ−1

θ (θ − µθ) +
n

m

(
m∑
i=1

−xi(1− yi) +
e−xiθ

1 + e−xiθ

))
+ ηt. (4.9)

4.3. Experiments and Results

The Gaussian data matrix is synthetically generated in the MATLAB environ-

ment to test the algorithm on a normally distributed dataset with latent variables.

The prior parameters, mean and covariance of the data are also provided. Then an-
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other binary matrix whose dimensions are the same with the data matrix is generated

in order to mask some variables in the dataset randomly. The zero values represent

the latent variables in X, while one represents the observed variables. The sparsity

of mask matrix can be adjusted so that the portion of incompleteness is determined.

We also suppose that, for starting values, the parameter θ of the logistic regression

model comes from normal distribution with specified mean and covariance values. The

subsample size is denoted by m. The specified dimensions and the parameters are as

follows:

• Data matrix Xn×d, with n = 500, 000 and d = 5,

• Mask matrix An×d, with n = 500, 000 and d = 5,

• 20% of A is 0, meaning that 20% of the data is missing,

As we mentioned before, the data is fitted to the logistic regression function which

is provided in (3.1), and the obtained results are compared by the prediction analysis.

The steps of our prediction analysis are as follows:

• Separate the data into two sets: training and test,

• Use the training set to impute missing values and estimate parameters and ob-

served components of test set,

• Determine the observed variables in the test set,

• Calculate the expected value of the likelihood function applying the expression

given in (2.3) to the observed variables in the test set:

Ep(yi) ≈
1

N

N∑
i=1

1

1 + e−xiθ(i)
,

where N is the number of iterations after burn-in period, and Ep(yi) is the pre-

diction probability that determines the predicted value for yi.

• If the prediction probability is greater than threshold, which is chosen as 0.5

in our experiments, then assign the predicted value of the component to one,

otherwise assign it to zero.
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• Obtain the number of components where predicted value and actual value match,

and calculate the total prediction accuracy by taking the ratio of the number of

matching components to total number of components.

We have simulated MH and SGLD algorithms with different iteration numbers

and subsample sizes. In order to reduce the computational costs in the MH algorithm,

we use the same subsample m when imputing latent variables in X, instead of using the

whole dataset. On the other hand, when estimating parameters we sampled from the

entire but partially-imputed dataset X. The results are compared according to their

prediction successes and run times of the algorithms, when the iteration numbers are

the same. However, we should point out that SGLD algorithm performs an additional

inner loop to take the average of the estimated gradients. We choose the iteration

number of inner loop as five and the burn-in period as three, in order to discard the

first imputed missing values.

Table 4.1 shows the prediction accuracy for MH and SGLD results. It can be

clearly seen that the iteration number does not have a great impact on the results

when the subset size is 100, whereas the runtimes for these iteration numbers differ

significantly for the algorithms. Approximately 92% of the obtained results for both

MH and SGLD algorithms are consistent with the output which comes from the logistic

regression model and its initial parameters. As the iteration number is increased, the

prediction accuracy presented by the SGLD method starts to be greater than the

prediction accuracy presented by the MH method.

Since the generated data has 500, 000 samples, a subset of size 100 might not be

enough to represent the entire data. So we have also run the algorithms with random

subset of size 500 (0.1% of the data). It can be observed from Table 4.3 that the

prediction accuracy has increased to 94% for the SGLD algorithm. The difference

between the execution times of the algorithms is also increased, so one can prefer to

apply SGLD algorithm instead of MH, especially when the data size becomes larger.
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Table 4.1: Comparison of MH and SGLD algorithms when subsample size is 100

(synthetic data).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

1 ×104
MH sampling 0.930 223.40 sec

MH-SGLD sampling 0.918 15.05 sec

5 ×104
MH sampling 0.931 1121.88 sec

MH-SGLD sampling 0.929 76.93 sec

1 ×105
MH sampling 0.899 3408.13 sec

SGLD sampling 0.933 149.94 sec

Table 4.2: Comparison of MH and SGLD algorithms when subsample size is 500

(synthetic data).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

1 ×104
MH sampling 0.930 227.30 sec

SGLD sampling 0.929 22.86 sec

5 ×104
MH sampling 0.929 1103.32 sec

SGLD sampling 0.929 114.61 sec

1 ×105
MH sampling 0.870 3420.21 sec

SGLD sampling 0.940 243.77 sec

Table 4.3: Comparison of MH and SGLD algorithms when subsample size is 10, 000

(synthetic data).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

1 ×104
MH sampling 0.954 396.35 sec

SGLD sampling 0.954 75.88 sec

5 ×104
MH sampling 0.955 1948.72 sec

SGLD sampling 0.955 355.60 sec

1 ×105
MH sampling 0.961 6003.84 sec

SGLD sampling 0.955 712.61 sec
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Figure 4.1: Histograms of parameter components of θ estimated by MH (above) and

SGLD (bottom) with m = 500 and number of iterations 5× 104.

Figure 4.1 shows the histograms of five components of θ, when the subsample

size is 500 and the number of iterations is 5× 104. The histograms lying in the above

row are obtained by the MH algorithm, and the histograms lying in the bottom row

are obtained by the SGLD algorithm. It can be observed from the figure that, the

histograms obtained by the SGLD algorithm are narrower than the histograms obtained

by the MH algorithm. Considering the variances of components provided in Table 4.6,

where the components obtained by SGLD have higher variances, the difference between

the histograms is as expected. Increasing the number of iterations might decrease the

variances yielded by SGLD, and broader histograms similar to MH can be obtained.

In order to evaluate the performances of algorithms not only compared to each

other, but also compared to the existing algorithms in the literature, we conducted

experiments with the complete case analysis method in which the latent variables are

excluded (mentioned in Section 3.3). We have observed the change in the prediction

successes with the percentage of missing variables in the dataset. The simulations are

run for 5 × 104 iterations, and the subsample size for SGLD algorithm is chosen as

500. In this third method, the MH algorithm is simulated using only with the observed

components, and the resulting prediction successes are shown in Table 4.4. Clearly,
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Table 4.4: Prediction Value for algorithms, with m = 500, number of iterations 5×104.

Missingness ratio PA for MH PA for SGLD PA for CCA

10% 0.946 0.941 0.895

20% 0.930 0.929 0.845

30% 0.930 0.874 0.814

40% 0.923 0.870 0.777

50% 0.892 0.868 0.731

Table 4.5: Prediction Value for algorithms, with m = 500, number of iterations 105.

Missingness ratio PA for MH PA for SGLD PA for CCA

10% 0.946 0.943 0.926

20% 0.932 0.940 0.900

30% 0.930 0.905 0.871

40% 0.922 0.872 0.820

50% 0.892 0.868 0.787

one can interpret that the three approaches have similar prediction values for small

amount of latent variables. However, the success rate of the complete case analysis

algorithm has significantly decreased when the ratio of missing variables gets higher.

This might be caused by the lack of information of incomplete cases, as mentioned in

Section 3.3. It can be stated that MH and SGLD algorithms have more tolerance to

change in the ratio of incompleteness.

Table 4.5 provides the experiment results yielded by the three algorithms, with

105 iterations and a subsample size of 500. The aim of the tests with higher number of

iterations is to see the effect of iteration number on the success of complete case analysis

approach. Even though the iteration number has raised the prediction accuracy, the

algorithm is still outperformed by MH and SGLD algorithms, especially for higher

rates of latent variables.
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Table 4.6: Posterior mean and variance values of components obtained by the three

algorithms, when subsample size is 500, and number of iterations is 5× 104 (synthetic

data).

Parameter component Posterior Values MH SGLD CCA

1
mean -0.610 -0.610 -0.503

variance (×10−5) 1.2 4.9 0.66

2
mean 0.241 0.243 0.116

variance (×10−5) 0.5 4.4 0.67

3
mean -1.199 -1.196 -1.091

variance (×10−5) 3 5.0 1.77

4
mean -0.051 -0.050 0.063

variance (×10−5) 0.2 5.1 0.35

5
mean 0.100 0.100 0.276

variance (×10−5) 0.3 4.2 0.97



38

5. EXPERIMENTS WITH REAL DATA

In this chapter, the proposed methods are applied to a real dataset, and the results

are presented. In addition to this, another missing data approach is implemented in

order to compare the performances of proposed algorithms with an existing algorithm.

Methodology and the derivations are also provided.

5.1. Data Description

We analyze a real adult dataset that predicts whether the annual income of a

person exceeds $50K or not based on the census data. The census data has various

categorical variables that might affect the income level of adults such as education

level, sex, marital status, current occupation and native country. Each row of the

data matrix contains a person’s attributes for these categories. Corresponding binary

labels represent that the income of an adult exceeds $50K per year if it is one, and

zero otherwise. Some of the attributes are missing in the rows and we indicate the

unobserved variables with the response indicator matrix A. The categorical data is

fit with the logistic regression model so that we make our derivations using logistic

regression function. Like in the synthetic data, X = (Xmiss, Xobs) denotes the n × d

data matrix, Y denotes the corresponding binary outcome, and θ = (θ1, θ2, ..., θd)
T is

the parameter vector for the logistic regression model.

5.2. Methodology

5.2.1. Imputation of Missing Components

Since MH algorithm requires simulating samples based on the present data for

missing components of X, we need to determine the prior distribution from observed

data. This prior distribution is used to calculate the probability of X that we need to

determine the acceptance ratio of the MH algorithm. We also need to determine the

proposal distribution q(x), which cannot be chosen as a symmetric random walk for
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the real dataset. Recall that the general form of the acceptance probability α(x, x′) of

MH move for x, x′ ∈ X is defined as

α(x, x′) = min

{
1,
π(x′)q(x|x′)
π(x)q(x′|x)

}
. (5.1)

where π(x) is the conditional probability distribution of x and q(x|x′) is the proposal

kernels.

There are two important and different points that we need to consider for cate-

gorical dataset. The first issue is the calculation of the prior probability distribution

of X and the second issue is determining the proposal kernel.

We can approximately calculate the probability distribution of X using the prior

availability of each element. In other words, we calculate the probability of each element

of X by counting the present number of the specific values for each category and

dividing this to total number of observed variables.

Prior Probability Distribution of Xmiss. Unlike the synthetic dataset in which we

already have normally distributed random variables and parameter values of the dis-

tribution, we do not have a specific probability distribution to calculate π(Xmiss|θ) for

the categorical dataset. What we have is the number of observed elements belonging to

each category. We can use this information to approximately calculate the conditional

probability of Xmiss when we are given Xobs. Counting the occurrence number of every

category and dividing this number to the total number of occurrences provide an esti-

mation for the next (missing) variable. Thus, having the frequencies of each category,

we can extract the conditional probability distribution π(Xmiss|θ).

Proposal Kernel Distribution. Since q(x|x′) is the probability of moving from

present point to another point in the neighborhood of the current location, choosing

the proposal values depending on the current ones is a reasonable approach. So, the
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proposal distribution is determined such that the algorithm takes an MH step directly

proportional to the frequencies of the elements in each category. In other words, for

the missing variables, the probability distribution of kernel proposal is equal to the

probability distribution of X:

q(xmiss,i|x′miss,i) = p(xmiss,i) and q(x′miss,i|xmiss,i) = p(x′miss,i). (5.2)

Now we plug the proposal kernels which are given in (5.2) into the acceptance ratio

given in (5.1). This results in the acceptance ratio

α(xmiss,i, x
′
miss,i) = min

{
1,
π(x′miss,i|θ)p(xmiss,i)

π(xmiss,i|θ)p(x′miss,i)

}
.

where we can calculate π(X ′miss,i|θ) and π(xmiss,i|θ) by

π(x′miss,i|θ) = p(x′miss,i|θ, yi, xobs,i) ∝ p(θ, x′miss,i, yi, xobs,i) = p(x′i)p(yi|x′i, θ),

π(xmiss,i|θ) = p(xmiss,i|θ, yi, xobs,i) ∝ p(θ, xmiss,i, yi, xobs,i) = p(xi)p(yi|xi, θ)

where x′i = (x′miss,i, xobs,i). This yields the final version of acceptance ratio of MH

algorithm for the adult dataset:

α(xmiss,i, x
′
miss,i) = min

{
1,
p(x′i)p(yi|x′i, θ)p(xi)
p(xi)pθ(yi|xi, θ)p(xi)

}

= min

{
1,
p(yi|x′i, θ)
p(yi|xi, θ)

}

= min

{
1,
e−xiθ(1−yi)(1 + e−x

′
iθ)

e−x
′
iθ(1−yi)(1 + e−xiθ)

}
.
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5.2.2. Parameter Update Using MH

For a categorical dataset, we cannot easily recognize the relationship between the

variable types belonging in specific categories and their corresponding parameters. In

order to consider the effect of each variable type on the response separately, we need to

expand the parameters as well as the data X. The procedure that we apply to expand

the parameters is as follows:

• If a category, say kth category, has more than two different types, define a new

parameter vector for θk, such that θk = (θk,1, θk,2, ..., θk,l), where l is the number

of types in the category,

• Determine the active parameter according to the available element type in X,

• Extend the row vector of X as much as the length of the parameter vector,

• Fill the extended vector of X with zeroes for the inactive types and one for the

active (current) type.

After obtaining the expanded versions of X and θ, the algorithm performs the sampling

procedure with these new matrix and vector. The remaining calculations are similar to

those for the synthetic dataset. In each iteration, the first part of the algorithm provides

a completed random subsample to make estimations for θ. The extended and imputed

version of X, say Xext and the expanded parameter vector, say θext coming from the

last iteration are used to make MH moves, and calculate its acceptance rate. Replacing

X and θ with Xext and θext in equations (4.5) and (4.6) provides the acceptance rate

vector and the parameter update is performed according to this vector.

5.2.3. Parameter Update Using SGLD

The data and parameter vectors we use in the calculations of SGLD move are also

the expanded vectors of X and θ. Algorithm performs subsampling, data imputation

and parameter estimation via Xext and θext. Completed random subsample of the

data is provided by the first part of the algorithm, and this imputed subset is used to

calculate the gradient log-likelihood. The average value of the gradient log-likelihood
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serves the SGLD move. An appropriate amount of Gaussian noise term is injected into

the gradient steps in order to avoid the collapse of the parameters. The appropriate

amount is determined by considering the balance of the gradient step-sizes and the

variance of samples [21].

The gradient estimates for prior probability distribution p(θ) can be calculated by

assuming that the probability distribution of expanded parameter is Gaussian. Again

we use the logarithm of the likelihoods. Prior mean and covariance values are provided

according to the expanded parameter, and the rest of the calculations are the same as

in (4.7):

∇θ log p(θ) = ∇θ log
(
e−

1
2

(θ−µθ)TΣ−1(θ−µθ)
)

= ∇θ

(
−1

2
(θ − µθ)TΣ−1(θ − µθ)

)
= −Σ−1

θ (θ − µθ). (5.3)

The derivation of the gradient estimates for posterior distribution is also same

as in (4.8). Using the extended parameter vector instead of the original one, we can

calculate the sum-log-posterior by

m∑
i=1

∇θ log p(yi|xi, θ) =
m∑
i=1

∇θ log
e−xiθ(1−yi)

1 + e−xiθ

=
m∑
i=1

∇θ

(
−xiθ(1− yi)− log(1 + e−xiθ)

)
=

m∑
i=1

−xi(1− yi) +
e−xiθ

1 + e−xiθ
, (5.4)

where, again, m denotes the sub-sample size and xi stands for the ith row of the

expanded version of X, and yi denotes the corresponding ith component of Y .
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Additionally, we use a diagonal preconditioning matrix D in order to avoid diver-

gence of θ values. Using this matrix with appropriate values for the step-size parameters

a, b and γ helps θ converge. Combining the gradient log-likehood estimations with the

noise term and the diagonal preconditioning matrix D, we obtain the update for θ

∆θ(t) =
ε(t)

2
×D ×

(
−Σ−1

θ (θ(t) − µθ) +
n

m

(
m∑
i=1

−x(t)
i (1− yi) +

e−x
(t)
i θ(t)

1 + e−x
(t)
i θ(t)

))
+ η(t),

where i represents the ith row of the expanded matrix of X, yi represents the ith

component of Y , t represents the iteration number, m is the subsample size, η(t) ∼

N (0, ε(t)) represents the Gaussian noise term, and ε(t) = a(b+ t)γ represents the step-

size which is required to satisfy the convergence properties given in (2.9). In order to

obtain step-sizes that decay polynomially (satisfy the convergence property) [21], we

adjust the parameters a, b and γ in the calculation of step-sizes.

We add a burn-in period to the SGLD algorithm in order to eliminate the first

replacements for the missing components of X. In the outer iteration, we select a

random subset, but the replacement of its unobserved elements takes place in an inner

iteration. After this burn-in period, the first burn-in number of them are discarded,

and the obtained last version of subset X is used to estimate the parameter vector.

5.3. Experiments and Results

The categorical dataset has information about 32, 561 people in five different

categories. There are missing variables in two of these categories and they are indicated

by the response indicator matrix A. Since the data is not from a certain distribution,

the simulations are run under some assumptions. The first assumption is that the

probability distribution of a variable in X is the ratio of occurrence number of that

specific variable to total number of occurrences. Under this distribution, the second

assumption is that all the variables are independent so imputing the latent variables

does not affect the probability of others. We have also assumed that the education level

is proportional to the income level, i.e. there is a linear relationship with education
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and income. The parameter components whose corresponding categories have only two

different choices, like sex, is also scalar, since the effect can be only positive or negative.

On the other hand for other categories such as work class or marital status, it is not

easy to construct a linear relationship between income level and his/her response to

that category. This is because we extend the component to multiple components such

that each label in the category has its own sub-component. To be more rigorous,

suppose that the second category, which matches the second component of θ has l

different choices. Then θ2 is extended to l components, θ2 = (θ2,1, θ2,2, ..., θ2,l) and so

θ = (θ1, θ21, θ22, ..., θ2l, θ3, ..., θd).

We have simulated MH and SGLD algorithms for different subsample sizes and

iteration numbers. The way we compare the results are the same as the comparison

for the normally distributed dataset (Chapter 4). We measure the predicted accuracy

and computation time of each method to determine which one is more effective or

preferable. Table 5.1 and Table 5.2 show the results of the simulations for subsample

sizes 100 and 500, respectively. The prediction accuracy is approximately 0.71 for MH

algorithm and it can be observed that increasing the number of iterations does not

have a significant impact on the success rate of the prediction, while it greatly affects

the computation time. The similar interpretation is valid for SGLD algorithm as well,

except for 106 iterations with subsample of size 500, where the prediction accuracy rose

up to 76%. In Table 5.3, comparison of prediction accuracy and elapsed times with a

subsample of size 1, 000 are presented. The prediction accuracy is still around 70% for

both algorithms. Unlike the results of artificial data, we have observed that increasing

subsample size does not increase the success rate of prediction. It should also be noted

that the inner iteration number of SGLD method is chosen as five, while three of them

are discarded by the burn-in period, like in the experiments conducted for artificial

data.
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Table 5.1: Comparison of MH and SGLD algorithms when subsample size is 100

(categorical dataset).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

5 ×105
MH sampling 0.704 247.50 sec

SGLD sampling 0.715 234.52 sec

1 ×106
MH sampling 0.717 550.90 sec

SGLD sampling 0.711 515.54 sec

2 ×106
MH sampling 0.720 1844.55 sec

SGLD sampling 0.714 1019.00 sec

Table 5.2: Comparison of MH and SGLD algorithms when subsample size is 500

(categorical dataset).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

1 ×105
MH sampling 0.700 649.04 sec

SGLD sampling 0.716 289.85 sec

5 ×105
MH sampling 0.709 3230.17 sec

SGLD sampling 0.722 1491.40 sec

1 ×106
MH sampling 0.715 6557.66 sec

SGLD sampling 0.763 3011.58 sec



46

Since the parameter vector θ has components whose characteristics are differ-

ent from each other, it might be expected that the correctness of the estimations

will not be the same for every component. In order to observe the components sep-

arately, Figure 5.1 depicts some of the components of θ, when the subsample size is

500, and iteration number is 106. The graph shows that both algorithms converge for

these selected components. It also can be observed that linear components, such as

developed-underdeveloped countries and education, attain the convergence in a shorter

time than other components do. Figures 5.2, 5.3 and 5.4 show the comparisons of the

methods with various subsample sizes and the numbers of iterations. Figure 5.5 is the

histogram of all components obtained by MH and SGLD algorithms when subsample

size is 10, 000. The histograms also illustrate that the linear components like education,

are more successful to converge.
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Figure 5.1: The estimated values obtained by MH (green lines) and SGLD (red lines)

methods for selected components of θ, with m = 500, number of iterations 106.
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Figure 5.2: The estimated values obtained by MH (green lines) and SGLD (red lines)

methods for selected components of θ, with m = 100, number of iterations 2× 105.
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Figure 5.3: The estimated values obtained by MH (green lines) and SGLD (red lines)

methods for selected components of θ, with m = 1, 000, number of iterations 105.
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Figure 5.4: The estimated values obtained by MH (green lines) and SGLD (red lines)

methods for selected components of θ, when m = 1, 000, number of iterations 5× 105.

Figure 5.5: Histograms of selected components of θ, obtained by MH (first three lines)

and SGLD methods (last three lines) with m = 10, 000, number of iterations 105.
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Figure 5.6: The estimated values obtained by MH (green lines) and SGLD (red lines)

methods for selected components of θ, with m = 10, 000, number of iterations 105.

Like in the previous chapter, we also implemented complete case analysis algo-

rithm where the idea of excluding latent variables is applied [7]. The comparison of

three methods is shown in Table 5.3 and Table 5.4. The tables provide the prediction

successes and calculation times of the algorithms for different numbers of iterations.

Table 5.3 shows the simulation results for a subsample size of 1, 000, whereas Table

5.3 shows the results for a subsample size of 10, 000. Using 10, 000 lines means that

we make computations through 30% of the data approximately. For MH and SGLD

methods, we can observe that although the portion of the data that we use and impute

is relatively high, the prediction accuracy rates are not remarkably different than the

rates obtained by using smaller subsets. Considering the time performances of the sim-

ulations with different sizes of subsets, it might be wiser to choose small subsamples

and increase the number of iterations for MH and SGLD methods, since their predic-

tion successes are close to the values presented in tables 5.1 and 5.2. In addition to

this, an obvious interpretation of the results shown in the tables is that, the complete

case analysis algorithm has reached a success rate of 71% in a smaller amount of time

than the MH and the SGLD algorithms. This might be because of the small proportion
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(approximately 5%) of latent variables in the real dataset.

Figure 5.7 shows the posterior mean and Figure 5.8 shows the posterior variance

of each component of θ, for a subsample size of 500 and number of iterations is 106. For

MH and SGLD algorithms, the results shown in both figures are the same simulation

results as given in Table 5.2, where the prediction value is approximately 71% for MH,

and 72% for SGLD. Since the prediction accuracy rates are close to each other, the

posterior mean values are as expected, even though there are differences between some

of the components. It is also clear that the posterior means obtained by the complete

case analysis algorithm are fairly close to the results of the SGLD algorithm. One can

observe from Figure 5.8 that the complete case analysis has the largest variance for

most components.
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Figure 5.7: The posterior means of the components, obtained by MH (*) and SGLD

(o) and complete case (+) algorithms, with m = 500, number of iterations 106.
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Figure 5.8: The posterior variances of the components, obtained by MH (*) and SGLD

(o) and complete case (+) algorithms, with m = 500, number of iterations 106.
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Table 5.3: Comparison of MH, SGLD and complete case analysis algorithms when

subsample size is 1, 000 (categorical dataset).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

1 ×105

MH sampling 0.710 719.29 sec

SGLD sampling 0.709 521.37 sec

Complete case 0.710 568.23 sec

2 ×105

MH sampling 0.713 1436.21 sec

SGLD sampling 0.712 1113.39 sec

Complete case 0.712 957.23 sec

5 ×105

MH sampling 0.731 3637.63 sec

SGLD sampling 0.728 2668.20 sec

Complete case 0.715 2349.67 sec

Table 5.4: Comparison of MH, SGLD and complete case algorithms when subsample

size is 10, 000 (categorical dataset).

Number of Iterations Inference Method Prediction Accuracy Elapsed Time

5 ×104

MH sampling 0.709 1027.85 sec

SGLD sampling 0.711 897.12 sec

Complete case 0.712 578.14 sec

1 ×105

MH sampling 0.721 2035.92 sec

SGLD sampling 0.715 1518.85 sec

Complete case 0.713 1254.35 sec
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6. CONCLUSION AND DISCUSSION

The main goal of this thesis is to investigate the missing data problem in large-

scale datasets. We have developed two different strategies in order to address this

problem. The proposed methods are based on the Bayesian inference and Markov chain

Monte Carlo methods, where prior knowledge and the likelihood function provide an

insight for posterior knowledge. Both of the proposed methods use the Metropolis-

Hastings idea for the imputation of unobserved parts, where the latent variables are

imputed by proposing new values based on a proposal distribution. The first introduced

technique uses the MH sampling for estimating parameters, while the second technique

employs the SGLD idea in which the calculations are made over the small subset of the

dataset and updates for parameters are generated via the gradient information. Since

we have utilized the MCMC and SGLD techniques to sample the missing variables, the

subsampling idea is applied on the imputation part of both algorithms.

The proposed methods and complete case analysis (or listwise deletion) method

are tested and compared on synthetic data having Gaussian distribution as well as

real-categorical data. The methods are compared according to their time and error

performances. Our experiments have shown that their inferences are fairly close to each

other. A significant difference has occurred when we compare the execution time of the

algorithms. We have observed that the SGLD-based algorithm has outperformed the

MH and complete case algorithms. Even though the prediction accuracy rates are close,

choosing SGLD algorithm is a wiser approach, since it is not fast to make calculations

over the entire dataset. Especially when the dataset becomes larger, the advantage of

SGLD algorithm comes into prominence. On the other hand, complete case analysis

algorithm has provided a successful prediction accuracy with shorter execution time

than MH for 10% incompleteness. However, when the sparsity of the data becomes

higher, the algorithm is outperformed by SGLD and MH, even though its computation

time is relatively small.

The first contribution of the thesis is that, introducing the SGLD approach to
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missing data problems in big datasets has resulted in the parameter estimations as good

as the MH approach. Since MH is a sampling method that provides exact solutions, it

is considered as a benchmark of the comparisons, and the success of SGLD is measured

by its close results to MH. Considering the prediction success rates of the algorithms,

it can be stated that using gradient estimations instead of exact sampling methods

might be more efficient, especially for the cases where the data size is extremely large.

The SGLD algorithm has attained its convergence in a relatively small amount of time

when it is compared to the MH algorithm for parameter estimations.

The second contribution of the thesis to MCMC methods for incomplete data is

that, we have proposed an alternative approach through MH sampling, for the cases in

which sampling from full conditional distributions is not possible or easy. MH sampling

not only provides a solution to sampling problem, it also provides an improvement in

the performance of the method due to its computational efficiency. In addition to this,

applying the idea of subsampling on imputation part provides a remarkable decrease

in execution time of the algorithm.

Considering the correctness of parameter estimations that we tested with both

synthetic and real datasets, the results of MH and SGLD algorithms are quite promis-

ing. Especially for the Gaussian distributed synthetic data, the prediction accuracy

rates have attained almost 95%. This high success rate of prediction is a strong moti-

vation for further research on regression with missing data by utilizing MH and SGLD

frameworks.

In the scope of this thesis, we have used a limited number of datasets to test

the methods. Although it has been proven that the methods that we propose have

performed quite well for our datasets, it would be wiser to apply these algorithms on

the various real datasets. For most the real-life applications, it is not always easy to

specify the prior probability distribution of given data. This is because one may need to

make some assumptions at the beginning of the calculations. Testing the assumptions

which are made for different distributions, and proposing better initial assumptions

would improve the performance of the methods. Moreover, since it will be more costly
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to make calculations when the dataset becomes large, the applications on even larger

datasets would help show the differences between two algorithms.

For the experiments with real dataset, we have determined the prior probability

distribution of variables by the frequency of the observed variables, and we have not

updated the initial distribution after we replaced the unobserved variables. However,

since the frequency of the variables will change once the new variables are replaced, up-

dating the prior probability of the variables would be a wiser assumption for the prior

probability distribution. The algorithms can be performed better, and they might

provide higher rates of prediction accuracy under the updated prior probability distri-

butions.

In the experiments that we have conducted, we have used symmetric random walk

as the proposal distribution for the synthetic data, while we have used an independent

proposal distribution for the categorical data. These proposal distributionos are two

simple proposal kernels in Metropolis-Hastings sampling. Since the choice of proposal

kernel plays a crucial role in the performance of MH algorithm, one future work might

be to apply the algorithms with more sophisticated proposal kernel functions.
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