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ABSTRACT 

 

 

 

A PHYSICS-BASED SINGLE CRYSTAL PLASTICITY MODEL FOR CRYSTAL 

ORIENTATION AND LENGTH SCALE DEPENDENCE OF MACHINING RESPONSE 
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Manufacturing Engineering, MSc. Thesis, 2018 

  

Supervisor: Assist. Prof. Dr. Eralp DEMIR 

 July 2018,79 pages 

 

Keywords: single crystal machining, crystal plasticity, physics-based modeling, micro 

machining, workpiece anisotropy, machining size dependence 

 

 

Recent demands towards the miniaturization raises the importance of micro-machining, which 

is one of the most flexible manufacturing process. The cutting parameters such as depth of cut, 

tool diameter etc. have become comparable to the dimensions of the crystals during machining 

at micro scale which effects on the machining response of the material. Due to the highly 

anisotropic behavior of single crystals, it is important to consider the effect of the 

crystallographic orientation on the cutting response. Size-dependency of the cutting response is 

defined as the non-linear increase in specific cutting energy with the reduction in the uncut chip 

thickness. Size dependence has to be also considered in machining models since it could affect 

the chip formation process, cutting forces and the stability. 

 

In this work, micro-machining model based on crystal plasticity kinematics and physics based 

constitutive descriptions is developed for FCC single crystals. The proposed model contains 

constitutive laws that are based on physics-based material state variables. The size-effect is also 

http://tureng.com/tr/turkce-ingilizce/miniaturization
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incorporated to the physics based constitutive laws as an additional strain hardening term that 

is a function of the amount of shear and shear plane length. Size dependence is related to the 

nature of the shearing process being confined to smaller shear planes as the depth of cut 

decreases and the corresponding increase in the statistically stored dislocation density. In this 

work the effect of edge radius is not considered and the effect of strain-rate is present. The total 

work is minimized to find the shear angle for any given crystal orientation and the selected 

machining parameters. The model is applied simulate the experimental force fluctuations of 

single crystals of aluminum and copper in Cohen’s work with a reasonably good agreement. 
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ÖZET 

 

 

 

 TEK KRİSTAL MALZEMELERİN TALAŞLI İMALAT TEPKİSİNİN KRİSTAL KONUMU VE 

UZUNLUK ÖLÇEĞİ BAĞIMLILIĞI İÇİN FİZİKSEL TEMELLİ KRİSTAL PLASTİSİTE 

MODELİ  

 

 

Canset MERCAN 

 

Üretim Mühendisliği, Yüksek Lisans Tezi,2018 

 

Tez Danuşmanı: Dr. Öğretim Üyesi Eralp DEMIR 

Temmuz 2018,79 sayfa 

 

Anahtar Kelimler: tek kristalli malzeme talaşlı imalat, kristal plastisite, fiziksel temelli 

modelleme, hassas talaşlı imalat, kristal anizotropisi, talaşlı imalatta boyut etkisi 

 

Minyatürleşmeye yönelik son eğilimler ve talepler, esnekliği en fazla olan mikro-seviye üretim 

yöntemlerinden biri olan hassas talaşlı imalat prosesinin ve teknolojilerinin önemini arttırmıştır. 

Mikro seviye talaşlı imalat esnasında kesme derinliği, takım radyusu gibi parametreler, kristal 

ölçüleri ile kıyaslanabilir seviyelerde olduğu için malzemenin kristal oryantasyonunun, kesme 

ve plastik deformasyon esnasında malzeme tepkisi üzerinde ciddi bir etkisi olmaktadır. Tek 

kristal malzemelerin gösterdiği yüksek anizotropik davranış nedeniyle mikro seviyelerde 

yapılan bu kesme işlemleri için oluşturulacak analitik modellerde, kristal anizotropisinin; 

kesme kuvvetleri ve yüzey kalitesi gibi kesme tepkisi üzerine olan etkilerinin göz önünde 

bulundurulması gerekmektedir. Boyut (büyüklük) etkisi ise spesifik kesme enerjisinde, deforme 

olmamış talaş kalınlığındaki düşüşe bağlı olarak gerçekleşen ani ve lineer olmayan yükseliş 

olarak tanımlanmaktadır. Boyut etkisi talaş oluşum prosesini, kesme kuvvetlerini ve tezgah 

stabilitesini etkileyebildiği için talaşlı imalat işlemleri için oluşturulacak analitik modellerde, 

bu faktörün de değerlendirilmesi gerekmektedir. 
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Bu tez, yüzey merkezli kübik yapıya sahip tek kristal malzemelerin deformasyon 

mekanizmasını açıklayan ve kristal plastisite kinematiği ve fiziksel temel denklemleri baz alan 

bir hassas talaşlı imalat modeli sunmaktadır. Sunulan modelde kullanılan temel kanunlar 

tamamıyla fiziksel olarak ölçülebilen değişkenler üzerinden ifade edilmektedir. Boyut etkisi 

ilave edilen pekleşme terimi yardımıyla kayma gerinimleri ve kayma düzlemi uzunluğunun bir 

fonksiyonu olarak modele dahil edilmiştir ve kesme derinliğindeki azalmaya ve dolayısıyla 

kayma düzlemi boyutundaki azalmaya bağlı olarak, istatiksel olarak saklanmış dislokasyon 

miktarında meydana gelen artış üzerinden açıklanmıştır. Bu çalışmada takım radyusu etkisi 

hesaba katılmamıştır ve gerinim, deformasyon hızı etkisi mevcuttur. Tez kapsamında anlatılan 

model, optimal kayma açısı değerini bulabilmek için spesifik bir kristal oryantasyonu ve talaşlı 

imalat parametreleri için deformasyon esnasında yapılan toplam işin minimizasyonu yöntemini 

kullanmaktadır. Model, Cohen’in Aluminyum ve Bakır tek kristal malzemeler üzerinde yaptığı 

deneylerde gözlemlenen kuvvet varyasyonlarını yüksek bir korelasyonla açıklayabilmektedir. 
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1 INTRODUCTION 

 

 

 

1.1 Background of the Study  

 

It has been known that micromachining is an emerging field that has shown potential to produce 

complex shapes at small scales with acceptable dimensional accuracy and its applicability to 

wide-range of materials. These attributes command an ever-increasing attention to the modeling 

of this process. The accuracy of the process and the cutting response are affected by numerous 

factors, such as machining parameters and the workpiece properties. There have been many 

studies which try to model the effect of process parameters such as cutting speed, tool’s rake 

angle, edge radius, cutting speed, depth of cut etc. on the cutting response of metals. However, 

a fundamental understanding is needed for explaining the material’s length scale and crystal 

orientation dependent behavior.  

 

 

Figure 1-1 The schematic representation of the micro-milling process and the physical 

phenomena parameters that have an influence on the machining response. 

 

Figure 1-1 indicates the important factors that affect the cutting force during machining process. 

In the aspect of micro-machining, the tool-workpiece interaction occurs entirely within either a 

single crystal or a few crystals. As a result, it becomes more important to both incorporate the 

crystallographic effects as well as size-effects to the machining plasticity models.  



2 
 

 

Orthogonal cutting is the simplest cutting geometry, thereby studying orthogonal cutting 

geometry allows understanding of the effect of parameters other than cutting geometry in a 

more direct way. The proposed methodology can be extended to the oblique cutting geometries 

can be done easily with the geometrical model of the particular machining process.  

 

In orthogonal cutting, machining is divided into mainly three different zones. Primary zone is 

the shear plane where shearing deformation is dominant. As the edge of the tool penetrates into 

the workpiece, the material ahead of the tool is sheared over the primary shear zone to form a 

chip. Secondary zone refers to the region between the cut (machined) workpiece surface and 

the friction face of the cutting tool. In other words, the chip partially deforms and moves along 

the rake face of the tool, which is called secondary deformation zone. Third zone where the 

flank of the tool rubs the newly machined surface, is called the tertiary zone. Since the shearing 

deformation is dominant on the primary shear zone, this region is considered when modeling 

the size-effect. 

 

 

The polycrystalline material can be considered as the aggregate of several crystals or grains  and 

the boundary between the grain is the grain boundary across which the orientation of the crystal 

changes. Therefore, single crystal material can be defined as a material in which the crystal 

lattice of the entire sample is continuous with no grain boundaries. The absence of the grain 

boundaries has an importance because it gives single crystal materials unique properties 

particularly mechanical, optical and electrical, which can also be anisotropic, depending on the 

type of crystallographic structure. They are useful for applications where grain boundaries are 

harmful. For example, high temperature deformation or creep resistance and Ni-based single 

crystal superalloys are widely used in aerospace industry due to this unique property. Another 

important point is that, in a single crystal, the physical and mechanical properties change with 

orientation. This is due to the easiness of the movement of atoms (slip or distortion) in some 

directions than others which results in the changing material properties with different 

crystallographic orientations, or in another way of saying anisotropy of the material. When it 

comes to the polycrystalline materials, even if the individual grains are anisotropic, the property 

https://en.wikipedia.org/wiki/Crystal_lattice
https://en.wikipedia.org/wiki/Crystal_lattice
https://en.wikipedia.org/wiki/Grain_boundary
https://en.wikipedia.org/wiki/Anisotropic
https://en.wikipedia.org/wiki/Crystallography
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differences tend to average out due to the randomness of the grain orientations. Therefore, the 

material is isotropic until the material is formed where the grains are distorted and elongated. 

 

Anistropy can be explained in two parts: elastic and plastic anisotropy. The elastic anisotropy 

of crystalline material arises from the directionality of the electronic bond and the resulting 

crystal lattice structure. The plastic anisotropy of crystalline matter also departs from the 

directionality of the electronic bond and the resulting crystal lattice structure. Both aspects 

determine which slip planes and which Burgers vectors serve for the motion of lattice 

dislocations or the activation of plastically relevant athermal transformations. The elastic 

anisotropy is determined by the crystal texture, whereas the plastic anisotropy is determined by 

the microstructural parameters like dislocation density and grain boundary. The importance of 

plastic anisotropy is that metals are deformed in a discrete rather than in a continuum fashion.  

In addition to the anisotropy or macroscopic anisotropy, there is also anisotropic behavior of 

the single crystal which results from the crystallographic nature of plastic glide, interactions 

between the glide systems and eventually anisotropy of elastic constants. 

 

This study focused on examining the behavior of single crystal materials during machining 

since characteristic dimensions of grains in metals becomes comparable with the uncut chip 

thickness values experienced in micromachining and the process takes place within individual 

grains which exhibits elastic and plastic anisotropy and a few grains at a time. Therefore, the 

mechanical properties change when crossing into different grains which leading to changes in 

the magnitude and direction of the cutting force rake and flank-face friction, as well as amount 

of elastic recovery during the process. Unlike the macroscale cutting processes, where a large 

number of grains are encountered and the material can usually be assumed to behave 

isotropically. 

 

The plastic deformation in metals can be attributed to the movement of large numbers of atoms 

in response to an applied stress. Dislocations can be defined as a boundary between deformed 

and undeformed regions in the crystalline structure. Slip motion of the dislocations can be 

explained as the sliding displacement along a plane of one part of a crystal relative to the rest 

of the crystal due to the shearing forces. Plastic deformation of materials under stress is the 

https://www.britannica.com/science/crystal
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result of slip within the individual crystals that constitute the material. Slip and the twinning, 

are the only ways that crystals in solids can be permanently deformed. In slip, all the atoms on 

one side of the slip (or glide) plane do not slide simultaneously from one set of positions to the 

next. The atoms move sequentially one row at a time into the next position along the plane 

because of structural defects or spaces, called edge dislocations, in the crystal that move at the 

same rate in the opposite direction. Direction and magnitude of slip is characterized by the 

Burgers vector of the dislocation. There are two basic types of dislocations which are 

characterized by the relative orientation between the Burgers vector and dislocation line. Figure 

1-2 shows the schematic representation of the edge and the screw dislocations. To be conclude, 

an edge dislocation also can be defined as localized lattice distortion exists along the end of an 

extra half-plane of atoms whereas a screw dislocation results from shear distortion. As can be 

seen in the figure, for an edge dislocation, the Burgers vector is parallel to dislocation motion 

and for a screw dislocation, the Burgers vector is parallel to the dislocation and it is always 

parallel to slip. 

 

 

Figure 1-2 The schematic representation of the edge and screw dislocations [31] 

An important feature of the micro-machining is the presence of the size-effect which is the non-

linear increase in specific cutting energy inherent to the material and it may occur due to some 

differences which may be related with tool edge radius, workpiece non-homogeneity with 

respect to the tool/cut size, negative rake angles and workpiece material minimum chip 

thickness effects. In the aspect of workpiece homogeneity such as crystallographic defects such 

as grain boundaries, missing and impurity atoms, etc. these factors could cause an increase in 

material strength, since the deformation takes place in a small volume. In another explanation 

which is related with tool edge radius, the increase in specific cutting force with decrease in 

uncut chip thickness is explained by ploughing force arising from frictional rubbing and 

https://www.merriam-webster.com/dictionary/constitute
https://www.britannica.com/science/twinning-crystallography
https://www.britannica.com/science/edge-dislocation
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ploughing associated with material removal by a blunt tool. Moreover, any changes in tool edge 

radius can cause change in shear angle values and effective rake angle of the tool and this also 

can be considered as another explanation for the size-effect. Finally, size-effect can be 

explained by considering the strain gradient plasticity theory. By using this theory, strength of 

material is considered as a function of the strains and strain gradients as well. In order to explain 

the presence of a strain gradient in the strain field, geometrically necessary dislocations are 

needed in addition to statistically stored dislocations to accommodate them.  

 

 

Figure 1-3 The schematic representation of Geometrically necessary dislocations underneath 

an indenter [13] 

 

In case of non-uniform plastic deformation, there will be an extra storage of geometrically 

necessary dislocations (GND) and these defects show their effects when the length of 

deformation is sufficiently small. Figure 1-3 above explains the formation of geometrically 

necessary dislocations underneath an indenter. (a) represents the mechanism of creating extra 

storage of defects by pushing substrate material and (b) shows the atomic steps on the indented 

surface and the associated geometrically necessary dislocations, respectively. Due to the 

reduction in the shear plane length, an increase in the shear strain gradients and in the density 

of geometrically necessary dislocations increases compared to the density of statistically stored 

dislocations, which leading to an increase in shear strength. It is the possible explanation of the 

size-effect occurrence in a strain field based on its geometry and gradient. By using a strain 

gradient plasticity-based model of material deformation in the Primary Deformation Zone of an 

orthogonal cutting process and formulations of the strain gradient, density of geometrically 

necessary dislocations, shear strength of the material in the PDZ and the specific shear energy, 

the size-effect can be modeled in a more realistic way compared to other explanations presented 

above. 
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In single-crystal machining processes, these differences and associated effects should be 

carefully examined, and more-realistic material models should be created. The review of 

literature indicates that there are some studies for single-crystal machining which was 

considered these aspects, but they partly cover size-effect and crystal orientation. 

 

1.2 Aims and Objectives 

 

The aim of this research is to develop a physics-based model for the micro-machining process 

of FCC single crystals to explain crystal orientation and size dependence of cutting forces. To 

achieve this goal : 

• The shear angle is computed by minimization of total work that is necessary to shear 

the crystal.  

• Cutting force signatures during turning of a single crystal along different 

crystallographic direction is computed to illustrate the amount and periodicity of force 

fluctuations due to crystallographic origins. 

• The effect of depth of cut dependence is computed including the strain-rate effects. 

• The method is applied to reproduce experimental force fluctuations of Aluminum and 

Copper single crystals in Cohen’s work. This includes calibration of the model to find 

appropriate model constants. 

 

1.3 Thesis Outline 

 

Chapter 1 Introduction 

This chapter aims the giving an insight about the background and scope of th is research, and 

presents overview of knowledge and some important points which forms a basis for the thesis.  

Chapter 2 Literature Review 

This chapter defines the level of the on-going research relating the single crystal machining and 

size-dependence effects on the machining processes by provide an overview of past and on-

going researches on this issue. 
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Chapter 3 Machining Plasticity Model 

This chapter includes three main parts: in the first part, mechanics of the orthogonal machining 

process and related force and velocity expressions are shown. In the 2nd part, single crystal 

orientation and deformation geometry and related expressions are derived special to machining 

process. In the 3rd part, single crystal deformation kinematics formulations are provided. 

Finally, the 4th part includes the single crystal constitutive laws. 

Chapter 4 Numerical Solution Procedure 

This chapter explains the numerical solution procedure and the algorithm used in the model.  

Chapter 5 Numerical Results 

This chapter consisting of two main parts: in the first part, the simulation results of the physics-

based model are discussed. In the 2nd part, the results of the Taylor based Model are given. 

Finally, the last part includes experimental validation of the simulation results. 

Chapter 6 Conclusions and Future Works 

This chapter presents the conclusions of the research described in the thesis. The aim and 

objectives of the research, outlined in chapter 1, are reviewed and their achievement addressed. 
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2 LITERATURE REVIEW 

 

 

 

Figure 2-1 Schematic representations of the orthogonal cutting on single-crystal workpieces, 

and the related coordinate systems [19] 

 

In machining processes, the experimentation methods and techniques are expensive and time-

consuming. Therefore, there is an increasing trend towards developing the numerical 

computation methods and analytical models to analyze the process. In single crystal 

micromachining processes, many differences are observed in the aspect of both process 

conditions and also material-related effects compared to classical macro-machining processes. 

One of the most important material related effect that has to be considered is the material 

anisotropy. The importance of material anisotropy or crystallographic orientation stem from the 

nature of the micro-machining process where the tool-workpiece interaction occurs within a 

single or a few crystals. Therefore, investigating the relation between the anisotropy and cutting 

forces, afterwards incorporating the anisotropy into the micro-machining models still maintains 

its importance.  Figure 2-1 above, shows the schematic representations of the orthogonal cutting 

operation on single-crystal workpieces. The analytical models are sub-categorized with respect 

to rate dependency. The rate insensitive plasticity models include Schmid based iso-stress 

models and Taylor iso-strain models. In these models, Schmid factor and Taylor factor are used 

to relate the yield stress with the critical resolved shear stress on each slip systems. In Schmid 

based models, or Sachs model, it is assumed that all single crystals grains with aggregate 

experience the same state of stress and equilibrium condition across the grain boundaries are 

satisfied whereas compatibility across grains is violated. Moreover, in each grain, deformation 
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takes place by single slip on the most highly stressed slip system, i.e. the one with the highest 

Schmid factor which is used to predict the active slip systems. Ueda and Iwata [36], examine 

the chip formation mechanism on the single crystal β-brass. They used Schmid factor to 

estimate the shear angle theoretically with assuming the axis of applied load to the crystal 

coincides with the direction of the resultant cutting force. Moreover, they found that there is a 

good agreement between the measured shear angle value and the theoretical one which is 

calculated based on the Schmid factor analysis of the active slip system (110) <111> also by 

considering the role of downward slip system. Finally, they concluded that there are some 

favorable cutting directions with respect to crystallographic orientation which improves the 

surface roughness significantly. 

 

Taylor models which is proposed by Taylor and later derived in detail by Bishop and Hill,  

assumed that all single-crystal grains within the aggregate experience the same state of 

deformation or strain and compatibility conditions between the grains satisfied. Lee and Zhou 

[24], analyzed the effect of crystallographic orientation on chip formation theoretically by using 

a microplasticity model which is based on the minimum effective Taylor factor.  They came to 

a conclusion that the previous studies examining shear angle predictions by using Schmid based 

models, the absolute values and trends were different and also predicted cyclic variation in shear 

angle was found to be out of phase with the measured values compared to experimental data. 

The variation in shear angle values with rotation angle in crystal A [001] and crystal B[101] 

from the work Ueda and Iwata,  is presented in the figure 2-2, below. 
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Figure 2-2 Variation of shear angle with rotation angle in (a) crystal A[001] and (b) crystal 

B[101] [36] 

 

However, their microplasticity model which is based on the Taylor factor, could predict a range 

of shear angle values for a given state of material anisotropy. Taylor factor is a dimensionless 

number sensitive to the crystallographic orientation and it is calculated by considering the 

maximum work principle of Bishop and Hill. According to their model, the variation in shear 

angle values with rotation angle in crystal A[001] and crystal B[101] is presented in the figure 

2-3, below. 
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Figure 2-3 Variation of shear angle with rotation angle in (a) crystal A[001] and (b) crystal 

B[101] [24] 

 

Finally, they found a good agreement between the theoretical shear angle values and 

experimental data to model the effect of crystallographic cutting direction on the shear angle 

by using microplasticity model of shear band formation. Another important finding of this study 

is that by using the change in the crystallographic orientation of the material with respect to the 

cutting direction, the pattern of variation in cutting forces can easily be predicted.  

 

It should be noted that to produce the specified amount of strain in Taylor models, 5 slip systems 

are needed to be active and the selection of these slip systems for FCC metals which have 12 

slip systems is not unique. As can be understood from the explanations given above, there are 

some problems associated with the usage of these models which could be summarize as 

determination of active slip systems, and the increments of shear on active systems. 

 

Afterwards, the crystal plasticity finite element models gained momentum. It is known that the 

deformation processes in real-life are more complex and it is required to consider more than 
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one active slip system at each incremental deformation, on the contrary to early modelling 

approaches. As a result, there is a need of comprehensive modelling frameworks to analyze the 

cutting forces and stresses. In finite element models, the entire volume under consideration is 

discretized into the elements and the velocity gradient is written in dyadic form. These models 

have also evolved to employ some of the extensive knowledge gained from experimental and 

theoretical studies of single-crystal deformation and dislocations. Although there are some 

studies which is used molecular dynamic (MD) simulations to study the chip removal 

mechanism, due to the required amount of computational power to model the deformation in 

physically meaningful volumes, FE/SPH models are more preferred. Zahedi et al. [37] used a 

hybrid modelling approach which includes both smoothed particle hydrodynamics and 

continuum finite element analysis to model the variation of cutting forces in machining of FCC 

single crystals. They conducted simulations by considering orthogonal cutting mechanism on 

the Al and Cu single crystals. 

 

 

Figure 2-4 The variation of cutting force for various cutting directions in single crystals of 

Aluminum and Copper, respectively [37] 

 

As it can be seen in the Figure 2-4, they found that the magnitude of the cutting force values 

were different in aluminum and copper when cutting realized under the same conditions; 

however, the character of variation of the cutting force for different orientations for both 

materials was similar. They also concluded that chip morphologies after machining also shows 
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similarity in the type of chip formed for copper and Aluminum which leading to the conclusion 

that the nature of the deformation significantly affected by the orientation and direction of 

cutting. 

 

In another study, Demiral et al. [10] investigate the underlying micromechanics of 

micromachining process, by using a 3D finite-element model of orthogonal micro-machining 

of FCC single crystal copper. They conducted simulations by considering different types of 

strain gradient crystal plasticity theories and conventional crystal plasticity theory. In EMCP 

theory, they did not consider the GNDs evolving in the course of deformation. However, in 

EMSGCP theory, the contribution of the evolution of the GNDs to local hardening of the 

material was considered. 

 

 

Figure 2-5 The variation of cutting forces (a–b) with cutting length obtained by using 

EMSGCP and EMCP theories and chip shapes (d–e) at cutting length of 2.25 lm for different 

cutting planes and cutting directions [10] 

 

According to their results, in the figure 2-5 above, EMSGCP theory predicts a cutting force that 

increases with an increase in the cutting length; in contrast to the EMCP theory.They concluded 
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that this difference between two theories was due to the strain-hardening rate since EMSGCP 

theory accounting for the evolution of strain gradients during deformation. Finally, they 

combined crystal plasticity kinematics with a strain gradient hardening term; therefore, the 

model was able to capture the size-effect in machining problems successfully. Their simulations 

showed that the EMSGCP theory is able to capture average cutting energy obtained in good 

agreement with experimentally obtained value of specific cutting energy for all crystal 

orientations and cutting directions.  

 

The finite element models do not maintain its popularity due to the long computational times 

and high cost values associated with these tools. The deformation in machining process involves 

both frictional contact and chip formation and the finite element models are not considered the 

best way to model the process. Finally, more recent efforts in this field, focused on physically 

based models. Kota et al. [19] developed a crystal-plasticity based model to investigate the 

effect of crystallographic orientation, friction and the cutting geometry on the cutting response 

for orthogonal cutting of FCC single-crystal metals. The plasticity-based machining model 

which includes Bishop and Hill’s crystal plasticity theory and Merchant’s machining force 

model is used to determine optimal shear angle solution by minimizing total work over 

allowable shear angles. They also provide an experimental validation using data from the 

literature for both single-crystal aluminum and single-crystal copper and by considering both 

varying cutting direction for constant zone axis, and for varying zone axis for constant cutting 

plane conditions. The schematic representation of the first and the second part of the 

experimental validation where a disk-type workpiece is considered in plunge-turning 

configuration, is presented in the figure 2-6 below. 

 

Figure 2-6 Definition of the orientation angle for fixed zone axis and sample, crystal, and 

cutting orientations for the fixed cutting plane experiments, respectively[19] 
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Figure 2-7 Experimental validation of the model for aluminum single-crystal machining with 

fixed zone axis of [0 0 1]: The results for specific cutting energies and shear angle values, 

respectively. [19] 

 

Figure 2-8 Experimental validation of the model for copper single-crystal machining with fixed 

zone axis of [0 0 1] [19] 

 

In the first part of the work, the experimental data presented by Cohen [6] from in-situ diamond-

turning experiments on single-crystal aluminum and copper are used. As can be seen in the 

Figure 2-7 and 2-8 above, they obtained a good match between the model predictions and 

experimental data, which indicates the model’s capability to capture crystallographic anisotropy 

and symmetry. The second part of the experimental validation includes varying zone axis for 

fixed value of cutting plane normal. The experimental data presented by Zhou and Ngoi [38] 
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from planing of single-crystal copper, where different cutting directions on the (1 1 0) and (1 1 

1) cutting planes were considered is used for validation.  

 

 

Figure 2-9 (a) and (b) are the simulated variation and experimental variation in cutting force on 

(1 1 0) plane, and (c)  and (d) presents the simulated variation and experimental variation in 

cutting force on (1 1 1) plane, respectively [19] 

 

Figure 2-9 shows that the model is capable of capturing the force fluctuations on both planes. 

The variation on the (1 1 0) plane is larger than the variation on (1 1 1) plane. It could be 

explained by the higher symmetry on (111) plane compared to (110) plane. 

 

Sato et al. [33] investigated the relation between the accuracy of the finished surfaces and the 

crystallographic orientation, by using their tentatively manufactured ultraprecision machine, 

and they studied characteristics of the micromachining of Aluminum single crystals. As can be 

seen in the figure 2-10 below, they found that the cutting in the [01̅1] direction achieved the 

lowest surface roughness value, whereas cutting in the [12̅1] direction gives the max value. 

Therefore, it can be said that cutting direction and their location with respect to sliding surface 

or direction affects the both roughness and the flatness of the material which helps to explain 

the importance of controlling specimen orientation effect on the improving working accuracy. 
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Figure 2-10 The variation of the surface roughness values with different cutting directions [33] 

The figure 2-11 indicates that when the depth of cut value reaches 1.0µm, the gradient of the 

Fh changes which means that there is a change in cutting mechanism. Therefore, as a second 

experimental finding, they also shed light the relation between the size-effect and the depth of 

cut and it can be said that the size-effect occurs when the depth of cut value reached 1.0µm with 

respect to their setting. 

 

 

Figure 2-11 The variation of the cutting forces with depth of cut values [33] 
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In another experimental work, Moriwaki et al. [29] examined the effects of crystallographic 

orientation on chip formation, cutting force, and surface integrity during micromachining of 

single crystal Copper and they found that crystallographic orientation has a significant effect 

on the nominal shear angle when the depth of cut is greater than 1µm. The variation of shear 

angle with crystallographic orientation for different depth of cut values is plotted in the figure 

2-12, below. 

 

 

Figure 2-12 The effect of crystallographic orientation on shear angle[29] 

 

Moreover, they observed the same effect on the cutting force and the surface roughness. As it 

is evident from the figure 2-13 below, the variation in the principal force with the orientation 

can be considered as opposite to that of shear angle. The variation in the principal force is more 

dominant when the depth of cut is greater than 1µm. They concluded that the reason why the 

cutting force and shear angle are not significantly affected by the crystallographic orientation 

is that depth of the damaged layer in this study, reaches 0.2 to 0.5 µm. As a result, when the 

depth of cut is kept small, the damaged layer is cut.  
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Figure 2-13 The effect of crystallographic orientation on the cutting force and surface 

roughness, respectively [28] 

 

In one of the other experimental studies, To et al. [35] found that (100) cutting plane gives the 

best surface finish while the (110) cutting plane results in highest surface roughness during 

micromachining of Aluminum single crystals, hence these results make it clear that 

incorporating material anisotropy in micromachining processes is beneficial not only for energy 

consumption (through determination of cutting forces) but also for quality of the last product 

and the efficiency of the process. 

 

Ngoi and Zhou [38], investigated the effect of both tool and workpiece orientation on cutting 

forces and surface roughness during diamond turning of Aluminum and Copper. In the aspect 

of tool orientation, they measured the variation of friction coefficient and also shear angle and 

they concluded that workpiece materials are sensitive to the orientation of the diamonds that’s 

the reason why friction coefficient changes with different planes and also along different 

directions on the same plane. Furthermore, as is evident from the figure 2-14 below, the cutting 

forces change considerably with orientation of the workpiece and the lowest and highest force 

values are obtained along [11̅0] direction and [001] direction while cutting is realized on the 

(110) cutting plane, respectively. The fluctuations in the magnitude of the cutting forces is 

greater while cutting is performed on the (110) plane. 
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Figure 2-14 Variation of cutting forces with crystal orientation in diamond cutting of single-

crystal copper when cutting is performed on the (110) and the (111) plane, respectively [38] 

 

Similarly, figure 2-15 shows the variation of the cutting forces with orientation in diamond 

cutting of single crystal aluminum. The observed trend in the variation of cutting forces is the 

same with that observed in the diamond cutting of single-crystal copper. 

 

 

Figure 2-15 Variation of cutting forces with crystal orientation in diamond cutting of Al single-

crystals when cutting is performed on the (110) and the (111) plane, respectively [38]  

The effect of crystallographic cutting direction on the machined surface roughness was also 

investigated. As might be seen in the figure 2-16 below, the fluctuations observed in surface 

roughness is bigger for the case of cutting on the (110) plane which corresponds to higher 

variation in cutting forces. However, for the case of cutting on the (111) the fluctuations 

observed in surface roughness is small and it leads to the conclusion that the variation in the 

cutting forces is not the dominant reason to determine the change in the surface roughness. In 

order to examine the surface roughness of the machined surface, the elastic and plastic 

anisotropy of crystalline materials also has to be taken into account. 
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Figure 2-16 Variation of surface roughness with crystal orientation in diamond cutting of Cu 

single-crystals when cutting is performed on the (110) and the (111) plane, respectively [38] 

 

Finally, by using a micro-plasticity Taylor model where the effective Taylor factor is used for 

determining the variation of the shear strength, they modelled the cutting force variation with 

crystallographic orientation as presented in the figure 2-17. They obtained a close match 

between the analytical predictions and experimental results.  

 

 

Figure 2-17 Variation of  Taylor factor M' (shear strength) with crystal orientation when cutting 

when cutting is performed on the (110) and the (111) plane, respectively [38] 

 

2.1 Strain Rate Effects 

 

Modelling the responses of the materials at very high rates of deformation (which generally 

includes ranges >105 s-1) has always been a challenging research area. Since the subject have 

many different application areas such as vehicular crash tests, development of armors, high 
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speed impact phenomena and also metal cutting, it is important to develop material models to 

give insight the nature of the deformation. It is well-known that material response during 

machining could be very complex; due to the involving high strain, strain rates and also 

temperature values. Austin et al. [2], develop a physically-based model to explain the slip 

mechanism in polycrystalline metals and alloys at very high strain rates (from 104 to 108 s-1 ). 

Their model mainly focused on visco-plastic behavior of pure FCC metals in shock waves by 

using constitutive laws and the importance of this work arises from the treatment of the 

dislocation substructure and their approach to discuss the distinction between the mobile and 

immobile dislocation density. By taking account of this distinction and generating path-

dependent formulations for the mobile and immobile dislocation density components, the 

weight or the effect of the dislocation population on the visco-plastic flow rate and the glide 

resistance can be evaluated. With this work, they changed the way of approaching the shock 

wave calculations where the rate-dependence is generally ignored.  

 

Hansen et al. [14], developed a model where the deformation of single crystals for a wide-range 

of strain rates is formulated by using constitutive laws. In this work, they considered distribution 

of dislocation velocities to model plastic deformation and the model take account of both 

temperature and kinetic effects of dislocations moving at high rates, distinctively. Moreover, 

they obtain a good match with the experimentally observed transition between the two-different 

dislocation behavior.  

 

It should be noted that even if the loading condition is at a certain strain rate, any point in 

microstructure could exhibit different behavior by enduring different strain rates due to the 

location of the point and the deformation history. There have been many different works which 

aim to model high strain rate behavior or from low to moderate strain rate values. Shahba and 

Ghosh [34], developed unified constitutive relations to adapt rate-dependent plasticity models 

to transcend a wide range of strain rates. In another way of saying, by developing a unified flow 

rule which considered the slip rate in terms of dislocation density and average dislocation 

velocity, they try to model the transcending from thermal-activated to drag-dominated stages. 

The results of CPFE simulations based on their model are consistent with the experimental 

results for polycrystalline materials due to its ability to capture the increase in rate sensitivity 

of the flow stress at higher rates of deformation; and for single crystal materials, the model 
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predicts an elastic overshoot associated with the small amount of dislocation content at very 

high strain rate values. 

2.2 Size-Effect 

 

Size-effect is another important consideration which again arises from the nature of the process. 

It is generally defined as the sudden non-linear increase in specific cutting energy. Since size-

effect has been studied for the long time, many explanations are considered to give insight the 

mechanism. These explanations can be grouped as tool edge radius effect, sub-surface plastic 

deformation, material strengthening effect due to strain rate or strain gradient, and material 

separation effect.  

 

Backer et. al [3] related the size effect to crystallographic defects and imperfections. They 

discussed that due to encountering significantly reduced number of imperfections when 

deformation takes place in a small volume, the material strength would be expected to increase.  

 

In another explanation which is related with tool edge radius, the increase in specific cutting 

force with decrease in uncut chip thickness is explained by ploughing force arising from 

frictional rubbing and ploughing associated with material removal by a blunt tool. Moreover, 

any changes in tool edge radius can cause change in shear angle values and effective rake angle 

of the tool and this also can be considered as an explanation for the size-effect. In most of the 

studies, the main reason of the size effect is attributed to the relation between the edge radius 

of the tool and uncut chip thickness. Mian et al. [28] investigated the factors that dominate the 

size-effect in micro-machining. In order to explain the importance of the factors, they conducted 

micro-milling tests and they considered tool edge radius, cutting speed, chip load, and chip 

aspect ratio as the investigated factors. By using statistical analysis for the specific acoustic 

emission, they found that both ratio of feed per tooth to tool edge radius and the cutting velocity 

are the dominant factors which control the size-effect mechanism. Fang [11] developed a slip-

line model for modelling the machining with a rounded edge tool. In his model, there are sub-

regions which have their own physical meaning and the model to take into account of size 

effect, shear zone effect etc. Additionally, he proposed an equation to predict the thickness of 

the primary shear zone which also helps to predict the shear strain rate in the same zone. 
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According to the simulations of the model which considered orthogonal machining condition, 

tool edge radius is selected as the most important parameter affecting the process. Moreover, 

he found that since the nondimensionalized cutting force remains constant with increasing tool 

edge radius/uncut chip thickness ratio, it means that cutting force depends on the material shear 

flow and it leads to that the size effect highly depends on the material constitutive behavior in 

machining. It can be easily said that a good match is obtained between the classic-slip line 

theory and experimental evidence in zinc machining. Liu et al. [26] examined the effect of tool 

edge radius on the size-effect mechanism, by performing finite element simulations.  

 

 

Figure 2-18 The variation of specific cutting energy with or ratio for two edge radii, without 

considering strain gradient effect [26] 

 

They found that tool edge radius has an impact on the size-effect mechanism in two ways, first 

by changing the material flow pattern around the tool tip by widening the plastic shear zone and 

the second way because of higher energy dissipation due to increased tool-chip contact length 

at smaller uncut chip thickness values. It is evident from the figure 2-18 that the specific cutting 

energy increases when the t/r ratio decreases, which results in capturing  the size effect in the 

simulations using a tool with edge radius.  
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Figure 2-19 Variation of specific cutting energy with uncut chip thickness with and without 

strain gradient (SG) effect [26] 

 

However, when the simulations are repeated by considering strain gradient effect, as can be 

seen in the figure 2-19 above, the results showed much greater increase in the specific cutting 

energy. As a result, they concluded that the tool edge radius can only be considered as a part of 

the reasons which causes the size-effect. In another way of saying, they proved that strain 

gradient strengthening of the material also causes size-effect mechanism when cutting at small 

uncut chip thickness levels. Another important finding is that at low cutting speeds, small uncut 

chip thickness and negligible tool radius values, nonlinear increase in specific cutting energy 

observed near the material length scale l. On the other hand, they also found that increasing the 

cutting speed also has an impact on the size effect because of the material strengthening in the 

secondary deformation zone.  

 

Larsen-basse and Oxley [22] explained the size-effect occurrence in machining by considering 

strain-rate sensitivity of the workpiece material. According to the results of their experiments, 

on plain carbon steel, they concluded that the maximum shear strain rate within the primary 

shear zone is inversely proportional to the uncut chip thickness. Since a decrease in the uncut 

chip thickness causes an increase in the strain rate. This increase leads to an increase in the flow 

stress with the strain-rate sensitivity of flow stress increasing rapidly which can be considered 

as a reason for the increase in specific cutting energy with reduction in uncut chip thickness.   
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Kopalinsky and Oxley [18] explains the size-effect by considering the effect of temperature. 

They concluded that the size effect in machining at high cutting speeds and large uncut chip 

thickness is primarily caused by an increase in the shear strength of the workpiece material due 

to a decrease in the tool-chip interface temperature. They also emphasized that the effect of 

temperature is not the dominant mechanism at uncut chip thickness less than 50 µm, which 

could be explained by increasing sensitivity of flow stress to strain rate within this range. 

 

Finally, size-effect can be explained by considering the strain gradient plasticity theory. Due to 

the reduction in the shear plane length, an increase in the shear strain gradients and which 

leading to an increase in shear strength of the material is also considered as the reason of the 

size-effect. By using a strain gradient plasticity-based model of material deformation in the 

Primary Deformation Zone of an orthogonal cutting process and formulations of the strain 

gradient, density of geometrically necessary dislocations, shear strength of the material in the 

PDZ and the specific shear energy, the size-effect can be modeled in a more realistic way. 

 

Joshi and Melkote [16] try to explain the size-effect mechanism in the PDZ by using strain 

gradient plasticity theory to model the plastic deformation in orthogonal machining process. 

Their model includes formulations to evaluate the strain gradient, density of geometrically 

necessary dislocations, shear strength of the material in PDZ and the specific shear energy. The 

schematic representation of the strain gradient model is given in the Figure 2-20 and 2-21 

below. 

 

Figure 2-20 The schematic representation of the strain gradient model & overall PDZ [16] 
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Figure 2-21 Model of strain gradient: in a row of elements parallel to the shear plane, in a row 

of elements perpendicular to the shear plane [16] 

 

Moreover, they introduced a material length scale concept for modelling the deformation in 

PDZ. In this concept, the length of the shear plane was shown to be the material length scale 

governing the size-effect in PDZ. In another way of saying, as the length of the shear plane 

reduces, strain gradient increases leading to an increase in the shear strength. The increase in 

the shear strength of the material in the PDZ is considered as the lower bound on the size-effect 

in shear strength. By using their model, the amount of increase in shear strength can be 

evaluated.  

 

 

  The theoretical specific shear energy was obtained by using the equation (2.1) below, 

𝑢𝑠𝑠
𝑚𝑜𝑑𝑒𝑙 = [1 +  [ 

𝛼2𝐺𝑏 𝑠𝑖𝑛∅

𝐿 𝜏0
2 ]𝜇]

1
2𝜇[

𝑐𝑜𝑠𝛼

𝑐𝑜𝑠(∅ − 𝛼) 𝑠𝑖𝑛 ∅
]                                                                             2.1 
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Figure 2-22 Size-effect in the specific shear energy- rake angle of the tool :10 deg[16] 

 

In their work, they used three different experimental data sets to investigate the size-effect. The 

variation of specific shear energy with undeformed chip thickness evaluated from experimental 

data set and the one evaluated using their model is plotted in the figure 2-22 above. Since the 

maximum increase in shear strength is observed when the µ=1, it is also depicted in the figure 

to show the lower bound on the size-effect. It can be said that their model predictions for 

specific shear energy has always the same trend with experimental values and a close match is 

also observed especially for µ<1.  
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                             Table 2-1 Summary of single crystal micro machining works 

 

author / date focus machining type material machining parameters

Ueda and Iwata / 1980 [36]
experimental study & 

Schmid based model
orthogonal fly cutting b-brass single crystals

rake angle: 0° / 20°                           

depth of cut: 10-30 µm                

width of cut: 1 mm                   

edge radius 774 µm                  

cutting speed: 0.15 mm/min

Cohen, P. / 1982 [6] experimental study micro turning Al and Cu single crystals

rake angle: 20° / 40° / 50°                                  

depth of cut: 114.3 mm          

width of cut: 15-20 mm                        

edge radius: 2  mm             

cutting speed: 0.55 mm/s

Kopalinsky et al. / 1984 [18] experimental Study orthogonal machining Plain Carbon Steel

rake angle: -5° / -25° / -50°                               

depth of cut: 2mm                           

width of cut:   -                        

edge radius: Negligible                      

cutting speed: 420 m/min

Blackley and Scattergood / 

1990 [4]

experimental study & 

stress based model
facing Ge single crystals

rake angle: 0° / -10°/ -30°                                

depth of cut:  5/ 2.5µm /0.5µm                    

width of cut:  -                        

edge radius: 0.762 /3.175 mm                                       

cutting speed:  1 m/s

Sato et al. / 1991 [33] experimental study 
orthogonal cutting 

with milling
Al single crystal 

rake angle: 3°                            

depth of cut: 0.5-3 µm                

width of cut: 4.5 mm                   

nose radius 10 nm                  

cutting speed: 1 m/min

Lee and Zhou / 1993 [24]
Taylor based  

microplasticity model
orthogonal fly cutting b-brass single crystals Ueda and Iwata experiments

Moriwaki / 1993 [29] experimental study

orthogonal fly cutting 

and quasi-orthogonal 

cutting

Cu single crystals

rake angle: 0°                                

depth of cut:  0.01 -3µm             

width of cut:  -                      

edge radius: Negligible                      

cutting speed: 530m/min

To et al. /1997 [35] experimental study Diamond Turning Al single crystals

rake angle 0 deg.                                 

depth of cut  1-10µm                     

edge radius 0,635 mm               

cutting speed  319000 mm/min

Zhou and Ngoi / 2001 [38]
experimental study & 

Taylor based model
Diamond Turning Al and Cu single crystals

rake angle: 0°                            

depth of cut: 5 µm                

width of cut:  -                        

edge radius 500 µm                  

cutting speed: 78 m/min

Lee et al. / 2002 [25]
experimental study & 

Taylor based model
facing Al single crystals

rake angle: 0°                            

depth of cut: 0.1-200 µm                

width of cut: 4 mm                   

edge radius: -                     

cutting speed: 78000 mm/min

Kota and Ozdoganlar / 2010 

[19]
Taylor based model planing Al and Cu single crystals Cohen experiments

Demiral et al. / 2014 [10]
crystal plasticity finite 

element model
planing Al and Cu single crystals

rake angle: 0°                            

depth of cut: 2 µm                

width of cut: 1.6 mm                   

edge radius:  -                    

cutting speed: 1300 mm/s
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3 MACHINING PLASTICITY MODEL 

 

The material model includes three main parts: in the first part, mechanics of the orthogonal 

machining process and related force and velocity expressions are discussed. In the 2nd part, 

single crystal deformation kinematics formulations are given. Finally, the last part includes 

related single crystal constitutive laws. 

 

3.1 Orthogonal Machining Mechanics 

 

Orthogonal machining has the simplest geometry in all machining operations and the real-life 

application for this process mechanics could be planning or turning. For that reason, it could be 

used as a base for explaining general mechanics of the material removal and more complex 

process geometries such as milling, drilling. It can be defined as a cutting process in which 

cutting edge of a straight tool is perpendicular to the cutting velocity. In the proposed model, 

there are two assumptions related with orthogonal cutting which are plane strain and sharp tool 

assumptions. Since the material deformation is considered as uniform along the cutting edge, it 

can be assumed that the orthogonal cutting is a two-dimensional plane strain deformation 

process. Moreover, the tool is considered as sharp as possible due to avoiding tool edge radius 

effects such as size-effect. In the fig.1 below, the schematic representation of orthogonal 

machining geometry, shear plane and chip formation is given. 

 

 

Figure 3-1: The schematic representation of orthogonal machining, tool and chip formation 
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Since the tool is considered as sharp as possible, the depth of cut value is assumed to be greater 

than the edge radius of the tool and the deformation geometry of orthogonal cutting is assumed 

to be simple shear on the shear plane. In this model, friction between the chip and the rake face 

also considered while the friction or any rubbing effect between the workpiece material and the 

flank face of the cutting tool is neglected. There are three main zones should be considered 

during modelling the orthogonal machining process. Primary zone is the region which includes 

shear plane and it is presented by details in the figure 3-1 above. While the tool penetrates the 

workpiece, the material advances toward the tool and it is sheared over the primary shear zone 

to form a chip. Secondary deformation zone includes the region between the chip and the rake 

face of the tool. The last region where the flank of the tool rubs the newly machined surface, is 

called the tertiary zone. The effect of the tertiary deformation zone is neglected in this study. 

 

There are different approaches to model the primary deformation zone but two of them could 

be considered as the most accepted the approaches. The model that the Merchant developed 

used the assumption of thin plane for the shear zone whereas the others based on thick shear 

deformation zone. As it is mentioned before, thin shear zone assumption is used in this study 

for simplification. The deformation geometry and the cutting forces are shown on the cross-

sectional view of the orthogonal machining is presented in figure 3-2 below; 

 

Figure 3-2 : The cross-sectional view of the orthogonal machining and cutting forces 

 

In orthogonal cutting, cutting forces are exerted only in the directions of velocity and uncut 

chip thickness, which are called tangential (Ft) and feed forces (Fc), and it is different from 

oblique cutting in which the cutting edge is oriented with an inclination angle (i) and the 
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additional third force acts in the radial direction (Fr).It should be noted that cutting forces action 

on the tool will have equal amplitude but opposite direction compared to the forces acting on 

the chip. The R notation is used for resultant force and f and Fs imply the friction and shear 

forces, respectively [1] 

 

sin

cos(
sf F

b

 + b )
=

−
                                                                                                                3.1                                                                                                                                                                                                                                                                                     

cos(

sF
R

 + b )
=

−


cos( )cF R b = −                                                                                                                      3.3                                                                                                                                                                                                                                                                                                                  

sin( )tF R b = −

 

In order to obtain the shear and friction power formulations, 𝑊̇f and Ẇs same expressions can 

also be derived for V, Vc and Vs refer to cutting velocity, chip velocity and shear velocity, 

respectively. 

 

sin cos( ) cos

c sV V V

   
= =

−


.
c

f
fVW =                                                                                                                                   3.6 

. cos(

cos(
Ss s

s
F V F VW

)

 )
= =

−
                                                                                                    3.7                                                                                                                                                                                                                                                                                                                                  

                                                                                            

In order to determine the total power, sum of the shear power and friction power is calculated: 

 
.. . sin sin cos

cos( cos( ) cos( )
s

ftot s
F VWW W

b  

 + b )    
= + = +

− − −
                                              3.8 
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The total amount of shear, , as a function of shear angle, , and rake angle, r, is presented in 

the equation below, 

cos
cot tan(

sin cos( )


   − ) =

  
= +

−
                                                                                  3.9                                                                                                            

 

Specific cutting energy, Kc, energy required to remove a unit volume of material and it is 

generally expressed as a function of workpiece material, tool and process: 

 

0 0

. cos( )

cos( )
C

c sC Power F F
K

MRR wt wt

b 

 b 

−
= = =

+ −
                                                                          3.10 

 

The total amount of time for shearing process, t is calculated by dividing the distance travelled 

during shear, L, by the shear velocity, Vs. 

0

sin

t
L


=                                                                                                                                 3.11                                                                                                                                                      

s

L
t

V
=                                                                                                                                      3.12 

 

The total work, Wtot, could be calculated by adding the power increments over time. 

.

tot totW W dt=                                                                                                                           3.13 

 

3.2 Crystal Orientation and Deformation Geometry            

 

As mentioned before, since the material deformation is considered as uniform along the cutting 

edge, orthogonal cutting can be considered as a two-dimensional plane strain deformation 

process. In the case of plane strain the total deformation gradient, F, is defined as in the form 

of simple shear on the shear reference frame:     
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1 0

0 1 0

0 0 1

 
 

=  
 
 

F                                                                                                                     3.14                                                                                                                                                                                                                                                       

  

Then, the transformation between the shear reference frame and the crystal reference frame 

should be determined. Shear, cutting and the crystal reference frames are presented in the figure 

3-3 below, 

 

 

Figure 3-3 Shear reference (in black color), cutting reference (in red color), rotated-cutting 

reference (in green color) and crystal reference (in blue color) with θ: rotation angle about the 

zone axis, φ: shear angle 

 

In the first step, transformation matrix (Tc→sh) from shear reference frame to the cutting 

reference frame prescribed by the rotation of the shear angle (φ). The axis of rotation coincides 

with the width direction of the cut sample. The shear angle has a negative sign by definition.  

 

cos 0 sin

0 1 0

sin 0 cos

Tc sh

 

 

→

− 
 

=
 
  

                                                                                               3.15 

                                                                                                                                  

Then, transformation matrix from the rotated cutting reference to the cutting reference frame 

(Trc→c) is computed. Since the crystal rotates with respect to the tool during the turning process, 
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a rotation angle, θ is defined about the zone axis vector {pqr} which is normal to both the cutting 

direction and the cutting plane.  

 

cos 0 sin

0 1 0

sin 0 cos

Trc c

 

 

→

 
 

=
 
 − 

                                                                                               3.16                                                                                                        

 

Finally, transformation matrix from the rotated-cutting reference frame to the crystal frame 

(Trc→cr) is computed. It is constructed using crystallographic vectors of {uvw}, {pqr}, and 

{hkl}, respectively, corresponding to the first, second, and third directions of the rotated-cutting 

reference. 

Trc cr

u p h

v q k

w r l

→

 
 

=
 
  

                                                                                                           3.17                                             

 

Therefore, the overall transformation matrix, R, from the shear reference frame to the crystal 

reference frame can be defined as, 

R T T Trc cr rc c c sh→ → →=                                                                                                     3.18 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

3.3 Single Crystal Deformation Kinematics 

 

Since the chip formation in metal cutting is associated with large strains and high strain rates, 

a large deformation crystal plasticity framework is adopted in this study. Deformation gradient, 

F, is the measure of the total change in shape and it is specified as shearing, γ, on the shear 

plane. It can be expressed as in matrix form given in equation below: 

1 0

0 1 0

0 0 1

 
 

=  
 
 

F                                                                                                                       3.19 
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Total amount of deformation gradient consists of elastic and plastic parts [16]. 

= e p
F F F                                                                                                                                 3.20                                                                     

 

Elastic strains which is the form of strain in which the distorted body returns to its original 

shape and size when the deforming force is removed can be computed by using Green-Lagrange 

strain tensor. 

 

2

−
=

T
e e

e F F I
E                                                                                                                         3.21                                                          

Then, the vectorized form of stresses, 𝐩̂ can be calculated by using vectorized form of Green-

Lagrange strain, 𝒆𝒆𝑎𝑛𝑑 the cubic elasticity tensor, 𝐂̂  at the crystal reference frame. 

𝐩̂ = 𝐂̂. 𝐞𝐞                                                                                                                                3.22                                                                                                                                                                                        

 

C implies the elasticity matrix in the crystal frame constructed using three temperature 

dependent elastic constants for cubic metals; C11, C12, and C44 for aluminum. 

 

C11=123.323 + 6.7008 x10-8T3 -1.1342x10-4 T2-7.8788x10-3T                                             3.23 

C12=70.6512 + 4.4105x10-8T3 -7.5498x10-5 T2+3.9992x10-3T                                              3.24 

C44=123.323 + 7.0477 x10-9T3 -1.2136x10-5 T2-8.3274x10-3T                                              3.25 
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C C C 0 0 0
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0 0 0 C 0 0

0 0 0 0 C 0

0 0 0 0 0 C

 
 
 
 

=  
 
 
  
 

                                                                                 3.26                                                                                               
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The resolved shear stress, τa, per slip system, a, is determined by resolving 2nd Piola Kirchoff 

stress. 

𝜏𝛼 = 𝐅eT𝐅e𝐏: 𝐒̂𝑎                                                                                                                    3.27 

                                                                                                                                                                                                                                                                                                                                                                                                                                              

Where  𝐒̂
𝑎
 is the Schmid tensor which is defined as the dyadic product of slip direction, 𝐬̂

𝑎
, and 

slip plane normal, 𝐧̂
𝑎
, for slip system a.                                                                                                                                                                            

 𝐒𝑎 = 𝐬𝑎   𝐧̂𝑎                                                                                                                                                  3.28 

 

In the table-1 below, the slip plane normal and the slip direction of the FCC-type crystal systems 

in the crystal reference frame is presented.  

 

 

Table 3-1: Slip system for FCC crystals;  𝑠a and 𝑛a denote the slip direction and slip plane 

normal, respectively, in the crystal reference frame 

 

The rate of the plastic part of the deformation gradient is calculated in terms of the velocity 

gradient, 

 
.

P P P

F L F=                                                                                                                           3.29                                                                                                                                                                                                                                                                                                           

To calculate the plastic velocity gradient, 𝐋𝐏, the shear rates over the slip systems are summed 

up. 

𝐋𝐩 = ∑ 𝐒̂𝑎𝛾̇12
𝛼=1                                                                                                                       3.30                                    

    

                                                                                                                                                                                                                                                                                                                              

Slip System for F.C.C. Crystals ;       and     denote slip direction and slip plane normal, respectivelyTable 1 :

(111) (111)(111)(111)

[011] [101] [110] [011] [101] [110] [011] [101] [110] [011] [101] [110]

an

as

as an
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The stress at the deformed reference, i.e., the Cauchy stress, σ, is calculated using the equation 

below,      

 

𝛔 =
𝐅𝑒𝐏̂ 𝐅𝑒𝑇

 

𝑑𝑒𝑡(𝐅𝑒)
                                                                                                                             3.31 

                                                                                                                        

Crystal plasticity kinematic equations are solved using the Dawson-Maniatty algorithm [27]. 

The novelty of this study from the previous studies is the usage of the zero-penalty parameter            

(λp = 0) which helps to enforce volume constancy. Since it is well-known that in case of 

machining, chip formation is associated with large strain and high strain rates; therefore, the 

amount of simple shear for machining can take very large values (well over (◦90)) especially 

for low shear angles (∅). To obtain healthier results, the volume constancy enforcement and the 

related penalty term are neglected in this study.        

                                                                                                                                                                                                                                                                                                                               

3.4 Physics-Based Single Crystal Constitutive Model 

 

In order to find the slip rates, 𝛾̇𝑎 and the resolved shear stress, τa, different plastic constitutive 

laws are used. All constitutive laws used in this study, presented in the table below. 

 

3.4.1 Dislocation Geometry 

 

In the aspect of FCC crystals, the dominant dislocation mechanism is assumed as edge-type. 

Forest dislocations are defined as the dislocations that intersect the plane and they can be 

considered as obstacles to the motion of the gliding dislocation that, to a reasonable 

approximation, can be treated as point obstacles in the glide plane. 
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Figure 3-4 TEM images of a deformed single crystal [21] 

 

Figure 3-4 shows the TEM measurements that this work relies on. The dislocation dense regions 

consist of mainly edge type dislocations. In the TEM image the dense regions are along normal 

direction the glide direction which verifies that they are of edge type. According to Kocks [17] 

and Kuhlmann [21], the interior regions consisted of screw type of mobile dislocations. 

 

3.4.1.1 Forest Dislocation Density 

 

Forest dislocations are the type of dislocations which intersects or piercing through the slip 

plane. By using the assumption of edge type dislocation geometry for the primary 

dislocations, which is consistent with etch-pit observations, the forest dislocation density on 

the slip system α can be calculated with the projection of the directions of the primary edge 

type dislocations with line direction, tz, onto the other slip plane normal, na. 

 

𝜌𝑓
𝑎 = ∑ 𝑥𝑧

𝑎12
𝑧=1 |𝒕𝑧 𝒏𝑎|𝜌𝑧                                                                                                                                   3.32 

where  𝑥𝑧
𝑎is the dislocation interaction matrix that accounts for the difference in the forest 

interactions among the slip systems [12].Moreover, they refer to the self, co-planar, cross-slip, 

glissile, Hirth lock, and Lomer-Cottrell lock dislocation interactions, respectively. 
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                                                         3.33                                                           

    

       

  

The line directions of edge-type dislocations, tβ can be expressed as follows : 

𝐭z = sz x 𝐧z                                                                                                                        3.34 

 

where the sz  and 𝐧z  imply the slip direction and the slip plane normal, respectively. Figure 3-

5 shows the forest dislocation projection of an edge type of dislocation in slip system z onto 

slip system a.                                                                                                                

 

Figure 3-5 The schematic representation of the forest dislocation projection of an edge type of 

dislocation in slip system z onto slip system a. 
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3.4.1.2 Forest Spacing 

 

Forest dislocations which intersect the plane can be considered as obstacle to the motion of 

the gliding dislocation. If the density of the forest dislocations which are arranged on a simple 

cubic network, is assumed as 𝛒𝐟, then 𝛒𝐟
(𝟏/𝟐) is the number of the dislocations per unit length, 

and as a result,  𝛒𝐟
−(𝟏/𝟐) gives the dislocation spacing. 

 

𝑑𝑎 =
𝑐1

√𝜌𝑓
𝑎
                                                                                                                              3.35 

                                                                                                                                                                 

Furthermore, the similarity rule suggests that d remains proportional to D which is the distance 

between the dislocation dense regions is referred to as the mean free path. 

 

3.4.2 Dislocation Kinetics 

 

In the preceding chapter, the motion of individual dislocations will be described and the 

information on dislocation kinetics will be presented. 

 

3.4.2.1 Slip Rate 

Shear rate could be determined by using the Orowan’s equation where the plastic shearing is 

considered as a result of expanding dislocation loops that glides with average slip velocity va 

presented below. 

  

𝛾 𝛼̇ = 𝜌𝑚 
𝛼 𝑏𝑣𝛼𝑠𝑔𝑛(𝜏𝛼)                                                                                                          3.36 

 where ρm is the density of mobile dislocations from the active slip set, va is the average 

dislocation velocity multiplied by Burger’s vector and sign function of the resolved shear stress 

of the corresponding slip plane. Orowan’s equation helps to set the relationship between the 

average shear rate and the movement of mobile dislocations on each slip system. It is difficult 
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to predict strain-hardening behavior of the material because strain depends on the both  𝜌 and 

dislocation distribution.                                                                                                                                                                                                                                 

3.4.2.2 Mobile Dislocation Density 

 

In order to formulate the evolution laws for dislocation densities, the rate equations which 

includes production and annihilation terms are used. Dislocation density of the immobile 

dislocations can be easily formulated by using this approach; however, for the mobile 

dislocation densities there is no such simple model to define its evolution. The unpredictability 

associated with the number of mobile dislocations and their average slip velocity effect on the 

plastic deformation rate makes the mobile dislocation density is the most unknown and least 

measurable quantity. 

 

Therefore, assuming a log-normal distribution for the segment lengths can be a reasonable way 

to calculate the mobile dislocation density as a function of the state variables (stress and 

dislocation density). Then, by taking the integral of the fraction of mobile dislocation segments, 

r(τ,ʌ0 ) through the segment length, mobile dislocation density equation obtained. In this aspect, 

the segment lengths that are longer than the critical segment length are considered as mobile. 

Figure 3-7 shows the schematic representation of the dislocation segments and simplified and 

the log-normal for a mean segment length of 10−6 m. 

 

 

Figure 3-6 Λ versus p(Λ) dΛ, the simplified and the log-normal probability density function  

for a mean segment length, Λ0, of 10−6m. 
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𝜌𝑚
𝛼 = (2𝜋)

3

2(
𝜏𝛼

𝐺𝑏
)2 1

𝜌𝑓
𝛼 𝜌𝛼                                                                                                        3.37 

The mobile dislocation density equation becomes as in equation (3.37) above, in terms of 

Burger’s vector (b), shear modulus (G), the resolved shear stress per slip system (𝜏𝑎), the  forest 

dislocation density (ρf
a) and the primary dislocation density (ρa).                                                                                                                                        

 

3.4.2.1 Long-Range Stress (Athermal Stress)  

 

The flow stress has both short and long-range components. The excess storage of the edge-type 

dislocations of one sign inside the dislocation dense regions causes athermal stress. Figure 3-7 

shows the internal stress fields encountered by dislocation through the crystal lattice. 

 

 

Figure 3-7 Schematic drawing showing internal stress fields during dislocation movement 

through the crystal lattice [7] 

 

The long-range athermal part of the stress can be determined by using the Taylor relation from 

the density of the primary dislocations which are assumed to have an edge-type dislocation 

geometry. Therefore, it can be computed by using the equation as follows: 
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𝜏𝜇
𝛼 = 𝑐2 𝐺 𝑏√𝜌𝛼                                                                                                                     3.38 

 

where 𝜌𝛼,c2, G and b implies the density of primary dislocations of the slip system α, geometric 

factor, and shear modulus, and Burger’s vector, respectively.        

                                                                                                                                                                                                                                                                                   

3.4.2.2 Thermally-Activated Glide Velocity 

 

 

Figure 3-8 Schematic sketch of the thermally activated glide process 

 

Glide of the dislocations can be defined as the movement of a dislocation on its slip plane. 

Dislocation glide allows plastic deformation to occur at a much lower stress than would be 

required to move a whole plane of atoms past another. Figure 3-8 visualizes the mechanism of 

the thermally activated glide process. 

 

It is assumed that the dislocations move in a periodic potential and since the single crystal 

structure consists of obstacles, gliding dislocation encounters an obstacle after travelling a 

distance d. Therefore, by using the waiting time of the dislocation segment in front of obstacles, 

tw, until achieving sufficient energy temperature T to move past an obstacle, average glide 

velocity, v can be obtained.  
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𝑣𝑎 =
𝑑𝛼

𝑡𝑤
                                                                                                                                 3.39 

 

where d implies obstacle-free distance travelled by a dislocation and it is proportional to the 

forest dislocation spacing. 

 

                                                                                                                                                                    

The waiting time of the dislocation segment in front of obstacles, tw, could be written in terms 

of frequency factor, vg and Boltzmann factor, K, temperature, T and the activation free energy, 

∆G, that needs to be supplied by the thermal fluctuations in the crystal lattice. 

𝑡𝑤 = 𝑣𝑔 𝑒𝑥𝑝(
∆𝐺

𝐾𝑇
)                                                                                                                    3.40 

                                                                                                                                                                

The required activation free energy, ∆G,  could be written in terms of Helmholtz free energy 

associated with the thermal activation process, ∆F,activation volume, V, and the short-range 

component of the flow stress, τ. 

∆G = ∆F − τ ∗ v                                                                                                                    3.41                                                                                                                                                                               

 

The flow stress, τ, has separated into two components which are temperature-independent long 

range, τµ and strongly temperature-dependent short-range components, τ*. The thermal part of 

the flow stress arises from the short-range retarding force between the forest dislocations and 

the gliding dislocations whereas the long-range component arises due to having excess storage 

of edge-type dislocations of one sign inside the dislocation-dense regions. 

|𝜏| = 𝜏∗ + 𝜏𝜇                                                                                                                           3.42                                                                                                                                                                                     

 

The athermal part of the flow stress, τµ, can computed by using the equation(3.39) which already 

given above.  
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Activation volume can be written in terms of terms of l and ∆R, the average length of dislocation 

at each obstacle and activation distance, respectively. 

V = b𝑙∆𝑅                                                                                                                               3.43 

                                                                                                                                                                                          

Since the length of dislocation in front of an obstacle, l is assumed to have the same magnitude 

as the forest dislocation spacing, and c3 refers to the adjusting parameter for the jump distance 

associated with a thermal activation event, the equation 3.44 becomes, 

𝑉𝑎 =
𝑐3𝑏2

√𝜌𝑓𝑎
                                                                                                                               3.44 

                                                                                                                                                                                     

The expression for average glide velocity takes the final form as follows: 

𝑣𝑎 = 𝑣𝑔𝑑𝑎𝑒𝑥𝑝(−
∆𝐹

𝐾𝑇
) 𝑒𝑥𝑝(

|𝜏𝑎|−𝜏𝜇
𝑎

𝐾𝑇
𝑉𝑎)                                                                                   3.45 

 

3.4.2.3 Dislocation Drag Velocity 

 

It is known that dislocation motion through an array of obstacles in metals includes coupling of 

thermally activated and drag-dependent processes. In two different regions, two different 

dislocation behaviors are observed.  In low-velocity region which is considered as between (10-

6-1 m/s), the behavior is non-linear and velocity is considered as obstacle dominated. However, 

in the second region (above about 1 m/s) where the motion is drag dependent, velocity is linear 

and there is no strong effect of obstacle observed on the dislocation behavior. 

 

Then the interaction of a moving dislocation with phonons or electrons can limit its velocity 

and the strength of the interaction is measured by the drag coefficient, B0. 

Vdr
𝑎 =

b (𝜏𝑎−𝜏𝜇
𝑎)

𝐵0
                                                                                                                        3.46 

where b and 𝜏𝑎 − 𝜏𝜇
𝑎 is the Burger’s vector and effective stress, respectively. The effective 

stress does not have long-range component or in another way of saying, effective stress only 

takes account of pushing dislocation over the short-range obstacles. 
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3.4.2.4 Unified Flow Rule 

 

Since the material behavior changes with the strain rate, the dislocation kinetics model should 

also change with different strain rate values. It is known that, at low strain rates deformation is 

controlled by thermally activated glide. On the other hand, when the strain rate values achieve 

relatively high values (above 104 s-1), the dominant mechanism for crystallographic shearing 

becomes the viscous drag. 

 

To combine two average velocities, the unified flow rule is used which equals to the geometric 

average of the two relations: 

1

𝑣𝛼  =  
1

𝑣𝑑𝑟
𝛼  +

1

𝑣𝑡ℎ
𝛼                                                                                                                        3.47 

                                                                                                                                                                 

 

Figure 3-9 Effective stress (MPa) vs. average dislocation velocity (m/s) for thermally-

activated glide, viscous drag, and unified rule. 

 

By implementing the unified approach in this work, the model can be used for a wide range of 

strain rates. Moreover, it also helps to obtain a numerically stable solution for the dislocation 

velocity. Figure 3-9 shows the relation between the effective stress and the average dislocation 
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velocity (m/s) for thermally-activated glide, viscous drag, and unified rule. The combination of 

two mechanism allows smooth transition of plastic deformation depending on the strain rate. 

As a result, this approach presented in the earlier works makes the dominant dislocation kinetics 

as thermally activated glide at low strain rates and viscous drag at high strain rates. 

 

3.4.3 Dislocation Density Evolution 

 

To explain the strain hardening behavior of the materials, it is required to define properly and 

combine the relation between the storage of the dislocations and dynamic recovery mechanism 

behavior during plastic deformation. In order to take account of effect of dislocation geometry 

on the mechanical behavior of FCC crystals, it is important to understand mechanisms between 

the dislocation interactions. The main reason of this assumption is the annihilation of the screw 

dislocation dipoles due to the cross-slip mechanism. If the two dislocations of opposite sign and 

having the same plane attract each other, dislocation annihilation occur when they meet. Figure 

3-10 explains the annihilation mechanisms in dislocation interactions.  

 

 

Figure 3-10 The schematic representation of the dislocation annihilation [5] 

 

The screw dislocations move in (111) plane but they can switch to another plane if it contains 

the direction of ‘b’. This mechanism is defined as cross-slip in FCC metals. Figure 3-11 shows 

the schematic representation of the cross-slip mechanism in FCC metals. The screw dislocation 

at S is free to glide in either of these planes. The non-planar slip surfaces produced by cross-

slip is also shown in the figure. Moreover, the event (d) represents the double cross-slip 

mechanism. 
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Figure 3-11 The schematic representation of the cross-slip mechanism in FCC metals-The 

sequence of the events a,b,c,d, respectively [15] 

 

To explain the phenomena related with the storage of dislocations, first the mean-free path of 

dislocations should be defined. In machining single crystals, the mean free path is limited by 

the length of the shear zone, L. Although the shear zone has a size in the range of micrometers, 

the storage of dislocations is limited by the shear zone due to the rate and the intensity of the 

shear strain in this plane. By considering this limitation, a physics-based strain hardening 

expression is developed for the orthogonal cutting process in this study. This consideration also 

helps to explain the size dependence of material response. 

 

The strain-hardening expression used in this study based on Kocks and Mecking model [17]. 

This model is analogous to the model of Nix and Gao [30] that is developed to account for the 

indentation size effect. Finally, GND hardening rate is added to the Kocks-Mecking hardening 

expression to find the overall strain hardening state. 

 

There are three different terms in the model which consider the strain hardening events, 

annihilation reactions and the size dependent strain hardening, respectively. 

𝜌̇𝑎 = (𝑐4

√𝜌𝑓
𝑎

𝑏
− 𝑐5(𝛾̇,𝑇)𝜌𝑎 + 𝑐6

1

𝑏𝐿
)|𝛾̇𝑎|                                                                                 3.48 
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where the strain hardening term is proportional to the mean forest spacing with constant c4, the 

annihilation term is proportional to the amount of primary dislocations, with the temperature 

and strain-rate-dependent constant of c5(𝛾̇,T) and the last term which considered size dependent 

strain hardening is proportional with constant c6. The size-dependent term of the equation is 

given as follows: 

𝜌̇𝐺𝑁𝐷
𝛼 = (𝑐6

𝛾̇𝛼

𝑏𝐿
)                                                                                                                       3.49                                                                                                                           

 

It simply assumes that all of the shearing occurs in a very intense shear zone which is 

characterized by the length scale of L and b refers to Burgers vector and c6 is the scaling 

constant (values between 0-1) which physically indicates that some portion of the shearing leads 

to formation of GNDs. 

 

 

Figure 3-12 : The schematic representation of shear zone and length scale 

 

In this study, it is assumed that due to the part of the shear confined into the shear zone which 

is specified as the length of the plane, L, size-dependent dislocations are created. The schematic 

representation of shear zone and length scale is presented in the figure 3-12 above. The size 

dependent dislocations are computed by assuming the strain gradients to be proportional to the 

amount of machining shear, γ and size-dependent dislocations are considered as a fraction of 

the shear strains. Finally, c6 constant is used to determine the fraction of the stored dislocations 

in the shear zone. 
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3.5 Model Constants 

 

Table 4 presents the constants of the dislocation density-based model. The simulations are 

performed using the same constants for all cutting parameters and crystal orientations. The 

model constants are used for illustration purposes only. 

 

 

Table 3-2 Description and values of constants used in the dislocation-density-based constitutive 

laws for single crystal simulations. 

In the physics-based models, all parameters have physical meanings as can be seen in the 

description part of the table 3-2 and their order of magnitude is known [8].c1 parameter connects 

the average forest dislocation spacing with the jump distance a mobile dislocation and its range 

is determined   from 1 to 10. For the parameter c2 is a geometric parameter, which scales the 

long-range flow stress and usually values between 0.1 and 0.5 are assumed for this parameter. 

c3 represents the scaling constant for activation volume or effective obstacle width measured in 

Burgers vectors and its range assumed from 1 to 10. Parameter c4 represents the mean-free-path 

strain hardening constant or the increasing rate for the immobile dislocation densities and the 

values from 5.6 e-3 to 1.27e-2 can be assumed for parameter c4. The dislocation annihilation 

constant, c5, or the decreasing term of the immobile dislocation density due to annihilation 

depended on the both strain rate and temperature and it is assumed in the range of 1e-4. The 

parameter c6 which accounts of the contribution of the length scale dependent dislocation to 

the strain hardening behavior of the material, is assumed in the range of 1. 

 

 

constant value unit  description 

b 2.86 × 10-10 m Burgers vector 

K 1.38 × 10−23 J/K Boltzmann constant 

ΔF 3 x 10-19 J Helmholtz free energy for thermal activation 

vD 1010 1/s Debye frequency of dislocations 

c1 0.5 - mean-free-path scaling constant for forest dislocation spacing 

c2 1 - geometric constant for the long range flow stress 

c3 1 - adjusting parameter for jump distance 

c4 1e-3 - mean-free-path strain hardening constant 

c5 1e-4 - dislocation annihilation constant 

c6 0.5 - Length-scale constant 

ρ0 1013 1/m2 initial dislocation density 
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4 NUMERICAL SOLUTION PROCEDURE 

 

 

In this study, the main objective of the algorithm is to find the optimum shear angle value  that 

corresponds to minimum work for a specific crystallographic orientation. As mentioned before, 

the solution methodology adopted in this study, is suggested by Maniatty et al. [27]. 

 

First, the residual, Y is defined as a function of the plastic part of the deformation gradient, 𝐅𝐩 

and it is based on the difference between the time-integrated plastic velocity gradient and the 

plastic velocity gradient (the sum over the slip rates). It is determined by using the Newton-

Raphson method iteratively for 𝐅𝐩. 

 

 𝐘 = ∑  𝛾̇𝑎 
1p p

ta a I F F
s n

t

−−
 −𝟏𝟐

𝒂=𝟏                                                                                          4.1 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

In this method, a fully plastic initial guess is required for the plastic deformation gradient and 

it is determined from the elastic deformation that is computed from the former deformation 

increment where the subscript “t” implies the previous time increment, and 𝐅𝐭
𝐞, and total 

deformation gradient at the current time step, F. 

 

0 1−=P e

tF F F                                                                                                                               4.2                                                                                                                                    

 

When the plastic part of the deformation gradient is calculated, then Fe elastic part of the 

deformation gradient can be calculated by using the total deformation gradient, F. Then by 

using equation (3.31), Cauchy stress at the deformed configuration can be calculated. 
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Figure 4-1 The schematic representation of Cauchy Stress State, P, at the shear reference frame 

To calculate the shear force on the shear frame, the multiplication of Cauchy stress with shear 

plane area is used. Since the Cauchy stress denoted by P in the fig. (4-1) above, is the stress 

state at the shear reference frame that is characterized by shear plane normal and shear direction, 

the stress field has to be projected to the shear plane normal vector [001] that is also multiplied 

with sheared area, as, and with the shearing direction [100] in the sample reference coordinate 

system. 

|𝐟𝑠| = (𝛔𝐬: 𝐒) |𝑎𝑠|                                                                                                                    4.3 

                                                                                                                                                                           

The shear plane area can be calculated by using the equation (4.4) below, 

𝑎𝑠 =
𝑡0𝑤

sin∅
                                                                                                                               4.4 

                                                                                                                                                                                         

After determining shear force, and power, shear work can be determined by using the equation 

(3.13).  Finally, for a given cutting orientation and the machining parameters, total power is 

calculated for every shear angle candidate (with a specific increment) within the allowable 

range.The shear angle value corresponding to minimum work for a given                                                                                                                                                      

crystallographic orientation o of the cutting plane normal and cutting direction is selected as 

the optimal candidate. MATLAB® software is used to perform the required numerical 

calculations and create the resulting plots. 
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5 NUMERICAL RESULTS 

 

 

In this study, results of the physics-based model obtained by using different machining 

parameters such as; rake angle, α, friction coefficient, µ, and uncut chip thickness, t0. Moreover, 

the simulations are repeated for the alternate values of the given parameters presented in the 

table below. 

 

 

Table 5-1 Description and both nominal and alternate values of cutting parameters. 

 

5.1 Physics Based Model Results 

 

This chapter consisting of two main parts: in the first part, the effect of crystallographic 

orientation on the machining response is discussed by using the simulation results of the 

physics-based model. In the 2nd part, the effect of machining parameters on the machining 

response is investigated. Final part discussed the implementation of the size-effect to the model 

framework and special size-effect simulations for planning process are presented. 

 

5.1.1 The effect of Crystallographic Orientation on the Cutting Response 

 

In this section, the effect of physical parameters on cutting response is discussed. The material 

constants in Table 3-2 and the cutting parameters in Table 5-1 are used in the analysis. The aim 

of this study is to examine the turning response of a single crystal about a defined 

crystallographic zone axis < pqr >. For orthogonal cutting geometry, crystal orientation is 

defined with the crystallographic unit vectors along the cutting direction (CD), and cutting plane 

(CP). Figure 3-3 shows the turning of a crystal with cube orientation. 

 

constant unit description nominal value alternate value

α deg. rake angle 20 0-40

µ - friction coefficient 0,5 0-0,75

V mm/s cutting speed 100 10-1000

t0 µm uncut chip thickness 50 5-10

w mm width of cut 1 -
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Figure 5-1 Turning of a crystal with cube orientation. <pqr> is the crystallographic direction 

that the crystal is turned around. <pqr> corresponds to [001] for cube orientation. 

 

Three different zone axes of < 100 >, < 111 > and < 110 > are used in the simulations. The 

machining response in the aspect of cutting force and shear angle is presented in Figures 5-1 

and 5-2, respectively.  

 

 

 

Figure 5-2 Specific cutting energy (MPa) vs. rotation angle θ (deg.) about the zone axis {pqr} 

< 100 >, < 110 > and < 111 >, respectively 
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Figure 5-3 Shear angle (deg.) vs. rotation angle θ (deg.) about the zone axis {pqr} < 100 >, < 

110 > and < 111 >, respectively 

 

As it can be seen in the Figures 5-2 and 5-3, four-fold, two-fold, and six-fold symmetric 

fluctuations are observed for the crystallographic zone axes of < 100 >, < 110 >, and < 111 >, 

respectively, during a single revolution of the workpiece. If only the < 110 > zone axis is 

considered, it can be said that the two-fold symmetry is observed in cutting force due to the 

existence of the two peaks. Another important thing is that the smallest average cutting force 

values are observed when machining about the < 111 > crystallographic axis and the reason  for 

that is  the duplex slip due to the in-plane shear. On the other hand, nearly 100% shear strength 

fluctuation is observed in cutting forces when turning around < 100 > and < 110 > zone axes. 

As a result, it can be said that cutting forces change significantly along different 

crystallographic orientations   for the micro-machining process of single crystal materials and 

by using this model, these effects can be captured successfully.  

 

5.1.2 The effect of Machining Parameters on the Cutting Response  

 

In this section, the effect of machining parameters such as tool rake angle, uncut chip thickness, 

friction coefficient between the tool and the workpiece on the cutting response is discussed. 

Therefore, the cutting simulations are performed for three different rake angle, uncut chip 

thickness and friction coefficient values. 
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5.1.2.1 The effect of Friction Coefficient 

 

The cutting simulations are performed for three different friction coefficients, µ, as 0, 0.5, and 

0.75 when turning about <100> zone axis. In the figure 5-4, effect of the friction coefficient on 

the cutting constant during a single revolution of the workpiece. 

 

 

Figure 5-4 Effect of friction coefficient, on the cutting constant (MPa) vs. rotation angle θ (deg.) 

about the zone axis {pqr} 

 

It is clear from the figure 5-4 that, as the friction coefficient increases, the mean value of the 

corresponding cutting constant increases. Since the friction coefficient is directly related and 

proportional with friction force, it is expected that cutting force values increase. Moreover, is 

should be noted that as the friction coefficient decreases, shear angle increases as given by 

Merchant’s minimum work expression, equation (3.1). 

 

5.1.2.2 The Effect of Rake Angle 

 

The cutting simulations are performed for three different rake angle values, α, 0◦, 20◦, and 40◦. 

In the figure 5-5, effect of the friction coefficient on the cutting constant during a single 

revolution of the workpiece. 
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Figure 5-5 Effect of rake angle on the cutting constant (MPa) vs. rotation angle θ (deg.) about 

the zone axis {pqr} 

It can be seen from the figure 5-5 that, as the rake angle values decreases, the mean value of the 

corresponding cutting constant significantly increases. The relation between the rake angle and 

the cutting force also is already expressed in the Equation (3.10) and it can be said that any 

increase in the rake angle causes increase in shear angle. One reason for this relation could be 

the reduction in the contact length between the tool and the chip as rake angle increases which 

leading to a decrease in the resultant forces and cutting specific energy. Finally, it should be 

noted that the effect of the rake angle is much greater compared to the all other parameters such 

as friction coefficient, uncut chip thickness, temperature, etc. 

 

5.1.2.3 The effect of Uncut Chip Thickness or Size-Dependence 

 

The cutting simulations are performed for three different uncut chip thickness values, t0, 5µm, 

10µm, and 50µm. In the figure 5-6, effect of the uncut chip thickness on the cutting constant 

during a single revolution of the workpiece. 
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Figure 5-6 Effect of uncut chip thickness values on the cutting constant (MPa) vs. rotation angle 

θ (deg.) about the zone axis {pqr} 

 

It is clear from the figure 5-6 that, as the uncut chip thickness decreases, the increase in the 

cutting constant values can be observed by using the present model. As expected, when the size 

values getting smaller strength values of the material increases. The amount of increase in the 

specific cutting pressure of the material can be considered reasonable if it is compared with the 

real experimental values. For instance, Oxley and Kopalinsky [18] stated that experimental 

machining results obtained show that with all other conditions held constant a reduction in uncut 

chip thickness from 0.2 mm to 0.01 more than doubles the specific cutting pressure.  

 

In order to find the out the initiation of the size effect in the cutting force, experiments are 

needed to calibrate the model. Size effect depends on the both combination of factors such as 

work material property, aspect ratio of the chip or shape of the chip etc. Therefore, in this study, 

the uncut chip thickness value that where the initiation of the size-effect observed is not pointed 

and no simple rule is presented. 

 

5.1.2.4 The Effect of Temperature 

 

The cutting simulations are performed for three different temperature values, T, 300,400 and 

500K. In the figure 5-7, effect of the temperature on the cutting constant during a single 

revolution of the workpiece.  
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Figure 5-7 Effect of temperature on the cutting constant (MPa) vs. rotation angle θ (deg.) about 

the zone axis of <100> direction in rate-sensitive single crystal model 

 

As can be seen in the figure below, if the temperature values increase, the cutting constant 

values decreases slightly. When the temperature increases, the shear strength of the material 

decreases ahead the cutting edge due to the thermal softening effect and leading to a decrease 

in the required cutting forces.  

 

 

5.1.3 Size Dependence Results for Planing Simulations  

 

As mentioned before, although there are many reasons which attributed to the size-effect occurs 

in machining of single crystals, dependence of shear strength on the uncut chip thickness is 

considered as the main reason of this phenomena in this study. It is already underlined that an 

additional strain hardening expression is used in the model in order to incorporate size 

dependence of shear strength.  
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Figure 5-8 Dependence of shear stress on uncut chip thickness values of 15 mm, 20 mm, 25 mm 

and 30 mm. x axis represents the amount of shear (in radians) along the shear plane. 

 

Figure 5-8 shows the variation of shear stress for different uncut chip thickness values. The 

uncut chip thickness values of 15 mm, 20 mm, 25 mm and 30 mm are used. The simulations are 

performed for [100] cutting direction and (010) cutting plane. The size dependence is simulated 

using only one set of constants that is shown in Table 3-2. To perform calibration for 

experimental findings, the calibration constant c9 shall be determined for different uncut chip 

thickness values. 

 

5.2 Taylor Based Model Results 

 

In this section, the results of the rate-insensitive models are represented. This model has as a 

simpler computational procedure compared to the rate-sensitive crystal plasticity. In order to 

compare the results obtained by using two models, the rate-insensitive Taylor-based single 

crystal model for machining is implemented in this work. 

In these models, Taylor factor used as a measure to determine the ratio of the crystallographic 

work to the macroscopic work. By using two different methodology, Taylor factor can be 

obtained:  either by the Taylor work minimization principle, or by the Bishop-Hill work 

maximization method. The Bishop-Hill method uses 28 possible stress states of a crystal to 
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estimate the crystallographic work. It is selected in this work owing to its computational 

simplicity. 

 

The strain increment at the shear reference frame is computed using the deformation gradient 

defined in Equation (3.14).  

 

d𝜖(𝑠) = 𝐅 − 𝐈                                                                                                                           5.1              

                                                                                                                                                                     

The strain is transformed to the crystal reference using the total transformation matrix R which 

is formerly defined in Equation (3.18). The use of the tensor transformation rule applies as 

expressed in Equation (5.2). 

d𝜖(𝑐) = 𝐑d𝜖(𝑠)𝐑𝐓                                                                                                                     5.2                                                                                                                                                            

 

Then, the amount of work increment can be calculated by considering 28 possible stress states 

and strain increments, ϵ at the crystal reference frame, ϵ(c). 

dw= -B 𝑑𝜖11
(𝑐)

 + A 𝑑𝜖22
(𝑐)

 + 2F 𝑑𝜖23
(𝑐)

 + 2F 𝑑𝜖13
(𝑐)

+2I 𝑑𝜖12
(𝑐)

                                                         5.3                                            

 

where A,B,F,H and I implies the strain multiplier coefficients and they can be defined as 

follows: 

A =
𝜎22

(𝑐)
−𝜎33

(𝑐)

√6𝜏𝑐
 , B =

𝜎33
(𝑐)

−𝜎11
(𝑐)

√6𝜏𝑐
 , F =

𝜎23
(𝑐)

√6𝜏𝑐
, H =

𝜎13
(𝑐)

√6𝜏𝑐
,  I = 

𝜎12
(𝑐)

√6𝜏𝑐
                                                      5.4 

 

To calculate the total work increment, first shear stress should be calculated using the equation 

below, 

𝐹𝑠 = σ𝑎𝑠                                                                                                                                   5.5                                                                                                                                                                                         

where σ and As implies the shear stress and shear plane area, respectively. 
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As one of the major drawback of the rate-insensitive models, the shear stress is obtained as a 

scalar. Shear stress can be expressed as a multiplication of slip resistance with the Taylor factor, 

Equation(5.6). 

 

σ =  M 𝜏𝐶                                                                                                                                 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

where M represents the Taylor Factor. It equals to the ratio of the work increment to the 

equivalent Von-Mises stress, d𝜖𝑒VM, of the strain increment: 

 

M = 
𝑑𝑊

𝑑𝜖𝑒𝑉𝑀
                                                                                                                                5.7                                                                                                                                                                                    

 

Critical resolved shear stress can be obtained by using the same relation with passing stress, the 

long-range stress field which should be exceeded for plastic deformation as already given in the 

equation 3.38 before. Since an equal amount of slip resistance is assumed for all slip systems; 

the superscript a is not used in the rate-insensitive crystal plasticity relations. 

 

In this model, the evolution (rate form) of dislocation density is not considered. As a result, 

total dislocation density can be written in terms of the initial value of the dislocation density 

and the expected length-scale-dependent dislocation density expression. 

 

ρ = 𝜌0 + 𝑐6
𝛾

𝑏𝐿
                                                                                                                          5.8       
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5.2.1 The effect of Crystallographic Orientation on the Cutting Response 

 

 

 

 Figure 5-9 Cutting Constant (MPa) vs. rotation angle θ (deg.) about the zone axis {pqr}        < 

100 > , < 110 > and < 111 >,respectively 

 

The variation in cutting constants for three different zone axes are presented in the Figure 5-9. 

As it can be seen in the figure above, four-fold and six-fold symmetry are observed. As a result, 

it can be said that the periodicity of the force fluctuations is very similar to that of the rate-

sensitive physics-based model. Moreover, that is not the case for the location of maximum 

forces. Due to the strain hardening effect, the location of the maximum forces is quite different. 

 

 

 

Figure 5-10 Shear angle (deg.) vs. rotation angle θ (deg.) about the zone axis {pqr} < 100 >,     

< 110 > and < 111 >, respectively 

The variation in shear angle for three different zone axes are presented in the Figure 5-10. As 

it can be seen in the figure above, two-fold, four-fold and six-fold symmetry are observed for 
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the zone axis < 100 >, < 110 > and < 111 >, respectively. Again, it can be said that the 

periodicity of the shear angle fluctuations is very similar to that of the rate-sensitive physics-

based model. 

 

5.2.2 The effect of Machining Parameters on the Cutting Response 

 

In this section, the effect of machining parameters such as tool rake angle, uncut chip thickness, 

friction coefficient between the tool and the workpiece on the cutting response is discussed for 

the rate-insensitive models. Therefore, the cutting simulations are performed for three different 

rake angle, uncut chip thickness and friction coefficient values. 

 

5.2.2.1 The effect of Friction Coefficient 

 

The cutting simulations are performed for three different friction coefficients, µ, as 0, 0.5, and 

0.75 when turning about <100> zone axis.  

 

Figure 5-11 Effect of friction coefficient, on the cutting constant (MPa) vs. rotation angle θ 

(deg.) about the zone axis of <100> direction in rate-insensitive Taylor-based single crystal 

model 

As it can be seen in the figure 5-11, the effect of friction coefficient can be captured similar 

cutting force fluctuations as the physics-based rate-sensitive model. However, it is not able to 

show the fine changes as in the rate-sensitive model. 
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5.2.2.2 The Effect of Rake Angle 

 

The cutting simulations are performed for three different rake angle value, α, as 0, 20° and 40° 

when turning about <100> zone axis. In the figure 5-11, effect of the rake angle values on the 

cutting constant during a single revolution of the workpiece. 

 

 

Figure 5-12 Effect of rake angle, on the cutting constant (MPa) vs. rotation angle θ (deg.) about 

the zone axis of <100> direction in rate-insensitive Taylor-based single crystal model 

As it can be seen in the figure 5-12, the effect of rake angle values can be captured similar 

cutting force fluctuations as the physics-based rate-sensitive model. However, as the same with 

the effect of the friction coefficient, it is not able to show the fine changes as in the rate-sensitive 

model. 

5.2.2.3 The Effect of Uncut Chip Thickness 

 

The cutting simulations are performed for three different rake angle value, t0, 5µm, 10µm, and 

50µm when turning about <100> zone axis. In the figure 5-13, effect of the uncut chip 

thickness values on the cutting constant during a single revolution of the workpiece. 
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Figure 5-13 Effect of uncut chip thickness, on the cutting constant (MPa) vs. rotation angle θ 

(deg.) about the zone axis of <100> direction in rate-insensitive Taylor-based single crystal 

model 

 

As it can be seen in the figure 5-13, the effect of uncut chip thickness values can be captured 

similar cutting force fluctuations as the physics-based rate-sensitive model. However, as the 

same with the other machining parameters investigated, it is not able to show the fine changes 

as in the rate-sensitive model. 

5.3 Experimental Validation 

 

In this section, experimental validation of the physics-based model and the Taylor-based rate-

insensitive model is discussed. Experimental validation is done by using the data sets in the 

work of Cohen. In other words, the calibration of the proposed model is achieved by 

determining the material constants (c1-c6) and the initial dislocation density by trial and error. 

The calibration of the Taylor-based model is much simpler and quicker compared to physics-

based model. Machining parameters used in the experiments are presented in the table below.  

 

 

                  Table 5-2 The machining parameters used in the experiments of Cohen[6] 

test- id material α(°) w(mm) V(mm/s) t0(mm) T(°K)

test- 3 Al 40 1.500 0.55 0.1143 300

test- 8 Al 50 1.500 0.55 0.1144 300

test- 13 Cu 20 2.100 0.55 0.1145 300

test- 15 Cu 40 2.100 0.55 0.1146 300
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Only uncertainty in the values of the parameters is the width of cut value. Since the exact values 

were not presented in the thesis, the same values are assumed for the uncut chip thickness for 

the same material type to make it more consistent. The amount of friction is considered as 

constant between the tool rake face and chip and the value of the friction angle used as 50 deg.  

 

 

Table 5-3 Material constants used as model constants for experimental data of Cohen 

 

The material constants obtained after the numerical fitting are presented in the table 5-3 above. 

Since the material constants c1-c6 depend on the material type, the same values are used 

independent of the material. The values of the initial dislocation density could be different for 

the same material; due to the fact that, initial dislocation density of the material depends on the 

number of machining passes and clean-up passes which could affect the sub-surface damage.  

 

Figure 5-14 The variation of the Cutting force for turning a single crystal Aluminum about 

crystallographic zone axis of <100> direction for test-3 (Al-α=40 deg) and test-8 (Al- α=50 

deg), respectively. 

 

test- id C11 (Gpa) C12 (Gpa) C44 (Gpa)
(Taylor-based)              

ρ0 (1/m
2
)

(Physics-based) 

ρ0 (1/m
2
)

c1 c2 c3 c4 c5 c6

test- 3 112.6 66.3 55.6 3.5 x10
14

1 x10
12

1 0.1 1 1 x10
-4

1 x10
-5

0.5

test- 8 112.6 66.3 55.6 3.5 x1014 1 x1012
1 0.1 1 1 x10-4 1 x10-5

0.5

test- 13 168 121.4 75.4 7 x10
15

6 x10
12

1 0.4 1 5 x10
-4

5 x10
-5

0.5

test- 15 168 121.4 75.4 7 x1015 2 x1013
1 0.4 1 5 x10-4 5 x10-5

0.5
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As can be seen in the figure 5-14 above, the physics-based model can capture the variations in 

the cutting force. In the aspect of periodicity, Taylor-based model can also be considered as 

successful. However, the location of the peak forces and force signatures are not predicted 

accurately.  

 

Figure 5-15 The variation of the Cutting force for turning a single crystal Copper about 

crystallographic zone axis of <100> direction for test-13 (Cu-α=20 deg) and test-15 (Cu- 

α=40 deg), respectively. 

 

Figure 5-15 shows the variation of the cutting force for turning a single crystal copper about 

crystallographic zone axis of <100> direction for test-13 and test-15. In analogy to the 

validation of the Aluminum cutting results, the physics-based model can capture the variations 

in the cutting force better than the rate-insensitive model. It is expected, due to the volume 

constancy assumption in Taylor-models which is a wrong assumption when large shears 

involved during the process. On the other hand, by using the physics-based model stress on the 

shear plane can be obtained in its full tensorial form. 

 

 

In the second part of the validation, comparisons between the measured shear angle values from 

the work of Cohen [6] and simulation results presented. As can be seen in the figure 5-16 and 

5-17, four-fold symmetry is observed for the case of shear angle variation during cutting Al 

sing crystals. The physics-based model can predict the periodicity in the shear angle values. 

The only difference observed is for the range of shear angle values. The experimental shear 

angle values are much smaller compared to the physics-based model’s predictions. 
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Figure 5-16 The variation of the Shear Angle values for turning a single crystal Aluminum 

about crystallographic zone axis of <100> direction for test-3 (Al-α=40 deg) 

 

 

Figure 5-17 The variation of the Shear Angle values for turning a single crystal Aluminum 

about crystallographic zone axis of <100> direction for test-8 (Al-α=50 deg) 

 

As the same with the case in cutting of Al single crystals, the  four-fold symmetry is observed 

for the case of shear angle variation during cutting Cu sing crystals. The physics-based model 
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can predict the periodicity in the shear angle values as presented in the figure 5-18 and 5-19. 

Again, the only difference observed is for the range of shear angle values. The experimental 

shear angle values are much smaller compared to the physics-based model’s predictions. 

 

 

Figure 5-18  The variation of the Shear Angle values for turning a single crystal Copper about 

crystallographic zone axis of <100> direction for test-13 (Cu-α=20 deg) 

 

Figure 5-19  The variation of the Shear Angle values for turning a single crystal Copper about 

crystallographic zone axis of <100> direction for test-15 (Cu-α=40 deg) 
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The potential reasons for the difference between the experimental results and the simulation 

results of the physics-based model can be listed as follows: 

 

• In this study, since the effect of edge radius of the tool is ignored and only shear type 

of deformation is considered in the models, all mechanisms related with edge radius such as 

ploughing are also neglected. 

 

• As mentioned before, changes in the friction coefficient with crystallographic  

orientation is also neglected. However, the experimental study that model is calibrated with 

shows that highest friction coefficient was measured for the <1 0 0> cutting direction. 

 

• Similar with friction angle, the variation in the rake angle during the experiments 

with the effects of edge radius and built-up-edge is also neglected in the model. 

 

• Finally, inaccuracies in the experimental setup of the micro-machining process are 

also neglected. 
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6 CONCLUSIONS & FUTURE WORKS 

 

 

6.1 Conclusions 

 

Last but not the least, this thesis presented a physics-based crystal plasticity model which is 

developed for micro-machining and implemented for the turning of single crystals. Due to the 

complex nature of the deformation processes in real-life, the need for comprehensive modelling 

frameworks distinguish. However, long computational times and high cost values associated 

with these tools load the dice against finite element models. On the other hand, the proposed 

model provides a simpler way compared to finite element models to understand the basic 

mechanism of the deformation during turning of single crystals.  

 

The physics-based model can capture the effect of the machining parameters such as rake angle, 

friction coefficient, uncut chip thickness, cutting speed, temperature etc., on the cutting force 

and shear angle. Furthermore, it can predict the cutting force fluctuations which occurs due to 

the crystallographic orientation, accurately. In addition, size dependence of shear strength is 

introduced by the shear strain getting confined to a smaller region as the depth of cut decreases 

in a crystal plasticity framework. Shear plane length is assumed as a limit for the mean-free-

path of the dislocations in the shear plane. The corresponding increase in the strength is 

computed by the strain hardening effect of these additional statistically stored dislocations. As 

a result, the size dependence of cutting is incorporated to the model in a physically-based 

consistent manner and it is capable to model dependence of shear stress on the uncut chip 

thickness.  

 

The proposed model reveals temperature and strain-rate dependence of the material response 

once the calibration of the model constants is performed. If phenomenological models were 

used, i.e. Johnson-Cook model, the model calibration including all of the model constants has 

to be performed at every different temperature. On the other hand, the present model takes 

account of the temperature dependence by considering a single constant to be calibrated 

(dislocation annihilation constant c5).  

 

The proposed crystal plasticity model reveals a better correlation.Taylor-based models cannot 

be used for capturing fine changes in the machining response. Only the general features of the 
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machining response e.g. periodicity of the force fluctuations with the changes in the 

crystallographic orientation can be captured by using these models. Another restriction is the 

volume constancy assumption used in the Taylor-based models which is not applicable to 

problems involving high amounts of shear strains. In addition, strain rate and temperature 

dependence are not included to the Taylor based rate-insensitive models. The advantages of 

Taylor-based models are; i. computationally efficiency, and ii. simplicity compared to the 

physics-based models. 

 

 

To show the model deliverables, experimental validation of the model is presented in the last 

chapter of the thesis. According to the results, it can be said that the model reveals a better fit 

to the experimental cutting force patterns than the rate-insensitive Taylor based models. 

Therefore, the experimental changes in the cutting forces of single crystals of Cohen [6] was 

captured successfully by using the proper material constants (c1-c6) and the initial dislocation 

density values. 

6.2 Suggestions for the Future Work 

 

Suggestions for future work include the extension of the model for other machining processes 

such as turning, facing, milling, and drilling by transforming the orthogonal model to the 

oblique cutting geometry. In this study, sharp tool assumption is considered but the effect of 

tool edge radius can also be modelled by taking account of the change in the rake angle. In this 

case, total work can be considered in two separate parts; in one part where the work does not 

change with the tool edge radius since it does not affect the shear angle value and in the second 

part, the effect of tool edge radius is modelled by taking account of the change in the rake angle 

leading to a change in the total work. 

 

Last but not the least, this study focused on the materials with FCC crystal structure, due to the 

its wide-spread use in electronics (i.e. Copper) and aerospace industry (i.e. Aluminum alloys 

and Nickel-based superalloys) and the material anisotropy observed during micro machining of 

these materials. However, this study can be extended to other materials with different crystal 

structures by making modifications with respect to the physics of relevant plastic deformation 

mechanisms. In addition, from this single crystal model, the macroscopic response of the 

polycrystal could also be derived and this also can be considered as a future work for this study. 
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7.1 Appendix A: Algorithm Flowchart 
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