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ABSTRACT 

 

SYNTHESIS AND CHARACTERIZATION OF HIGHLY STABLE 

FUNCTIONAL SILICA NANOPARTICLES FOR LBL ASSEMBLY  

 

Melike Barak 

Master Dissertation, July 2018 

 

Supervisor: Assoc. Prof. Dr. Fevzi Çakmak Cebeci 

 

Keywords: silica nanoparticles, microemulsion, surface modification, functional 

groups, crosslinking, LbL, electrostatic interaction, robustness  

Layer by Layer (LbL) assembly is a superior method to create thin films with aqueous 

based dispersions which include polyelectrolytes and nanoparticles. LbL presents 

exceptional advantages like conformal coatings with controlled structure and composition 

by using electrostatic interactions of oppositely charged materials. Nevertheless, these 

interactions may cause weaker mechanical properties on the thin films. In order to 

eliminate the drawback, the covalent bond between oppositely charged materials can 

establish by crosslinking of functional groups.  

Silica nanoparticles are mostly used in the LbL process due to enhance adhesion of films 

by creating roughness on the surface. They are also suitable for surface modification 

which provides surface charge manipulation, stable dispersibility and good mechanical 

property. Silane alkoxy groups are one of the best choices for functionalization process. 

These coupling agents promote mechanical robustness of the surface via the formation of 

physically and chemically stable covalent bonds. 

In this study, silica nanoparticle was synthesized by hydrolysis and condensation of 

tetraethyl orthosilicate (TEOS) in surfactant/cyclohexane/ammonia media by 

microemulsion method. Monodisperse and having around 50 nm diameter silica 

nanoparticles were achieved to use in further steps. Amino and poly (ethylene glycol)-
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terminated alkoxy silanes were performed to ensure positive and negative surface charges 

on the silica nanoparticles surface by crosslinking. The functionalized silica nanoparticles 

were utilized in LbL process, right after poly allylamine hydrochloride (PAH) and poly 

(sodium 4-styrenesulfonate) (SPS) were applied in desired number of layers on the silicon 

wafer substrates.  

Dynamic light scattering (DLS) is employed to analyze size and surface charge 

distribution of bare and functionalized silica nanoparticles. The presence of functional 

groups was examined by Fourier-transform infrared spectroscopy (FT-IR) and nuclear 

magnetic resonance (NMR). The thickness, surface topography and roughness of thin 

films are measured by ellipsometry and atomic force microscopy (AFM). Scanning 

electron microscopy (SEM) was performed to analyze nanostructural morphology of 

silica nanoparticle and thin films.  

The obtained results indicated that chemically crosslinked silica nanoparticle containing 

thin films exhibit better mechanical properties that make them useful for desired 

applications. 
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ÖZET 

 

LBL KAPLAMA İÇİN YÜKSEK STABİLİTEYE SAHİP 

FONKSİYONEL SİLİKA NANOPARÇACIKLARIN SENTEZİ VE 

KARAKTERİZASYONU  

 

Melike Barak 

Yüksek Lisans Tezi, Temmuz 2018 

 

Tez Danışmanı: Doç. Dr. Fevzi Çakmak Cebeci 

 

Anahtar kelimeler: silika nanoparçacıklar, microemulsiyon, yüzey değişimi, 

fonksiyonel gruplar, çapraz bağlanma, LbL, elektrostatik etkileşim, dayanıklılık  

Tabaka tabaka kaplama polielektrolit ve nano parçacık içeren su bazlı dağılımlarda ince 

film elde etmek için kullanılan üstün bir yöntemdir. Tabaka tabaka tekniği zıt yüklü 

malzemelerin elektrostatik etkileşimlerini kullanarak kontrollu yapı ve bileşime sahip 

uyumlu kaplamalar gibi ayrıcalıklı avantajlar sunar. Buna rağmen, bu etkileşimler ince 

filmlerde zayıf mekanik özelliklere neden olabilirler. Bu dezavantajı ortadan kaldırmak 

için, fonksiyonel groupların çapraz bağlanmasıyla zıt yüklü malzemelerin arasında 

kovalent bağ kurulabilir. 

Silika nanoparçacıklar çoğunlukla yüzeylerde prüzlülük oluşturarak filmlerin 

tutunmalarını arttırmak için tabaka tabaka tekniğinde kullanılır. Bu parçacıklar aynı 

zaman da yüzey yükü düzenlenmesi, stabil dağılım ve iyi mekanik özellikler sağlayan 

yüzey değişimleri için de uygundur. Silan alkoksi grupları fonksiyonlandırma işlemleri 

için en iyi seçeneklerdendir. Bu bağlanma ajanları sabit fiziksel ve kimyasal kovalent 

bağlar oluşturarak yüzeyin mekanik sağlamlılığını yükseltir.   

Bu çalışmada, silika nanoparçacıklar mikroemulsiyon yöntemi ile yüzey aktif 

madde/siklohegzan/amonyak ortamında tetraetil ortosilikatın (TEOS) hidroliz ve 
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yoğunlaşması ile sentezlendi. Tekdağılımlı ve yaklaşık  50 nm çapında silika 

nanoparçacıklar oluşumu ileriki safhalarda kullanılmak için elde edildi. Amino ve poli 

(etilen glikol)-arındırılmış alkoksi silanlar çapraz bağlanma ile silika nanoparçacıkların 

yüzyinde pozitif ve nagatif yüzey yüklerinin oluşumunu kesinleştirmek için kullanıldı. 

Fonksiyonlandırılmış silika nanoparçacıklar tabaka tabaka tekniğinde poli allilamin 

hidroklorür (PAH) ve poli (sodyum 4-stirensülfonat) (SPS) silicon plaka örneği üzerinde 

istenilen sayıda katmana uygulanmasından hemen sonrasında  kullanıldı.  

Dinamik ışık saçılması (DLS) fonksyonlandırılmış ve yalın haldeki silika 

nanoparçacıkların boyutunu ve yüzek yük dağılımını analiz etmek için kullanıldı. 

Fonksiyonel grupların varlığı Fourier-dönüşümü kızılötesi spektroskopisi (FT-IR) ve 

nükleer manyetik rezonans ile çalışıldı. İnce filmlerin kalınlığı, yüzy topoğrafisi ve 

prüzlülüğü elipsometri ve atomic kuvvet mikroskopu (AFM) ile ölçüldü. Taramalı 

electron mikroskopisi (TEM) ince filmler ve silika nanoparçacıkların nanoyapısal 

morfolojisini analiz etmek için kullanıldı. 

Elde edilen sonuçlar kimyasal olarak çapraz bağlanmış silika nanoparçacıklar içeren ince 

filmlerin  istenilen uygulama için faydalı hale getirdiği daha iyi mekanik özellikler 

sergilediğini gösterdi. 

  



 vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved family...  



 viii 

ACKNOWLEDGEMENT 

First of all, I would like to say thank you to my supervisor, Fevzi Çakmak Cebeci for his 

great support under any circumstances. The most important thing is that he taught me 

how to fly just by my own self without further help. I appreciated to him for his offered 

opportunities in SUNUM and FENS facilities. Special thanks to Serkan Ünal for their 

encouraging comments and being my jury member. Also, my sincere gratitude to Burcu 

Dedeoğlu for attending as one of my thesis defense jury members by honouring me.  

Special thanks to Emine Billur Seviniş Özbulut for her almighty help and suggestion. She 

always pushed me beyond any limits. and supported me to success everything. I will never 

forget what she did for me.  

I am very grateful to meet every person who beautified my university life. Especially, my 

dear friends, Betül Altın and Nazife Tolay who are my family at Sabanci University. I 

always remember them with fun and enjoyable memories. I would also like to thank 

Hümeyra Nur Kaleli and Ebru Özer for their encouragement, Sezin Sayın for her cheerful 

attitudes, Yonca Belce for being my best teammate, Buse Bulut Köpüklü for her lovely 

contribution to happiness in our office, İsa Emami Tabrizi for his delicious cakes and 

Deniz Benli to make me relax.   

Many thanks to Burçin Yıldız due to collaboration for NMR measurements and Süleyman 

Çelik for utilizing AFM. Special thanks to Ali Tufani for his major guidance in laboratory 

procedures. Although I want to express my sincere gratitude to Araz Sheibani Aghdam 

for his useful advices and helps. 

The most special person I have earned at Sabanci University, Adnan Taşdemir. Time did 

not pass without drinking tea with his nice conversation. I want to thank him for always 

encouraging me to do my best. He is always with me for every moment during my thesis. 

I appreciate his unconditional help and support.  

Finally, and most importantly, endless thank to my family for their unconditional love, 

trust, care and full support. I will never pay what they did for me. 

This project was funded by Scientific and Technological Research Council of Turkey 

(TUBITAK) under the grant agreement number 115M407. Therefore, I would like to 

show my appreciation for all the support received from this organization, as well.  

 

    

  



 ix 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT ............................................................................................. viii 

TABLE OF CONTENTS ................................................................................................. ix 

LIST OF FIGURES ......................................................................................................... xi 

LIST OF TABLES .......................................................................................................... xv 

LIST OF ABBREVIATIONS ........................................................................................ xvi 

1. INTRODUCTION ................................................................................................. 1 

1.1. Motivation .......................................................................................................... 1 

1.2. Novelty of This Thesis ....................................................................................... 2 

1.3. Road Map of This Thesis ................................................................................... 2 

2. LITERATURE SURVEY ...................................................................................... 3 

2.1. Colloidal Science ............................................................................................... 3 

2.2. Silica Nanoparticles ........................................................................................... 6 

2.3. Sol-Gel Process .................................................................................................. 8 

2.3.1. Hydrolysis and Condensation Reactions ........................................................ 9 

2.3.2. Stöber Method .............................................................................................. 11 

2.4. Microemulsion ................................................................................................. 12 

2.4.1. Surfactant ...................................................................................................... 13 

2.4.2. Type of Microemulsion ................................................................................ 15 

2.4.3. Water in Oil (W/O) Microemulsion ............................................................. 15 

2.5. Functionalization of Silica Nanoparticles ........................................................ 18 

2.5.1. Silane Coupling Agents ................................................................................ 19 

2.5.2. Covalent Couplings ...................................................................................... 20 

2.5.3. Physical Interactions ..................................................................................... 23 

2.6. Layer by Layer (LbL) Assembly ...................................................................... 24 

3. EXPERIMENTAL WORK .................................................................................. 26 

3.1. Materials ........................................................................................................... 26 

3.2. Synthesis of Silica Nanoparticle by Water in Oil Microemulsion Method ..... 27 

3.3. Functionalization of Silica Nanoparticles ........................................................ 28 

3.3.1. Functionalization of Silica Nanoparticles with APS, NPC, APDMES and 

AHAPS 28 

3.3.2. Functionalization of Silica Nanoparticles with PEG Silane ......................... 29 

3.3.3. Functionalization of Silica Nanoparticles with DETAS .............................. 29 

3.4. Layer by Layer Assembly ................................................................................ 30 

3.5. Characterization ............................................................................................... 30 



 x 

3.5.1. Dynamic Light Scattering (DLS) ................................................................. 30 

3.5.2. Scanning Electron Microscopy (SEM) ......................................................... 31 

3.5.3. Fourier Transformation Infrared Spectroscopy (FTIR) ................................ 31 

3.5.4. Nuclear Magnetic Resonance Spectroscopy (NMR) .................................... 32 

3.5.5. Ellipsometry Analysis .................................................................................. 32 

3.5.6. Atomic Force Microscopy (AFM) ................................................................ 32 

4. RESULTS&DISCUSSION ........................................................................................ 34 

4.1.  Preparation of Silica Nanoparticles .................................................................... 34 

4.2.  Characterization of Silica Nanoparticles ............................................................ 34 

4.2.1. Particle Size Distribution of Silica Nanoparticles ........................................ 34 

4.2.2. Zeta Potential Results of Bare Silica Nanoparticles ..................................... 39 

4.2.3. FTIR Results of Bare Silica Nanoparticles ................................................... 40 

4.2.4. NMR Results of Bare Silica Nanoparticles .................................................. 41 

4.3. DLS, FT-IR, NMR, and TGA Analysis of Functionalization of Silica 

Nanoparticles .............................................................................................................. 42 

4.3.1. Characterization of APS (3-aminopropyltrimethoxysilane) Functionalized 

Silica Nanoparticles ................................................................................................... 42 

4.3.2. Characterization of NPC (N-trimethoxysilylpropyl-N, N, N-

trimethylammonium chloride) Functionalized Silica Nanoparticles ......................... 45 

4.3.3. Characterization of APDMES (3-Aminopropyl(dimethyl)ethoxysilane) 

Functionalized Silica Nanoparticles ........................................................................... 48 

4.3.4. Characterization of AHAPS (N-(6- aminohexyl) 

aminopropyltrimethoxysilane) Functionalized Silica Nanoparticles ......................... 51 

4.3.5. Characterization of PEG-Silane (2- [methoxy(polyethyleneoxy) propyl] 

trimethoxysilane with 6-9 polyethylene oxide units) Functionalized Silica 

Nanoparticles.............................................................................................................. 54 

4.3.6. Characterization of DETAS (N-[3-

(trimethoxysilyl)propyldiethylenetriamine) Functionalized Silica Nanoparticles ..... 57 

4.3.7. Overview of All Functionalized Silica Nanoparticles and Bare Silica in 

terms of FTIR Analysis .............................................................................................. 60 

4.4.  Layer by Layer Assembly of Functionalized Silica Nanoparticles .................... 62 

4.4.1. Characterization of LbL Thin Films Coated with Functionalized Silica 

Nanoparticles by SEM ............................................................................................... 62 

4.4.2.  Thickness Measurement of LbL Thin Film Coatings .................................. 67 

4.4.3. AFM Measurement of LbL Thin Film Coatings .......................................... 70 

5. CONCLUSION ........................................................................................................... 73 

REFERENCES ............................................................................................................... 75 



 xi 

LIST OF FIGURES 

Figure 2. 1. Illustration of DLVO theory (left) and electrical double layer (right) [14]. .. 5 

Figure 2. 2. Two dimensional representation of crystalline (left) and amorphous silica 

(right)[18]. ......................................................................................................................... 7 

Figure 2. 3. pH versus stability graph of colloidal silica systems [17]. ............................ 7 

Figure 2. 4. Schematic representation of synthesis of nanomaterials by the sol-gel 

procedure .......................................................................................................................... 9 

Figure 2. 5. Hydrolysis and condensation under acidic environment. ............................ 10 

Figure 2. 6. Hydrolysis and condensation under basic environment. ............................. 10 

Figure 2. 7. pH versus growth & gelation behavior of the colloidal silica nanoparticles

 ........................................................................................................................................ 10 

Figure 2. 8. Schematic representation of TEOS ............................................................. 11 

Figure 2. 9. Hydrolysis and condensation demonstrations of TEOS .............................. 11 

Figure 2. 10. The first representation of water in oil microemulsion by Schulman. ...... 12 

Figure 2. 11. Schematic representation of surfactant molecules with hydrophilic head 

group and hydrophobic tail. ............................................................................................ 13 

Figure 2. 12. The range of HLB of surfactants [47]. ...................................................... 14 

Figure 2. 13. Schematic illustration of Winsor model [50]. ........................................... 15 

Figure 2. 14. Typical structure of water in oil microemulsion. ...................................... 16 

Figure 2. 15. Comparison between nucleation between low and high R value .............. 17 

Figure 2. 16. Schematic illustration of silane coupling agents’ interactions (a) hydrogen 

bonding, (b) electrostatic attraction, (c) covalent bonding, (d) horizontal polymerization, 

(e) vertical polymerization, (f) polymeric silane ............................................................ 19 

Figure 2. 17. Demonstration of hydrolysis of APTES in the solution (Top) and at the 

hydrated surface (Bottom) .............................................................................................. 22 

Figure 2. 18. Dip coating of polyanion and polycation and spray coating of 

polyanion/nanoparticle and polycation ........................................................................... 25 

 

Figure 3. 1. Chemical structure of silane coupling agents .............................................. 26 

Figure 3. 2. Schematic illustration of poly allylamine hydrochloride (PAH) (left) and 

poly (sodium 4-styrenesulfonate) (SPS) (right) .............................................................. 27 

Figure 3. 3. Schematic representation of synthesis of silica nanoparticles by water in oil 

microemulsion method ................................................................................................... 28 



 xii 

Figure 3. 4. Schematic illustration of functionalization of silica nanoparticles with 

amine based functional group by hydrolysis and condensation reactions ...................... 29 

 

Figure 4. 1. Comparison between cyclohexane recovery types which are by rotary 

evaporation (a) and acetone precipitation (b) ................................................................. 35 

Figure 4. 2. Particle size change versus water surfactant molar ratio ............................. 36 

Figure 4. 3. Effect of W/S, ammonia and TEOS concentration on the particle size and 

morphology of silica nanoparticles (a) S, (b) R/2, (c) 2R, (d) 2A, (e) A/2, (f) 2T, (g) T/2.

 ........................................................................................................................................ 37 

Figure 4. 4. Particle size change versus ammonia concentration ................................... 38 

Figure 4. 5. Particle size change versus TEOS concentration ........................................ 39 

Figure 4. 6. Zeta potential versus pH graph of bare silica nanoparticles ........................ 40 

Figure 4. 7. FTIR spectrum of bare silica nanoparticles synthesized by microemulsion 

method ............................................................................................................................ 41 

Figure 4. 8. 1H-NMR spectra of bare silica nanoparticles in D2O .................................. 41 

Figure 4. 9. Schematic demonstration of 3-aminopropyltrimethoxysilane (APS) 

functionalized silica nanoparticles .................................................................................. 42 

Figure 4. 10. Zeta potential versus pH graph of NPC functionalized silica nanoparticles

 ........................................................................................................................................ 43 

Figure 4. 11. FTIR spectrum of bare silica, bare APS and APS functionalized silica ... 44 

Figure 4. 12. 1H-NMR spectra of APS functionalized silica nanoparticles in D2O ....... 45 

Figure 4. 13. Schematic demonstration of N-trimethoxysilylpropyl-N, N, N-

trimethylammonium chloride (NPC) functionalized silica nanoparticles ...................... 46 

Figure 4. 14. Zeta potential versus pH graph of NPC functionalized silica nanoparticles

 ........................................................................................................................................ 47 

Figure 4. 15. FTIR spectrum of bare silica, bare NPC and NPC functionalized silica .. 48 

Figure 4. 16. 1H-NMR spectra of NPC functionalized silica nanoparticles in D2O ....... 48 

Figure 4. 17. Schematic demonstration of 3-Aminopropyl(dimethyl)ethoxysilane) 

(APDMES) functionalized silica nanoparticles .............................................................. 49 

Figure 4. 18. Zeta potential versus pH graph of APDMES functionalized silica 

nanoparticles ................................................................................................................... 50 

Figure 4. 19. FTIR spectrum of bare silica, bare APDMES and APSMES functionalized 

silica ................................................................................................................................ 50 

Figure 4. 20. 1H-NMR spectra of APDMES functionalized silica nanoparticles in D2O51 



 xiii 

Figure 4. 21. Schematic demonstration of N-(6- aminohexyl) 

aminopropyltrimethoxysilane (AHAPS) functionalized silica nanoparticles ................. 52 

Figure 4. 22. Zeta potential versus pH graph of AHAPS functionalized silica 

nanoparticles ................................................................................................................... 52 

Figure 4. 23. FTIR spectrum of bare silica, bare AHAPS and AHAPS functionalized 

silica ................................................................................................................................ 53 

Figure 4. 24. 1H-NMR spectra of AHAPS functionalized silica nanoparticles in D2O .. 54 

Figure 4. 25. Schematic demonstration of (2- [methoxy(polyethyleneoxy) propyl] 

trimethoxysilane with 6-9 polyethylene oxide units) (PEG-Silane) functionalized silica 

nanoparticles ................................................................................................................... 55 

Figure 4. 26. Zeta potential versus pH graph of PEG-Silane functionalized silica 

nanoparticles ................................................................................................................... 55 

Figure 4. 27. FTIR spectrum of bare silica, bare PEG-Silane and PEG-Silane 

functionalized silica ........................................................................................................ 56 

Figure 4. 28. 1H-NMR spectra of PEG-Silane functionalized silica nanoparticles in D2O

 ........................................................................................................................................ 57 

Figure 4. 29. Schematic demonstration of N-[3-

(trimethoxysilyl)propyldiethylenetriamine) (DETAS) functionalized silica nanoparticles

 ........................................................................................................................................ 58 

Figure 4. 30. Zeta potential versus pH graph of DETAS functionalized silica 

nanoparticles ................................................................................................................... 58 

Figure 4. 31. FTIR spectrum of bare silica, bare DETAS and DETAS functionalized 

silica ................................................................................................................................ 59 

Figure 4. 32. 1H-NMR spectra of DETAS functionalized silica nanoparticles in D2O .. 60 

Figure 4. 33. Schematic illustration of FTIR spectrum of functional groups ranging from 

3750 to 1350 cm-1 ........................................................................................................... 61 

Figure 4. 34. Schematic illustration of FTIR spectrum of functional groups ranging from 

1500 to 750 cm-1 ............................................................................................................. 61 

Figure 4. 35. SEM micrographs of APS factionalized silica nanoparticles thin films 

coated by LbL in 5 bL (a) and 10 bL (b) on silicon wafer. ............................................ 62 

Figure 4. 36. SEM micrographs of NPC factionalized silica nanoparticles thin films 

coated by LbL in 5 bL (a, c, e) and 10 bL (b, d, f) on silicon wafer at 100 nm, 200 nm 

and 1 um magnification scale. ........................................................................................ 63 



 xiv 

Figure 4. 37. SEM micrographs of APDMES factionalized silica nanoparticles thin 

films coated by LbL in 5 bL (a, c, e) and 10 bL (b, d, f) on silicon wafer at 100nm, 

200nm and 1 um magnification scale. ............................................................................ 64 

Figure 4. 38. SEM micrographs of AHAPS factionalized silica nanoparticles thin films 

coated by LbL in 5 bL (a, c, e) and 10 bL (b, d, f) on silicon wafer at 100nm, 200nm 

and 1 um magnification scale. ........................................................................................ 65 

Figure 4. 39. SEM micrographs of AHAPS/PEG-Silane factionalized silica 

nanoparticles thin films coated by LbL in 4 bL, 6 bL, 8 bL and 10 bL on silicon wafer at 

100nm and 1 um magnification scale. ............................................................................ 66 

Figure 4. 40. Thickness measurements of NPC functionalized silica nanoparticles with 

respect to bL numbers by ellipsometry ........................................................................... 67 

Figure 4. 41. Thickness measurements of APDMES functionalized silica nanoparticles 

with respect to bL numbers by ellipsometry ................................................................... 68 

Figure 4. 42. Thickness measurements of AHAPS functionalized silica nanoparticles 

with respect to bL numbers by ellipsometry ................................................................... 68 

Figure 4. 43. Thickness measurements of AHAPS/PEG Blend functionalized silica 

nanoparticles with respect to bL numbers by ellipsometry ............................................ 69 

Figure 4. 44. 3-D representation of thickness comparisons between various functional 

groups .............................................................................................................................. 70 

Figure 4. 45. Thickness and topography analysis of 10 bL NPC functionalized silica 

nanoparticles thin films by AFM .................................................................................... 70 

Figure 4. 46. Thickness and topography analysis of 10 bL APDMES functionalized 

silica nanoparticles thin films by AFM ........................................................................... 71 

Figure 4. 47. Thickness and topography analysis of 10 bL AHAPS functionalized silica 

nanoparticles thin films by AFM .................................................................................... 71 

Figure 4. 48. Thickness and topography analysis of 10 bL AHAPS/PEG blend 

functionalized silica nanoparticles thin films by AFM ................................................... 72 

 

  



 xv 

LIST OF TABLES 

Table 2. 1. Typical silane coupling agents to modify silica particles ............................. 20 

 

Table 4. 1. Particle size difference regarding to water/surfactant ratio, ammonia and 

TEOS concentration ........................................................................................................ 35 

  



 xvi 

LIST OF ABBREVIATIONS 

AFM Atomic Force Microscopy 

AHAPS N-(6- aminohexyl) aminopropyltrimethoxysilane 

APDMES (3-Aminopropyl)dimethylethoxysilane 

APS 3-(aminopropyl) trimethoxysilane 

APTES 3-aminopropyltriethoxysilane 

ATR Attenuated Total Reflectance 

bL bi Layer 

CMC Critical Micelle Concentration 

DETAS N-[3-(trimethoxysilyl)propyldiethylenetriamine 

DLS Dynamic Light Scattering 

DLVO Derjaguin-Landau-Verwey-Overbeek 

EDL Electrical Double Layer 

FT-IR Fourier Transform Infrared Spectroscopy 

HLB Hydrophilic-Lipophilic Balance 

LB Langmuir-Blodgett 

LbL Layer by Layer 

NMR Nuclear Magnetic Resonance 

NPC N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride 

O/W Oil in water 

PAH Poly Allylamine Hydrochloride 

PEG Poly Ethylene Glycol 

SEM Scanning Electron Microscope 

SPS Poly (Sodium 4-Styrenesulfonate) 

TEOS Tetraethyl orthosilicate 

W/O Water in oil 

ZP Zeta Potential 

  

 

 

 

 



 1 

1. INTRODUCTION 

 

Thin film coatings have great importance for surface science and engineering. Layer by 

layer (LbL) assembly is one of the versatile deposition methods to form thin film coatings 

for many demanding surface applications such as, self-cleaning, antireflective, 

antifogging and ice-phobic surfaces. LbL assembly method presents exceptional 

advantages like conformal coatings with controlled structure and composition and having 

opposite charged materials can be coated sequentially by electrostatic interactions. To 

assemble nanostructures from water dispersions is quite challenging due to the colloidal 

instability of the solutions that results in agglomeration and precipitation problems. 

Addition of functional groups to the surfaces of the nanostructure materials is a quite 

common approach to improve stability of such solutions. Besides, LbL coated thin films 

still require further improvement to eliminate their relatively weak mechanical properties. 

To improve mechanical properties of the coatings, functionalized silica nanoparticles 

with proper functional groups can be used. These nanoparticles offer more crosslinking 

possibility with post processes to generate covalent bonds between oppositely charged 

materials. In this study, silica nanoparticles were functionalized with several functional 

groups, right after they were synthesized by water-in-oil microemulsion to get ready for 

LbL method.  

1.1.Motivation 

The scope of this study is to synthesize silica nanoparticles by controlling their size and 

to modify the surface of these nanoparticles with several functional groups that are 

capable of making covalent bonding within the thin film for LbL application having better 

mechanical properties surface.  

Nanoparticles having large surface area tend to agglomerate due to Van der Waals forces 

to reduce surface or interfacial energy. For this reason, functional groups make the 

nanoparticle utilize to decrease agglomeration by crosslinking. Thereby, dispersion of 
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silica nanoparticles in aqueous solution and mechanical properties are expected to be 

better.  

The fundamental mechanism of LbL assembly is to rely on electrostatic interactions 

between the deposition solutions. Silica nanoparticles can be used to provide adhesion on 

the substrate in order to increase sustainability of further steps in LbL method. Durability 

of thin film can be enhanced by functional groups showing favorable mechanical 

robustness by crosslinking.  

1.2. Novelty of This Thesis 

The assembly of functionalized silica nanoparticles for LbL procedure is the main 

approach of this thesis and the functional silica nanoparticles provide robust surface 

resulting from crosslinking. Besides, silica nanoparticles with functional groups have 

positive surface charge and they can be assembled with negatively charged 

polyelectrolytes or bare silica nanoparticles.  Different kind of functional groups’ 

behavior will be observed in point of thin film properties for LbL method. 

1.3. Road Map of This Thesis 

• Silica nanoparticles were synthesized with hydrolysis and condensation reaction 

taking tetraethyl orthosilicate (TEOS) as main source by microemulsion method. 

• Silica nanoparticles were functionalized to change surface charge and property 

with several functional groups which contain silane alkoxy groups by covalent 

bond. 

• Functionalized silica nanoparticles were deposited onto the substrate to analyze 

thickness, morphology and robustness of thin films.  
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2. LITERATURE SURVEY 

2.1. Colloidal Science 

A solution contains solute and solvent ion and the interaction of one to another is 

stimulated via an orientation of distinct particles composing of certain size, shape, and 

charge density in the molecular approach [1]. This interaction-namely intermolecular 

forces- are forces of attraction or repulsion of adjacent particles with opposite charge 

densities and they are rather weak forces compare to intramolecular forces holding a 

molecule together as covalent, ionic and metallic bonding.  

The attraction and repulsion forces between particles play the main important role in 

adhesion, adsorption of surfactants at interfaces and stability of colloids and micellization 

of surfactants [2, 3]. These forces entitle different interaction as van der Waals forces, 

solvation and steric force and electrostatic double layer force. Since these forces are the 

main motive of this thesis, more explicit information should be given to elucidate all 

background clarification of this thesis. Starting by van der Waals force, it is an umbrella 

of three categories as London dispersion force, Keesom orientation force and Debye 

induction force which are interaction between two induced dipoles, interaction between 

two permanent dipoles and interaction between one permanent dipole and one induced 

dipole respectively [4, 5]. Attractive or repulsive interaction as dispersion force can bring 

molecules together or coordinate them ordinarily by using distribution or fluctuation and 

polarization of electrons in the molecules. Furthermore, this interaction is in control of 

bulk materials properties at long distance, and by the surface layer at short distance.  

Secondly, solvation or steric forces are emerged from repulsive forces and they are both 

arose from entropic origin. The solvation forces describe aligning of solvent molecules 

into individual layers between surfaces in very confined zone. The hydrated species on a 

particle surface can induce a repulsion when surfaces come close each other. In addition, 

polymeric steric forces describe the repulsion of two surface which polymeric 

macromolecules was attached to their front particles. When these two surfaces come close 

to each other, the polymer brushes lie over opposite surfaces and repulsive osmotic force 

is being formed by trapped chains in between surface particles. Governing system can 

contain protic solvent (methanol or ethanol) or aprotic solvent (acetone and benzene) with 

the interaction of surface group of polymeric brushes. When polymeric branches and 

charged particles attached to form a polymer layer with electric potential, electrostatic 
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repulsion and steric confinements hinders agglomeration. Stabilization is maintained 

thermodynamically so that particles are always re-dispersible in multiphase system [6]. 

Lastly, the electrostatic double layer force describes the interaction of fluid-fluid and 

liquid-solid interfaces [7]. These interfaces have charged molecules which may be 

originated from adsorption of charged ions at the interface or dissociation of an ionizable 

surface group. The adsorption of an ionic surfactant or a polyelectrolyte can exemplify 

the adsorption of a charged ion at the interface and the dissociation of -SiOH groups 

present on the surface of a solid can be an instance for dissociation of an ionizable surface 

group. Resulted surface after disengaged part attracts opposite charged ions by coulombic 

interaction. Conversely, osmotic pressure repels those ions not only from the surface but 

also from each other. This dispersion is favorable thermodynamically because of the 

increase in entropy. Double layer forms by increase in concentration of opposite charged 

ions as surrounding layer on a particle surface when electrostatic attraction and osmotic 

repulsion reach an equilibrium. Stabilization is maintained kinetically. The double layer 

force is highly essential to form stabilization of emulsions, foams, and colloids. On the 

other hand, the integrated effect of double layer and van der Waals forces between two 

surfaces is modeled by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [8-10]. 

DLVO theory offers to maintain stabilization of a colloidal system which contains 

particles having Brownian motion and being exerted by van der Waals attractive and 

electrical double layer repulsive forces seen in Figure 2. 1. The colloidal system can 

maintain stability if only particles apply enough repulsion to each so that dispersion can 

defy flocculation, coagulation or agglomeration. DLVO theory has some criteria’s to be 

applied a system. The dispersion must be dilute to prevent any interfere of other particles 

to charge density and distribution on each particle surface or any proximity change to 

each particle surfaces. Even though repulsive force creates an energy barrier to block 

particles to come closer, some particle can overcome that barrier by collisions then 

attractive force will be dominant to attached them irreversibly together. No other force is 

dominant than van der Waals force and electrostatic double layer force because 

gravitational force is negligibly small due to small sized particles. Particles generally have 

simple and similar geometry that surface properties of all particles are ideal in terms of 

surface charge density and distribution including the electric potential in the enclosing 

ambient. The double layer should be in diffusive form that electrostatic force, entropic 

dispersion and Brownian motion can play their roles freely to determine distributions of 

counter ions and charges [3, 11, 12]. Nano particle synthesis by colloid method are based 
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on DLVO theory; and this method is simply established by use of surfactants for 

stabilizing the colloidal suspension and controlling the particle size. Colloidal particles 

suspended in a solution form a charged layer that same number of oppositely charged 

ions surrounds the colloid particles which resulted in electroneutrality. Even though 

colloid method is applicable to DLVO criteria’s in theory, it is very hard to maintain 

stability and control the particle size in practice. Zeta potential (ZP) is very efficient tool 

to observe stability in any suspension or any distribution in a solution. As aforementioned 

in criteria’s for DLVO theory, liquid layer enclosing particle consists of two parts; an 

inner and an outer part. Inner part is called Stern where adsorbed ions firmly bounded 

each other, on the other hand, outer part is called diffuse layer which contains weakly 

interacted ions [13]. The ions within diffusive layer form a stable region having a 

notational boundary. By applying a force field such as electric field, particle displaces so 

the ions within the boundary (electrical double layer) will be displaced too. Those ions 

away from boundary stays with bulk dispersant however an interface between the mobile 

particles and dispersant is formed and called as slipping/shear plane of a colloid particle.  

  

Figure 2. 1. Illustration of DLVO theory (left) and electrical double layer (right) [14]. 

ZP is electro-kinetic potential that plane of a colloid particle displacing under electric 

field [15]. If the magnitude of the zeta potential is -as general trend- more than +30 mV 

or less than -30 mV, particles will not tend to enclose each other or tend to expel each 
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other. Zeta potential values between +30 and -30 mV refers to instability or moderate 

stability of colloid otherwise colloid is highly stable if ZP ˃ ±30 mV. However, there are 

some specific factors that affecting ZP and they are pH value, ionic strength, and 

concentration. pH effect on ZP is described as changing acidic (H+) or basic (OH-) 

components of particle to alter the range between pH value and the isoelectric point which 

is also called point of zero charge [16]. At zero charge point, particle does not move under 

the electric field to measure zeta potential. The isoelectric point is the where colloidal 

system is least stable according to pH value with respect to zeta potential, so that pH value 

should be far away from the isoelectric point to avoid agglomeration/flocculation. Ionic 

strength effect on ZP is described by the difference in valency of ions within EDL. Ions 

having higher valency forms a compressed EDL so that ZP lessen in magnitude. 

Concentration effect on ZP is described by change in surface adsorption by increase in 

concentration so that EDL thickness also changes. Zeta potential increases with the 

increase in concentration in dilute condition. However, zeta potential decreases at higher 

concentration so that it creates a low stability in colloidal system.  

2.2. Silica Nanoparticles  

The silica which is the main component of earth’s crust consists of silicon and oxygen 

atoms, also called silicon dioxide (SiO2). Silica has different phases divided into 

anhydrous crystalline silica (e.g. quartz, tridymite, and cristobalite) hydrated crystalline 

silica (SiO2.xH2O), anhydrous amorphous silica having anisotropic micro-porosity (e.g. 

fibers) anhydrous and hydrous amorphous silica having isotropic micro-porosity (e.g. sol, 

gel, and fine powders) and amorphous silica glass with massive dense. Silica in the 

crystalline consists of four or six oxygen atoms and each oxygen is bonded to two silicon 

atoms; however, amorphous silica has random packing of [SiO4]
4- units shown in Figure 

2. 2 [17, 18]. 
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Figure 2. 2. Two dimensional representation of crystalline (left) and amorphous silica (right)[18]. 

The silica is a hydrophilic material because of the presence of silanol group (SiOH) on 

the surface of particles. The surface charge potential, density and stability alter by pH and 

ionic strength of solution. When silica nanoparticles disperse in aqueous solutions, silanol 

groups ionize to cause negative surface charge and pKa of silanol is approximately 9.2 

[17]. The stability-pH curve which metastable silica at zero surface charge indicates the 

poorest stability was indicated by Iler’s work displayed in Figure 2. 3. The gel formation 

which occurs the collision of two silica particles with low enough charge on the surface 

forming siloxane bonds, filling volume of sol to get gel raises in the pH range between 3 

and 5 until pH 6 and is proportional with hydroxyl ion concentration that behaves as 

catalyst to form siloxane linkage. The isoelectric point of silica achieves at around pH 2. 

The stability increases with catalytic at higher pH values that repulsion is dominant 

between the particles due to enough concentration of surface charge. In the pH range 

between 8 and 10 sols are generally stable that the particles suspend in the solution 

without aggregation [17-19]  

     

Figure 2. 3. pH versus stability graph of colloidal silica systems [17]. 
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From the very beginning of civilization, silica has great importance for humanity. 

Nowadays, the usage of silica nanoparticles is very popular due to having simple 

preparation methods and modifying surface easily that enable to utilize them several 

applications such as biomedical, pharmacy, food, chromatography, ceramics, catalysts, 

metallurgy, thin film substrates, optics, elastomers, electronic and thermal insulators [18]. 

There are many different approaches for the synthesis of silica nanoparticles which 

basically includes sol-gel process (e.g. Stöber Method [20]) and microemulsion method 

[21]. 

2.3. Sol-Gel Process 

The sol-gel processing of inorganic materials was mentioned for the first time by Ebelman 

[22]; however, it gained importance after Geffcken and Berger studies devised 

preparation of oxide films from sol-gel precursors [23] 

A colloid is the dispersion of very small particles (range 1-1000 nm) in a suspension and 

van der Waals interaction due to particles surface charges becomes dominant because 

gravitational force exerting on particles are negligible and particles depict Brownian 

motion [24]. The sol-gel which require transition of colloidal suspension (sol) into 

continuous liquid phase (gel) is the process for preparation of silica nanoparticles. The 

sol defined as a dispersion of colloid in a continuous liquid phase in the size range 

between 1 and 100 nm and gel is three-dimensional interconnected solid network in liquid 

with sub-micron size pores [25, 26]. There are four steps in the sol gel process which are; 

• A sol is formed with the desired colloidal particles to disperse in a liquid. 

• The sol solution is generated on the substrates by dipping, spinning and spraying. 

• While stabilizing agents are removed, the particles are polymerized in the sols and 

develop a gel as a continuous network. 

• The residual organic or inorganic components are formed an amorphous or 

crystalline coating by final heat treatment, respectively [24]. 
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Figure 2. 4. Schematic representation of synthesis of nanomaterials by the sol-gel procedure 

The sol-gel process shown in Error! Reference source not found. [24] enables to 

synthesize and produce materials for diverse application areas which are controllable, 

ultra-fine, spherical shape nanoparticles, thin film coatings, ceramic fibers, membranes, 

ceramics, glasses and porous aerogel materials. The sol-gel process also presents several 

advantages, such as obtaining homogenous multi-component system easily, minimizing 

defects during processing powders, observing defects of gel after drying, formation of 

fibers, films or composites in the cause of rheological properties of sols or gels. 

2.3.1. Hydrolysis and Condensation Reactions 

Traditionally, inorganic or metal organic precursors are used for sol-gel processing which 

occurs by hydrolysis and condensation reactions. The most commonly used reactant is 

tetraethyl orthosilicate (TEOS) in silica nanoparticle synthesis [27]. Hydrolysis and 

condensation reactions can be catalyzed by acid, base or humidity shown in Figure 2. 5 

and Figure 2. 6 [23]. Indeed, the hydrolysis reaction can start in the absence of catalysts 

because of humid environment, but the presence of catalysts enhances its reaction rate. 

The type of catalyst can change the product features, for example, an acidic media enables 

to form a gel, on the other hand stable sol occurs in a basic media [19, 23].  
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Figure 2. 5. Hydrolysis and condensation under acidic environment. 

 

 

Figure 2. 6. Hydrolysis and condensation under basic environment. 

Hydrolysis reaction can initiate in the presence of catalyst or humidity and at the same 

time alkoxy groups eliminate from the main structure in order to form silanol groups. 

Immediately after the condensation reactions start and the reaction rate accelerates with 

heat.  

The parameters of the silica nanoparticle synthesis including temperature, pH of catalyst 

(acid or base), nature of the solvent, and the type of alkoxide precursor [25, 28]  are 

critical on particle size, morphology and strength indicated in Figure 2. 7 [23]. 

 

Figure 2. 7. pH versus growth & gelation behavior of the colloidal silica nanoparticles 
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2.3.2. Stöber Method 

In 1968, Stöber et. al. developed a pioneering method to synthesize monodispersed 

spherical silica nanoparticles with the diameter range from less than 50nm to 2µm [29]. 

The Stöber method is a one-pot reaction and it is carried out by hydrolysis and 

condensation reactions of tetraethyl orthosilicate (TEOS) in alcohol-based medium with 

an ammonia solution as a catalyst under a vigorously stirring [20, 28-34].  

 

Figure 2. 8. Schematic representation of TEOS 

In the hydrolysis reaction, ammonia solution provides hydroxyl ions to medium and these 

hydroxyl ions attack to silane in TEOS. The ethoxy groups of TEOS are eliminated from 

the main structure to form silanol groups. After starting the hydrolysis reaction, the 

alcohol and water condensations take place to generate siloxane bonds following the silica 

structure are produced. Hydrolysis and condensation reactions are shown below, 

representatively in Figure 2. 9. 

 

Figure 2. 9. Hydrolysis and condensation demonstrations of TEOS 

Ammonia solution is used as a catalyst and the amount of ammonia solution directly 

affects the silica nanoparticle size, shape and morphology. The particle surface has a 

negative charge at high pH value, hence, its sol can be obtained without aggregation [19]. 

The final size and shape are governed by the concentration of water and ammonia 

solutions, the chain length of alcohol-based solvents (methyl, ethyl, propyl, butyl alcohol) 

and the reaction temperature. The reaction rates can change with respect to the chain 
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length of solvent, for instance, the fastest reaction takes place in methyl alcohol, but the 

slowest one is in N-butyl alcohol. There is an inversely proportional relationship between 

the reaction rate and the particle size [29].  

Two models basically explain the chemical and physical growth mechanisms of silica 

nanoparticles which are monomer addition [19] and controlled aggregation [28] and both 

of methods can be attributed to nucleation and growth mechanism. 

The superiority of this method is that the final product does not contain any surfactant-

based impurities. On the other hand, controlling the synthesis of silica particle with a size 

less than 100 nm is a major encountered problem in Stöber method, as a consequence, the 

particles are obtained in high poly-dispersed condition. 

2.4. Microemulsion 

Microemulsions are macroscopically homogenous, but microscopically heterogenous 

mixtures [35]. The microemulsion method enable to synthesize uniform, monodispersed 

and spherical shaped silica nanoparticles less than 100 nm and many nanomaterials 

having different shape and morphology as an alternative to Stöber Method [21, 36-38]. 

In 1943, Hoar and Schulman [39] were prepared homogenous solution with combination 

of water, oil, surfactant and cosurfactant in their studies for the first time (Figure 2. 10) 

yet the microemulsion term was proposed by Schulman et. al in 1959 [40]. 

Microemulsion consists of minimum three components existing water, oil and surfactant 

that is optically isotropic, macroscopically homogenous and thermodynamically stable 

liquid solution. In microemulsion the surfactant has two part as the polar and non-polar 

phase to form interfacial film and the surfactant molecules surrounded at the interface of 

oil and water [41].  

 

Figure 2. 10. The first representation of water in oil microemulsion by Schulman. 
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Microemulsions have wide application areas from traditional one (e.g. detergency) to 

advance one (e.g. nanoparticle synthesis, catalyst, solar energy conversion, cosmetic, 

drug delivery, pulp and paper industry, concentrate and asphalt, petroleum industry, food 

and beverages [42]. 

2.4.1. Surfactant 

Nanoparticle synthesis in liquid phase includes numerous components to modify resulting 

shape, morphology and size, the most important key component to change final properties 

is surfactant that is the primary difference, as compared to sol-gel method. The aim of 

surfactant usage is to control the dispersion preventing agglomeration during chemical 

synthesis [35]. 

The surfactant molecules are amphiphile because they consist of at least two parts which 

one of them is soluble in polar solvents called as hydrophilic and the other one is insoluble 

in water defined as hydrophobic. The hydrophilic and hydrophilic parts are indicated in 

the head and tail groups, respectively (Figure 2. 11) [43]. These two parts in the surfactant 

molecules having opposite solubility provide unique features which is able to adsorb at 

the surfaces and interfaces. The result of these, microemulsion reveals by decreasing the 

surface tension and forming aggregations in the solution [42]. That is why surfactant word 

is derived from surface active agent due to the fact that it reduces the interfacial tension 

between hydrophilic and hydrophobic phases [44].  

 

Figure 2. 11. Schematic representation of surfactant molecules with hydrophilic head group and 

hydrophobic tail. 

Hydrophobic group in the surfactant avoid contacting in water in aqueous solutions, but 

it can dissolve in the aqueous solution at the low concentrations. When the concentration 

of surfactant exceeds a value referred CMC (critical micelle concentration), the surfactant 

molecules adjust spontaneously in micelles [44, 45].  

Micelles formation is entropy driven process. The water can be supposed to have 3-D 

structure of hydrogen bonds with cavities. During the destruction and formation of 

hydrogen bonds, free water molecules move through the cavities. When hydrocarbon 

exists in the system, the cavities is filled by hydrocarbon molecules and movement of 

water is restricted. As a result, hydrophobic solute is surrounded by water molecules 
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which become more ordered. Hydophobic tail of surfactant transfers from ordered water 

phase to oil phase during micellization that causes disorderness in water molecules 

surrounding the hydrophobic molecules, consequently the entropy increases in the system 

and the microemulsion stabilies [44]. 

Surfactants are divided into two groups that are ionic (e.g. cationic, anionic and 

zwitterionic) and non-ionic according to their hydrophilic head groups. Non-ionic 

surfactants whose hydrophilic head is generally formed a short polyethylene oxide chain 

or seldom a polyhydroxy chain do not have any charge. Non-ionic surfactants are not 

sensitive to water different from ionic surfactants and compatible to use together with 

other surfactants, hence their usage increases day by day.  

The properties of the surfactants are designated to hydrophilic-lipophilic balance (HLB) 

defined in 1949 by William Griffin [46]. HLB values (Figure 2. 12) for non-ionic 

surfactants changes from 1 to 20. 1 HBL number is assigned to most lipophilic molecule 

nonetheless 20 HBL number is assigned to the most hydrophilic molecule [44-46]. 

 

Figure 2. 12. The range of HLB of surfactants [47]. 

The amount of surfactant determines the coverage of surface consequently, the extent 

which is the size and number of droplets. When the major component is the oil, the water 

phase forms the droplets or reverse micelles which the hydrophilic head group of 

surfactant points inside toward the water phase as hydrophobic points outside toward the 

oil phase. Water in oil microemulsion (reverse microemulsion) will be explained detailly 

in Chapter 2.4.3. The radius of droplet is influenced with some parameters such as, 

amount of water and surfactant  
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2.4.2. Type of Microemulsion 

According to one consider, microemulsions are droplet type of dispersion dividing into 

oil in water (O/W) and water in oil (W/O) with drop diameter changing between 10 and 

100 nm as a kind of emulsions. However, microemulsions and emulsions have important 

differences that emulsions are thermodynamically unstable, static system and having 

relatively large droplets but microemulsions are thermodynamically unstable, dynamic 

system and having small aggregates that have a reverse situation in this way high energy 

is not necessary to form them [43, 48]. 

One of the most well-known classifications of microemulsion systems is specified by 

Winsor [49] to explain phase forming separating four displayed in Figure 2.10. : 

 

Figure 2. 13. Schematic illustration of Winsor model [50]. 

Winsor I: Oil in water (O/W) microemulsion phase placed in below is equilibrium with 

the upper excess oil. The surfactant is favorable soluble in water.  

Winsor II: Water in oil (W/O) microemulsions phase placed in above is equilibrium with 

lower excess water. The surfactant is preferentially soluble in oil. 

Winsor III: There are three phases which are excess oil, O/W and W/O as bicontinuous 

and excess water from top to down.  

Winsor IV: A isotropic micellar solution which forms by adding sufficient amount of 

surfactant and alcohol. 

2.4.3. Water in Oil (W/O) Microemulsion 

Water in oil microemulsion is well known method since 1960s [51], but used as 

nanoreactors for producing nanoparticle in 1982 [52]. W/O microemulsion forms 

homogenous solution when nanometer sized water droplets are dispersed in a 

hydrocarbon based continuous phase with the help of surfactants. The hydrophilic head 

group of surfactants are oriented to the water phase, but the hydrophobic tail group of 
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surfactants points toward the oil phase. Thus, the surfactant composes aggregates defined 

as reverse or inverted micelles which minimize the energy thermodynamically by forming 

spherical shape [53]. The polar and ionic components are portioned in the center part of 

surfactant in reverse micelles as a result of which inorganic and organic materials in oil 

is dispersed well  [41]. 

 

Figure 2. 14. Typical structure of water in oil microemulsion. 

The water droplets in the W/O microemulsion behave as nanoreactors for controlled 

nucleation and growth to synthesize silica nanoparticles (Figure 2. 14). The particle size 

and shape which is spherical can be controlled by the help of water pool throughout the 

synthesis [54]. The particle formation is affected by the reactant distribution in the 

nanodroplets and the dynamics of inter-droplet exchange. The surfactant stabilized 

nanodroplets show a cage effect that inhibits nucleation and growth of particles [55]. The 

surfactant performs as stabilizing ligand with weak interaction between particles and 

hydrophilic head group and also, the steric stabilization provided by the surfactant 

prevents the aggregation of particles at the final step of particle growth [56]. Besides, the 

surfactant provides to form particle arrangement with a remarkable ordered on the solvent 

volatilization [57].  

There were many articles about the silica nanoparticle synthesis by microemulsion 

method. One of the main articles published by Osseo-Asare and Arriagada that silica 

nanoparticles were synthesized by hydrolysis and condensation of TEOS in 

surfactant/organic solvent/ammonia media in the size range between 30 and 70 nm [21, 

57, 58]. In their study, the particle size and morphology of silica nanoparticles were 

affected by concentration of ammonia, surfactant and TEOS. The same authors were 

developed in the study and they reported that size of silica nanoparticles was influenced 

by water to surfactant molar ratio (R) seen in Figure 2. 15. The particle size decreased 
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when R value increased until R value reaching 1.8 which referred the minimum particle 

size. After 1.8 value, particle size raised with R.  Hydrolysis and nucleation of silica 

nanoparticles were not allowed to rise at low R value, but they promoted when ammonia 

concentration was increased by raising hydroxyl ion concentration. Thus, increase in 

number of nuclei caused to generate small particle size. Moreover, irregular particle shape 

was obtained with reducing ammonia concentration, that effect observed better at high R 

value. Another situation explained particle size change at large R value that nucleation 

was advisable. Both high R and ammonia concentration led up to intermicellar nucleation 

by this way aggregation occurred [21]. Another study showed the same results that 

particles grew by adding hydrolyzed monomer to nuclei thereby, the high amount of 

nuclei caused the small particle size [59] 

 

 

Figure 2. 15. Comparison between nucleation between low and high R value 

Silica nanoparticles are bio-compatible materials and they are preferred to perform 

bioanalysis and biotechnological applications. Bagwe et al. developed dye doped silica 

nanoparticles as biomarkers by reverse microemulsion method. Similar with Arriagada 

and Osseo-Asera studies, particle size can be reduced with increasing ammonia 

concentration due to raising of nucleation rate according to type of bio-application [60]. 

Pileni achieved pioneering study about several parameters affecting particle size and 

shape. Regular crystal growth, shape control and nanorod and nanowire formation was 

explained broadly [61, 62]. 
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Detailed research on the particle growth kinetic in reverse microemulsion system and 

microemulsion dynamics were presented by Lopez et al. [38, 56] and Osseo-Asare and 

Arriagada [58].  

Briefly, W/O microemulsion is significantly promising method to prepare monodispersed 

silica nanoparticles. The synthesis is fulfilled quickly in a spatially and geometrically 

closed area, so the particle size and morphology control are enabled with high 

homogeneity in nano-scale. The interfacial tension is decreased by surfactant wall in the 

microemulsion method thereby, the system exhibits excellent morphology control. The 

water in oil microemulsion offers favorable conditions to produce monodispersed silica 

nanoparticles. The formation of nanoreactors provide to obtain less than 100 nm silica 

nanoparticles. That is why we chose the microemulsion method to synthesize 

monodispersed and 50 nm silica nanoparticles. 

2.5. Functionalization of Silica Nanoparticles 

Surface functionalization adjusts the physical and chemical features of materials in the 

wide range of applications [63]. It is one of the superior procedure to modify on the 

nanoparticles or surfaces which can be used in many applications such as water repellents, 

antireflective coatings, antifogging, adhesives, paints and inks [64]. The surface 

modification of the nanoparticles enables to control surface chemistry for chemical 

loading, provide crosslinking, dispersion of nanoparticles, colloidal stability against 

aggregation, enhance compatibility between inorganic and organic materials, different 

surface charge by different kind of functional groups, better adhesion and improvement 

of mechanical properties [65-69].  There are two ways to achieve surface modification 

which is via physical interactions and covalent couplings using silane coupling agents 

[70]. Schematic illustration of silane coupling agent is displayed in Figure 2. 16. 
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Figure 2. 16. Schematic illustration of silane coupling agents’ interactions (a) hydrogen bonding, (b) 

electrostatic attraction, (c) covalent bonding, (d) horizontal polymerization, (e) vertical polymerization, 

(f) polymeric silane 

2.5.1.  Silane Coupling Agents 

The silane coupling agent as listed in Table 2. 1 [69] can be expressed as RnSiX(4-n)
 which 

R represents a nonhydrolyzable organic moiety such as, alkyl, aromatic or 

organofunctional groups and X is alkoxy moieties (generally methyl or ethyl) [64].  

The characteristics of functionalized particle or surfaces alter in terms of wetting or 

adhesion.  

The silane coupling agents can be used as surface modifier, a primer or an adhesive. A 

reactive silanol is formed after the hydrolysis and then, condensation reactions are taken 

place with other silanol groups to form the siloxane bond. In these reactions, the coupling 

agents have different type of functional groups which help the surface to react with silanol 

groups by covalent bonds [71-73].  

One of the most widely used coupling agents is amino silanes because of their 

bifunctional nature. In early days, amino functionalized silica was utilized in filler 

industry for rubber and plastic to better strength, resistance and rheology [74].  Nowadays, 

amino terminated silica nanoparticles are very promising from biomedical applications 

[65, 66, 75-78] to thin film technology [67, 79-81]  
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Amino silanes are bonded to the surface by covalent bond resulting Si-O-Si structure. In 

aqueous media, -NH3
+ groups arising from amino silanes increase to develop the 

relevance of surface chemistry due to their positive surface charges which enable the 

attachment of negative charged groups such as nanoparticles and DNA for the 

applications. Furthermore, amino silanes have an extraordinary surface reaction in order 

to contain a built-in catalyst different from other silane agents [82, 83]. 

Table 2. 1. Typical silane coupling agents to modify silica particles 

 

2.5.2.  Covalent Couplings 

Crosslinking which provides the chemical reaction with two or more molecules by 

covalent bond is occurred throughout the silica functionalization process. Binding affinity 

or covalent bond are generally favored to functionalize the silica nanoparticles due to 

reduction of desorption from the surface resulted in robust rather than adsorption and 

electrostatic interaction. [70, 72, 75, 84, 85].  

Waddell et al. reported that aminopropyl silane film was formed by hydrolysis of alkoxy 

group following covalent attachment of hydroxy silane groups in silicon oxide surface 

and APTES reaction [86]. In addition to this study, Pasternack et al. indicated that to 

obtain dense amino propyl film and having ordered Si-O-Si bonds without unreacted 

byproduct as fully as possible can be produced by pre-annealing and reveal better stability 

in aqueous solution [87]. 

Name Abbreviation Structure 

3-aminopropyltrimethoxysilane  APS H2N(CH2)3Si(OCH3)3 

3-aminopropyltriethoxysilane APTES H2N(CH2)3Si(OC2H5)3 

aminopropyl methyldiethoxysilane APMDES H2N(CH2)3(CH3)Si(OC2H5)2 

(3-acryloxypropyl) methyldimethoxysilane APMDMOS CH2=CHCOO(CH2)3(CH3)Si(OCH3)2 

(3-acryloxypropyl) trimethoxysilane APTMS CH2=CHCOO(CH2)3Si(OCH3)3 

aminophenyltrimethoxysilane APTMS H2NPhSi(OCH3)3 

bis(triethoxysilylpropyl)tetrasulfane TESPT (C2H5O)3Si(CH2)3S4(CH2)3Si(OC2H5)3 

dimethyldichlorosilane DDS (CH3)2SiCl2 

3-glycidoxypropyltrimethoxysilane, GPS CH2(O)CHCH2O(CH2)3Si(OCH3)3 

3-isocyanatopropyltriethoxysilane ICPTES OCN(CH2)3Si(OC2H5)3 

methacryloxymethyltriethoxysilane MMS CH2=C(CH3)COOCH2Si(OC2H5)3 

3-methacryloxypropyltrimethoxysilane MPS CH=C(CH3)COO(CH2)3Si(OCH3)3 

methacryloxypropyltriethoxysilane MPTES CH=C(CH3)COO(CH2)3Si(OC2H5)3 

mercaptopropyl triethoxysilane MPTS  SH(CH2)3Si(OC2H5)3 

methyltriethoxysilane MTES CH3Si(OC2H5)3 

phenyltrimethoxysilane PTMS PhSi(OCH3)3 

vinyltriethoxysilane  VTES CH=CHSi(OC2H5)3 

vinyltrimethoxysilane  VTS CH=CHSi(OCH3)3 
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The very basic report for the colloid science and interfaces was the functionalization of 

silica particles with organo-trialkoxysilanes mentioned by Van Blaaderen et. al in 1993. 

The functionalization reaction was performed with a based catalyzed system in a mixture 

of ammonia solution and ethanol. That was the new procedure to obtain hybrid materials 

which made the particles suitable in colloidal systems. The different from bare silica, the 

organo-silica particles had higher surface charge and low density [20]. However, the 

organo-silica particles loss their functionality in aqueous media in time. This fundamental 

problem was investigated by Smith et al. The degradation was catalyzed with either to 

form five-membered cyclic intermediate or intermolecularly interactions. They denoted 

the importance of the alkyl linker length in amino silanes to minimize the detachment of 

functional groups from silica nanoparticles. The results indicated that aminopropyl silane 

was not a good candidate in the aqueous environment according to either having shorter 

and longer amine-based alkyl linker because of their ability of intramolecular interaction 

[88]. The similar report was supported the results of Smith et al. study that throughout 

hydrolysis primer amine in the APS and APTES catalyzing the formation of siloxane 

bond and hydrolysis made the silane layer unstable. Indeed, the intramolecular 

interactions also attained denser structure to organo-silica particles, so mechanically 

robust functional silica particle was obtained in this approach.  

N-(2-aminoethyl)-3-aminopropyltriethoxysilane and N-(2-aminoethyl)-3-aminopropyl 

trimethoxysilane were determined as the best candidate because detachment of bond was 

prevented by steric effect. N-(6-aminohexyl) amino methyl triethoxy silane was not 

catalyzed intramolecularly, so it was not stable enough [82]. 

Graf et al. investigated the colloidal stability of the functionalized silica nanoparticle in 

the different media comprehensively.  Amino acid, amino, and poly (ethylene glycol)-

terminated alkoxy silanes covalently is bound to the silica nanoparticles in order to form 

positive and negative surface charges in physiological medias. The most promising results 

were achieved for N-(6-aminohexyl)-3-aminopropyltrimethoxy-silane (AHAPS), and 2-

[methoxy(polyethleneoxy)propyl]- trimethoxy-silane (PEG) functionalized silica 

nanoparticles in all media [63]. 

There are many bio-applications about the dye doped functional silica nanoparticles 

because the silica nanoparticles can be functionalized with several functional groups 

additionally, dye can be covalently bonded on the silica surface. The dye helped the 
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particle detect for bioassays and bioanalysis. Thus, those nanoparticles could be utilized 

for optical bioimaging in vivo and vitro [89-91]. 

The effect of different functional groups was investigated with regard of agglomeration 

by Bagwe et al in 2006. The silica nanoparticles were functionalized with the methyl 

phosphonate as inert group and amino silane. The amine groups provided to obtain high 

agglomeration and low surface charge. However, the particles acted as well disperse due 

to have high negative surface charge when methyl phosphonate was added that size also 

decreased because of electrostatic repulsion. Thereby, many bio-based application was 

resulted by using the surface modification [92].  

An et al. analyzed that covalent bond formation of amino and carboxyl functional groups 

on the surface of silica nanoparticles. In that study, the silicon substrate was terminated 

with amine groups and following functionalized with carboxylic acid by amide bond 

formation. The carboxyl surface was determined as more active to further reactions [85].  

Howarter et al. demonstrated that adhesion between silica substrate and organic or 

metallic compounds is enhanced by using APTES thin films which enable to use in 

various areas to illustrate from advanced materials to bio-based applications. The 

different film morphologies such as, smooth thick and rough surfaces were observed in 

that study. Hydrolysis of APTES in the solution based and at the hydrated surface was 

illustrated in Figure 2. 17[93]. 

 

Figure 2. 17. Demonstration of hydrolysis of APTES in the solution (Top) and at the hydrated surface 

(Bottom) 
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There are many studies about the APTES functionalization of the silica nanoparticles or 

silicon substrates in non-aqueous media which was investigated the effect of experimental 

parameters by using several characterization tools [93-98].  The aim of hydrolysis of 

APTES in non-aqueous media is to utilize a monolayer grafting throughout the 

modification, but solvent removal process is not easy resulting impurity in the product 

and also, the process proceeds long with low efficiency [99]. 

2.5.3. Physical Interactions 

Non-covalent modification of silica nanoparticles is based upon the adsorption or 

electrostatic interactions with large molecules such as polymers, lipids, proteins or 

antibodies [65, 70]. The fundamental advantages of the physical interactions method are 

being simple and cheap without further purification process. On the other hand, bound 

molecule can be disassociated from the nanoparticle surface by the weak interaction 

[100].  

Surface charges of nanoparticles in a solution provide the dispersion of nanoparticles by 

electrostatic repulsion preventing interaction/aggregation. Nevertheless, adding ions and 

ionic surfactants on the nanoparticle surface can modify their surface charge, so that 

electrical double layer can be formed around each nanoparticle. Formed structure has 

inner and outer layers which is called stern layer and diffusion layer alternatively. The 

zeta potential is evaluated by the movement of these two layers under an electric field. 

All in all, zeta potentials determine the degree dispersion of the solution consisting of 

physical repulsion and interaction. Moreover, zeta potential data is used to explore bound 

functional groups onto nanoparticle surface which helps to modify overall surface charge 

[101, 102].  

Polyethylene glycol (PEG) is one of the polymers which forms a protective layer around 

the silica nanoparticles to prevent agglomeration. Branda et al. functionalized amine 

based PEGylated silica nanoparticles. PEG concentration was adjusted to get long term 

stability concurring both steric and electrostatic effect [103]. Xie et al. studied that 

mesoporous silica nanoparticles were functionalized with carboxyl groups then 

conjugated with folate via PEG in order to accomplish nanocarrier for diagnosis 

simultaneously [104]. Another study was fulfilled by Beyer et al. which the surface 

modification was taken placed by reactive polymer interlayers. Thus, polymer supported 

bilayer introduced compatible properties to tune the surface with other molecules [105]. 
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Xu et al. reported that physical or chemical interaction of PEG to silica nanoparticle 

indicated the biocompatibility for biomedical applications. The LbL will be explained in 

detail in the next chapter. To sum up, having two opposite charged polyelectrolytes are 

developed on the silica nanoparticles surface to mediate with the charged compounds 

such as biomolecules [106-109] in LbL process. 

2.6. Layer by Layer (LbL) Assembly   

Layer by layer (LbL) assembly is one of the easiest techniques to generate thin film 

coatings on various substrates with polymers, colloids and bio-compounds. It presents 

outstanding control and versatility according to other thin film deposition methods [110] 

Actually, one technique was developed to fabricate thin films in the past known as the 

Langmuir-Blodgett (LB) technique which is defined as transferring one or more 

monolayers on the water surface onto solid support [111, 112]. That technique was 

applied on synthetic nanosized heterostructures of organic compounds by Kuhn et al. 

[113]. However, the LB technique has some limitation in terms of controlled thickness 

and stable films.  

The fabrication of opposite charged particles which are polyanion and polycation onto a 

substrate was demonstrated by Decher et al. at first [114-117]. There are many advantages 

such as being easy, simple and cheap with respect to LB and self-assembly techniques 

[118]. It is green technique because of aqueous based solution.  

Concisely, negative charged glass substrate is coated with having opposite charged 

materials which can be nanoparticles, polymers, proteins or viruses to change the 

substrate charge and these steps can be repeated in a cycle until the desired film thickness 

and film properties are achieved. Schematic illustration of dip and spray coating can be 

observed in Figure 2. 18Error! Reference source not found. [119]. 
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Figure 2. 18. Dip coating of polyanion and polycation and spray coating of polyanion/nanoparticle and 

polycation 

Multilayer thin films can be used on corrosion resistant [120], anti-reflective [121-123],  

antifogging [121-127], superhydrophilic and superhydrophobic [121-123, 127, 128], 

antibacterial coatings [126], antifouling [128] by conducting some steps. 

  

A 

B 
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3. EXPERIMENTAL WORK 

3.1. Materials 

Cyclohexane (Sigma-Aldrich, 99.5%), Igepal CO-520 (Sigma-Aldrich, 99%), ammonia 

solution (Sigma-Aldrich, 25 wt. %), were used as received without further purification, 

but tetraethyl orthosilicate (TEOS, Sigma-Aldrich, 98%) was used freshly distilled before 

using for silica synthesis. 3-(aminopropyl) trimethoxysilane (APS, Sigma-Aldrich, 97%), 

N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (NPC, ABCR, 50% in 

methanol), N-(6- aminohexyl)aminopropyltrimethoxysilane (AHAPS, ABCR, 95%), 3-

Aminopropyl(dimethyl)ethoxysilane (APDMES, ABCR, 97%), N-[3-

(trimethoxysilyl)propyldiethylenetriamine (DETAS, ABCR, 95%) and 2- 

[methoxy(polyethyleneoxy) propyl]trimethoxysilane with 6-9 polyethylene oxide units 

(PEG-silane, ABCR, 90%) were used as silane coupling agents for functionalization 

process as visualized in the Figure 3. 1. Ethanol (Sigma-Aldrich, 99.8%) was used to 

purify all of the nanoparticles by recentrifugation and redispersion process. Poly 

allylamine hydrochloride (PAH, Mw: 15000) and poly (sodium 4-styrenesulfonate) (SPS, 

Mw: 70000) were purchased from Sigma -Aldrich as positive and negative 

polyelectrolyte, respectively. Deionized water (>18MΩcm, Millipore Milli-Q) was 

utilized in all water-based solutions and rinsing procedures throughout the LbL assembly. 

 

Figure 3. 1. Chemical structure of silane coupling agents  
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Figure 3. 2. Schematic illustration of poly allylamine hydrochloride (PAH) (left) and poly (sodium 4-

styrenesulfonate) (SPS) (right) 

3.2.Synthesis of Silica Nanoparticle by Water in Oil Microemulsion Method 

In this study, silica nanoparticles were prepared by hydrolysis and condensation of TEOS 

used as silica source in a nonionic surfactant/cyclohexane/ammonium hydroxide solution. 

Igepal CO-520, cyclohexane, and 25% wt. concentrated ammonium hydroxide were used 

as non-ionic surfactant, solvent, and catalyst respectively.  

During the experiment, remodified microemulsion system was executed for synthesis of 

silica nanoparticles [21, 63].  100 mL (0.9 mol) cyclohexane and 5.11 g (0,06 mol) Igepal 

CO-520 was put into glass bottle, then, 0.606 mL (6.5 mmol) ammonia hydroxide (25% 

wt.) was mixed under the magnetic stirring at 600 rpm until microemulsion solution 

became transparently clear. Afterwards, 0,626 mL (7 mmol) TEOS was added to the 

microemulsion under magnetic stirring for 5 min. The microemulsion was kept in the 

storage for 3 days without disturbance. After 3 days of storage, the microemulsion was 

precipitated by supplement of 10 mL acetone and washed by isopropyl alcohol, 3 times 

with ethanol and 3 times with deionized water, alternately by repeated centrifugation 

process which was at 11000 rpm at least 15 min long in each step. 
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Figure 3. 3. Schematic representation of synthesis of silica nanoparticles by water in oil microemulsion 

method 

3.3.Functionalization of Silica Nanoparticles 

3.3.1. Functionalization of Silica Nanoparticles with APS, NPC, APDMES and 

AHAPS 

Functionalization of silica nanoparticles were prepared using the functionalization 

procedure described by Graf et.al [63]. Three-necked flask was used with a magnetic bar 

during the experiment after nitrogen flashing by injection. 5 mL ethanol and 2 mL 

ammonia solution (25% wt.) were dispersed in a beaker for 1 minute. In another place, 

0.1 g silica nanoparticles were dispersed in 5 mL ethanol until acquiring homogenous 

dispersion. First of all, ethanol and ammonia mixture were added to the flask under 

magnetic stirring at 600 rpm in the dry nitrogen ambient, and subsequently 10 mg/mL 

silica dispersion was placed in flask to reach final silica nanoparticles concentration. 9 

mmol functional group (APS, NPC, APDMES and AHAPS) solution was added in the 

mixture and stirred overnight at room temperature. Following that, mixture was refluxed 

at 80 °C for 3 h after removing nitrogen inlet. Lastly, the mixture was centrifuged three 

times at 4000 rpm for 15 min in ethanol to collect the pure functionalized silica 

nanoparticle as far as possible. 
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Figure 3. 4. Schematic illustration of functionalization of silica nanoparticles with amine based functional 

group by hydrolysis and condensation reactions 

NMR chemical shifts of APS, NPC, APDMES and AHAPS functionalized silica are 

given in below; 

Si-APS: 1H NMR (500 MHz, D2O) δ 2.93-2.90 (m, 2H), 1.74-1.68 (m, 2H), 0.61-0.57 (m, 2H). 

Si-NPC: 1H NMR (500 MHz, D2O) δ 3.33-3.30 (m, 2H), 3.10 (s, 9H), 1.91-1.85 (m, 2H), 0.64-0.61 (m, 

2H). 

Si-APDMES: 1H NMR (500 MHz, D2O) δ 2.94 (m, 2H), 1.68 (m, 2H), 0.65 (m, 2H), 0.15-0.14 (m, 6H). 

Si-AHAPS: 1H NMR (500 MHz, D2O) δ 2.99-2.90 (m, 6H), 1.77-1.73 (m, 2H), 1.65-1.62 (m, 4H), 1.41-

1.38 (m, 4H), 0.62-0.59 (m, 2H).  

3.3.2. Functionalization of Silica Nanoparticles with PEG Silane 

10 mg/mL silica nanoparticles dispersion in ethanol was added to the flask, and 0.1 mL 

PEG and 2 mL ammonia was mixed under magnetic stirring. The mixture was heated to 

80 °C on the magnetic stirrer with 600 rpm under dry nitrogen atmosphere overnight. The 

final product was purified by recentrifugation and redispersion three times to remove 

excess PEG at 4000 rpm for 15 min with ethanol.  

NMR chemical shifts of PEG functionalized silica are given in below; 

Si-PEG: 1H NMR (500 MHz, D2O) δ 3.70 (s, 36 H), 3.53 (m, 2H), 3.38 (s, 3H), 1.71 (m, 2H), 1.27 (m, 2H). 

3.3.3. Functionalization of Silica Nanoparticles with DETAS 

10 mg/mL silica nanoparticle dispersion in toluene was added to a three necked round 

bottom flask connected to condenser within argon ambient while solution was stirred by 

a magnetic stirrer during 30 minutes at 100 rpm speed. In the next step, 1 mL ammonia 

solution was introduced to reaction mixture and resulted mixture was stirred vigorously 

during 2 hours at room temperature. Then, temperature of yielded solution was set to 85 

°C, then 8 µL DETAS was added to reaction mixture under vigorous stirring and reflux 

was started under argon flow. Then, the same amount of DETAS was added three times 
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within each 1.5 h periods. Then, particles inside the final solution was precipitated by 

using a centrifuge and precipitated particles was washed several times with toluene and 

ethanol. The final product was dried at 80 °C for 24 hours.  

NMR chemical shifts of DETAS functionalized silica are given in below; 

Si-DETAS: 1H NMR (500 MHz, D2O) δ 3.56-3.37 (m, 4H), 2.97-2.55 (m, 6H), 1.70 (m, 2H), 0.64 (m, 2H). 

3.4. Layer by Layer Assembly 

Dip spin LbL was carried out during LbL assembly process. Dipping time was determined 

as 10 min for polyelectrolytes and nanoparticles. Subsequently, rinsing procedure was 

applied in the sample immersed into distilled water for rinsing procedure as 2 min and 

two times 1 min to remove residual charge. The substrates which were glass slides or 

silicon wafer were cleaned in the glass cleaning solution (4% in water) and then, in 

deionized water by ultrasonic bath for 15 min each step before coating.  Plasma treatment 

was performed on the cleaned substrate for the purpose of surface charging for 2 min. 

PAH (+) and SPS (-) were prepared as 10 mM and their pH values were adjusted to 4.0 

pH value by using 0.05, 0.1, 0.5, 1 M hydrochloric acid (HCl) and sodium hydroxide 

(NaOH) solutions. Functionalized silica nanoparticles were dispersed in deionized water 

as concentration of 0.15/1L and its pH value was also reduced to 4 by having same 

concentration HCl and NaOH solutions. The charge of silica nanoparticles was changed 

according to their functional group. First, adhesion layer was transferred onto substrate 

surface with PAH (4.0) /SPS (4.0) as 5 bilayer (bL). Afterwards, the same process was 

repeated for functionalized SiO2 (4.0) /SPS (4.0) as coating with desired number of layer 

(5, 10, 15, 20). Lastly, the coated substrate was dried by the help of dry nitrogen to get 

ready for characterization. 

3.5.Characterization 

3.5.1. Dynamic Light Scattering (DLS) 

Hydrodynamic size of silica nanoparticles and zeta potential of functional silica 

nanoparticles were investigated by performing Dynamic Light Scattering (DLS) analyzer 

which is Zetasizer Nano ZS, Malvern Instruments Ltd. 0.15 g/L of silica solution was 

prepared in deionized water for size and zeta potential measurement. The ultrasonic bath 

and probe sonication method were used to prevent agglomeration of silica nanoparticles 
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for all DLS measurements. pH of all silica solution was tuned by HCl and NaOH for zeta 

potential measurement. All resulted samples were surveyed at 25 ˚C in disposable low 

volume cuvette and disposable folded capillary zeta cell for size and zeta potential 

measurement, respectively. Nanoparticle sizes determined for 10 cycles with 3 

measurements to obtain mean particle size and number of percentages were considered. 

Zeta potential was explored to examine the particle surface charge implying bounded 

functional groups on silica nanoparticles.  

3.5.2. Scanning Electron Microscopy (SEM) 

Morphology, size and distribution of the samples were visualized with a Zeiss Leo Supra 

35 Field Emission Scanning Electron Microscope. Silica nanoparticles were dispersed in 

a 15 mg/L dilute solution of nanoparticles and distilled water. 100 μL of resulted solution 

were dropped on silicon wafers and then they were dried for an hour in an oven. The 

functional silica nanoparticles were deposited onto silicon wafer by LbL assembly and 

those wafers were cut by diamond cutter in order to fit on SEM stubs. Samples loaded 

silicon wafers were placed into Desk V HP, Denton Vacuum sputtering machine then 

samples were coated with gold/palladium for 2 minutes. Following these, silicon wafers 

were placed on SEM stubs by two-sided carbon tape which helps gold/palladium coated 

part to be in contact with stubs in order to maintain electrical conductivity. SEM stubs 

then placed in SEM sample stage as last step of sample preparation procedure of SEM 

analysis. Silica nanoparticles were monitored by using secondary electron detector 

powered 3 keV within 7-10 mm working distance.  

Morphological and microstructural analysis of silica nanoparticles were observed and 

silica nanoparticles with different functional groups were studied according to their 

particles size, homogeneity in distribution and sample geometries, agglomeration states 

by SEM analysis.  

3.5.3. Fourier Transformation Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FT-IR) were operated via Bruker Equinox 55 

FTIR spectrometer with Attenuated Total Reflectance (ATR) attachment. FTIR data were 

collected from 4000 to 650 cm-1 range to examine structural properties of sample by 

inquiry of existing vibrational bonds of samples. Samples were used in their powder form 

and measurements was conducted without further preparation. FTIR spectroscopy was 

carried out in standard ATR mode and the machine was waited 15 minutes in nitrogen 
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ambient before measurements were started. Background scan was obtained before sample 

were analyzed and background noise was subtracted from samples data. All 

measurements were evaluated 64 repetitive scan and final data were obtained as average 

automatically.  

3.5.4. Nuclear Magnetic Resonance Spectroscopy (NMR) 

NMR spectra was performed on a spectrometer Varian Unity Inova 500MHz 

spectrometer. The spectra were recorded at room temperature with a 500Mhz 1H-

19F(15N-31P) 5mm PFG Switchable Probe. Samples were dissolved in D2O (99.96 %). 

10-20 mg of sample is dissolved in 600 µL of deuterated solvent. The proton NMR spectra 

were acquired using S2PUL sequence (32K data points, acquisition time 1.892 s, pulse 

width 7.2μs, repetition delay 10s). Chemical shifts were referenced with respect to water 

signal at 4.8 ppm if D2O used. 

3.5.5. Ellipsometry Analysis 

Ellipsometry uses two different polarized light (s-polarized and p- polarized) having 90-

degree phase shift but same frequency and polarized lights reflects from the sample by 

elliptical changes resulting in information of angle and amplitude change. In other word, 

ellipsometry is a great tool to obtain extinction coefficient, refractive index and thickness 

of thin film. Ellipsometry generally has a light source, a polarizer which polarizes the 

light on the specimen, and a detector which measures the amount of light polarization 

after reflection from the specimen. In this study, M2000 spectroscopic ellipsometry (J. 

A.Wollam Co., Inc) was used to measure the thickness of functionalized silica 

nanoparticles coated silicon wafer by LBL method. Ellipsometry data is collected either 

as a function of wavelength or the incidence angle, or both. Functionalized silica 

nanoparticles coated silica on wafers were placed in device and thickness measurements 

were received at 65, 70, and 75 incidence angles while using light wavelength between 

315 to 718 nm range. The Cauchy model or b-spline were executed to fit data for all 

thickness measurements. The thickness value was recorded according to transparent value 

of the coatings on wafer and change in thickness value was collected as a function of 

time. 

3.5.6. Atomic Force Microscopy (AFM) 

Atomic force microscopy was performed in dynamic mode (ezAFM, Nanomagnetics 

Instruments) To perform the experiment coated silicon wafer was cut in suitable size by 
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diamond cutter. The surface was cleaned with drynitrogen to remove residual.  5µmx5µm 

area was scanned by using tip in tapping mode.  
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 4. RESULTS&DISCUSSION 

4.1.  Preparation of Silica Nanoparticles  

Silica nanoparticles were synthesized by water in oil (W/O) microemulsion in the 

surfactant/ammonia/cyclohexane media. TEOS was employed for hydrolysis and 

condensation reactions under ammonia catalyst to produce monodisperse spherical silica 

nanoparticles. In the hydrolysis reaction, silanol groups were formed by removing ethanol 

and silicon-oxygen-silicon bonds were appeared by either water or ethanol extraction. 

The wall creating by the surfactant molecules enclosed nano-droplets and those walls 

behaved as cages to prevent growth of particles. Additionally, surfactant molecules 

involved in stabilization of nuclei and prevention of particles against their aggregation by 

a repulsive force. Consequently, satisfactory results anticipated in the microemulsion 

method by comparison to other synthesis methods with regard of final size and 

geometrical shape.   

The water to surfactant ratio (R), ammonia (A) and TEOS concentration (T) are critical 

parameters of the silica nanoparticle synthesis on the particle size, shape, morphology, 

monodispersity and particle distribution. The appropriate silica nanoparticle to utilize in 

further steps was determined as reference (S) can be seen in Table 4.1.  

4.2.  Characterization of Silica Nanoparticles 

4.2.1. Particle Size Distribution of Silica Nanoparticles 

The particle size of silica nanoparticles was analyzed by using dynamic light scattering 

(DLS) and scanning electron microscopy (SEM) instruments which revealed to 

hydrodynamic diameter of the silica nanoparticles, so the results did not represent the real 

diameter of particles given idea about the size. The silica nanoparticles’ diameters were 

found from 40 to 80 in the nanometer range as listed in the Table 4. 1. The effective 

particle size was determined as 50 nm because of monodisperse nature of the sample and 

suitable particle size for LbL applications.  

In the beginning of experiment, the cyclohexane was recovered by rotary evaporation 

system to synthesize silica nanoparticles. However, we observed residual surfactant on 

the surface and inside of the silica nanoparticles after a while. Thus, the new procedure 
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was revised as precipitating silica nanoparticles in acetone instead of precipitating them 

with centrifuge after removal of cyclohexane by rotary distillation process. 

The Figure 4. 1 was demonstrated the difference of producing silica by rotary evaporation 

or acetone precipitation. The surfactant was not able to remove from the system as 

observed in Figure 4. 1 (a), so silica nanoparticles seem agglomerated and stick each 

other. Also, ordered structure was observed due to the surfactant effect. Figure 4. 1(b) 

indicated the well-dispersed silica nanoparticles and the particles did not lap over in the 

solution.  

 

Figure 4. 1. Comparison between cyclohexane recovery types which are by rotary evaporation (a) and 

acetone precipitation (b) 

Table 4. 1. Particle size difference regarding to water/surfactant ratio, ammonia and TEOS concentration 

Sample 
Water/Surfactant 

(R) Ratio 

Ammonia (A) 

(mM) 

TEOS (T) 

(mM) 

DDLS 

(nm) 

DSEM 

(nm) 

R 1.01 0.026 0.15 58.73 61.51 

R/2 0.51 0.025 0.14 78.87 69.83 

2R 2.02 0.027 0.15 62.27 67.16 

2A 2.02 0.052 0.15 49.01 44.47 

A/2 0.51 0.013 0.14 62.07 63.73 

2T 1.01 0.026 0.29 59.20 62.28 

T/2 1.01 0.026 0.07 52.60 53.94 

 

4.2.1.1. Effect of water/surfactant molar ratio 

While all other variables were taken constant, the water to surfactant ratio (R) was 

changed according to S sample which had 1.01 R value. 

100 nm 100 nm 

(a) (b) 
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At low R value water was bound to the surfactant and so, hydroxyl ions mobility was 

decreased because of that the hydrolysis and nucleation reaction were not applicable for 

having low R microemulsion. Moreover, the number of TEOS monomers was low in each 

aggregate, so that intra-micellar nucleation was not favorable. On the contrary when R 

was increased from 0.51 to 1.01, the aggregates reduced in reverse micelle as well and 

the amount of unbounded water had tendency to rise in the aggregates. Thus, nuclei 

formation facilitated by hydrolysis of TEOS, which that state caused in smaller particle 

size at high R value displayed in Figure 4. 3(a). When R value become approximately 

1.8, the particle size rises with increasing R which is supported by Arriagada and Ossea-

Asare’s work too. Therefore, the sample 2R tended to have particle growth by aggregation 

given in Figure 4. 3(c) [21].  

Uniform particle distribution was obtained in R/2 (Figure 4. 3(b)) because of the high 

concentration of surfactant. The minimum particle size was observed in R, meanwhile, 

the maximum particle size was found in R/2.  
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Figure 4. 2. Particle size change versus water surfactant molar ratio 
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Figure 4. 3. Effect of W/S, ammonia and TEOS concentration on the particle size and morphology of 

silica nanoparticles (a) S, (b) R/2, (c) 2R, (d) 2A, (e) A/2, (f) 2T, (g) T/2. 
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4.2.1.2. Effect of ammonia concentration 

When the water to surfactant ratio was smaller than 1.8, the particle size was decreased 

by increase in ammonia concentration as seen in Figure 4. 4 [21]. Hydroxyl ion 

concentration raised by increasing ammonia concentration thereby, hydrolysis and 

nucleation took place abundantly. Thus, smaller particle size could be obtained by raising 

nuclei rather than low ammonia concentration.  
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Figure 4. 4. Particle size change versus ammonia concentration  

Low ammonia concentration led to nonuniform particle size and shape (Figure 4. 3(e)) 

when compared to high ammonia concentration (Figure 4. 3(d)). Low concentrated 

ammonia ingredient caused to form lesser nuclei thus, large particles were obtained in the 

growth process. 

4.2.1.3. Effect of TEOS concentration 

The particle size increased as TEOS concentration raised at the low R value according to 

Arriagada, F. and K. Osseo-Asare’s research [21]. Differently from Stöber method, 

noticeable change in the particle size was not observed with respect to TEOS 

concentration (Figure 3.4.). Bagwe et al. [60] reported that TEOS concentration from 

0.025 to 0.1 mM did not influence the particle size other variables taken constant. The 

studies of Arriagada and Osseo-Asare [21] was analogous to support the results as 

illustrated by Figure 3.4. 
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Figure 4. 5. Particle size change versus TEOS concentration 

4.2.2. Zeta Potential Results of Bare Silica Nanoparticles 

According to DLVO theory, the colloidal solution establishes a stable dispersion in the 

exact zeta potential values which must be higher than +30 mV for the positive charged 

nanoparticles and lower than -30 mV for the negative charged nanoparticle. If the zeta 

potential values are out of this range, the nanoparticles tend to precipitate because of 

colloidal instability.  

Zeta potential graph of bare silica nanoparticles can be observed in Figure 4. 6. In this 

plot, the favorable nanoparticles dispersion was validated between 5.0 and 9.5 pH values. 

The results Figure 4. 6 were consistent with previous works by Zu, Ma and Metin et al. 

who investigated the stability of bare silica nanoparticles [129-131]. 
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Figure 4. 6. Zeta potential versus pH graph of bare silica nanoparticles 

4.2.3. FTIR Results of Bare Silica Nanoparticles 

FTIR spectrum of bare silica nanoparticles is given in Figure 4. 7. Both broad peak 

between 3600 and 3300 cm-1 , and 1632 cm-1 were stretching peaks of Si-OH since silica 

adsorbed OH groups arising from water and humidity due to the hydrophilic nature of 

silica after drying [132]. The asymmetric and symmetric stretching of Si-O-Si band was 

seen at 1080 and 800 cm-1, respectively and they were proof of existence of silica 

molecules coming from TEOS during the synthesis process. Also, the band at 955 cm-1 

belonged to additional stretching of Si-OH [133]. 
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Figure 4. 7. FTIR spectrum of bare silica nanoparticles synthesized by microemulsion method 

4.2.4. NMR Results of Bare Silica Nanoparticles 

The silica nanoparticles were synthesized by using TEOS as the main source. The ethoxy 

groups were not observed in the NMR spectrum seen in Figure 4. 8 indicated the 

formation of silica nanoparticles. Only solutions which were D2O, ethanol and acetone 

were found in the results. 

 

Figure 4. 8. 1H-NMR spectra of bare silica nanoparticles in D2O 

ethanol ethanol 

acetone 
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4.3. DLS, FT-IR, NMR, and TGA Analysis of Functionalization of Silica 

Nanoparticles 

The incorporation of a functional group on silica nanoparticle can alter the surface charge. 

It can be controlled via the type and amount of functional group, for instance, the amine 

functionality naturally has a positive surface charge and also the amount of amine group 

on the surface effects in direct proportion to the particle charge. In this study, all 

functional groups have silane alkoxy groups which react with the silanol groups on the 

silica nanoparticle. Functionalization of silica nanoparticles includes two sequent steps: 

hydrolysis and condensation. This is one pot reaction in ethanol media, and the ammonia 

solution used as a base catalyst to accelerate the rate of hydrolysis. After the overnight 

mixing at room temperature, the reaction solution was refluxed for 3 hours to terminate 

the condensation. APS, NPC, AHAPS, APDMES, PEG-Silane, and DETAS were utilized 

for the functionalization of silica nanoparticles. These functional silica particles were 

characterized with DLS, FT-IR, NMR, and TGA. The results are given in detail following 

titles. 

4.3.1. Characterization of APS (3-aminopropyltrimethoxysilane) Functionalized 

Silica Nanoparticles 

The zeta potential was measured in order to detect surface charge which is important to 

identify charge change at certain interval. FTIR and NMR were performed to evaluate the 

NH2 and CH2 bonds on the silica nanoparticle surface as shown in Figure 4. 9.  

 

Figure 4. 9. Schematic demonstration of 3-aminopropyltrimethoxysilane (APS) functionalized silica 

nanoparticles 
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4.3.1.1. Zeta Potential Results of APS Functionalized Silica Nanoparticles 

The zeta potential versus pH graph explained the colloidal stability of APS functionalized 

silica nanoparticles seen in Figure 4. 10. According to the graph, APS functionalized 

silica nanoparticles were stable between 3.5 and 8.5 that were indicated having huge pH 

range when compared with others. The isoelectric point was determined as 9.2 pH value. 

Amine groups at the end of APS molecules provide to modify surface charge of silica 

nanoparticles from negative to positive. APS functionalized silica nanoparticles indicated 

the great stability and the superior zeta potential value right after pH treatment. On the 

other hand, primer amine in the APS catalyzes to form siloxane bond and hydrolysis 

resulting to break Si−O bond and the amine groups are detached from the surface can be 

observed in Figure 3. 4. All of the consequences concluded in colloidal instability after a 

while. 
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Figure 4. 10. Zeta potential versus pH graph of NPC functionalized silica nanoparticles 

4.3.1.2. FTIR Results of APS Functionalized Silica Nanoparticles 

FTIR spectrum of the APS functionalized silica nanoparticles is given in the Figure 4. 11. 

Peaks between 3400 and 3000 cm-1, and 1628 cm-1 corresponded to N-H bending 

vibrations, but they were also superposed with vibrational stretching of Si-OH groups that 

is the reason we could not clearly identify the exact type of vibrational peaks for both 

groups [134]. The asymmetric stretching vibrations of -CH2 was clearly verified by 2935 

cm-1 peak arising from propyl groups. 1558 cm-1 absorption was assigned to the -NH2 
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groups [135, 136]. The weak neck at 1487 cm-1 was attributed to existence of symmetric 

-NH3
+ deformation mode [87]. 
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Figure 4. 11. FTIR spectrum of bare silica, bare APS and APS functionalized silica 

4.3.1.3. NMR Results of APS Functionalized Silica Nanoparticles 

Every NMR spectrum results showed proofs of functionalization of silica nanoparticles 

by not containing any regarding spectrum of alkoxy and silanol groups on the data. 

The 1H NMR spectrum displayed multiplet resonance at 2.93-2.90 ppm (H2N-CH2-CH2), 

1.74-1.68 ppm (CH2-CH2-CH2) and 0.61-0.57 ppm (CH2-CH2-Si) which confirmed the 

attachment of APS molecules to the silica nanoparticles can be seen in Figure 4. 12. 
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Figure 4. 12. 1H-NMR spectra of APS functionalized silica nanoparticles in D2O 

4.3.2. Characterization of NPC (N-trimethoxysilylpropyl-N, N, N-

trimethylammonium chloride) Functionalized Silica Nanoparticles 

The zeta potential was measured in order to detect surface charge which is important to 

identify charge change at certain interval. FTIR and NMR were performed to evaluate the 

NH4+ CH2 and CH3 molecules on the silica nanoparticle surface displayed in Figure 4. 

13.  
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Figure 4. 13. Schematic demonstration of N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride 

(NPC) functionalized silica nanoparticles 

4.3.2.1. Zeta Potential Results of NPC Functionalized Silica Nanoparticles 

Zeta potential value of NPC functionalized silica nanoparticles with respect to pH value 

adjusted by using 0.05 and 0.1 M HCl, and 0.05 and 0.1 M NaOH for each zeta potential 

measurement given in the Figure 4. 14 ranging between 3.5 and 9.5 pH values. NPC 

functionalized silica nanoparticles have positive surface charge arising from NH3
+ groups 

as seen in Figure 4. 13. The electrostatic repulsion was created in the acidic medium 

between positive surface charged particles and positive charged environment, so NPC 

functionalized silica nanoparticles was stable between 3.5 and 5.0 pH values. However, 

it also showed high colloidal stability at 9.5 pH which is in DLVO range for ideal 

dispersion. The isoelectric point of the sample which exhibits unstable was placed at 

around 6.5 pH and the colloidal solution precipitated in that pH value.  
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Figure 4. 14. Zeta potential versus pH graph of NPC functionalized silica nanoparticles 

4.3.2.2. FTIR Results of NPC Functionalized Silica Nanoparticles 

The Figure 4. 15 reveals the FTIR spectrum of NPC functionalized silica nanoparticles. 

The broad peak ranging from 3400 to 3000 cm-1 and 1632 cm-1 peak belonged to 

stretching and bending vibrations respectively that are whether N-H or Si-OH groups 

[134]. Similar with APS functionalized silica, these peaks could not be distinguished 

exactly. The absorption peak at 2982 cm-1 referred to asymmetric stretching of CH3 

sourced from trimethylammonium chloride sites. In a similar way, ammonium chloride 

groups with three methyl showed evidence of the formation of NH3
+ groups at 1489 cm-

1 [94]. 
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Figure 4. 15. FTIR spectrum of bare silica, bare NPC and NPC functionalized silica 

4.3.2.3. NMR Results of NPC Functionalized Silica Nanoparticles 

The 1H NMR spectrum displayed multiplet resonance at 3.33-3.30 ppm (N+-CH2) 3.10 

ppm (CH3-N+) 1.91-1.85 ppm (CH2-CH2-CH2) 0.64 ppm (CH2-Si) which confirmed the 

attachment of NPC molecules to the silica nanoparticles can be seen in Figure 4. 16. 

 

Figure 4. 16. 1H-NMR spectra of NPC functionalized silica nanoparticles in D2O 

4.3.3. Characterization of APDMES (3-Aminopropyl(dimethyl)ethoxysilane) 

Functionalized Silica Nanoparticles 

The zeta potential was measured in order to detect surface charge which is important to 

identify charge change at certain interval. FTIR and NMR were performed to evaluate the 

NH2 and CH2 bonds on the silica nanoparticle surface as illustrated in Figure 4. 17. 
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Figure 4. 17. Schematic demonstration of 3-Aminopropyl(dimethyl)ethoxysilane) (APDMES) 

functionalized silica nanoparticles 

4.3.3.1. Zeta Potential Results of APDMES Functionalized Silica Nanoparticles 

Figure 4. 18 represents the zeta potential graph of APDMES functionalized silica 

nanoparticles in the solution with a pH range from 3.5 to 9.5. NH2 groups were caused to 

create positive surface charge as similar to the AHAPS functionalized silica nanoparticles 

as indicated in Figure 4. 17. Electrostatic repulsion that provides to obtain colloidally 

stable nanoparticles dispersion in the solution was confirmed arising from acidic media. 

The sample presented good stability from 3.5 to 4.5 pH and also from 8.5 to 9.5 which 

elicited an alteration of surface charge from positive to negative by adding the base to the 

system. Apart from all these functional groups, APDMES supported to generate vertically 

growth on silica nanosphere since dimethyl silyl groups were not allowed binding, so the 

silica was able to bound to only ethoxy sites by removal of ethanol. As a result of that, 

silica cannot be functionalized all of its entire surface and positive surface charge could 

be lost after pH treatment even at the low pH values. 
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Figure 4. 18. Zeta potential versus pH graph of APDMES functionalized silica nanoparticles 

4.3.3.2. FTIR Results of APDMES Functionalized Silica Nanoparticles 

The FTIR spectrum of APDMES functionalized silica is illustrated in Figure 4. 19. The 

wide peak 3400 to 3000 cm-1; and 1627 cm-1 peak were originated from stretching N-H 

or Si-OH and bending N-H or Si-OH vibrational bands respectively. Nearly identical with 

NPC, 2983 cm-1 absorption peak depicted the asymmetric stretching of CH3 stemming 

from dimethyl groups. The bending of C-H groups displayed at 1450 cm-1 as described in 

AHAPS functionalized silica nanoparticles FTIR profile.  
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Figure 4. 19. FTIR spectrum of bare silica, bare APDMES and APSMES functionalized silica 
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4.3.3.3. NMR Results of APDMES Functionalized Silica Nanoparticles 

The 1H NMR spectrum displayed multiplet resonance at 2.94 ppm (H2N-CH2-CH2) 1.68 

ppm (CH2-CH2-CH2), 0.65 ppm (CH2-Si) and 0.15-1.14 ppm (Si-CH3) which confirmed 

the attachment of APDMES molecules to the silica nanoparticles can be seen in Figure 4. 

20. 

 

Figure 4. 20. 1H-NMR spectra of APDMES functionalized silica nanoparticles in D2O 

4.3.4. Characterization of AHAPS (N-(6- aminohexyl) 

aminopropyltrimethoxysilane) Functionalized Silica Nanoparticles 

The zeta potential was measured in order to detect surface charge which is important to 

identify charge change at certain interval. FTIR and NMR were performed to evaluate the 

NH, NH2 and CH2 molecules on the silica nanoparticle surface as indicated in Figure 4. 

21.  
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Figure 4. 21. Schematic demonstration of N-(6- aminohexyl) aminopropyltrimethoxysilane (AHAPS) 

functionalized silica nanoparticles 

4.3.4.1. Zeta Potential Results of AHAPS Functionalized Silica Nanoparticles 

Zeta potential graph of AHAPS functionalized silica nanoparticles is illustrated in Figure 

4. 22 according to pH values. AHAPS functional groups were gained to the silica 

nanoparticles positive surface charge by amine groups given in Figure 4. 21. AHAPS 

functionalized silica nanoparticles displayed excellent stability from 3.5 to 6.0 pH values 

by being secondary amine groups. Differently from other functional groups, they were 

stable because of steric hinderance during hydrolysis catalyzed intramolecularly 

analogous to Zhu et al. study [82]. The colloidal stability of nanoparticles was the lowest 

value at the isoelectric point which was pH 9.0 value. 
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Figure 4. 22. Zeta potential versus pH graph of AHAPS functionalized silica nanoparticles 
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4.3.4.2. FTIR Results of AHAPS Functionalized Silica Nanoparticles 

The FTIR spectrum of AHAPS functional silica nanoparticles can be found in Figure 4. 

23. In a similar way, peaks which are 3400 and 3000 cm-1; and 1622 cm-1 were correlated 

to N-H stretching or Si-OH stretching; or N-H bending or Si-OH bending vibrational 

bonds. The absorption peak of 2931 cm-1 confirmed the existence of asymmetric 

stretching of -CH2 coming from alkyl chains same as APS functionalized silica 

nanoparticles. The bending of C-H groups displayed at 1454 cm-1 which can validate the 

bonded functional groups [137]. 
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Figure 4. 23. FTIR spectrum of bare silica, bare AHAPS and AHAPS functionalized silica 

4.3.4.3. NMR Results of AHAPS Functionalized Silica Nanoparticles 

The 1H NMR spectrum displayed multiplet resonance at 2.99-2.90 ppm (H2N-CH2), 1.77-

1.73 ppm (CH2-NH-CH2), 1.65-1.62 ppm (NH2-CH2-CH2 and CH2-CH2-Si), 1.41-1.38 

ppm (CH2-CH2-CH2), 0.62-0.59 ppm (CH2-Si) which confirmed the attachment of 

AHAPS molecules to the silica nanoparticles can be seen Figure 4. 21 
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Figure 4. 24. 1H-NMR spectra of AHAPS functionalized silica nanoparticles in D2O 

 

4.3.5. Characterization of PEG-Silane (2- [methoxy(polyethyleneoxy) propyl] 

trimethoxysilane with 6-9 polyethylene oxide units) Functionalized Silica 

Nanoparticles 

The zeta potential was measured in order to detect surface charge which is important to 

identify charge change at certain interval. FTIR and NMR were performed to evaluate the 

bonding of PEG-Silane molecules on the silica nanoparticle surface can be observed in 

Figure 4. 25. 
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Figure 4. 25. Schematic demonstration of (2- [methoxy(polyethyleneoxy) propyl] trimethoxysilane with 

6-9 polyethylene oxide units) (PEG-Silane) functionalized silica nanoparticles 

4.3.5.1. Zeta Potential Results of PEG-Silane Functionalized Silica Nanoparticles 

Data in Figure 4. 26 indicate the zeta potential versus pH graph of PEG-Silane 

functionalized silica nanoparticles. Comparable to other functional silica nanoparticles, 

they possessed negative surface charge by reason of having non-charged functional group 

that produced steric hinderance. Thus, better dispersity was expected in the stable 

colloidal solution according to bare silica nanoparticles. The most stable was 9.5 pH 

value.  
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Figure 4. 26. Zeta potential versus pH graph of PEG-Silane functionalized silica nanoparticles 
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4.3.5.2. FTIR Results of PEG-Silane Functionalized Silica Nanoparticles 

The FTIR spectrum of PEG-Silane functionalized silica is illustrated in Figure 4. 27. 

Apart from others, the wide peak 3400 to 3000 cm-1 and 1630 were resulted from the 

stretching and bending of Si-OH vibrational bands respectively due to the absence of 

amine groups. The shoulders at 2917 and 2860 cm-1 ascribed asymmetric and symmetric 

stretching of -CH2 respectively. The bending of C-H groups illustrated at 1461 cm-1 like 

AHAPS and APDMES functionalized silica nanoparticles  
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Figure 4. 27. FTIR spectrum of bare silica, bare PEG-Silane and PEG-Silane functionalized silica 

4.3.5.3. NMR Results of PEG-Silane Functionalized Silica Nanoparticles 

The 1H NMR spectrum displayed multiplet resonance at 3.7 ppm (O-CH2-CH2), 3.53 ppm 

(O-CH2-CH2-CH2-CH2-Si), 3.38 ppm (CH3-O), 1.7 ppm (CH2-CH2-CH2), 1.27 ppm 

(CH2-Si) which confirmed the attachment of PEG-Silane molecules to the silica 

nanoparticles can be seen Figure 4. 28. 
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Figure 4. 28. 1H-NMR spectra of PEG-Silane functionalized silica nanoparticles in D2O 

4.3.6. Characterization of DETAS (N-[3-

(trimethoxysilyl)propyldiethylenetriamine) Functionalized Silica Nanoparticles 

The zeta potential was measured in order to detect surface charge which is important to 

identify charge change at certain interval. FTIR and NMR were performed to evaluate the 

NH2 and CH2 molecules on the silica nanoparticle surface can be observed in Figure 4. 

29. 
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Figure 4. 29. Schematic demonstration of N-[3-(trimethoxysilyl)propyldiethylenetriamine) (DETAS) 

functionalized silica nanoparticles 

4.3.6.1. Zeta Potential Results of DETAS Functionalized Silica Nanoparticles 

Zeta potential graph of DETAS functionalized silica nanoparticles is displayed in Figure 

4. 30 according to pH values. DETAS molecules were provided positive surface charge 

by amine groups given in Figure 4. 29. The positive surface charge was observed ranging 

from 3.5 to 9.0 pH values arising from secondary amine groups. The colloidal stability of 

nanoparticles was the lowest value at the isoelectric point which was pH 9.0 value. 
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Figure 4. 30. Zeta potential versus pH graph of DETAS functionalized silica nanoparticles 
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4.3.6.2. FTIR Results of DETAS Functionalized Silica Nanoparticles 

Figure 4. 31 demonstrates the FTIR spectrum of DETAS functionalized silica 

nanoparticles. The stretching N-H or Si-OH and bending N-H or Si-OH vibrational bands 

were determined by the peak of 3400 to 3000 cm-1; and 1660 cm-1 respectively. The 

asymmetric and symmetric stretching of -CH2 were identified by the shoulders at 2931 

and 2866 cm-1 respectively [87]. The bending of C-H groups was repeated at 1455 cm-1 

likewise all other functional groups. 
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Figure 4. 31. FTIR spectrum of bare silica, bare DETAS and DETAS functionalized silica 

4.3.6.3. NMR Results of DETAS Functionalized Silica Nanoparticles 

The 1H NMR spectrum displayed multiplet resonance at 3.56-3.37 ppm (H2N-CH2-CH2) 

(H2N-CH2-CH2-NH), 2.97-2.55 ppm (NH-CH2-CH2), 1.7 ppm (CH2-CH2-CH2) and 0.64 

ppm CH2-Si which confirmed the attachment of DETAS molecules to the silica 

nanoparticles can be seen Figure 4. 32. 

 



 60 

 

 

Figure 4. 32. 1H-NMR spectra of DETAS functionalized silica nanoparticles in D2O 

4.3.7. Overview of All Functionalized Silica Nanoparticles and Bare Silica in 

terms of FTIR Analysis 

Different from others, APDMES and NPC functionalized silica nanoparticles had CH3 

groups. Si-OH or N-H peaks were shifted according to bare silica spectrum in Figure 4. 

33 and that proved the binding of functional groups.  
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Figure 4. 33. Schematic illustration of FTIR spectrum of functional groups ranging from 3750 to 1350 

cm-1 

The same effect was watched in Figure 4. 34 that Si-O-Si, Si-OH and Si-O-Si peaks were 

shifted. Silicon dioxide has oxygen and silicon atoms containing lattice which silicon 

atoms have oxygen atoms around with stochiometric ratio 1:2. Naturally, it has specific 

vibrational resonance frequency. However, by adding functional groups to oxygen or 

silicon site bring a new vibrational frequency. Thus, the FTIR spectrum shift according 

to new doping functional group atoms and their corresponding frequency. All in all, 

silicon dioxide natural frequency was distorted aforementioned new frequency that is 

caused of spectrum shift. 
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Figure 4. 34. Schematic illustration of FTIR spectrum of functional groups ranging from 1500 to 750 cm-1 
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4.4.  Layer by Layer Assembly of Functionalized Silica Nanoparticles 

4.4.1. Characterization of LbL Thin Films Coated with Functionalized Silica 

Nanoparticles by SEM 

The functionalized silica nanoparticles were deposited onto the silicon wafer substrates 

via LbL self-assembly approach. Firstly, adhesion layers were applied as 5 bL on the 

substrate in order to increase cohesion. pH of using cationic and anionic polyelectrolytes 

which were PAH (+) and SPS (-), respectively was set the pH value of 4.00. Later, 

functionalized silica nanoparticles were coated on the surface with the desired number of 

bilayers. Since plasma treated silicon wafer exhibit negative surface charge, substrates 

firstly were immersed into positively charged polyelectrolyte solution. 

 

Figure 4. 35. SEM micrographs of APS factionalized silica nanoparticles thin films coated by LbL in 5 

bL (a) and 10 bL (b) on silicon wafer. 

Figure 4. 35 illustrates SEM images of APS functionalized silica nanoparticles thin films 

coated by LbL on silicon wafer. It is clearly seen from the images that APS 

functionalization is triggered agglomeration of silica nanoparticles and prevented to form 

a uniform thin film layer. Thin films were grown on silicon wafer which was dipped in a 

solution of pH 4. Regarding SEM results of APS functionalized silica nanoparticles LbL 

films, it can be inferred that colloidal suspension of that nanoparticles was not stable 

during the coating process and silica nanoparticles interacted and attracted each other 

more than silicon wafer surface so that island like thin film growth was yielded. Besides, 

when the number of bilayers was doubled from 5 bL to the 10 bL, there was no drastic 

change in the surface coverage of thin films as shown in the Figure 4. 35(b). Even it seems 

an increase in surface coverage, silica particles were still grown on themselves. APS 

effect can be explained by charge attraction of silica particles due to APS 
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functionalization rather than attraction by wafer surface as supported by Graf et al. and 

Asenath-Smith et al. reports [63, 88].  

 

Figure 4. 36. SEM micrographs of NPC factionalized silica nanoparticles thin films coated by LbL in 5 

bL (a, c, e) and 10 bL (b, d, f) on silicon wafer at 100 nm, 200 nm and 1 um magnification scale. 

SEM analysis of NPC functionalized silica nanoparticles thin films coated by LbL with 

different bL numbers is demonstrated in Figure 4. 36 with several magnifications. SEM 

analysis revealed that coatings were grown homogeneously and well dispersed with same 

morphology on every magnification. Compared to 5 bL, coating with 10 bL number 

observed as thicker layer than coatings with 5 bL number and it is formed on silicon wafer 

stiffer as anticipated. In addition, coating with 10 bL number seems to have porous 

formation by spacing between silica nanoparticles adding up on each other’s.  
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Figure 4. 37. SEM micrographs of APDMES factionalized silica nanoparticles thin films coated by LbL 

in 5 bL (a, c, e) and 10 bL (b, d, f) on silicon wafer at 100nm, 200nm and 1 um magnification scale.  

Morphological analysis of APDMES factionalized silica nanoparticles thin films coated 

by LbL with 5 and 10 bL number is illustrated in Figure 4. 37 with 100nm, 200nm and 1 

um magnification scale. As shown in Figure 4. 37 homogenous morphology is dominated 

every part of coatings with both 5 and 10 bL numbers. Figure 4. 37 displays that 

APDMES functionalized silica nanoparticles well dispersed on all over the silicon wafer 

and all nanoparticles have same shape and geometry. Coating with 10 bL has thicker thin 

film formation with more porous form than coatings with 5 bL numbers and it has more 

crackly separations. 
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Figure 4. 38. SEM micrographs of AHAPS factionalized silica nanoparticles thin films coated by LbL in 

5 bL (a, c, e) and 10 bL (b, d, f) on silicon wafer at 100nm, 200nm and 1 um magnification scale. 

Figure 4. 38 displays the morphological analysis of AHAPS functionalized silica 

nanoparticles thin films coated by LbL with 5 and 10 bL numbers with few magnification 

scales. SEM analysis confirms that coatings have homogenously grown on silicon wafer 

and well dispersed which indicates stable dispersion of colloidal solution used for LbL. 

It appears that increase in bL numbers is yielded a thicker thin film growth and stiffer 

coating as compared coating with 10 bL numbers to 5 bL numbers. Similar to other 
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functionalization’s, AHAPS functionalization on silica nanoparticles thin films resulted 

porous formation as well.  

 

Figure 4. 39. SEM micrographs of AHAPS/PEG-Silane factionalized silica nanoparticles thin films 

coated by LbL in 4 bL, 6 bL, 8 bL and 10 bL on silicon wafer at 100nm and 1 um magnification scale.  

Apart from all other coatings having just positive or negative surface charged 

functionalized silica nanoparticles, Figure 4. 39 shows both positive charged 

functionalized (AHAPS) and negative charged functionalized (PEG) silica nanoparticles 

ordered layer coatings by LbL on each other’s. It observed that coating have more 

thickness this time when compared to all previous coatings. First layer was grown by 

positive surface charged AHAPS included solution with pH 4 because silicon wafer has 
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negative surface charge and then negative surface charged PEG included solution with 

pH 7 was used for second layer growth in LbL process and order established as this 

sequence. It is indicated that thickness is increased by the increase of bL number and this 

coating has greater thickness than the previous coating with single group functionalized 

silica thin films by LbL. It showed that two different and opposite surface charged 

functional groups decorated silica layer on each other did not form a homogenous coating 

and thin film was grown as in more island formation when compared to previous single 

type functionalized silica nanoparticle coatings.  

4.4.2.  Thickness Measurement of LbL Thin Film Coatings 

Ellipsometry determined the change in height of the bilayers in each functional group can 

be seen histogram graphs at below. The thickness of coating increased from 100 nm in 5 

bL to 200 nm in 10 bL for NPC and APDMES functionalized silica nanoparticles. The 

linear trend was attained in the results which are visible in Figure 4. 40 and Figure 4. 41. 

 

Figure 4. 40. Thickness measurements of NPC functionalized silica nanoparticles with respect to bL 

numbers by ellipsometry 
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Figure 4. 41. Thickness measurements of APDMES functionalized silica nanoparticles with respect to bL 

numbers by ellipsometry 

The thickness of AHAPS functionalized silica nanoparticles was measured approximately 

100 nm in 5 bL. 50 nm increase was achieved in 10 bL particularly identified in Figure 

4. 42. The reason of that can be explained that the charge of the 5 bL allowed the coating 

of 50 nm thickness due to charge transfer from negative to positive charged solution bath.  

 

Figure 4. 42. Thickness measurements of AHAPS functionalized silica nanoparticles with respect to bL 

numbers by ellipsometry 
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The highest thickness was derived in AHAPS/PEG blend functionalized silica 

nanoparticles. In that case, positive and negative silica nanoparticles were coated onto 

silicon wafer one after another. The coating thickness of 4 bL, 6 bL, 8 bL and 10 bL were 

measured as 100, 150, 250 and 300 nm, respectively.  

 

 

Figure 4. 43. Thickness measurements of AHAPS/PEG Blend functionalized silica nanoparticles with 

respect to bL numbers by ellipsometry 
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Figure 4. 44. 3-D representation of thickness comparisons between various functional groups 

4.4.3. AFM Measurement of LbL Thin Film Coatings 

The AFM measurement were performed to NPC, AHAPS, APDMES and AHAPS/PEG 

blend functionalized silica nanoparticles with 10 bL. The AFM topographies data 

indicated that 186 nm was the highest point of NPC functionalized silica nanoparticles 

coating having 19 nm roughness.  

 

Figure 4. 45. Thickness and topography analysis of 10 bL NPC functionalized silica nanoparticles thin 

films by AFM 
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The APDMES functionalized silica nanoparticles were observed as 231 nm thickness 

which belonged to the highest point of the scanned area and they had 19 nm roughness. 

 

Figure 4. 46. Thickness and topography analysis of 10 bL APDMES functionalized silica nanoparticles 

thin films by AFM 

The top point of AFM topography in AHAPS functionalized silica nanoparticles was 187 

nm acquiring 16 nm roughness. 

 

Figure 4. 47. Thickness and topography analysis of 10 bL AHAPS functionalized silica nanoparticles thin 

films by AFM 

The maximum thickness and roughness were accomplished in AHAPS/PEG blend 

functionalized silica nanoparticles thin films due to the fact that two different silica 

nanoparticles having opposite surface charge were deposited onto wafer. The ultimate 

thickness was found as 298 nm possessing 37 nm roughness. 
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Figure 4. 48. Thickness and topography analysis of 10 bL AHAPS/PEG blend functionalized silica 

nanoparticles thin films by AFM 
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5. CONCLUSION 

The silica nanoparticles were synthesized by water in oil (W/O) microemulsion ranging 

from 40 to 80 nm diameters. The particle size was controlled by changing surfactant, 

ammonia and TEOS concentration. The highest particle size was obtained in 2.02 water 

to surfactant ratio, 0.05 mM ammonia and 0.15 mM TEOS concentration sample, but the 

lowest size belonged to 0.51 water to surfactant ratio, 0.025 mM ammonia and 0.15 mM 

TEOS concentration sample. 

The functionalization of silica nanoparticles was performed by using APS, NPC, 

APDMES, AHAPS, PEG-Silane and DETAS which yields the zeta potential values of 

the nanoparticles from negative (-40 mV) to positive (50 mV). APS functionalized silica 

nanoparticles indicated the excellent stability and the higher zeta potential value 

immediately after the pH adjustment. However, they were undergone intramolecular 

cyclization due to the formation of five membered cyclic intermediate and primary amine 

rendered unstable to silica surface during hydrolysis resulted in detachment of functional 

groups from. Therefore, surface, so agglomeration problem was observed when APS 

functionalized silica solution was applied to substrate by LbL. NPC functionalized silica 

nanoparticles exhibit positive surface charges arising from NH3+ groups. Surface charge 

of them was high with respect to APDMES and DETAS because of having quaternary 

amine moiety. Apart from all these functional groups, APDMES supported to generate 

vertically growth on silica nanosphere since dimethyl silyl groups were not allowed 

binding, so the silica was able to bound to only ethoxy sites. As a result of that, silica 

nanostructures cannot be functionalized all of its entire surface and positive surface 

charge could be lost after pH treatment even at the low pH values. AHAPS functionalized 

silica nanoparticles displayed excellent stability from the pH values of 3.5 to 6.0 owing 

to their secondary amine groups. Different from APS, detachment can be controlled by 

the length of alkyl because intramolecular catalysis is prevented by steric hindrance.  

Comparable to other functional silica nanoparticles, PEG-Silane possessed negative 

surface charge by reason of having non-charged functional group that was produced steric 

hinderance by physically interaction. Identical with AHAPS, DETAS functionalized 

silica had positive surface charge until pH value of 9.0, but it did not present good stability 

according to DLVO theory due to being below +30 mV.  Zeta potential measurement was 

performed to determine surface charge of the particles. FT-IR and NMR spectrum gave 

information whether the functional group was bound or not. 
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The functionalized silica nanoparticles were dispersed in water to deposit onto substrate 

by LbL process. Silica nanoparticles including NPC, APDMES, AHAPS and 

AHAPS/PEG blend functional groups were coated successfully. In order to characterize 

thin films, SEM, ellipsometry and AFM were used to observe morphology, thickness and 

roughness, respectively. 100 nm thickness was obtained in each 5 bL of NPC, APDMES 

and AHAPS functionalized silica coated thin films. The films were generally transparent, 

but they could opacify with increasing thickness. The highest roughness was determined 

as 36 nm in AHAPS/PEG.  

In this study, synthesis and functionalization of silica nanoparticle were accomplished to 

use in LbL application. The crosslinking was generated between the particles to enhance 

mechanical properties of the thin film to be used for further applications.  
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