title   
  

Comprehensive predictive device modeling and analysis of a Si/Si1−xGex multiquantum-well detector

Shafique, Atia and Abbasi, Shahbaz and Ceylan, Ömer and Yamamoto, Yuji and Barıştıran Kaynak, Canan and Kaynak, Mehmet and Gürbüz, Yaşar (2018) Comprehensive predictive device modeling and analysis of a Si/Si1−xGex multiquantum-well detector. IEEE Transactions on Electron Devices . ISSN 0018-9383 (Print) 1557-9646 (Online) Published Online First http://dx.doi.org/10.1109/TED.2018.2862419

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3178Kb

Official URL: http://dx.doi.org/10.1109/TED.2018.2862419

Abstract

This paper presents a predictive device model implemented by a self-consistent solution of Poisson-Schrödinger drift-diffusion formulation for a thermally sensitive detector based on a Si/Si₁₋ₓGeₓ multiquantum-well structure. The physical phenomena governing the carrier transport were modeled to investigate the effect of physical design aspects (Ge content, well periodicity, and well thickness). In particular, we have analyzed the effect of these physical design parameters on the carrier dynamics quantified by the dc performance in terms of net current density. A fully integrated simulation framework was developed and employed to optimize Ge content and device doping for a desired figure of merits specified by temperature coefficient of resistance (TCR) and dc resistance ( R ). This methodology was successfully utilized to realize device profiles for various amounts of Ge content and optimization of ( R ) geared for both high TCR and low noise. The dc performance metrics of the optimized profiles obtained by modeling presented here are compared and validated with the fabricated test devices.

Item Type:Article
Subjects:UNSPECIFIED
ID Code:36417
Deposited By:Yaşar Gürbüz
Deposited On:08 Sep 2018 16:24
Last Modified:08 Sep 2018 16:24

Repository Staff Only: item control page