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Abstract— A new acceleration based learning control ap-
proach is developed to tackle the robust periodic trajectory
tracking problem for robot manipulators. The acceleration
feedback is incorporated into the learning feedforward term to
provide high stiffness to the system against unknown periodic
dynamics with a known period. A cascaded high gain observer is
used to obtain reliable position, velocity and acceleration signals
from noisy encoder measurements. A closed-loop stability
proof is provided where it is shown that all system signals
remain bounded and the proposed learning controller achieves
global asymptotic position tracking. Simulation results obtained
from a high fidelity model show that the proposed controller
outperforms the learning controller that does not utilize the
acceleration feedback.

I. INTRODUCTION

Learning controllers have gained remarkable importance
for repetitive robot tasks. The aim of a learning control
is to achieve desired system performance by updating the
control input from past errors either repeatedly over a fixed
finite time interval, or repetitively (cyclically) over an infinite
time interval. Typical learning control strategies are generally
categorized into iterative learning control (ILC) and repetitive
control (RC). ILC [1] provides satisfactory tracking repeat-
edly on a fixed time (pre-specified) interval whereas RC [2]
handles the problem of the periodic reference tracking and
disturbance rejection.

ILC is an iteration-domain method and requires to reset
the system to the initial condition at the beginning of each
cycle to perform the repetitive tasks. Repetitive control, on
the other hand, is a time-domain technique. RC needs no
initial repositioning and the system operates continuously.
ILCs have been applied for trajectory tracking of different
robotic systems [3]-[4].

In parallel to developments in those controllers, repetitive
controllers have attracted many researchers to solve similar
tracking problems without the requirement for initial reposi-
tioning. Earlier works of the repetitive controllers have been
developed by [2] for linear time-invariant systems. The sta-
bility analysis was conducted for linear processes that repeat
continuously [5]. RC has been applied on nonlinear systems
[6]-[8]. Messner et al. [6] identified and compensated a
nonlinear disturbance function where it is represented as an
integral of a predefined a kernel function multiplied by an
unknown influence function. Using the past information of
the plant, the learning rule was utilized to indirectly estimate
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the disturbance function by updating the influence function
estimate. This controller achieves asymptotic disturbance
cancellation. Dixon et al. [7] and Cao et al. [8] proposed
repetitive learning controllers for nonlinear systems with
exogenous periodic disturbances that satisfy the matching
condition. Similar to ILC, the repetitive controller has been
widely applied to eliminate periodic disturbances in engi-
neering applications [9]-[11].

In this paper, a new learning controller is developed by
incorporating acceleration feedback into the standard learn-
ing control feedforward term to achieve a global position
tracking for n-rigid link robotic manipulators despite un-
known periodic dynamics. The proposed acceleration based
learning controller should improve the robustness of the
system against unknown periodic dynamics because the
effects of those disturbances can manifest themselves in
the acceleration signals first. Reliable position, velocity and
acceleration feedback signals are required for a satisfactory
trajectory tracking performance. However, it is difficult to
obtain velocity and acceleration signals from noisy encoder
measurements due to sensor quantization errors. A cascaded
high gain observer (CHGO) is designed to estimate reli-
able position, velocity and acceleration signals. Estimated
position, velocity and acceleration signals are used in the
acceleration based learning controller that is developed on a
n-rigid link robotic manipulator. The filtered error is modified
to include the integral of the position tracking error. A
closed-loop stability proof is provided which shows that all
system signals are bounded and global asymptotic position
tracking is guaranteed. Results that are obtained from a
high fidelity simulation model demonstrates the validity and
effectiveness of the developed learning controller.

The remainder of this paper is organized as follows: Sec-
tion II presents dynamical model of a n-rigid link robotic ma-
nipulator and a 2 DOF pan-tilt system. Section III develops
a cascaded high gain observer (CHGO) to estimate reliable
position, velocity and acceleration signals. In Section IV,
a new acceleration based learning controller is designed
and the closed-loop stability proof is presented. Section V
provides simulation results where the effectiveness of the
proposed control approach is validated on a 2 DOF pan-tilt
robot. Finally, Section VI concludes the paper with some
important remarks.

II. MODELING

The nonlinear dynamical model of a n-rigid link robotic
manipulator is formulated as follows [12]:
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M(q)q̈+C(q, q̇)q̇+Fvq̇+Fssgn(q̇)+G(q) = τ (1)

where q(t), q̇(t), q̈(t) ∈ Rn are the link positions, veloci-
ties and accelerations, M(q) ∈ Rn×n denotes the symmetric,
positive-definite inertia matrix, C(q, q̇) ∈ Rn×n represents
centripetal-Coriolis matrix, G(q) ∈ Rn is the gravity vector,
Fv and Fs ∈ Rn×n are constant, diagonal, positive-definite,
viscous and static friction coefficient matrices, sgn(q̇) is
the signum function applied to the link velocities, and τ ∈
Rn is the torque control input. For the subsequent control
development and stability analysis, the following important
properties will be utilized.

Property 1: Symmetric and Positive-Definite Inertia
Matrix

The symmetric and positive-definite inertia matrix, M(q),
satisfies the following inequality:

α1∥η∥2 ≤ ηT M(q)η ≤ α2∥η∥2 ∀η ∈ Rn (2)

where α1, α2 ∈R are known positive constants, ∥·∥ denotes
the standard Euclidean norm.

Property 2: Skew-Symmetry

The inertia and centripetal-Coriolis matrices satisfy the fol-
lowing skew-symmetric relationship:

ηT
(

1
2

Ṁ(q)−C(q, q̇)
)

η = 0 ∀η ∈ Rn (3)

where Ṁ is the time derivative of the inertia matrix.

Property 3: Bounding Inequalities

The upper bounds for the norms of the centripetal-Coriolis,
gravity, and viscous friction terms can be obtained as follows:

∥C(q, q̇)∥i∞ ≤ σc1∥q̇∥, ∥G(q)∥ ≤ σg, ∥Fv∥i∞ ≤ σ fv (4)

where σc1, σg, σ fv ∈ R represents known positive constants
and ∥·∥i∞ is the induced infinity norm of a matrix.

Remark 1: Using the assumptions given in (2)-(4), it can
be concluded that the torque control input, τ , is bounded
when all the terms on the left-hand side of (1) are bounded
provided that q(t), q̇(t), q̈(t) ∈ L∞.

This section also provides a dynamical model of a 2 DOF
pan-tilt manipulator in Figure 1. It will be used to evaluate
the performance of the proposed control algorithm in Section
V. The nonlinear model of the pan-tilt system based on the
Euler-Lagrange formulation is as follows [13]-[14]:

M (q) q̈+C (q, q̇) q̇+G(q)+Fvq̇+Fssgn(q̇) = τ (5)

PAN AXIS TILT AXIS
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Fig. 1. Pan-tilt mechanism.

where

q =
[
q1 q2

]T
, τ =

[
τ1 τ2

]T

M(q) =
[

M11 M12
M21 M22

]
, C(q, q̇) =

[
C11 C12
C21 C22

]

G(q) =
[
0 0.5gm2l2 cosq2

]T
, Fv (q̇) =

[
v1q̇1 v2q̇2

]T

Fs (q̇) =
[
k1sgn(q̇1) k2sgn(q̇2)

]T

M11 =
1
2

m1l2
1 +m2l2

1 +m2l1l2 cosq2 +
1
3

m2l2
2 cos2 q2 + J1

M22 =
1
3

m2l2
2 + J2, M12 = M21 = 0

C11 =−m2l1l2q̇2 sinq2, C12 =−1
3

m2l2
2 q̇1 sin2q2

C21 = q̇1

(
1
2

m2l1l2 sinq2 +
1
6

m2l2
2 sin2q2

)
, C22 = 0

(6)
where J1 and J2 are motor inertias, m1 and m2 are the pan
and tilt masses, l1 is the radius, l2 is the length, v1 and v2 are
viscous friction coefficients, and k1 and k2 are static friction
coefficients.

III. ENCODER MODELING AND ESTIMATION BY
A CASCADED HIGH GAIN OBSERVER

This section models an encoder and develops the proposed
observer to estimate position, velocity and acceleration feed-
back signals.

A. Encoder Modeling

Encoders measure joint angles in control applications. En-
coders are modeled by corrupting true sensor measurements
with sensor errors as follows:

qm = q0 +be +µe (7)

where qm ∈Rn is the measured encoder data, q0 ∈Rn is the
true encoder measurement, be ∈Rn represents encoder biases
and µe ∈ Rn denotes encoder white Gaussian noises.
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B. A Cascaded High Gain Observer

A new high gain observer where two different observers
are developed in a cascaded structure is proposed as depicted
in Figure 2. This observer provides reliable estimates of link
positions, x̂o1 , velocities, ẑo1 , and accelerations, ẑo2 , from
noisy encoder measurements.
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Fig. 2. Block diagram of Cascaded HGO Structure

The first HGO uses position measurements from an en-
coder to estimate position and velocity signals. The second
HGO, on the other hand, utilizes estimated velocities by the
first HGO to provide estimates of link accelerations. The
dynamics of the first HGO is designed as:

˙̂xo1 = x̂o2 +L1(y1 − x̂o1)

˙̂xo2 = L2(y1 − x̂o1)
(8)

where x̂o1 ∈Rn and x̂o2 ∈Rn are the estimated link positions
and velocities, x̂o(t) =

[
x̂o1 x̂o2

]T ∈ R2n denotes the ob-
server state vector, y1 = qm ∈Rn is the encoder measurement
given in (7), and the observer gains should be designed as:

L1 =
β1

ε1
, and L2 =

β2

ε2
1

(9)

for some positive constants β1, β2 ∈R, and ε1 ≪ 1. Similarly,
the dynamics of the second HGO is as follows:

˙̂zo1 = ẑo2 +L3(y2 − ẑo1)

˙̂zo2 = L4(y2 − ẑo1)
(10)

where ẑo1 ∈Rn and ẑo2 ∈Rn are the estimated link velocities
and accelerations, ẑo(t) =

[
ẑo1 ẑo2

]T ∈ R2n represents the
observer state vector, y2 = x̂o2 ∈Rn is the estimated velocity
by the first HGO, and L3, L4 are the observer gains designed
as follows:

L3 =
β3

ε2
, and L4 =

β4

ε2
2

(11)

for some positive constants β3, β4 ∈ R, and ε2 ≪ 1. Those
observers are referred as high gain observers because larger
observer gains, L1, L2, L3, and L4, are used in order to
achieve zero estimation errors. High gain observers suffer
from a peaking phenomenon due to sufficiently small ε1 and
ε2. This phenomenon is handled by saturating the control
input. The readers are referred to [15] for the details.

IV. ACCELERATION FEEDBACK BASED LEARNING
CONTROLLER FOR ROBOTIC MANIPULATORS

This section develops an acceleration based learning
controller to achieve a global position tracking for n-rigid
link robotic manipulators in (1).

A. Controller Design

The control objective is to design the torque control input
signal, τ(t), such that the robot link positions will converge
to desired trajectories despite parameter uncertainties in the
dynamic model given in (1), i.e. q(t)⇒ qd(t) as t ⇒ ∞. To
quantify the control objective, the position tracking error,
denoted by e(t) ∈ Rn, is defined as follows:

e = qd −q (12)

where qd(t) ∈ Rn is the desired link position.

Assumption 1: Periodic and Bounded Desired Trajecto-
ries

The control objective is based on the assumption that q(t),
q̇(t) and q̈(t) are measurable, and the desired link positions,
velocities and accelerations are bounded, periodic functions
of time that are defined as follows:

qd(t) = qd(t −T ), q̇d(t) = q̇d(t −T ), (13)

and
q̈d(t) = q̈d(t −T )

with a known period of T .
To facilitate the subsequent control development and sta-

bility analysis, we reduce the order of the robot dynamics
given in (1) by defining a filtered tracking error variable,
s(t) ∈ Rn as follows:

s = ė+Γ1e+Γ2

∫
edt (14)

where ė ∈ Rn is the link velocity error, i.e. ė , q̇d − q̇, and
Γ1, Γ2 ∈ Rn×n are constant, diagonal and positive-definite
controller gain matrices. After taking the time derivative
of (14) and multiplying the resulting expression by the inertia
matrix, M(q), the open loop error system is obtained as:

M(q)ṡ =−C(q, q̇)s+d +ψ − τ (15)

where the auxiliary expression d, ψ ∈ Rn are defined as
follows:

d = M(qd)q̈d +C(qd , q̇d)q̇d +G(qd)+Fvq̇d +Fssgn(q̇d)
(16)

and

ψ = M(q)(q̈d +Γ1ė+Γ2e)+G(q)+Fvq̇+Fssgn(q̇)−d

+C(q, q̇)
(

q̈d +Γ1e+Γ2

∫
edt

)
(17)

Since the real system parameters are not exactly known,
the auxiliary signal, d, as a function of desired periodic
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trajectories, is an unknown periodic signal. In light of (2),
(4) and (13), it follows that

|di| ≤ ηi for i = 1,2, ...,n (18)

where ηi =
[
η1 ... ηn

]
∈ Rn is a vector of known,

positive bounding constants.

By utilizing (2), (4), (12) and (14), and motivated by
the result in [16], it is obtained that:

∥ψ∥ ≤ ϕ (∥υ∥)∥υ∥ (19)

where the auxiliary signal υ(t) ∈ R3n is defined as:

υ(t) =
[
eT (t) sT (t) ëT (t)

]T (20)

and ϕ(·) ∈ R is a known and positive bounding function.
On the basis of the structure of the open-loop error system
in (15), the proposed control law is designed as follows:

τ = Λs+κϕ 2 (∥υ∥)s+ d̂ (21)

where Λ ∈ Rn×n is a constant, diagonal, positive-definite,
controller gain matrix, κ ∈ R is a constant positive gain,
and d̂ ∈ Rn is an estimate of d in (16). Learning law, d̂,
is generated by modifying the learning feedforward term in
[16] with acceleration feedback as:

d̂(t) = satα(d̂(t −T ))+K1s+K2ë (22)

where ë ∈Rn is the link acceleration error, i.e. ë , q̈d − q̈, K1
and K2 ∈Rn×n represent constant, diagonal, positive-definite,
learning control matrices, respectively, and satα(·) denotes
the saturation function and it is defined using the known,
positive bounding constants given in (18):

satηi(ςi) =


ηi, ςi ≥ ηi

ςi, −αi < ςi < ηi

−ηi, ςi ≤−ηi

(23)

with ∀ςi ∈ R, i = 1,2, ..,n. In light of (23), the following
inequality will be utilized in the subsequent stability analysis:

(ς1i − ς2i)
2 ≥ (satαi(ς1i)− satαi(ς2i))

2 (24)

where ∀|ς1i| ≤ ηi,ς1i ∈ R, i = 1,2, ...,n.
When (21) is substituted into (15), the closed-loop error
system for s(t) is obtained as:

Mṡ =−Cs−Λs+ d̃ +ψ −κϕ 2 (∥υ∥)s (25)

where d̃ ∈ Rn is the learning estimation error:

d̃ = d − d̂ (26)

In light of (13), (16), (18) and (23), the following is derived:

d(t) = satα(d(t)) = satα (d(t −T )) (27)

d̃ is obtained by substituting (22) and (27) into (26):

d̃ = satα (d(t −T ))− satα(d̂(t −T ))−K1s−K2ë (28)

B. Closed-Loop Stability Analysis

Theorem 1: The proposed controller developed in (21)-(22)
can asymptotically drive the position error to zero, i.e.;

lim
t→∞

e(t) = 0 (29)

where the controller gains Γ1, Λ, κ , K1 and K2 given in (14),
(21) and (22) are selected to satisfy the following sufficient
condition

min
(
∥Γ1∥,

∥∥∥Λ+
KT

1 K1

2

∥∥∥,∥∥∥KT
2 K2

2

∥∥∥)>
1

4κ
(30)

where ∥·∥ is the 2-norm of a matrix, and there exists a first-
order differentiable, positive definite function V5(e, ė, ë, t)∈R
such that

V̇1 ≤−eT Γ1e+ sT KT
1 K2ë+ d̃T K2ë+ sT (K1 − I)d̃ (31)

where I ∈ Rn×n is the identity matrix.

Proof: To prove the conclusion of Theorem 1, a Lyapunov
function candidate, V (t) is defined as

V =V1 +
sT Ms

2
+

1
2

∫ t

t−T

(
satα d(ϕ)− satα d̂(ϕ)

)T

(
satα d(ϕ)− satα d̂(ϕ)

)
dϕ

(32)

Taking the time derivative of (32), and using the Leibniz’s
Rule provided in Appendix B and the assumption given
in (31) yields

V̇ ≤− eT Γ1e+ sT KT
1 K2ë+ d̃T K2ë+ sT (K1 − I)d̃ + sT Mṡ

+
sT Ṁs

2
+

1
2

[(
satα d(t)− satα d̂(t)

)T(
satα d(t)

− satα d̂(t)
)
−
(

satα d(t −T )− satα d̂(t −T )
)T

(
satα d(t −T )− satα d̂(t −T )

)]
(33)

Using (3) and (25), the following is obtained:

V̇ ≤− eT Γ1e+ sT KT
1 K2ë+ d̃T K2ë+ sT K1d̃ − sT Λs

+ sT ψ − sT κϕ 2s+
1
2

∥∥∥satα d(t)− satα d̂(t)
∥∥∥2

− 1
2

(
satα d(t −T )− satα d̂(t −T )

)T

(
satα d(t −T )− satα d̂(t −T )

)
(34)

The expression given in (34) can be rewritten based on (19)
and (28) as follows:

V̇ ≤− eT Γ1e+ sT KT
1 K2ë+ d̃T K2ë+ sT K1d̃ − sT Λs

+
[
ϕ∥υ∥∥s∥−κϕ 2∥s∥2

]
+

1
2

∥∥∥satα d(t)− satα d̂(t)
∥∥∥2

− 1
2

[
(d̃ +K1s+K2ë)T (d̃ +K1s+K2ë)

]
(35)
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By expanding the last line of (35), and performing cancella-
tions, one obtains

V̇ ≤− eT Γ1e− sT
(

Λ+
KT

1 K1

2

)
s− ëT KT

2 K2

2
ë

+
1
2

[∥∥∥satα d(t)− satα d̂(t)
∥∥∥2

−
∥∥∥d(t)− d̂(t)

∥∥∥2
]

+
[
ϕ∥υ∥∥s∥−κϕ 2∥s∥2

]
(36)

By exploiting the property given in (24), completing the
square on the bracketed term in the last line of (36), and
using (20), (36) can be simplified as:

V̇ ≤−
[

min
(
∥Γ1∥,

∥∥∥Λ+
KT

1 K1

2

∥∥∥,∥∥∥KT
2 K2

2

∥∥∥)− 1
4κ

]
∥υ∥2

(37)
where ∥·∥ is the 2-norm of a matrix.

Signal Chasing: When (30) is satisfied, it follows that V (t)∈
L∞ based on (32) and (37). Since the signals in V (t) must
remain bounded, it can be concluded that s(t)∈L∞ and this
implies e(t) ∈ L∞ based on (14). It is also obtained from
(37) that υ(t) ∈ L2, and thus υ(t) ∈ L∞. The definition of
υ(t) given in (20) implies e(t),s(t), ë(t)∈L2∩L∞. Based on
the fact that s(t) is composed of ė(t),e(t),

∫
e(t)dt as given

in (14), and s(t) ∈ L2 ∩L∞, it follows that ė(t) ∈ L2 ∩L∞.
Since e(t), ė(t) ∈ L∞ and e(t) ∈ L2, Barbalat’s Lemma [17]
implies (29) in Theorem 1.

In light of (12) and (13), and using the boundedness
of e(t), ė(t), ë(t), it follows that q(t), q̇(t), q̈(t) ∈ L∞. By
exploiting the fact that the learning feedforward term given
in (22) is composed of a saturation function, and s(t), ë(t) ∈
L∞, it can be concluded that d̂(t) ∈L∞. Finally, d̂(t),s(t) ∈
L∞ implies τ(t) ∈ L∞ based on (21). Therefore all system
signals remain bounded.

V. SIMULATION RESULTS

The performance of the proposed learning controller is
evaluated on a 2 DOF pan-tilt system. In order to construct a
high fidelity simulation model, both nonlinear robot dynam-
ics given in (5) and encoder model given by (7) are utilized.
The desired trajectories which are presented in Figure 3 are
generated based on the following periodic functions:[

qd1
qd2

]
=

[
(3+0.1cos(t))(sin(sin(t)))(1+ e−0.6t3

)

(1+0.1cos(t))(sin(sin(t)))(1+ e−0.6t3
)

]
(38)

with a period of T = 6.28 sec and the exponential term is
used to provide a smooth-start to the system. The controller
gains are tuned as follows:

Γ1 =

[
20 0
0 14

]
, Γ2 =

[
20 0
0 20

]
, Λ =

[
40 0
0 12

]

K1 =

[
30 0
0 10

]
, K2 =

[
0.01 0

0 0.01

]
Position and filtered errors reduce after each period of
the desired trajectory as depicted in Figures 4 and 5. The
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Fig. 3. Desired trajectories
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Fig. 4. Link 1 position error, e1(t)
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Fig. 5. Link 2 position error, e2(t)

amplitude of oscillations are larger when the acceleration
feedback is not utilized in the learning feedforward term.

Figures 6-9 depict the torque control inputs and the
learning feedforward controls. Due to the desired periodic
trajectories, control inputs oscillate to reject the unknown pe-
riodic disturbances. The proposed controller outperforms the
learning controller without acceleration feedback as shown
in Tables I and II.
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Fig. 6. Link 1 control input, τ1(t)
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Fig. 8. Link 1 learning feedforward control, d1(t)
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Fig. 9. Link 2 learning feedforward control, d2(t)

TABLE I
LINK 1 PERFORMANCE SPECIFICATION

Performance Proposed Learning Controller
Criteria Controller without AFB

Worst Case Position Error (deg) 0.3244 0.7959
RMS Position Error (deg) 0.1450 0.2910
RMS Control Input (N.m) 9.1981 9.2276

TABLE II
LINK 2 PERFORMANCE SPECIFICATION

Performance Proposed Learning Controller
Criteria Controller without AFB

Worst Case Error (deg) 0.1527 0.4683
RMS Error (deg) 0.0656 0.1689

RMS Control Input (N.m) 1.5248 1.5283

VI. CONCLUSIONS

We have now developed a new acceleration based learning
controller for the periodic trajectory tracking of robotic ma-
nipulators. The robustness of the system against unknown pe-
riodic disturbances is improved with the use of acceleration
feedback in the learning feedforward term. A new cascaded

high gain observer is utilized to estimate position, velocity
and acceleration signals from noisy encoder measurements.
Estimates produced by the observer are used as feedback
signals in the proposed learning controller. By a closed
loop stability analysis, it is shown that all system signals
remain bounded and global asymptotic position tracking is
ensured. The performance of the proposed learning controller
is tested on a high fidelity simulation model of a 2 DOF
pan-tilt platform. Results show that smaller position errors
are achieved when acceleration feedback is utilized in the
learning controller.
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