title   
  

Differentially private nearest neighbor classification

Warning The system is temporarily closed to updates for reporting purpose.

Gürsoy, Mehmet Emre and İnan, Ali and Nergiz, Mehmet Ercan and Saygın, Yücel (2017) Differentially private nearest neighbor classification. Data Mining and Knowledge Discovery (SI), 31 (5). pp. 1544-1575. ISSN 1384-5810 (Print) 1573-756X (Online)

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
980Kb

Official URL: http://dx.doi.org/10.1007/s10618-017-0532-z

Abstract

Instance-based learning, and the k-nearest neighbors algorithm (k-NN) in particular, provide simple yet effective classification algorithms for data mining. Classifiers are often executed on sensitive information such as medical or personal data. Differential privacy has recently emerged as the accepted standard for privacy protection in sensitive data. However, straightforward applications of differential privacy to k-NN classification yield rather inaccurate results. Motivated by this, we develop algorithms to increase the accuracy of private instance-based classification. We first describe the radius neighbors classifier (r-N) and show that its accuracy under differential privacy can be greatly improved by a non-trivial sensitivity analysis. Then, for k-NN classification, we build algorithms that convert k-NN classifiers to r-N classifiers. We experimentally evaluate the accuracy of both classifiers using various datasets. Experiments show that our proposed classifiers significantly outperform baseline private classifiers (i.e., straightforward applications of differential privacy) and executing the classifiers on a dataset published using differential privacy. In addition, the accuracy of our proposed k-NN classifiers are at least comparable to, and in many cases better than, the other differentially private machine learning techniques.

Item Type:Article
Additional Information:Wos Document Type: Article; Proceedings Paper / Conference: ECML PKDD Conference / Location: Skopje, MACEDONIA / Date: SEP 18-22, 2017
Uncontrolled Keywords:Data mining; Differential privacy; k-Nearest neighbors
Subjects:UNSPECIFIED
ID Code:35798
Deposited By:Yücel Saygın
Deposited On:15 Aug 2018 10:12
Last Modified:15 Aug 2018 10:12

Repository Staff Only: item control page