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Abstract. Glitches, sudden spin-up of pulsars with subsequent recovery, provide us with a
unique opportunity to investigate various physical processes, including the crust-core coupling,
distribution of reservoir angular momentum within different internal layers, spin-up in neutral
and charged superfluids and constraining the equation of state of the neutron star (NS) matter.
In this work, depending on the dynamic interaction between the vortex lines and the nuclei in
the inner crust, and between the vortex lines and the magnetic flux tubes in the outer core,
various types of relaxation behavior are obtained and confronted with the observations. It is
shown that the glitches have strong potential to deduce information about the cooling behavior
and interior magnetic field configuration of NSs. Some implications of the relative importance of
the external spin-down torques and the superfluid internal torques for recently observed unusual
glitches are also discussed.

1. Introduction
Pulsars are rapidly rotating NSs. Being exceptionally stable rotators, they rival the best atomic
clocks. This fact alone allows to obtain a precise timing solution after observing frequency
ν and spin-down rate ν̇. It enables one to predict NS rotational evolution with high accuracy.
However, pulsars, especially the young ones, show stochastic wandering, i.e. noise in their phase,
rotation period and spin-down rate [1], rendering some level of fluctuations in measurements.
Moreover, regular long-term spin-down of pulsars is observed to be occasionally interrupted
by sudden spin-ups in their rotation rates Ω = 2πν, i.e. glitches. Glitches appear in timing
data as fractional changes in the rotation rate with ΔΩ/Ω = 10−11 − 10−5. They are usually
accompanied by larger jumps in the spin-down rate, ΔΩ̇/Ω̇ = 10−4 − 10−1 [2–4]. Both changes
tend to recover fully or partially on timescales of the order of several days to a few years.

Glitch monitoring demonstrated for the first time that NSs contain superfluid at the highest
observable densities and temperatures; since sudden spin-up with long relaxation give indirect
evidence for bulk superfluidity in NS matter [5]. Recent observation of decline in surface flux of
the 330 yr old Cas A NS also confirmed a transition into superfluid/superconducting state in the
core with temperature T ≤ 108−9 K [6]. Anderson and Itoh [7] in their seminal paper explained
glitches in terms of catastrophic unpinning of vortex lines, i.e. topological defects within a
superfluid carrying angular momentum, from ambient normal matter crystal in the NS crust.
The standard model, i.e. the vortex creep model by Alpar et al. [8] invokes the interaction of
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vortex lines of the NS inner crust with the crystal nuclei to account for the glitch occurrence and
post-glitch relaxation. In the vortex creep model, the coupling between the superfluid and crust
is maintained by the thermally activated migration of vortex lines at a presumed lag ω ≡ Ωs−Ωc

between the superfluid and crustal rotational rates. At the time of a glitch, vortex lines rip off
from pinning centers and impart their angular momentum to the crust. As a consequence, the
crust spins-up and the lag decreases. Hence the coupling weakens. This results in decoupling
of that superfluid region from the externally decelerating magnetospheric dipole and/or wind
torques. Since the external torque is now acting on a smaller moment of inertia, the spin-down
rate increases following a glitch. Post-glitch recovery appears as recoupling of glitch affected
superfluid region to the crust.

Various phases of glitch observations have strong potential of constraining and extracting
information about NS internal structure and dynamics. In this paper, it is shown how the
occurrence, magnitudes and relaxations of glitches observed from canonical radio pulsars and
magnetars can be used to probe different physical processes inside NSs.

2. Glitch occurrence as neutron star probe
Surprisingly, the origin of pulsar glitches still remains controversial although it has been
intensively studied for about half of an century. Nevertheless, the occurrence of glitches may
shed light on the internal structure of NSs. It appears that there are at least two different
behaviors and spin-up timescales related to the glitches. The well-known quasi-periodic giant
glitcher, the Vela pulsar, undergoes large spin-ups with a timescale less than 40 s [9]. Its glitches
initially show abrupt fall off from a large value. Conversely, the glitches typical for the Crab
pulsar are somewhat weaker and display a day long comparatively slow, extended spin-up [10].
In the literature, different mechanisms based on superfluid dynamics were proposed to trigger
glitches. For instance, crustquake induced vortex unpinning and avalanches from high density
vortex traps [11] may account for the Crab and the Vela glitching behaviors, respectively. While
studying crustquakes, one can investigate two important parameters, the strain-stress relation
and the yield strength of the NS crust [12]. On the other hand, by investigating vortex traps, one
can study the impact of crust breaking and impurity on the distribution of vortex lines within
the crust [13]. Also, as a crustal-driven mechanism, coupling of vortex oscillations, i.e. kelvons,
to lattice phonons was proposed to account for rapid angular momentum exchange between
crustal superfluid and charged normal matter [14]. Through this mechanism one can clarify the
dependence of phonon spectrum and angular momentum reservoir efficiency on the temperature
evolution of the crust. Furthermore, interaction of crustal magnetic field with flux tubes in the
outer core may give rise to extra pinning barrier for vortex lines [15]. This mechanism may help
to understand the effects of transition into superconducting state and expulsion of magnetic field
in the form of Meissner currents [16].

3. Glitch magnitudes as neutron star probe
In the vortex creep model, as well as in other models, glitch magnitudes in the rotation
rate ΔΩ/Ω and in the spin-down rate ΔΩ̇/Ω̇ are directly related to the superfluid region(s)
involved in glitches. Thus, the glitch magnitudes are a measure of the glitch affected crustal
superfluid moment of inertia and the equation of state [8,17,18]. This picture has been challenged
theoretically [19]. Recent band theory calculations by Chamel [20] revealed that Bragg scattering
of free neutrons on crystal somewhat reduces the mobility of crustal superfluid neutrons and,
accordingly, the angular momentum reservoir [21,22]. This crustal mass entrainment effect
suggests involvement of the core superfluid in the glitches. Gügercinoğlu and Alpar [23,24] have
conducted the first principles calculations of glitches in the superfluid-superconducting core.

Vortex creep across flux tubes model [25] describes post-glitch relaxation of radio pulsars and
magnetars in terms of dynamical interaction of vortex lines and toroidally arranged flux tubes
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in the outer core. In NSs, vortex lines’ orientation is parallel to the rotation axis while flux tube
array acquires very complicated poloidal plus toroidal structure inherited from the progenitor
star after superconducting phase transition. Vortex lines inevitably intersect with toroidal flux
tubes while the interaction with poloidal flux tubes is highly dependent on inclination angle.
Due to non-zero core temperature, vortex lines slowly migrate out of pinning potentials sustained
by flux tubes (i.e. creep) in accordance with the stellar spin-down. Model predictions can be
summarized as follows:

• Only the toroidal field region (a rather small fraction of the core) participates in glitches
via decoupling from external torque. This fact explains why glitch magnitudes are tiny.

• NS core response to each glitch in the spin down rate Ω̇ is exponential recovery,

ΔΩ̇c(t) = −Itor
I

ΔΩ

τtor
exp

(
− t

τtor

)
, (1)

with the toroidal field relaxation timescale [23]

τtor � 60

(
10−10 rad s−2

|Ω̇|

)(
T

108 K

)(
10 km

R

)
x1/2p

×
(
mp

m∗p

1014 g cm−3

ρ

Bφ

1014 G

)1/2

days, (2)

where Itor/I is fractional moment of inertia of the toroidal field region, T is the temperature,
Bφ is the strength of the toroidal field component, ρ is the mass density, m∗p(mp) is the
effective (bare) mass of protons, xp is the proton fraction, and R is the radius of the location
of the toroidal field region.

• As a pulsar ages relaxation timescale (2) becomes longer and the glitches resemble step-like
changes which are supported by observations [2,3].

With entrainment in the crustal superfluid taken into account, the angular momentum
balance gives [23]

ΔΩc

δΩs
≤ mn

m∗n

Ics
I − Ics − Itor

, (3)

where δΩs and Ics denote change in the superfluid rotation rate and the crustal superfluid
moment of inertia, respectively. m∗n/mn > 1 characterizes the mass entrainment factor [20]. In
the NS core, achieving critical threshold for vortex unpinning from the potential sustained by
flux tubes is more likely than the case for NS crust if relevant superfluid instabilities occur [24].
Then condition (3) becomes

ΔΩc

δΩs
≤ mn

m∗n

Ics + αItor
I − Ics − Itor

, (4)

where α is the fraction of the toroidal field region in which vortex lines unpinned from the flux
tubes participated in the glitch. Thus, glitch magnitude observations yield constraints for the
non-dissipative crustal entrainment effect.

4. Glitch relaxation as neutron star probe
Canonical radio pulsars. Temporal evolution of the change in the spin-down rate at the time
of a glitch is well described by the fit function [2,3]

ΔΩ̇(t) = ΔΩ̇de
−t/τd +ΔΩ̇p = −QΔΩ τ−1d e−t/τd +ΔΩ̇p. (5)
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Here ΔΩ̇d = −ΔΩd/τd and Q = ΔΩd/ΔΩ is the ratio of the exponentially decaying fraction to
the total glitch magnitude ΔΩ = ΔΩd +ΔΩp. Upon comparing the fit function (5) with vortex
creep across flux tubes model prediction, equations (1) and (2), one arrives at three possibilities
[25]:

(i) If τtor ≈ τd, then Itor/I ∼ Q.

(ii) If τtor � τd but Q� 1 then the relaxation of the toroidal field region is not completed yet
and one has only an upper bound Itor/I ≤ 1−Q.

(iii) If τtor � τd, then the prompt response of the toroidal field region is missed from the
observations.

Then, post-glitch observations of pulsars enable us to infer macroscopic properties like core
temperature and internal magnetic field configuration, and microscopic traits like equation of
state parameters and strength of the superfluid-superconductor coupling.

In the inner crust, a linear regime of creep of vortices against nuclei also results in an
exponential post-glitch response with a decay timescale

τ1 =
kT

Ep

Rωcr

4Ωsv0
exp

(
Ep

kT

)
, (6)

where v0 ≈ 107 cm/s is microscopic vortex velocity around the nuclei [8,24]. From crustal
response one can deduce pinning strength and lattice properties, for which there exist early
analytical estimates [26] and recent numerical computations [27].

Magnetars. Magnetar glitches differ from radio pulsar glitches in many respects. Magnetars,
through displaying unstable spin-down and burst like activities following their glitches [4],
provide strong evidence that both magnetospheric processes and internal superfluid play an
important role in their glitch events as reflected by anomalous Q values [28]. Magnetars’
different behavior from radio pulsars in general may be related to their unusual properties.
Due to magnetic field decay, magnetar spin-down rates are somewhat lower than those of
canonical radio pulsars [29]. As a result of the magnetic field decay, magnetars also have higher
surface temperatures [30]. In strong and twisted magnetic field configurations, the toroidal field
component transfers some of its magnetic energy to the poloidal field so that in magnetars
Bφ ≤ 0.01Bp [31]. In order to fit the relaxation timescale (2) to post-glitch observations it
is argued that magnetars should have a cooler core [25]. If the density of the core exceeds a
critical threshold, the powerful direct Urca process operates. Magnetar surface thermal emission
behavior can be explained by a cooler core and a heater in the crust [32]. Therefore, magnetars
may have a massive core allowing enhanced cooling processes. This, in turn, implies that
magnetars may be originated from massive progenitors in which dynamo processes endowed
them with stronger magnetic fields than those of canonical pulsars.

Glitches with external torque variation. High magnetic field pulsars exhibit glitches which
have much in common with magnetars. PSR J1119–6127 is observed to have additional pulse
components emergent with glitch [33]. PSR J1846–0258 showed violent emission changes and
burst activity right after the glitch [34]. These peculiar glitches have some implications for NS
structure [35]. Gügercinoğlu and Alpar [28] developed the vortex creep model [8] by taking time
varying external torques into account in order to answer these issues. Variable external torque
and superfluid coupling results in extra terms in the Q values [28]. An exponentially decaying
torque on timescale τd added to the pre-glitch level N0 = IΩ̇∞, with Ω̇∞ being long-term spin-
down rate, yields Next(t) = N0 + δN exp(−t/τ). For this particular choice of time varying
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external torque post-glitch spin-down rate the evolution is [28]

ΔΩ̇c(t) =
δN

Ic
e−t/τ

(
1− Is

I

τ

τ − τd

)
+ e−t/τd

Is
I

(
ω(0)

τd
+

I

Ic
Ω̇∞ +

δN

Ic

τ

τ − τd

)
. (7)

The same formalism can be applied to sources showing precession like oscillations [36] and
anomalous braking indices [37] as well.

5. Conclusions
Pulsar glitch observations enable us to infer NS internal structure in many ways:

• Pulsar glitch observations can be used to place stringent constraints on the equation of state
[17,22].

• Post-glitch exponential decay provide indirect measure for magnetic field configuration [25].

• Magnetar glitch observations are best explained by a core in which the direct Urca cooling
operates [25].

• Glitches with external torque variation implies a strong coupling between the internal
superfluid and spinning down or up magnetospheric or accretion torques [28].
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