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In unit-demand and multi-copy object allocation problems, we say that a mechanism

size-wise dominates another mechanism if the latter never allocates more objects than the

former does, while the converse is true for some problem. Our main result shows that

no individually rational and strategy-proof mechanism size-wise dominates a non-wasteful,

truncation-invariant, and extension-responding mechanism. As a corollary of this, the well-

known deferred-acceptance, serial dictatorship, and Boston mechanisms are not size-wise

dominated by an individually rational and strategy-proof mechanism. We also show that

whenever the number of agents does not exceed the total number of object copies, no group

strategy-proof and efficient mechanism, such as top trading cycles mechanism, is size-wise

dominated by an individually rational, weakly population-monotonic, and strategy-proof
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1 Introduction

Strategy-proofness, which requires right incentives for agents to reveal their true pref-

erences, is a major desideratum in the design of object allocation mechanisms. In terms

of positive economics, a lack of strategy-proofness undermines the allocative performance

of a mechanism. In normative ground, on the other hand, non strategy-proof mechanisms

may favor strategic agents at the expense of sincere ones (see Pathak and Sönmez (2008));

hence fairness would be a concern. Market practitioners pay attention to strategy-proofness,

and indeed, in some matching markets, the previously used manipulable mechanisms have

been replaced with strategy-proof ones. Some of such examples are Boston, Chicago, and

Wake County school-choice programs (see Abdulkadiroğlu et al. (2005b), Pathak and Sönmez

(2013), Dur et al. (2017)).

Individual rationality is another fundamental property. Agents are often free to opt out

of an object assignment and go with their outside option. Individual rationality guarantees

agents to be at least as better off as they would be with their outside option.1 In other

words, it rationalizes agents participation in an object assignment.

In the design of object allocation mechanisms, another natural desideratum may be

maximizing the number of assigned agents. This objective becomes most apparent in organ

exchanges as it means maximizing the number of transplants (see Roth et al. (2005) and

Ergin et al. (2017)). It also significantly matters in a matching of asylum seekers to countries

(see Andersson and Ehlers (2016)) as well as dorm assignments in colleges. Maximality is

important for school choice programs as well. As described in Abdulkadiroğlu et al. (2005a),

one of the main problems of the old New York City high school match system was that a large

proportion of students were remaining unassigned under the normal process. These students

then, through an administrative process, were placed at schools, which were not necessarily

stated in their preferences. Maximality is indeed the primary goal in some school-choice

programs, as indicated by the following quote from the Frankfurt and North Rhine-West

1More formally, a matching is individually rational if agents never would rather receive no object.
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secondary school districts in Germany:

“The organization of the “Frankfurt School Mechanism” is shared between State,

city and school. Its primary goal is to give as many applicants as possible one of

their preferred schools. Each school decides for itself which students to admit...”

(Basteck et al., 2015).

In this paper, we focus on these three desiderata and study whether we can improve a

given benchmark mechanism in terms of the number of assigned agents through an indi-

vidually rational and strategy-proof mechanism. More formally, we say that a mechanism

size-wise dominates another mechanism if the latter never assigns more agents than the

former does, while the converse holds at some problem.

Our main result shows that for any given benchmark mechanism that satisfies certain

arguably mild properties,2 there is no individually rational and strategy-proof mechanism

that size-wise dominates the former. As the well-known deferred-acceptance (DA), serial

dictatorship (SD), and Boston (BM) mechanisms satisfy all these properties, neither of

them is size-wise dominated by an individually rational and strategy-proof mechanism. This,

along with the strategy-proofness of SD and DA, spells out that if a market designer’s three

goals are individual rationality, strategy-proofness, and maximizing the number of assigned

agents, then SD and DA are unbeatable. We also show that the impossibility result is tight

in the sense that it does not hold without either individual rationality or strategy-proofness.

Above result does not say anything about the other well-known top trading cycles (TTC)

mechanism as TTC does not satisfy all the benchmark axioms. However, we obtain that

whenever the number of agents does not exceed the total number of object copies, no group

strategy-proof and efficient mechanism,3 such as TTC, is size-wise dominated by an individ-

ually rational and strategy-proof mechanism that also satisfies a weak solidarity condition.

2These properties are non-wastefulness, extension-responsiveness, and truncation invariance. They are
all defined in Section 2.

3A mechanism is group strategy-proof if no group of agents benefit from misreporting their preferences.
A mechanism is efficient if its outcome is never unanimously less preferred to another matching.
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To our knowledge, this is the first paper that provides a general axiomatic analysis for a

mechanism comparison in terms of the number of assigned agents. In a recent study, Afacan

et al. (2017) demonstrate that there is no size-wise domination relation between any pair of

TTC, SD, BM , and stable mechanisms, which is partly implied by our main result. Kesten

and Kurino (2016) show that no strategy-proof mechanism Pareto dominates DA.4,5 This

result is then generalized by Alva and Manjunath (2017) and Hirata and Kasuya (2017).

The former shows that there exists at most one strategy-proof mechanism that improves the

agents’ welfare relative to any individually rational and participation-maximal mechanism.

In a more general matching with contracts setting, Hirata and Kasuya (2017) obtain that no

individually rational and strategy-proof mechanism Pareto dominates a stable and strategy-

proof rule.

2 Model

Let I and O be the finite sets of agents and objects, respectively. Each agent has a strict

preference relation over the objects and being unassigned option, which is denoted by ∅. Let

P = (Pi)i∈I be the preference profile of the agents where Pi is the preference relation of agent

i. Let Ri be the weak preference relation associated to Pi such that for any c, c′ ∈ O, cRic
′ if

and only if cPic
′ or c = c′. An object c is acceptable to agent i if cPi∅, and unacceptable

otherwise. For any I ′ ⊂ I, let PI′ = (Pi)i∈I′ and P−I′ = (Pi)i∈I\I′ . Each object c ∈ O can

come with multiple copies, and qc is the number of object c copy. Let q = (qc)c∈O.

An object allocation problem is a 4-tuple (I, O, P, q). In the rest of the paper, we fix I,

O, q, and denote the problem with P . A matching µ : I → O ∪ {∅} is a function such that

for each object c ∈ O, |µ−1(c)| ≤ qc. For any k ∈ I∪O, we write µk to denote the assignment

of k. Let |µ| = |{i ∈ I : µi 6= ∅}|, that is, the number of agents assigned to an object under

4A mechanism Pareto dominates another one if the latter’s outcome is never strictly preferred by some
agent to the former’s, while the converse holds at some problem.

5This result generalizes both results of Kesten (2010), which shows that no efficient and strategy-proof
mechanism Pareto dominates DA, and of Abdulkadiroğlu et al. (2009), which, under the presence of an
outside option, obtains the same conclusion with Kesten and Kurino (2016)’s result.
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µ. We call it “size” of matching. A matching µ is individually rational if for any agent

i ∈ I, µiRi∅. A matching µ is non-wasteful if there does not exist an agent-object pair

(i, c) such that cPiµi and |µc| < qc. A matching µ is efficient if there is no matching µ′ such

that for any agent i ∈ I, µ′iRiµi, with this holding strictly for some agent.

A mechanism ψ is a procedure that selects a matching in any problem P . The matching

selected by mechanism ψ in problem P is denoted by ψ(P ). Mechanism ψ is individually

rational (efficient) <non-wasteful> if, for any problem P , ψ(P ) is individually rational (effi-

cient) <non-wasteful>. Mechanism ψ is strategy-proof if there exist no problem P , agent

i, and P ′i such that ψi(P
′
i , P−i)Piψi(P ). Mechanism ψ is group strategy-proof if there

exist no problem P , group of agents I ′ ⊆ I, and false preference profile P ′I′ such that for each

agent i ∈ I ′, ψi(P
′
I′ , P−I′)Riψi(P ), with this holding strictly for some agent j ∈ I ′. Here is

our size comparison criterion. A mechanism ψ size-wise dominates mechanism φ if, for

every problem P , |ψ(P )| ≥ |φ(P )|, and |ψ(P ′)| > |φ(P ′)| for some problem P ′.

We next introduce the properties for a benchmark mechanism. A preference relation P ′i

is the truncation of Pi from object c if, for any pair of objects c′, c′′, c′Pic
′′ if and only if

c′P ′i c
′′, and for any c′ such that cPic

′, ∅P ′i c′. Mechanism ψ is truncation-invariant if, for any

problem P and agent i such that ψi(P ) 6= ∅, ψ(P ) = ψ(P ′i , P−i) where P ′i is the truncation

of Pi from ψi(P ). Truncation-invariance is a well-studied property requiring the assignment

to remain the same after an agent truncates his preferences below his assignment. DA is

truncation-invariant (Ehlers and Klaus, 2016). It is immediate to see from their definitions

that SD, TTC, and BM are all truncation-invariant as well.6

For an object c, a preference relation P ′i is the object c extension of Pi if, for any

c′, c′′ ∈ O\{c}, c′Pic
′′ if and only if c′P ′i c

′′, ∅Pic, and object c is the least preferred acceptable

object under P ′i . Mechanism ψ is extension-responding if, for any problem P , agent i,

and object c such that ψi(P ) = ∅ and |ψc(P )| < qc, ψi(P
′
i , P−i) = c and ψj(P

′
i , P−i) = ψj(P )

for every j ∈ I \ {i} where P ′i is the object c extension of Pi. To our knowledge, this is a

6The definitions of these mechanisms are provided in Appendix A.
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new property. It basically requires an originally unassigned agent to receive a leftover object

after he starts demanding it while the others remain unaffected. It is easy to verify that DA,

BM , and SD are all extension-responding.

3 The Results

Now, we are ready to present our main result, which indicates that any non-wasteful,

truncation-invariant, and extension-responding mechanism cannot be size-wise dominated

by an individually rational and strategy-proof mechanism.

Theorem 1. Let ψ be a non-wasteful, truncation-invariant, and extension-responding mech-

anism. Then, there is no individually rational and strategy-proof mechanism that size-wise

dominates ψ.

Proof. See Appendix B.

More explicitly, Theorem 1 implies that for any non-wasteful, truncation-invariant, and

extension-responding mechanism ψ, and an individually rational and strategy-proof mecha-

nism φ, either |ψ(P )| = |φ(P )| for every P or |ψ(P ′)| > |φ(P ′)| for some P ′.

As aforementioned, DA, SD, andBM are all truncation-invariant and extension-responding.

They are all non-wasteful as well. Hence, as a corollary of Theorem 1, we obtain that neither

of them is size-wise dominated by an individually rational and strategy-proof mechanism.

Moreover, this coupled with the well-known rural hospital theorem (Roth, 1984) generalizes

it to the set of all stable mechanisms.7

Corollary 1. There is no individually rational and strategy-proof mechanism that size-wise

dominates any of BM , SD, and a stable mechanism.

It is well-known that TTC, SD, and DA are all individually rational and strategy-proof.

Hence, we also have the following result, which is independently obtained by Afacan et al.

(2017) as well.

7Rural hospital theorem says that the number of assigned agents is the same under any stable matching.
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Corollary 2. Neither of BM , SD, DA is size-wise dominated by any of TTC, SD, and

DA.

Theorem 1 is tight in the sense that the impossibility does not hold without either

individual rationality or strategy-proofness. For instance, let us consider a mechanism such

that in every problem, it assigns each object to the same group of agents in a way that

either all the agents receive an object or no object is leftover. It is easy to see that this

mechanism is strategy-proof and that size-wise dominates all DA, SD, and BM . Yet, it is

not individually rational. On the other hand, consider a mechanism that always assigns as

many agents as possible subject to individual rationality. Such a mechanism is individually

rational and size-wise dominates all DA, SD, and BM . Yet, it is not strategy-proof.8

Remark 1. BM and stable mechanisms take an object priority profile over agents as

an input of the problem. However, our setting and results are priority-free. In other words,

all of our results hold for any priority ordering. Therefore, Corollary 1 holds for BM and

any stable mechanism with any priority ordering. Likewise, SD uses an agent ordering. We

do not specify any such ordering as well. Therefore, the result above holds for SD with any

agent ordering. By the same token, Corollary 2 holds for any priority and agent ordering.9

Theorem 1 does not say anything about TTC as it is not extension-responding.10 While

we do not know whether TTC is size-wise dominated by an individually rational and strategy-

proof mechanism, we obtain a similar result below by adding another axiom.

8To see this, let us consider I = {i, j} and O = {a, b}, each with unit quota. The preferences are such
that Pi = Pj : a, b, ∅. Let ψ be a mechanism that assigns as many agents as possible subject to individual
rationality. In this problem, without loss of generality, suppose ψi(P ) = a and ψj(P ) = b. Then, under ψ,
agent j can obtain object a by reporting false preferences P ′j under which only object a is acceptable.

9More explicitly, Corollary 2 shows that none of BM and DA under any priority ordering and SD under
any agent ordering is size-wise dominated by any of TTC and DA under any priority ordering, and SD
under any agent ordering.

10In order to see this, let us consider I = {i, j, k} and O = {a, b}, each with unit quota. The preference
profile P is as follows: Pi = Pj : a, ∅, and Pk : ∅. Let us denote the objects’ strict priority orders by
�= (�c)c∈O. They are as follows: �a: k, i, j and �b: j, k, i. The TTC outcome at P is such that
TTCi(P ) = a and TTCj(P ) = TTCk(P ) = ∅. Let us now consider P ′k : b, ∅ and write P ′ = (P ′k, P−k). The
TTC outcome at P ′ is such that TTCi(P

′) = ∅, TTCj(P
′) = a, and TTCk(P ′) = b. Hence, TTC is not

extension-responding.
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A mechanism ψ is weakly population-monotonic if, for any problem P and agent

i such that ψi(P ) = ∅, we have ψj(P
′
i , P−i)Rjψj(P ) for each j ∈ I \ {i} where P ′i is such

that ∅P ′i c for any c ∈ O. In words, after an originally unassigned agent stops demanding an

object, weak population-monotonicity requires the other agents be at least as better off as

before. This is a weaker version of the well-studied population monotonicity condition.11 DA

is population monotonic (Kojima and Manea, 2010), hence weakly population-monotonic.

It is easy to verify that BM , SD, and TTC are all weakly population-monotonic.

Theorem 2. Let Σc∈Oqc ≥ |I|. Let ψ be an efficient and group strategy-proof mechanism.

Then, there is no individually rational, weakly population-monotonic, and strategy-proof

mechanism that size-wise dominates ψ.12

Proof. See Appendix B.

As TTC is efficient and group strategy-proof, we have the following corollary.13

Corollary 3. Let Σc∈Oqc ≥ |I|. Then, TTC is not size-wise dominated by an individually

rational, weakly population-monotonic, and strategy-proof mechanism, such as SD and DA.

When each object has only one copy, the class of trading cycles of Pycia and Ünver

(2017), including the hierarchial exchange rules of Pápai (2000), are efficient and group

strategy-proof. Hence, we also have the following result.

Corollary 4. Let qc = 1 for each object c ∈ O and |O| ≥ |I|. Then, no trading cycles of

Pycia and Ünver (2017), hence, in particular, no hierarchial exchange rule of Pápai (2000), is

11A mechanism is population monotonic if, after an agent stops demanding an object, no one else becomes
worse off.

12By following the steps of the proof of Theorem 2, we can also straightforwardly show that no efficient
and group strategy-proof mechanism is size-wise dominated by BM .

13Although Pápai (2000) obtains the group strategy-proofness of TTC in a unit-copy object allocation
setting, her results easily imply it holding in the multi-copy case as follows. A mechanism ψ is non-bossy if,
for any problem P , agent i, and P ′i , ψi(P

′
i , P−i) = ψi(P ), then ψ(P ′i , P−i) = ψ(P ). Pápai (2000) shows that

TTC is non-bossy. It is immediate to see that TTC is non-bossy in the multi-copy object case as well. She
also obtains that non-bossiness and strategy-proofness is equivalent to group strategy-proofness (the proof
of this result does not rely on the unit-copy assumption). Hence, these, along with the strategy-proofness of
TTC, shows that TTC is group strategy-proof in the current multi-copy object assignment model.
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size-wise dominated by an individually rational, weakly population-monotonic, and strategy-

proof mechanism.

Any mechanism under which each agent always receives the same assignment and no agent

is left unassigned unless all the objects are exhausted is strategy-proof, weakly population-

monotonic, and that size-wise dominates TTC. Yet, it is not individually rational. Let

us consider a mechanism such that it always assigns as many agents as possible subject to

individual rationality and no unassigned agent can alter the outcome by not demanding any

object. This mechanism is individually rational, weakly population-monotonic, and size-

wise dominates TTC; yet it is not strategy-proof (see Footnote 8). We do not know whether

Theorem 2 holds without weak population-monotonicity, hence it remains to be an open

question.

Appendices

Appendix A

Deferred Acceptance Mechanism (DA)

Let us fix a priority ordering for the objects. Then, DA runs as follows.

Step 1. Each agent applies to his best acceptable object. Each object tentatively accepts

the highest priority applicants one by one up to its capacity and rejects the rest.

In general,

Step k. Each rejected agent applies to his next best acceptable object. Each object

tentatively accepts the highest priority agents among the tentatively accepted and currently

applying agents one by one up to its capacity and rejects the rest.

The algorithm terminates whenever every agent is either tentatively accepted or has

gotten rejection from all of his acceptable objects. The assignments in the terminal round

realize as the final DA outcome.
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Boston Mechanism (BM)

For a fixed priority ordering of the objects, BM works as follows.

Step 1. Each agent applies to his best acceptable object. Each object permanently

accepts the highest priority applicants one by one up to its capacity and rejects the rest.

In general,

Step k. Each rejected agent applies to his next best acceptable object. Each object

permanently accepts the highest priority applicants up to its remaining capacity and rejects

the rest.

The algorithm terminates whenever each agent is either permanently accepted or has

gotten rejection from all of his acceptable objects. The assignments in the terminal round

realize as the final BM outcome.

Top Trading Cycles Mechanism (TTC)

For a fixed priority profile of the objects, TTC runs as follows.

Step 1. Each agent points to his best acceptable object. Each object points to the

highest priority agent. As everything is finite, there exists a cycle. Assign the agents in

these cycles to the objects they are pointing to. The assigned agents leave the problem, and

each assigned object’s capacity is decreased by one.

In general,

Step k. Each agent points to his best acceptable object with a remaining capacity. Each

object points to the highest priority remaining agent. As everything is finite, there exists a

cycle. Assign the agents in these cycles to the objects they are pointing to. The assigned

agents leave the problem, and each assigned object’s capacity is decreased by one.

The algorithm terminates whenever each agent receives an object or all of his acceptable

objects are exhausted. The assignments by the end of the terminal step realize as the final

TTC outcome.
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Serial Dictatorship (SD)

For a fixed agent ordering, SD runs as follows.

Step 1. The first agent in the ordering chooses his best acceptable object. The chosen

object’s capacity is decreased by one.

In general,

Step k. The kth agent in the ordering chooses his remaining best acceptable object. The

chosen object’s capacity is decreased by one.

The algorithm terminates after the choice-turn of the last agent in the ordering. The

chosen objects are the final SD assignment of the agents.

Appendix B

Lemma 1. Let ψ be a non-wasteful mechanism. If, for any problem P and individually ratio-

nal mechanism φ, |ψ(P )| < |φ(P )|, then there exists an agent i such that ψi(P )Piφi(P )Pi∅.

Proof. Let ψ and φ be a non-wasteful and individually rational mechanisms, respectively.

Suppose |ψ(P )| < |φ(P )| for a problem P . Then, there exists an object c ∈ O such that

|ψc(P )| < |φc(P )| ≤ qc. Let i ∈ φc(P ) \ ψc(P ). As φ is individually rational, cPi∅. On the

other hand, the non-wastefulness of ψ and |ψc(P )| < qc imply that ψi(P )Pic. Therefore, we

have ψi(P )PicPi∅, where φi(P ) = c, which finishes the proof.

Lemma 2. Let ψ be a non-wasteful mechanism. For a problem P and an individually rational

mechanism φ, if |ψ(P )| = |φ(P )| and there exists no agent i such that ψi(P )Piφi(P )Pi∅, then

|ψc(P )| = |φc(P )| for every object c.

Proof. Let ψ and φ be a non-wasteful and individually rational mechanisms, respectively.

In a problem P , suppose that |ψ(P )| = |φ(P )| and there exists no agent i such that

ψi(P )Piφi(P )Pi∅.
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If there exists an object c such that |ψc(P )| > |φc(P )|, then, as |ψ(P )| = |φ(P )|, there

exists another object d such that |ψd(P )| < |φd(P )|. Hence, without loss of generality, assume

for a contradiction that |ψd(P )| < |φd(P )| for some object d. This implies that there exists

an agent i ∈ φd(P ) \ ψd(P ). From the individual rationality of φ, dPi∅. Because ψ is non-

wasteful and |ψd(P )| < qd, it implies that ψi(P )Pid. Hence, these show that ψi(P )PidPi∅,

where d = φi(P ), contradicting our starting supposition.

Proof of Theorem 1. Let ψ be a non-wasteful, truncation-invariant, and extension-responding

mechanism. Assume for a contradiction that an individually rational and strategy-proof

mechanism φ size-wise dominates ψ. Let P be a problem such that |ψ(P )| < |φ(P )|. We

prove the result in two steps.

Step 1. In this step, we construct a preference profile in which there exists no agent

who is assigned under both mechanisms’ outcomes while preferring his assignment under ψ

to that under φ.

As |ψ(P )| < |φ(P )|, from Lemma 1, there exists an agent i such that ψi(P )Piφi(P )Pi∅.

Let P ′i be the truncation of Pi from ψi(P ). Let us write P ′ = (P ′i , P−i). From the truncation-

invariance of ψ, we have ψ(P ) = ψ(P ′). On the other hand, due to the strategy-proofness

of φ, φi(P
′) = ∅.

Let us now consider problem P ′. If there exists no agent j such that ψj(P
′)P ′jφj(P

′)P ′j∅,

then move to Step 2. Otherwise, pick such an agent j. Because φi(P
′) = ∅, j 6= i. By

following the same arguments above, we let agent j truncate his preferences from ψj(P
′)

and write P ′j for this truncated preferences. If we write P ′′ = (P ′i , P
′
j , P−{i,j}), then by the

truncation-invariance of ψ, we have ψ(P ′′) = ψ(P ′) = ψ(P ). On the other hand, because of

the strategy-proofness of φ, φj(P
′′) = ∅

We now consider P ′′. If there exists no agent k such that ψk(P ′′)P ′′k φk(P ′′)P ′′k ∅, then

move to Step 2. Otherwise, we repeat the same arguments to such an agent k. Because

ψ(P ′′) = ψ(P ′) = ψ(P ), under ψ(P ′′), both i and j are assigned to their least preferred

acceptable objects with respect to P ′′i and P ′′j , respectively. Therefore, k ∈ I \ {i, j}. But

12



then, as there are finitely many agents, this case cannot hold all the time. Therefore, we

eventually come up with a preference profile P̃ such that there exists no agent i such that

ψi(P̃ )P̃iφi(P̃ )P̃i∅ and move to Step 2.

Step 2. From Lemma 1, we have either |ψ(P̃ )| > |φ(P̃ )| or |ψ(P̃ )| = |φ(P̃ )|. If the

former is the case, then we reach a contradiction, which finishes the proof. Let us consider

the other case of |ψ(P̃ )| = |φ(P̃ )|.

Let k be the last agent whose preferences is truncated above in obtaining P̃ . Then, we

have φk(P̃ ) = ∅ and ψk(P̃ ) 6= ∅. This, along with |ψ(P̃ )| = |φ(P̃ )|, implies that there exists

an agent i such that ψi(P̃ ) = ∅ and φi(P̃ ) 6= ∅. Moreover, |ψ(P̃ )| = |ψ(P )| < |φ(P )| implies

that there exists an object c such that |ψc(P̃ )| < qc. By the non-wastefulness of ψ, ∅P̃ic.

Let us now consider the object c extension of P̃i and write P̂i for it. Let P̂ = (P̂i, P̃−i).

As ψ is extension-responding, we have ψi(P̂ ) = c and ψj(P̂ ) = ψj(P̃ ) for any other agent

j ∈ I \ {i}. Hence, |ψ(P̂ )| = |ψ(P̃ )|+ 1. On the other hand, from the individual rationality

of φ, φi(P̃ )P̃i∅P̃ic. Therefore, due to the strategy-proofness of φ, φi(P̂ ) = φi(P̃ ).

As |ψ(P̂ )| = |ψ(P̃ )| + 1 and |ψ(P̃ )| = |φ(P̃ )|, if |φ(P̂ )| ≤ |φ(P̃ )|, then |ψ(P̂ )| > |φ(P̂ )|,

which yields a contradiction; hence finishing the proof. Suppose |φ(P̂ )| > |φ(P̃ )|. Without

loss of generality, we assume that there is no agent j such that ψj(P̂ )P̂jφj(P̂ )P̂j∅. This

supposition is legitimate as, otherwise, we can invoke Step 1 for P̂ . As, in each preference

truncation iteration within Step 1, we are to truncate a different agent’s preferences and

there are finitely many agents, this case cannot hold all the time.

As there is no agent j such that ψj(P̂ )P̂jφj(P̂ )P̂j∅, from Lemma 1, we have |ψ(P̂ )| ≥

|φ(P̂ )|. If it is strict, then we reach a contradiction, finishing the proof. Hence, suppose

|ψ(P̂ )| = |φ(P̂ )|.

As |φ(P̂ )| > |φ(P̃ )|, there exists an object c such that |φc(P̂ )| > |φc(P̃ )|. This in turn

implies that for some agent j, φj(P̂ ) = c and φj(P̃ ) 6= c. Note that as φi(P̂ ) = φi(P̃ ),

agent j is different than agent i. Moreover, from Lemma 2, we have |ψc′(P̃ )| = |φc′(P̃ )| for

every object c′ ∈ O. This, along with |φc(P̂ )| > |φc(P̃ )|, implies that |ψc(P̃ )| < qc. Hence,
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by the non-wastefulness of ψ, we have ψj(P̃ )R̃jc. Suppose it is strict. Then, as j 6= i, we

have P̃j = P̂j. As ψj(P̂ ) = ψj(P̃ ), we have ψj(P̂ )P̂jφj(P̂ )P̂j∅, contradicting our supposition

in Step 2. Otherwise, ψj(P̃ ) = c. By invoking Lemma 2, |ψc(P̃ )| = |φc(P̃ )|. Moreover,

φj(P̃ ) 6= c. These imply that there exists an agent h such that φh(P̃ ) = c and ψh(P̃ ) 6= c.

As |ψc(P̃ )| < qc and cP̃h∅ (by the individual rationality of φ), by the non-wastefulness of ψ,

ψh(P̃ )P̃hcP̃h∅, where φh(P̃ ) = c, contradicting our finding in Step 1, finishing the proof.

Proof of Theorem 2. Assume for a contradiction that ψ is an individually rational, weakly

population-monotonic, and strategy-proof mechanism that size-wise dominates an efficient

and group strategy-proof mechanism φ. Let P be a problem such that |ψ(P )| > |φ(P )|.

For a matching µ, let U(µ) = {i ∈ I : µi = ∅}, that is, the set of unassigned agents under

matching µ. As efficiency implies non-wastefulness, for any problem P and agent-object pair

(i, c) such that i ∈ U(φ(P )) and |φc(P )| < qc, we have ∅Pic. We do the proof in the following

two steps.

Step 1. As |ψ(P )| > |φ(P )|, there exists an agent i ∈ U(φ(P )) \ U(ψ(P )). From the

non-wastefulness of φ and our supposition that
∑

c∈O qc ≥ |I|, there exists an object c such

that |φc(P )| < qc and ∅Pic.

Let P ′i be the object c extension of Pi, and we write P ′ = (P ′i , P−i). We now claim that

φi(P
′) = c. If it is not, then by the strategy-proofness and the efficiency of φ, φi(P

′) =

φi(P ) = ∅. But then, by invoking group strategy-proofness of φ, φ(P ) = φ(P ′). Hence,

|φc(P
′)| < qc and cP ′i∅, contradicting the non-wastefulness of φ. Therefore, φi(P

′) = c. On

the other hand, by the individual rationality of ψ, ψi(P )Pi∅Pic (recall that i ∈ U(φ(P )) \

U(ψ(P ))). As ψ is strategy-proof, we have ψi(P
′) = ψi(P ). Therefore, ψi(P

′)P ′iφi(P
′)P ′i∅.

Let us now consider P ′. If U(φ(P ′)) \U(ψ(P ′)) = ∅, then we move to Step 2. Otherwise,

We invoke Step 1 for P ′. That is, let k ∈ U(φ(P ′)) \ U(ψ(P ′)). Note that as φi(P
′) 6= ∅,

k 6= i. As
∑

c∈O qc ≥ |I|, there exists an object c′ such that |φc′(P
′)| < qc′ and ∅P ′kc′ (note

that P ′k = Pk). Let P ′′k be the object c′ extension of P ′k, and we write P ′′ = (P ′i , P
′′
k , P−{i,k}).

Then, by the same arguments above, we have φk(P ′′) = c′ and ψk(P ′′)P ′′k φk(P ′′)P ′′k ∅.
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We next consider P ′′. If U(φ(P ′′))\U(ψ(P ′′)) = ∅, then we move to Step 2. Otherwise, we

repeat Step 1 for P ′′. In each iteration of Step 1, we pick someone who is unassigned under

φ yet assigned under ψ and extend his preferences by adding an object to his acceptable

set. However, as both the agents and objects are finite, this case cannot hold all the time.

Therefore, we eventually come up with a preference profile P̃ such that U(φ(P̃ ))\U(ψ(P̃ )) =

∅. Moreover, for the last agent whose preferences is extended in obtaining P̃ , say agent `,

we have ψ`(P̃ )P̃`φ`(P̃ )P̃`∅.

Step 2. As U(φ(P̃ )) \ U(ψ(P̃ )) = ∅ and |ψ(P̃ )| ≥ |φ(P̃ )|, we have U(φ(P̃ )) = U(ψ(P̃ )).

Let us now construct a new problem P̂ as follows. For any agent i /∈ U(φ(P̃ )), P̂i = P̃i;

and for any j ∈ U(φ(P̃ )), ∅P̂jc for every c ∈ O. By the efficiency and the group strategy-

proofness of φ, φ(P̂ ) = φ(P̃ ). On the other hand, by the weak population-monotonicity of

ψ, ψi(P̂ )R̃iψi(P̃ )P̃i∅ for any i /∈ U(ψ(P̃ )), and by the individual rationality of ψ, ψj(P̂ ) = ∅

for any j ∈ U(ψ(P̃ )).

In Step 1, we find that ψ`(P̃ )P̃`φ`(P̃ )P̃`∅. From above, ψ`(P̂ )R̃`ψ`(P̃ ) and φ`(P̂ ) = φ`(P̃ ).

Hence, ψ`(P̂ )P̂`φ`(P̂ ) (note that by construction, P̃` = P̂`). As φ is efficient, it implies that

there exists an agent i such that φi(P̂ )P̂iψi(P̂ ). Moreover, because U(φ(P̂ )) = U(ψ(P̂ )) and

ψ is individually rational, ψi(P̂ )P̂i∅.

Let P̄i be the truncation of P̂i from φi(P̂ ). Let P̄ = (P̄i, P̂−i). By the group strategy-

proofness of φ, we have φ(P̄ ) = φ(P̂ ). By the strategy-proofness of ψ, ψi(P̄ ) = ∅. This,

along with the individual rationality of ψ, implies that |ψ(P̄ )| < |ψ(P̂ )| = |φ(P̂ )| = |φ(P̄ )|,

contradicting our starting supposition that ψ size-wise dominates φ.
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