
The job shop scheduling prob-

lem with convex costs

Reinhard Bürgy a

Kerem Bülbül b

a GERAD & Département de Mathématiques et de Génie
Industriel, École Polytechnique de Montréal, Montréal
(Québec), Canada

b Industrial Engineering, Faculty of Engineering and
Natural Sciences, Sabanci University, Tuzla İstanbul,
Turkey

reinhard.burgy@gerad.ca

bulbul@sabanciuniv.edu



ii Manuscript

Abstract: The job shop scheduling literature has been dominated by a focus on regular objective functions –
in particular the makespan – in its half a century long history. The last twenty years have encountered a spike
of interest in other objectives, such as the total weighted tardiness, but research on non-regular objective
functions has always been isolated and scattered. Motivated by this observation, we present a tabu search
heuristic for a large class of job shop scheduling problems, where the objective is non-regular in general and
minimizes a sum of separable convex cost functions attached to the operation start times and the differences
between the start times of arbitrary pairs of operations. This problem definition generalizes a number of
problems considered earlier in the literature. A particular notion of “critical paths” derived from the so-called
timing problem is at the core of the proposed neighborhood definition exploited successfully in a tabu search
algorithm. The computational results attest to the promise of our work.

Keywords: scheduling, job shop, non-regular objective, convex costs, tabu search

Acknowledgments: Part of the work of the first author was done during a stay at GERAD as a postdoctoral
fellow at Polytechnique Montréal. R. Bürgy gratefully acknowledges the support of the Swiss National Science
Foundation Grant P2FRP2 161720.



Manuscript 1

1 Introduction

The prevalence of custom manufacturing environments in a process layout is the key driver behind a vast

literature on job shop scheduling problems. In this setting, a set of orders or jobs – each with a specific and

potentially different recipe or route – is required to be processed by a set of resources with unary capacities.
Each job is composed of a set of operations that need to be executed in a fixed given order, and each operation

is to be performed on a specific resource for a prespecified duration of time. The main operational challenge

facing a dispatcher is to determine a processing sequence for each of the resources given the routes and the

processing requirements of the jobs with the perspective of optimizing an objective function of interest. In
this regard, starting with the inception of the job shop scheduling problem in early 1960s the emphasis has

long been on minimizing the completion time of the final operation, which tends to maximize throughput by

minimizing the idle time in the schedule. In the common three field notation of Graham et al. (1979), this
problem is described as Jm//Cmax, where m and Cmax stand for the number of resources and the completion

time of the final operation – also referred to as the makespan, respectively.

The problem Jm//Cmax proved to be an archetype of hard combinatorial optimization problems and also
served as a testbed for many algorithmic advances in the field (Jain and Meeran, 1999; Zobolas et al., 2008).

Interestingly, this high research activity around Jm//Cmax did not extend to other important objectives –

in particular to those involving due dates until relatively recently. Custom manufacturing in job shops is
by definition a make-to-order environment, and observing the job due dates is a significant dimension of

customer satisfaction and service level in this setting. However, research with due date related objectives in

the job shop environment only commenced in earnest with the two seminal papers by Singer and Pinedo on

the job shop total weighted tardiness problem Jm//
∑

j wjTj (Singer and Pinedo, 1998; Pinedo and Singer,
1999), where wj and Tj denote the tardiness penalty per unit time and the amount of tardiness for job j,

respectively. Observe that most of the subsequent influential research on Jm//
∑

j wjTj appeared just in the

last decade (Kreipl, 2000; De Bontridder, 2005; Essafi et al., 2008; Bülbül, 2011; Mati et al., 2011; González
et al., 2012; Bierwirth and Kuhpfahl, 2017). Still, the total weighted tardiness objective

∑

j wjTj is only

a function of the job completion times and falls short of capturing increasingly important considerations in

lean, efficient supply chains (Bülbül and Kaminsky, 2013), such as the intermediate inventory holding costs
which result from idle times between consecutive operations of the same job. Not focusing on the operation

completion times and the value added through the processing stages – as is the case with Jm//Cmax and

Jm//
∑

j wjTj – may lead to substantially increased inventory holding costs. In-depth discussions around

this subject are provided in Bülbül et al. (2004) and Bülbül and Kaminsky (2013). Another compelling reason
to incorporate completion times, due dates, and cost functions at the level of individual operations into the

problem definition is the so-called rescheduling problem (Avci and Storer, 2004; Bülbül and Kaminsky, 2013).

A scheduling problem must frequently be solved starting from the partially realized schedule of a previous
period or following a disruption, e.g., a machine breakdown. In such cases, resources and materials are already

committed to certain operations at specific times, and the new schedule would not be allowed to move around

such operations freely. These concerns can be reflected in the current scheduling problem by imposing the
previously scheduled operation completion times as operation due dates and penalizing deviations from these.

From an application point of view, incorporating general convex cost functions is highly valuable as it

allows for the representation of a rich set of performance measures and process features in a common frame-
work. For instance, some production settings call for penalizing larger due date deviations disproportionately,

resulting in superlinear earliness and tardiness costs. Employing such non-linear cost measures is for instance

relevant in order to emphasize the essentialness of meeting a given due date (Cheng and Jiang, 1998) (al-

most) exactly. Perishability of the final product is another consideration giving rise to non-linearity (Amorim
et al., 2013). This feature is present in various industries including the processed food and beverages sectors

(Farahani et al., 2012), chemical and pharmaceutical industries (Neumann et al., 2002; Vidal et al., 2010),

and blood banks (Prastacos, 1984). Perishability can also sometimes apply to intermediate goods. In the
yogurt industry, for example, raw milk must be processed into its final products within strict time limits as

the main ingredients are highly perishable at all production stages (Amorim et al., 2013). The management

of perishability presents an important challenge in production scheduling, and it is usually modeled with hard
maximum storage time constraints. In contrast, our scheduling model enables a more fine-grained control



2 Manuscript

by charging storage costs that are convex in the storage time. This “soft” modeling approach is also related

to another common modeling construct captured by our framework – soft precedence constraints. Although

precedence constraints are usually specified as hard restrictions in scheduling models, some are actually “soft”
in practice, i.e., they may be violated at some cost, particularly if such violations give rise to a better overall

schedule. Applications of soft precedence constraints can be found in various settings including the schedul-

ing of construction work (Jaskowski and Sobotka, 2012; Peng and Ouyang, 2012), sequencing in multi-agent
(computer) systems (Cheng et al., 1997; Van Hoeve et al., 2007), and the planning of vessel fleet schedules

(Fagerholt, 2004).

Motivated by the considerations above, we present a scheduling model that captures a large class of

job shop scheduling problems. The objective is non-regular in general and minimizes a sum of separable

convex cost functions attached to the operation start times and the differences between the start times of

arbitrary pairs of operations. This problem definition – described as Jm||conv in the scheduling notation
and referred to as JS–CONV in the sequel – generalizes a number of problems considered earlier in the

literature both with regular and non-regular objectives. These include the strongly NP−hard job shop

makespan, total weighted completion time, and total weighted tardiness problems, as well as the job shop
just-in-time scheduling problem (with intermediate inventory holding costs), and render JS–CONV strongly

NP−hard. Following the presentation of our precise mathematical model in Section 2, we will give concrete

examples of how our problem subsumes many frequently studied classical job shop scheduling problems in
the literature.

The most common type of non-regular scheduling objective tackled in the job shop literature is minimizing
the (weighted) sum of earliness and tardiness costs, at times also incorporating the intermediate inventory

holding costs by charging penalties proportionally to the waiting times of the operations. Special cases and

variants of this general linear objective have been studied in the literature. In particular, Beck and Refalo

(2002, 2003); Chen and Luh (2003) take on the basic form of this objective function by restricting their
attention to minimizing the total weighted earliness and tardiness. Baptiste et al. (2008) consider a more

general version of this problem by assigning costs to the deviations from the due dates defined at the level of

the individual operations. Ohta and Nakatanieng (2006) penalize the waiting times between the successive
operations of a job and the earliness amounts, but do not allow for tardy jobs in their model. All three cost

components appear in Sadeh (1996) and Brandimarte and Maiocco (1999). In the earlier work, each unit

of time from the start time of an operation until the job completion time – or the due date if the job is
early – accumulates cost in a linear fashion. However, in the later work, only the holding time of a job –

as measured from the start time of its initial operation until its delivery time – incurs a cost at a constant

rate. In both studies, earliness is captured implicitly within the holding cost term. In this stream of research

with linear earliness, tardiness, and holding costs, Avci and Storer (2004) and Bülbül and Kaminsky (2013)
present the most general problem definitions encompassing all of the problems discussed above. In both

works, the fundamental requirement is that the timing problem – explained further down in this section –

boils down to a linear program (LP) even though both sets of authors select a particular general version for
their exposition of the material.

An early contribution to the job shop scheduling literature with a non-regular and non-linear objective
is due to Kaskavelis and Caramanis (1998), who include weighted squared tardiness costs in addition to the

linear holding costs between successive operations of jobs. The next three studies require a special emphasis

because together with this paper they constitute the body of literature on generic job shop scheduling prob-

lem definitions, allowing for both non-regular and non-linear objectives and various processing features. In
particular, Grimes and Hebrard (2015) recently considered a generic disjunctive machine scheduling prob-

lem within a constraint programming framework compatible with both regular and non-regular scheduling

objectives, and problem characteristics such as maximal time lags between successive operations of the same
job and sequence-dependent setup times. In Gélinas and Soumis (2005), each operation completion time is

associated with a piecewise linear – and not necessarily monotone – cost function, and the overall objective

is flexible enough to combine these functions in a min-max or min-sum form. The additional processing
constraints that are taken into account are, however, limited to release times and deadlines. The general

job shop scheduling model studied by Wennink (1995) in his PhD thesis is the closest existing model to

ours. Wennink’s model not only captures complicated processing features, such as generic time lags between



Manuscript 3

two operations, sequence-dependent setup times, and multiple simultaneous machine assignments for an op-

eration, but it also makes it possible to specify a generic convex piecewise-linear objective function. This

objective function is very similar to that we address because we ask for integer start times, and our convex
objective function can therefore be replaced by a convex piecewise-linear objective with integer breakpoints

– see Section 3 for more details. The punch line of this discussion is that JS–CONV subsumes all job shop

scheduling problem definitions pointed out up to this point – with the exception of Grimes and Hebrard
(2015) and Gélinas and Soumis (2005) because these studies do not require the convexity of the objective,

and Wennink (1995) who incorporates additional processing characteristics.

The theoretically and practically challenging nature of job shop scheduling problems has created a very
rich literature on local search methods. We mainly restrict our attention to these in an effort to position

our work with respect to the literature because from a methodological viewpoint our study falls into the

realm of local search as well. In the domain of regular objectives, we only provide pointers to some of the
more frequently cited influential papers, and then proceed to describe the research landscape in job shop

scheduling with non-regular objectives in more detail.

Virtually all local search methods in the job shop environment benefit from decomposing the decisions
into two phases. The first task at hand is to determine an operation processing sequence for all machines

involved. In the second phase, the objective is to compute the optimal operation start/completion times for

these fixed processing sequences. It turns out that the second phase – referred to as the timing problem – is in

general a simple optimization problem solvable in polynomial time while the combinatorial explosion of the
sequencing decisions is the main culprit in the difficulty of job shop scheduling. For regular objectives, the

timing problem boils down to scheduling all operations as early as possible without violating the operation

precedences within the jobs and the fixed operation processing sequences, and is modeled and solved as a
longest path problem. The longest paths – also called critical paths – for the given fixed processing sequences

are then leveraged to define the neighborhood of the current solution in a local search method. This idea has

been successfully exploited for Jm//Cmax (Van Laarhoven et al., 1992; Nowicki and Smutnicki, 1996; Balas
and Vazacopoulos, 1998; Nowicki and Smutnicki, 2005; Peng et al., 2015) and Jm//

∑

j wjTj (Kreipl, 2000;

De Bontridder, 2005; Essafi et al., 2008; Bülbül, 2011; Kuhpfahl and Bierwirth, 2016) by several authors.

The interested reader is referred to Vaessens et al. (1996) and Kuhpfahl and Bierwirth (2016) for an overview

of the various neighborhood operators applied to Jm//Cmax and Jm//
∑

j wjTj . The work of De Bontridder
(2005) must receive a special mention here because similar to our work this author relies on a network flow

model of the timing problem for an operation swap-based neighborhood definition embedded into a tabu

search algorithm. The job shop model in focus incorporates generalized precedence relationships among
operations and allows for positive end-to-start time lags, but is limited to minimizing the total weighted

tardiness.

In the domain of regular scheduling objectives, the papers by Mati et al. (2011) and Bürgy (2017) deserve
special credit for attacking job shop scheduling problems with a general regular objective. In particular,

Mati et al. (2011) demonstrate that the most basic neighborhood of reversing a single arc on a critical path

enhanced with a novel and fast move evaluation procedure gives rise to a local search method which performs
on a par with custom-made algorithms for five common regular objectives. Bürgy (2017), on the other hand,

addresses complex process attributes on top of a general regular objective. The author proposes a tabu

search employing a neighborhood constructed by extracting a job and re-inserting it in a new position, which
in some sense corresponds to generalizing the reversal of critical arcs to complex job shops. The method

is tested with five different regular objectives in three standard scheduling environments: the conventional

job shop, the job shop with sequence-dependent setup times, and the blocking job shop. The numerical

results show that the proposed approach performs well in all tested cases. Both of these papers indicate that
there is promise in pursuing algorithms applicable to a broad class of job shop scheduling problems without

compromising from solution quality and time. We follow this lead in this paper.

As evident from the discussion up to this point, there is a plethora of research related to local search
methods for job shop scheduling with regular objectives. However, there are only a few relevant contributions

with non-regular specific or more general objectives. From a technical perspective, the availability of relatively

efficient solution techniques for the timing problem is still the driving force behind this stream of work. Beck



4 Manuscript

and Refalo (2002) design a tabu search algorithm, where a neighboring solution is obtained by reversing

the execution order of two adjacent critical operations. The interesting component of this research is the

way operation criticality is detected. The authors resort to constraint programming tools to this end. The
numerical results are not really favorable in comparison to exact methods. The basic blueprint of the next

set of three studies (Brandimarte and Maiocco, 1999; Avci and Storer, 2004; Wennink, 1995) is identical

– the neighborhood definition is based on the timing problem formulated and solved as a maximum cost
network flow problem, while the job shop environments and the associated objectives under consideration

are quite different as detailed earlier in this section. Brandimarte and Maiocco (1999) apply a pure local

search algorithm by inverting an arc carrying a positive flow in the network flow solution in each iteration.
This is just a generalization of reversing a critical arc in the longest path calculations in the case of regular

objectives. Avci and Storer (2004) take a similar path and analyze further properties of the maximum

cost network solution in order to develop more compact adjacent pairwise interchange neighborhoods that

are applicable to a broad class of scheduling problems with both regular and non-regular linear objectives.
Recall that Wennink (1995) lays out a more general modeling framework with a generic convex piecewise-

linear objective function. He demonstrates that the timing problem does still boil down to a maximum

cost network flow problem and develops a rich set of theoretical properties based on the timing solution. An
insertion-based neighborhood is examined in addition to the adjacent pairwise interchange neighborhood, and

both are embedded into a tabu search. However, the computational study remains restricted to the makespan

objective. The reason for this choice is rooted in the author’s statement: “Much research, however, has still
to be performed before such methods can be made time efficient... Furthermore, although a selection can be

evaluated in polynomial time by solving a maximum cost flow problem, the time requirement is still so high

that a straightforward implementation would spend too much time in evaluating each of the many selections

that must be considered.” In fact, the concern that solving an LP or a network flow formulation of the
timing problem is far from warranting a fast exploration of a sufficient number of solutions in the feasible

region resulting in a poor final solution quality is a recurring theme in these papers. A further complicating

factor in the case of piecewise-linear convex objectives is that a straightforward modeling approach requires
an additional arc for each linear segment in the objective function – see (Wennink, 1995, p.73) and (Ahuja

et al., 2003, Section 4). This would blow up the network size and render the solution time of the timing

problem totally unacceptable within an iterative algorithm. The development in Section 3 establishes that
the timing problem with convex cost functions can still be solved efficiently without an extended network,

and this is a major contribution of our paper as it paves the way for building local search algorithms for job

shop scheduling problems with more general processing features and objectives.

An overview of the alternate approaches applied to job shop scheduling problems with non-regular ob-

jectives completes the review of the relevant literature. We are only aware of three exact methods in this

domain. The recent work of Grimes and Hebrard (2015) is a pure constraint programming algorithm, which

combines a number of generic search techniques. While the basic approach is generic, some problem-specific
knowledge is incorporated to enhance the computational effectiveness for certain problem types. The numer-

ical tests on some standard job shop problems, including the job shop with linear earliness/tardiness costs,

demonstrate a performance competitive with custom state-of-the-art methods on small to medium-sized in-
stances; however, the authors concede that scalability to larger instances may be an issue. Next is a hybrid

exact algorithm by Beck and Refalo (2003). At any node of the search tree, a linear timing problem yields

the optimal operation start times by ignoring any resource restrictions. If resource conflicts ensue, the search
resorts to inference methods based on constraint programming for resolution and branching decisions. The

results are fairly successful on instances with up to 200 operations if the due dates are not tight. In this

case, relaxations high up the search tree are easily extended to full feasible solutions. The branch-and-price

algorithm of Gélinas and Soumis (2005) completes the set of exact methods. The underlying pillar of this
approach is a Dantzig-Wolfe re-formulation of the job shop scheduling problem under consideration, in which

the precedence constraints are relaxed – i.e., kept in the master problem – and a pricing subproblem is solved

for each machine. The advantage this method enjoys is that it attains optimal solutions for instances with up
to 10 machines and 500 operations of a just-in-time scheduling problem similar to that studied in Baptiste

et al. (2008) in one hour of computation time as long as the number of operations per job is kept small. It

is also worth underlining that both Grimes and Hebrard (2015) and Gélinas and Soumis (2005) apply their



Manuscript 5

solution techniques to linear problems only despite their more general modeling frameworks – see earlier in

this section.

Non-regular objectives tackled through mathematical programming-based approaches are rare in the job

shop scheduling literature. Other than the study by Gélinas and Soumis (2005), only Lagrangian relaxation-

based heuristics (e.g., Kaskavelis and Caramanis, 1998; Chen and Luh, 2003; Baptiste et al., 2008) have

appeared so far. An absolute solution quality assessment of these algorithms against the state-of-the-art is
not really possible because the authors either compare alternate Lagrangian methods or employ dispatch

rules for benchmarking purposes. One notable exception is the presentation of the gaps between the upper

bounds obtained from a primal heuristic and the lower bounds in Baptiste et al. (2008). In this case, the
gaps are quite large for most of the instances included, and overall, these studies offer no compelling evidence

that their methods would be competitive with local search algorithms.

The final popular genre of algorithms in job shop scheduling is based on the shifting bottleneck paradigm
– a special form of machine decomposition originally proposed for Jm//Cmax (Adams et al., 1988). In job

shop scheduling with non-regular objectives, the studies by Ohta and Nakatanieng (2006) and Bülbül and

Kaminsky (2013) belong to this group. While the earlier shifting bottleneck algorithm is only focused on
the specific problem at hand, Bülbül and Kaminsky (2013) leverage the dual information retrieved from the

timing problem formulated and solved as an LP in a novel way to construct the machine subproblems. In

computational testing, the authors demonstrate the value of the proposed approach with respect to alternate

methods on several problems with intermediate holding costs. In Section 5.2, we demonstrate that our new
local search for JS–CONV outperforms the shifting bottleneck heuristic of Bülbül and Kaminsky (2013).

We conclude this section by a summary of our contributions. By far the most important attribute of our
work is its generality – both from the modeling and solution method perspectives, and this is not a point to be

taken lightly. The proliferation of quite specific problem definitions and associated tailor-made, sophisticated,

and highly parametric (meta-)heuristics based solution approaches, which do not easily translate or extend to

other problems, is a significant shortcoming of the scheduling literature in general. See Bülbül and Kaminsky
(2013) for a more in-depth discussion on the issue. Thus, our work joins a growing but still a small group of

job shop scheduling studies with an emphasis on generality (Wennink, 1995; Gélinas and Soumis, 2005; Mati

et al., 2011; Bülbül and Kaminsky, 2013; Grimes and Hebrard, 2015; Bürgy, 2017). Our numerical results on
two different types of problems support our vision, and the extensive computational study on a just-in-time

job shop scheduling problem with a non-linear objective in Section 5.3 is the first of its kind – Kaskavelis and

Caramanis (1998) report results from just a few instances. Finally, we dispel Wennink’s concerns and show
that the timing problem with convex costs is amenable to quick solution times so that it may be embedded

successfully into a meta-heuristic algorithm, paving the way for further research.

The paper is organized as follows. The next section formally describes JS–CONV and introduces
a classical disjunctive graph formulation, which exposes the two-phase decomposable nature of job shop

scheduling with the timing and sequencing components. The timing problem associated with JS–CONV

is analyzed in Section 3, and an exact network flow-based solution approach is discussed. The solution

of the timing problem is then leveraged in Section 4 to devise a tabu search for JS–CONV applied to
two non-regular job shop scheduling problems – one with a linear objective and another with a non-linear

objective. The value of the proposed approach is supported by the numerical results presented and discussed

in Section 5. Some content is relegated to the appendix, which is provided as an online supplement.

2 The job shop scheduling problem with convex costs

In this section, we formally describe JS–CONV by introducing the necessary notation and then provide

a disjunctive mathematical programming formulation and an associated disjunctive graph representation of

the problem.

Consider a job shop with a set of m machines denoted by M and a set of operations I to be performed on

these machines. All machines are available continuously from time zero onward, and a machine can execute

no more than one operation at a time. Each operation i ∈ I needs a specific machine, say M(i) ∈ M, for



6 Manuscript

its non-preemptive execution of duration pi > 0, where pi is an integer. The set of operations is partitioned

into a set of jobs J of cardinality n such that each operation i ∈ I belongs to exactly one job J(i) = K.

Each job K ∈ J is represented as an ordered set of operations {K1,K2, . . . ,K|K|}, where Kr denotes the
r-th operation of job K. The order of the operations in K specifies the sequence in which these operations

must be processed, and two operations i, j ∈ K are termed as consecutive if i = Kr and j = Kr+1 for some

r, 1 ≤ r < |K|.

A vector ααα = (αi ∈ Z
∗ : i ∈ I) of non-negative integers, where αi stands for the start time of operation

i ∈ I, specifies a schedule. The integrality of the processing times and the operation start times can be
regarded as a precision constraint reflecting the smallest time unit in the scheduling process. A schedule ααα is

feasible if the operations of each job are processed in the given required sequence, and each machine executes

at most one operation at any point in time. For any pair of distinct operations (i, j) ∈ I × I, we allow to

charge a non-negative cost of fij(δij) against the difference δij = αj − αi of the start times of operations
i and j, where fij : R → R≥0 is a convex function. This applies to a subset Q ⊆ I × I of the pairs of

operations. Similarly, an operation i ∈ P ⊆ I incurs a non-negative cost of bi(αi) if it starts processing

at time αi, where bi : R≥0 → R≥0 is convex. The total cost c(ααα) of the schedule ααα is then calculated as
c(ααα) =

∑

(i,j)∈Q fij(δij) +
∑

i∈P bi(αi).

Some remarks on the functions f and b are in order. First, we assume that they can efficiently be evaluated
in O(1) time. Second, one could define problems where the total cost decreases as the start times of some

operations approach infinity. We cannot handle this in our framework. In order to rule out this case, we

assume that all functions f and b are bounded from below. Specifically, for all (i, j) ∈ Q, there exists a

finite value δmin
ij ∈ R such that fij(δij) ≥ fij(δ

min
ij ) for all δij ∈ R, and for all i ∈ P , there exists a finite

value αmin
i ∈ R≥0 such that bi(αi) ≥ bi(α

min
i ) for all αi ∈ R≥0. Third, without loss of generality, we assume

that δmin
ij is non-negative. If δmin

ij < 0, we can specify the same cost structure using the start time difference

between j and i; that is, by introducing a function fji instead of fij .

The problem JS–CONV asks to find a feasible schedule ααα with the minimum cost c(ααα) and can be

formulated as the following disjunctive programming problem:

minimize
∑

(i,j)∈Q

fij(δij) +
∑

i∈P

bi(αi) (1a)

subject to:

αj − αi ≥ pi for all i, j ∈ I consecutive in some job, (1b)

αj − αi ≥ pi or αi − αj ≥ pj for all i, j ∈ I with M(i) = M(j), J(i) 6= J(j), (1c)

αj − αi − δij = 0 for all (i, j) ∈ Q, (1d)

αi ∈ Z
∗ for all i ∈ I. (1e)

Any feasible solution ααα of (1) specifies a set of non-negative integer start times αi for all operations i ∈ I
by (1e). Constraints (1b) ensure that the precedence relationships within a job are satisfied, and constraints
(1c) state that any pair of operations sharing the same machine must not be executed in parallel. This is

already valid for each pair of operations from the same job by (1b). Hence, we add a constraint of type

(1c) only if J(i) 6= J(j). Finally, together with constraints (1d), which relate the auxiliary variables δδδ to the
primary variables ααα, (1a) specifies the objective.

The generic definitions of the sets P and Q as well as the functions f and b render the formulation (1)
flexible enough to accommodate quite different problem settings. In particular, JS–CONV subsumes many

existing and frequently studied job shop scheduling problems. For instance, setting Q = ∅, P = {i ∈ I | i =

K|K| for some K ∈ J } and bi(αi) = max
(

0, (αi − (dK − pi))c
tardy
K

)

for i ∈ P , where K = J(i) and ctardyK

is the unit tardiness cost for job K, captures Jm//
∑

j wjTj . The job shop total weighted completion time

problem is obtained by simply specifying all due dates as zero. To model Jm//Cmax, we can add a common
dummy terminal operation τ to all jobsK ∈ J with pτ = 0, and then defineQ = ∅, P = {τ}, and bτ (ατ ) = ατ .

Another existing example that fits into our framework is the job shop just-in-time scheduling problem with

intermediate inventory holding costs (Bülbül and Kaminsky, 2013). This is one of the selected problems for



Manuscript 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t
M1

M2

M3

7 1 9

6 4 2 10

8 5 3

(1) K

(0) L

(1) N

(14) O

Figure 1: A feasible solution of the example with a total cost of 16. (top) Gantt chart of the solution. (bottom) The rectangles
represent storage times / earliness values (filled) and tardiness amounts (hatched). A black line indicates the time period up to
the due date of the associated job, and the total cost for each job is indicated on the left in brackets.

0

2

4

6

8

10

pi δij
= αj − αi

storage

fij

0

2

4

6

8

10

dJ − pi αi

bi

earliness tardiness

Figure 2: (left) The storage cost function fij(δij) = max(δij − pi, 0) for some consecutive operations i and j in a job. By
precedence constraints (1b), the values in the gray shaded area are not attained in any feasible solution. (right) Linear earliness
and squared tardiness cost function for a job J , where i = J|J| is its last operation.

demonstrating the performance of our solution approach in our numerical study, and its mapping to JS–

CONV is detailed at the start of Section 5.1. In addition to these common problem types, other interesting
considerations can also be reflected in JS–CONV. To illustrate, recall that in most traditional scheduling

models the only mechanism of prioritizing jobs is through objective function weights. In JS–CONV, we

can additionally incorporate (i, j) into Q, where i = K|K| and j = L|L|, and define an appropriate convex

function fij(δij) to penalize the difference αj −αi. This is a more explicit way of specifying a “soft” priority
for completing job L before job K. In another application, assume that an intermediate product is perishable

between operations i and j, and waiting times between i and j are increasingly unacceptable. JS–CONV can

cope with this concern by imposing an appropriate convex cost function fij(δij), where (i, j) ∈ Q. Generally
speaking, JS–CONV can accommodate soft no-wait or maximum time lag constraints between pairs of

operations in Q by a clever selection of the functions f .

We end this section by introducing a small illustrative example to be used in the remainder of the paper.
The example consists of three machines M = {M1,M2,M3}, ten operations I = {1, . . . , 10}, and four jobs

K = {1, 2, 3}, L = {4, 5}, N = {6, 7}, and O = {8, 9, 10}. The processing data can directly be read in the

feasible solution depicted in the Gantt chart of Figure 1. For example, operation 2 is executed on machine
M2 and has a duration of 2 time units. Each job has a due date: dK = 12, dL = 7, dN = 5, and dO = 10.

We consider a convex just-in-time objective and penalize storage, earliness, and tardiness. For all jobs, the

storage and earliness costs are one per time unit and we add squared tardiness costs. Specifically, for all

consecutive operations i and j in a job, define fij(δij) = max(δij − pi, 0) (see Figure 2, left), and for the
last operation i = J|J| of each job J ∈ J , let bi(αi) = max

{

(dJ − pi)− αi, (αi − (dJ − pi))
2
}

(see Figure 2,

right). Note that if αi = dJ − pi, then job J finishes just in time and no earliness and tardiness costs arise.



8 Manuscript

1

2

3

4

5

6

7

8

9

10

e1

e1

e2

e2

e3

e3

e4

e4
e5
e5

e6
e6

e7

e7

e8
e8

e9

e9

e10

e10

e11
e11

e12

e12

M1

M2

M3

Figure 3: The disjunctive graph G of the illustrative example. The arc lengths are omitted.

2.1 Problem formulation on a disjunctive graph

The disjunctive formulation (1) can be mapped to a so-called disjunctive graph representation of the problem.

Initially proposed by Roy and Sussmann (1964), this representation has been central to countless local search
(and sometimes exact) approaches developed for job shop scheduling problems – we will follow suit in the

next sections. In the particular disjunctive graph G = (I, A,E, E , d) representation employed in this paper, I
is the set of nodes, A is the set of conjunctive arcs, E is the set of disjunctive arcs, E is a family of disjunctive

arc pairs representing the disjunctive structure of the problem, and d is an arc length vector. Specifically,
graph G is built as described next.

Each operation i ∈ I is represented by a node, and we identify a node with the operation it represents. For

all consecutive operations i and j in a job, a so-called conjunctive arc (i, j) of length dij = pi is incorporated

into the set A. These arcs capture the precedence relationships between the operations of the same job
expressed in (1b). For any two operations belonging to two distinct jobs and to be performed on the same

machine, two disjunctive arcs are included in E: an arc (i, j) with length dij = pi and an arc (j, i) in the

opposite direction with length dji = pj . This pair of arcs {(i, j), (j, i)} is added to family E and reflects the
corresponding machine capacity constraint in (1c). We sometimes denote a generic pair of disjunctive arcs

by D = {e, e} and refer to e as the mate of e. Figure 3 provides the disjunctive graph representation of our

illustrative example.

Any feasible solution of (1) describes a fixed operation processing sequence for all machines involved.
Intuitively, deciding on the operation processing sequences amounts to choosing exactly one of each pair

of disjunctive constraints in (1c) to include in the formulation while excluding the other one. Given the

correspondence of (1) to the disjunctive graph representation, choosing disjunctive constraints is generalized
and formalized via the notion of “selections” of disjunctive arcs in G and helps us characterize and capture

solutions of JS–CONV.

Definition 1 Any subset of disjunctive arcs S ⊆ E is called a selection. A selection S is acyclic if its

associated graph G(S) = (I, A∪ S, d) contains no cycle, and is cyclic otherwise. A selection S is complete if

S ∩D 6= ∅ for all D ∈ E.

Given any selection S ⊆ E, the solution space of the feasible start times is

Ω(S) =
{

ααα ∈ Z
∗|I| : αj − αi ≥ dij for all (i, j) ∈ A ∪ S

}

.

The solution space Ω(S) is empty if and only if S is cyclic. If S induces a cycle C in G(S), then summing

over all constraints αj − αi ≥ dij = pi for (i, j) ∈ C results in the contradiction 0 ≥
∑

(i,j)∈C pi > 0 and

establishes that Ω(S) = ∅. Otherwise, we can always find a set of feasible integer start times. For instance,
in order to compute an earliest start time schedule a fictive initial node σ and an arc of length 0 from σ to

each node i ∈ I is introduced into G(S). For each operation i ∈ I, its earliest start time αi is then the length

of a longest path from σ to i.



Manuscript 9

A feasible schedule of JS–CONV requires that we schedule all operations by removing all sequencing

conflicts between the operations on the same machine – see (1c). Consequently, a selection S is called feasible

if S is complete and acyclic. Observe that a feasible selection must pick at least one disjunctive arc from
each pair of arcs D in E by the definition of completeness, and selecting both leads to a cycle. Therefore, in

any feasible selection S, exactly one arc is present from every D ∈ E – as expected. The solution depicted

in Figure 1 corresponds to the feasible selection {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12} in our illustrative
example and is an earliest start time schedule.

If the objective function is regular, no element of Ω(S) attains a lower scheduling cost for a given acyclic
selection S than the earliest start time schedule. However, this schedule is typically not minimizing for the

convex cost function stated in our problem. It is easy to see that we can improve upon the earliest start

time schedule of Figure 1 by shifting operation 8 forward to start at time 2 and reducing the cost incurred
by job O from 14 to 12. The updated feasible schedule is clearly associated with the same selection because

the execution order of the operations remains intact. In general, for a given acyclic selection S we need to

solve the optimization problem formulated in Section 3 – also known as the timing problem – in order to
identify a schedule α(S) ∈ Ω(S) with the minimum cost c(α(S)), i.e., c(α(S)) = min{c(ααα) : ααα ∈ Ω(S)}.
This viewpoint leads to an alternate combinatorial formulation of JS–CONV on the disjunctive graph G:

“Among all feasible selections, find a selection S that minimizes c(α(S)).” Such a selection is called an

optimal selection. The next section discusses how to find an optimal schedule α(S) for any acyclic selection
S.

3 The timing problem

The timing problem – already introduced conceptually in Sections 1 and 2 – is at the heart of the local search

methods developed for job shop scheduling problems. The objective of the timing problem is to determine the

optimal operation start times if we are given a fixed operation processing sequence for all machines involved.
In this section, we formally introduce the timing problem for JS–CONV and show that it is efficiently

solvable by drawing upon the modeling and solution approach by Ahuja et al. (2003) for solving the convex

cost integer dual network flow problem.

In general, for a given acyclic (and not necessarily complete) selection S and its associated graph G(S)

we need to solve the optimization problem formulated below in order to identify a schedule α(S) with the
minimum cost in Ω(S). This is the timing problem associated with JS–CONV:

c(α(S)) = minimize
∑

(i,j)∈Q

fij(δij) +
∑

i∈P

bi(αi) (2a)

subject to:

αj − αi ≥ pi for all (i, j) ∈ A ∪ S, (2b)

(1d)− (1e).

For technical reasons that will be evident soon in the sequel, Proposition 1 below contends that the timing
problem always admits an optimal solution so that

αi ≤ U for all i ∈ I, (3)

where U = maxi∈P (⌈α
min
i ⌉) +

∑

i∈I pi +
∑

(i,j)∈Q⌈δ
min
ij ⌉, and the sum or maximum over an empty set is zero

by convention.

Proposition 1 There exists an optimal solution of the timing problem (2) satisfying constraints (3).

The proof is relegated to the appendix (see online supplement).

3.1 A transformation into a linear program

The timing problem (2) is an integer optimization problem with a convex objective function and has the

same structure as problem (1) in Ahuja et al. (2003). Drawing upon the developments of Ahuja et al. (2003),



10 Manuscript

we transform the timing problem (2) into the form of problem (3) in Ahuja et al. (2003), which is an LP,

except that the objective function is piecewise-linear convex.

The timing problem (2) can be transformed into an equivalent LP by assuming – without loss of generality

– that each of the convex functions f and b is linear between successive integers, and then representing each

linear segment with a new variable and dropping the integrality restrictions (1e). The validity of this approach

derives from the fact that each of the piecewise-linear convex functions f and b has integer breakpoints, i.e.,
its slope changes only at integer values. It follows from this property that there always exists an optimal

solution of this LP that is integral (see e.g., Murty, 1976). Consequently, in the development below we

assume that each of the convex functions f and b is linear between consecutive integers and ignore the
integrality constraints (1e).

We then integrate the precedence constraints (2b) and the time bounds (3) into the objective function.

For all i ∈ I, define

Bi(αi) =







bi(0)−Mαi for αi < 0,
bi(αi) for 0 ≤ αi ≤ U,
bi(U) +M(αi − U) for αi > U,

where bi(αi) = 0 for all values of αi if i /∈ P , and M is a sufficiently large number. We discuss its possible
values below. Similarly, we update the functions f . Let δij = αj − αi for all R(S) = A ∪ S ∪ Q. By (3)

and the non-negativity of the start times, δij is bounded by −U ≤ δij ≤ U for all (i, j) ∈ R(S). In addition,

δij ≥ pi must hold for all (i, j) ∈ A ∪ S by the precedence constraints (2b). Consequently, lij = pi is a lower
bound on δij for all (i, j) ∈ A∪S and lij = −U ≤ δij holds for all (i, j) ∈ Q\ (A∪S). We also set fij(δij) = 0

for all values of δij and for all (i, j) ∈ (A ∪ S) \Q. Then, for all (i, j) ∈ R(S), define

Fij(δij) =







fij(lij)−M(δij − lij) for δij < lij ,
fij(δij) for lij ≤ δij ≤ U,
fij(U) +M(δij − U) for δij > U.

The functions B and F of our illustrative example are sketched in Figure 4.

The value of M must be chosen such that any ααα ≥ 0 that violates some time bound constraint (3)

or precedence constraint (2b) cannot be an optimal timing solution, and Fij is convex. To this end,

note that f and b are non-negative, let ub be an upper bound on the optimal objective function value
of the timing problem (2) – obtained, for instance, from the earliest start time schedule, and compute

z1 = maxi∈P {bi(0)− bi(1), bi(U)− bi(U − 1)} and z2 = max(i,j)∈Q{fij(lij)− fij(lij +1), fij(U)− fij(U − 1)}.
Then, M ≥ max(ub + 1, z1, z2) fulfills the requirement. In our implementation, we alternatively set M to
1 +

∑

i∈P max(bi(0), bi(U)) +
∑

(i,j)∈Q max(fij(−U), fij(U)). This choice of M is valid for all acyclic selec-

tions because f and b are non-negative, and the convexity of these functions ensures that their maximum is

attained at one of the end points of the related interval.

The transformations above lead to the following LP re-formulation of the timing problem (2), except that

the objective is piecewise-linear convex:

minimize
∑

(i,j)∈R(S)

Fij(δij) +
∑

i∈I

Bi(αi) (4a)

subject to:

αj − αi = δij for all (i, j) ∈ R(S). (4b)

Observe that this problem is equivalent to problem (3) in Ahuja et al. (2003) with a minor difference in

the statement of the constraints (4b). Ahuja et al. (2003) consider the difference of αi − αj = δij , while we

prefer αj − αi = δij and adapt the results of Ahuja et al. (2003) accordingly.

3.2 A transformation into a network flow problem

As shown by Ahuja et al. (2003), the Lagrangian relaxation of problem (4) obtained by relaxing the constraints

(4b) can be transformed into a minimum cost network flow problem with piecewise-linear convex arc cost



Manuscript 11

pi = lij U δij

storage

costs

precedence

constraint
time bound

slope = −M

slope = M

slope = 1

Fij

dK − pi αi

Bi

non-negative earliness tardiness time bound

U0

slope = −M

slope = M

slope = −1

quadratic

tard. costs

Figure 4: The transformed cost functions in our illustrative example. (left) Function Fij for all (i, j) ∈ A – see the solid curve.
For each selected arc (i, j) ∈ S, the function Fij is identical, except that the storage costs are zero in the interval [pi, U ] – see
the dashed curve. (right) Function Bi, where i is the last operation of some job K.

σ

1

2

3

4

5

6

7

8

9

10

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

Figure 5: The timing graph T (S) of our illustrative example using selection S associated with the solution in Figure 1.

functions, where each linear segment has an integer slope. We specify here the minimum cost network flow

problem in detail and explain how to obtain an optimal timing solution from an optimal flow. For the details
and proofs, we refer to Ahuja et al. (2003).

The minimum cost network flow problem is defined on a timing graph T (S) = (I+, R(S)+) obtained from

the graph G(S) = (I, A ∪ S, d) by adding a source node σ, an arc (σ, i) for each i ∈ I, and an arc (i, j) for
each (i, j) ∈ Q \ (A ∪ S). Consequently, the arc set contains one arc for each (i, j) ∈ R(S) in addition to

the arcs (σ, i) for all i ∈ I and is labeled as R(S)+. Note that the arc length vector d is no longer needed.

Furthermore, in this formulation the operation start times are implicitly represented by the flows out of σ;
that is, for each arc (σ, i), i ∈ I, we have δσi = αi, lσi = 0, and capture the cost Bi(αi) through Fσi(δσi).

Figure 5 depicts the timing graph of our illustrative example given the selection S associated with the solution

in Figure 1.

In the resulting minimum cost network flow problem, the flow variable xij is actually the Lagrangian dual

variable associated with the corresponding constraint in (4b):

minimize
∑

(i,j)∈R(S)+

Cij(xij) (5a)

subject to:
∑

j:(i,j)∈R(S)+

xij −
∑

j:(j,i)∈R(S)+

xji = 0 for all i ∈ I+, (5b)

−M ≤ xij ≤ M for all (i, j) ∈ R(S)+, (5c)



12 Manuscript

i)

−5 −4 −3 −2 −1 0 1 2 3 xij

Cij

slope = U

slope = pi

ii)

−5 −4 −3 −2 −1 0 1 2 3 xij

Cij

slope = U

slope = pi

iii)

−5 −4 −3 −2 −1 0 1 2 3 xσi

Cσi

slope = U

slope = 0

iv)

−2 −1 0 1 2 3 4 5 6 xσi

Cσi

slope = 0

−z = −(dK − pi)

slope = z

slope = z + 1

slope = z + 2

slope = z + 3

Figure 6: Functions C of our illustrative example: i) Cij for each arc (i, j) ∈ A, ii) Cij for each arc (i, j) ∈ S, iii) Cij for each arc
(i, σ), where i is not the last operation of its job, and iv) Cij for each arc arc (i, σ), where i is the last operation of some job K.
Note that for i) each arc (i, j) ∈ A is also present in Q. Indeed, the storage costs modeled with the function fij are accountable
for the difference in shape between the functions of type i) and ii).

where for each arc (i, j) ∈ R(S)+, the piecewise-linear convex function Cij is described as follows:

Cij(xij) =































−Fij(lij) + lijxij for −M ≤ xij ≤ aij(lij),
−Fij(lij + 1) + (lij + 1)xij for aij(lij) ≤ xij ≤ aij(lij + 1),
. . .
−Fij(q) + qxij for aij(q − 1) ≤ xij ≤ aij(q),
. . .
−Fij(U) + Uxij for aij(U − 1) ≤ xij ≤ M.

(5d)

In these expressions, θ is integer and aij(θ) = Fij(θ + 1)− Fij(θ) for all lij ≤ θ ≤ U − 1. The functions C of

our illustrative example are sketched in Figure 6.

A remark on the sets S and Q is in order. If S and Q share an element (i, j), it would be convenient to
introduce two parallel arcs (i, j) in the timing graph T (S) as it simplifies the discussion of the neighborhood

properties developed in the next section. However, parallel arcs substantially increase the notational com-

plexity. In the remainder of this paper, we therefore assume that E ∩ Q = ∅ so that S ∩ Q = ∅ holds for
all acyclic selections S. Observe that this assumption is fulfilled for the problems we experiment on in our

numerical study in Section 5.

3.3 Solving the network flow and the timing problems

For each arc (i, j) ∈ R(S)+, the function Cij is convex and piecewise-linear with at most U − lij + 1 linear
segments. Therefore, problem (5) could in principle be solved by any minimum cost network flow algorithm

in an expanded network containing at most U − lij + 1 arcs for each arc (i, j) in T (S). Because of the huge

number of arcs contingent on U , this direct approach would not run in polynomial time in general. We
therefore solve problem (5) with the cost-scaling algorithm of Ahuja et al. (2003), which directly works in



Manuscript 13

σ

1

2

3

4

5

6

7

8

9

10

-1

-1

-6

1

-5

1
1

-6

-1

5

e1,-7
e2,-6

e12,-1

σ

1

2

3

4

5

6

7

8

9

10

4-4

2-2

3-3

2 -2

-3

2-20

0

10

-9

0

6

-5

0

0

0

3

0

0

-9

10

-2

2
4

-4

-2

-3
-2

-2

-2

-3

-2

-2

-3

3

-3

Figure 7: (top) An optimal flow of our illustrative example. All arcs with zero flow are omitted. The arcs e1, e2, e12 are critical
– see Section 4. (bottom) Residual network Res(xxx, S) for the optimal flow depicted above (M = 3579). All arcs with length
U = 35 are omitted.

the timing graph T (S). This algorithm runs in polynomial time O(qp log(q2/p) log(qU)), where q = |I| and
p = |R(S)|. At termination, the algorithm provides an optimal solution of problem (5), i.e., an optimal flow
xxx, and an optimal node potential πππ = {π(i) : i ∈ I+}.

In order to deduce an optimal solution of the timing problem from these outputs, we introduce a so-called

residual network Res(xxx, S) associated with the timing graph T (S) and flow xxx. For each arc (i, j) in T (S), we
add a so-called forward arc (i, j) into Res(xxx, S) if xij < M and a so-called backward arc (j, i) if xij > −M .

The length of a forward arc (i, j) is set to the right slope of function Cij at point xij , and the length of a

backward arc (j, i) is set to the negative of the left slope of function Cij at point xij . The left and right slopes
of Cij at point xij are defined as (Cij(xij) − Cij(xij − δ))/δ and (Cij(xij + δ) − Cij(xij))/δ, respectively,

where δ is a sufficiently small number. The reduced cost of an arc (i, j) in Res(xxx, S) is cπij = cij −π(i)+π(j).

At the termination of the algorithm, we obtain a pair (xxx,πππ) that satisfies the following optimality conditions:

cπij ≥ 0 for all (i, j) in Res(xxx, S). (6)

Figure 7 provides an optimal flow and the corresponding residual network for our illustrative example.

The node potential πππ may have fractional components, and π(σ) may be different from zero. However, the
piecewise-linear structure of the objective with integral breakpoints assures us of the existence of an integral

optimal node potential πππ′ with π′(σ) = 0. A node potential πππ′ with these attributes can be determined by

computing the length ℓi of a shortest path from i ∈ I to σ in the residual network Res(xxx, S) and setting π′(i)
to ℓi. The optimal timing solution α(S) is finally αi(S) = −π′(i) for all i ∈ I. In our illustrative example,

we get the optimal solution depicted in Figure 8.



14 Manuscript

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t
M1

M2

M3

7 1 9

6 4 2 10

8 5 3

(1) K

(0) L

(1) N

(12) O

Figure 8: An optimal timing solution of our illustrative example with cost 14.

4 A local search heuristic for JS–CONV

In principle, the previous sections provide an exact approach for finding an optimal selection: Enumerate all

feasible selections, evaluate their costs using the network flow-based approach, and return a selection (and its
optimal schedule) with minimum optimal timing cost. As is well-known in job shop scheduling, this procedure

is too time consuming even for small instances. In order to find a good selection within a reasonable time,

we propose a local search approach. Such methods have been applied with great success to various job shop
scheduling problems in the past – see Section 1. In this section, we first introduce an operation-swap-based

neighborhood and then describe a tabu search.

4.1 An operation-swap-based neighborhood for JS–CONV

The underlying pillar of any local search is a neighborhood function N that associates a set of neighbor
selections N(S) with each feasible selection S. Many well-known neighborhoods for job shop scheduling

problems are based on swapping two critical consecutive operations on a machine. This concept was used, for

example, by Balas (1969) in the classical job shop, by De Bontridder (2005) in the job shop total weighted
tardiness problem, by Bürgy (2017) in a job shop problem with a general regular objective, and by Wennink

(1995); Brandimarte and Maiocco (1999); Avci and Storer (2004) in job shop problems with non-regular

objectives.

By following a framework common in this body of literature, we define a neighborhood for JS–CONV.

More specifically, given any feasible selection S together with an optimal flow xxx, an optimal integer potential

πππ with π(σ) = 0, and an optimal timing solution α(S) with αi(S) = −π(i) for all i ∈ I, we first define the
notion of a critical arc, and then derive a neighborhood based on replacing critical arcs. Finally, we establish

that all solutions in the neighborhood are feasible and prove the opt-connectedness of the neighborhood.

Definition 2 An arc (i, j) ∈ S is labeled as critical if xij < 0, and non-critical otherwise. Let Scrit = {e ∈
S : xe < 0} be the set of all critical arcs.

Proposition 2 For any critical arc (i, j), αj(S)− αi(S) = pi holds.

Proof. As α(S) are feasible start times, αj(S) − αi(S) ≥ pi holds by (2b), and it suffices to show that

αj(S) − αi(S) ≤ pi given that xij < 0 as required by Definition 2 for a critical arc. Consider the residual
network Res(xxx, S), and note that (i, j) /∈ Q because we assumed S ∩Q = ∅. Therefore, Fij has exactly the

shape of the dotted curve on the left in Figure 4, and the right slope of the resulting cost function Cij at

xij < 0 is lij = pi – see ii) in Figure 6. Consequently, arc (i, j) is present in Res(xxx, S) with a length of pi
because xij < M . The optimality of (xxx,πππ) requires cπij = pi−π(i)+π(j) ≥ 0 as stated in (6), or equivalently,

pi + αi(S)− αj(S) ≥ 0, and the result follows.

In other words, if arc (i, j) is critical, i and j are processed consecutively on the same machine without

any idle time in between. Clearly, this is a generalization of the well-known concept of criticality based on



Manuscript 15

the longest path calculations in G(S) if the objective function is regular. The number of critical arcs is no

more than |I| − |M| because each operation has at most one immediate successor operation on the same

machine, and the final operation on a machine has none. It turns out that all non-critical arcs carry zero
flow as formalized in the next lemma. The proof is in the appendix (see online supplement).

Lemma 1 For all e ∈ S \ Scrit, xe = 0 holds.

This, in fact, paves the way to showing that the critical arcs totally determine the cost of selection S,
which is formally stated as:

Theorem 1 c(α(Scrit)) = c(α(S)) holds.

Proof. All arcs e ∈ S \ Scrit have xe = 0 by Lemma 1. Therefore, flow xxx is also feasible with respect to

the timing graph T (Scrit) because the set of arcs in T (Scrit) is only missing the arcs S \ Scrit with zero flow

in T (S). That is, we have R(Scrit)+ ⊆ R(S)+ as Scrit ⊆ S, and the arcs of Res(xxx, Scrit) are all contained
in Res(xxx, S) with the same length. Consequently, the pair (xxx,πππ) fulfills the optimality conditions (6) with

respect to Res(xxx, Scrit) and certifies α(S) as an optimal timing solution for Scrit with the same cost.

The fundamental implication of Theorem 1 is that we must replace at least one critical arc in S in

order to be able to identify an improved selection S′ with c(α(S′)) < c(α(S)). This justifies the following
neighborhood definition.

Definition 3 For each critical arc e = (i, j), a neighbor Se = S ∪ e \ e is constructed by removing e from S

and adding e = (j, i). The neighborhood N(S) of S consists of all of these neighbors.

As the number of critical arcs is at most |I| − |M|, the cardinality of N(S) is bounded from above by
|I| − |M|. To illustrate the neighborhood generation mechanism applied to our illustrative example, ob-

serve that the optimal timing solution presented in Figure 8 corresponds to the selection S = {e1, e2, e3, e4,
e5, e6, e7, e8, e9, e10, e11, e12}. Inspecting the associated optimal flow xxx in Figure 7 (top) reveals Scrit =
{e1, e2, e12} as the set of critical arcs. Thus, the neighborhood of S is determined as N(S) = {Se1 , Se2 , Se12}.
The optimal timing solutions for these three neighbors are provided in Figure 9.

The time expended for neighborhood evaluations is typically the computational bottleneck in local search
methods. In this context, two issues require close attention. First, substituting a critical arc by its mate

is necessary but not sufficient for an improving move – the second and third neighbors in Figure 9 lead to

substantially worse objective values compared to the current solution in Figure 8, and this is a common
phenomenon in local search methods for job shop scheduling problems. Therefore, a lot of effort has been

put into compact neighborhood definitions with the goal of reducing the neighborhood size. For instance, a

classical result for Jm//Cmax (and other regular objectives) is due to Matsuo et al. (1988), who recognized

that given a maximal set of consecutive critical arcs between operations performed on the same machine –
a so-called critical machine block – an improving move must involve at least one of the first or last critical

arcs in the block. This result is then leveraged to drop the internal critical arcs from the neighborhood.

However, we observed that swapping such an arc may actually decrease the objective function value for JS–
CONV and identify the development of a compact neighborhood definition as a future research direction

in Section 6. Second, a closely related matter is ruling out infeasible solutions from the neighborhood. The

following theorem establishes that all selections in N(S) are feasible.

Theorem 2 For any S′ ∈ N(S), S′ is feasible.

Proof. The proof is similar to that of Proposition 2 in Balas (1969). By Definition 3, S′ is generated from
S by replacing some critical arc e = (i, j) so that S′ = S ∪ e \ e. As S is feasible, i.e., complete and acyclic,

S′ is complete. It remains to show that S′ is acyclic.

Suppose that e is critical and S′ is cyclic. Then, graph G(S′) contains some cycle C. However, selection
S′ \e ⊂ S is acyclic, and graph G(S′ \e) does not contain any cycle. Therefore, C must include arc e = (j, i),

and a path Pij starting from v0 = i, going through the nodes v1, . . . , vn, and terminating at vn+1 = j.



16 Manuscript

Neighbor Se1 with total cost 7 obtained by moving operation 1 before operation 7:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t
M1

M2

M3

1 7 9

6 4 2 10

8 5 3

(3) K

(1) L

(2) N

(1) O

Neighbor Se2 with total cost 41 obtained by moving operation 9 before operation 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t
M1

M2

M3

7 9 1

6 4 2 10

8 5 3

(9) K

(0) L

(1) N

(31) O

Neighbor Se12 with total cost 27 obtained by moving operation 5 before operation 8:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t
M1

M2

M3

7 1 9

6 4 2 10

5 8 3

(1) K

(0) L

(1) N

(25) O

Figure 9: The three neighbors of the solution depicted in Figure 8.



Manuscript 17

Clearly, Pij is also present in G(S) and can contain no less than two arcs because e = (i, j) is not part of

G(S′); that is, n ≥ 1. By (2b), any feasible timing solution ααα ∈ Ω(S) must satisfy αvr
− αvr−1

≥ pvr
for all

r = 1, ..., n + 1. Summing up over these inequalities yields αj − αi ≥ pi +
∑n

r=1 pvr
. As n ≥ 1 and pvr

> 0
for all vr ∈ I,

∑n
r=1 pvr

> 0. This implies that αj − αi > pi and is in contradiction with Proposition 2 given

that (i, j) is critical.

Finally, we prove that our neighborhood is opt-connected. This is a desirable characteristic for a neigh-

borhood definition, but is of little practical relevance from a computational viewpoint.

Theorem 3 If S is not optimal then there exists a finite sequence of selections S1, S2, ..., Sn starting with

S1 = S and terminating with an optimal selection S∗ = Sn such that Si ∈ N(Si−1) for all i = 2, ..., n.

Proof. The proof is similar to that of Theorem 1 in Van Laarhoven et al. (1992). Given an optimal selection

Sopt, let ∆(S) and ∆crit(S) represent the number of arcs of S and Scrit not present in Sopt, respectively.

That is, ∆(S) = |S \ Sopt| and ∆crit(S) = |Scrit \ Sopt|. We distinguish between two cases:

a) ∆crit(S) = 0. Then, Scrit ⊆ Sopt, and the relation c(α(Scrit)) ≤ c(α(Sopt) is satisfied by the definition

of the timing problem (2). We conclude that S is an optimal selection because Theorem 1 implies c(α(S)) =

c(α(Scrit)) ≤ c(α(Sopt).

b) ∆crit(S) > 0. Let e ∈ Scrit \Sopt. By Definition 3, Se = S ∪ e \ e is in N(S). The completeness of Sopt

yields e ∈ Sopt and ∆(Se) = ∆(S)− 1. Equivalently, moving from S to Se reduces the number of arcs of the

current selection not present in Sopt by one. Thus, we arrive at the conclusion that in at most ∆(S) steps,
S can be transformed into a selection S∗ with ∆crit(S∗) = 0, which is optimal by a).

4.2 A tabu search for JS–CONV

Tabu search is a prominent local search approach in combinatorial optimization (see e.g., Glover and Laguna,

1997; Glover, 1996). In particular, it has been successfully applied for solving various job shop scheduling

problems, such as, for example, the classical job shop problem (Nowicki and Smutnicki, 1996; Peng et al.,
2015), job shop problems with routing flexibility (Brandimarte, 1993; Kis, 2003), and more complex job shop

scheduling problems (Hurink and Knust, 2005; Drótos et al., 2009; Bürgy, 2017). We present a simple tabu

search for JS–CONV using the neighborhood developed in the previous section. In what follows, we discuss

the construction of the tabu list, the evaluation of the neighborhood, and the stopping criterion. We refer to
Glover and Laguna (1997) for a detailed treatment of tabu search.

A tabu list L storing the disjunctive arcs that have been replaced during the last maxL iterations is

maintained. List L is empty at the beginning of the search. Upon the completion of a move from a selection
S to Se by replacing arc e ∈ S through its mate e, we insert e into L at the head position, and the last

entry in the list is deleted if the size of L exceeds maxL. A neighbor S′ is called tabu if S′ ∩ L 6= ∅. In our

numerical experiments, maxL is set to 16.

The evaluation of a selection S consists of determining an optimal schedule α(S) by the approach developed

in Section 3. Initially, the objective value of S is set to c(α(S)). However, if S is tabu and does not improve

upon the best selection identified so far, a penalty term (maxL− k)M is added to the objective of S, where
k indicates the position in L of the first disjunctive arc in L ∩ S, and M is a large constant – its value may

be determined as specified in Section 3. Among all evaluated neighbors, we move to a neighbor with the

lowest objective value. As the neighborhood size is typically quite large and the evaluation of one neighbor
is expensive – see Table 1 in Section 5.1, we randomly pick and evaluate at most maxS neighbors of the

current selection. In our numerical experiments, maxS is set to 15.

The tabu search is stopped after reaching a pre-specified time limit maxT or if the neighborhood of the
current selection S is empty, which certifies S as optimal by Theorem 3. However, this case was never realized

in our tests. The parameter maxT is set to 1800 s in our numerical experiments.



18 Manuscript

5 An application: just-in-time job shop scheduling

In order to demonstrate that the proposed tabu search (TS)-based solution approach is able to find high-

quality solutions within reasonable computation times, we apply it to two just-in-time job shop scheduling

problems and conduct extensive computational tests.

Just-in time scheduling problems are characterized by the goal of scheduling the operations at the right

moment rather than as early as possible (Monette et al., 2009). Earliness is typically related to increasing

storage costs and the deterioration of intermediate or finished goods, and tardiness may result in customer
dissatisfaction, loss of reputation, and lost sales (Parsa et al., 2017). In job shop scheduling, just-in-time

objectives are typically modeled by introducing a fixed due date for each job and penalizing the intermediate

storage as well as the early and tardy completion of the jobs.

We employ our approach for the following two types of objectives. First, we consider linear storage,

earliness, and tardiness costs – see Section 5.2. We denote this problem by JIT-JS-LIN. This is the objective

typically incorporated in the literature (Sadeh, 1996; Brandimarte and Maiocco, 1999; Avci and Storer,

2004; Bülbül and Kaminsky, 2013), and we compare our approach to the most recent results of Bülbül and
Kaminsky (2013). Second, in order to test the ability of our approach to address non-linear objectives, we

substitute superlinear tardiness costs for linear tardiness costs – the storage and earliness costs are still linear.

This problem is denoted by JIT-JS-SUPERLIN. In Section 5.3, we present, to the best of our knowledge, the
first extensive computational study of a just-in-time job shop scheduling problem with a non-linear objective.

Outstanding among the accomplishments of this research is that both JIT-JS-LIN with a non-regular

linear scheduling objective and JT-JS-SUPERLIN with a non-regular and non-linear scheduling objective
are handled successfully by the exact same solution approach. We clearly demonstrate that TS represents

the new state-of-the-art for JIT-JS-LIN by beating the previous best algorithm for this problem by Bülbül

and Kaminsky (2013). For JIT-JS-SUPERLIN, the only available benchmark is a mixed integer linear
programming (MIP) formulation solved by an off-the-shelf solver, and we report solutions of superior quality

against the best available feasible solutions from MIP. Collectively, the results in this section are a testament

to our claim to generality in Section 1. A second major conclusion from our computational study is that
TS delivers these results despite a deliberately simple design, which – for instance – lacks an elaborate

diversification mechanism. Thus, the favorable numerical results can actually be attributed to the quality

of the neighborhood definition based on the timing solution in Section 4 and justifies the focus of our paper

on the timing problem in Section 3. In the following subsections, we specify the experimental setting and
discuss the obtained results in detail.

5.1 Experimental settings

In problem JIT-JS-LIN, a release time rK and a due date dK are present for each job K ∈ J . The first
operation i = K1 of K cannot start earlier than rK and a storage cost of cstorK per time unit is incurred for the

time between rK and the start of i. This can be modeled in JS–CONV by specifying the convex function

bi(αi) = max {0, (αi − rK)cstorK } and setting the lower bound lσi of αi to rK (or placing sufficiently high costs
for all αi < rK). Furthermore, for each pair of consecutive operations i and j in K, an intermediate storage

cost of cstorIntij per time unit is charged against the time between the end of i and the start of j. This can be

modeled in JS–CONV by specifying the function fij(δij) = (δij − pi)c
storInt
ij . Finally, if K is finished earlier

than its due date dK , the time between the completion time of K and dk – the earliness of K – is penalized
at a rate of cearlyK per unit time. Otherwise, the completion of K past dK leads to a tardiness cost of ctardyK

per unit time. These two cost components associated with the final operation i = K|K| are reflected by the

function bi(αi) = max
{

(dK − pi − αi)c
early
K , (αi − dK + pi)c

tardy
K

}

in JS–CONV. We executed tests with

this objective type on a subset of the instances generated by Bülbül and Kaminsky (2013), which includes
small instances with 40 operations (10 jobs and 4 machines) and larger instances with 100 operations (10

jobs and 10 machines).

In problem JIT-JS-SUPERLIN, each job K has a due date dK as in JIT-JS-LIN; however, the release
time is 0 for all jobs, and we do not penalize the storage between the release time and the start of the job’s



Manuscript 19

Table 1: Details on the TS iterations for the JIT-JS-SUPERLIN instances. For each instance size n × m in column one, the
average neighborhood size (nb size), the average computation time per neighbor evaluation (time/nb) in milliseconds (ms), and
the average computation time per TS iteration (time/iteration) in ms are displayed in columns 2-4, respectively, with the number
of neighbors evaluated restricted to maxS = 15. All values are rounded to the nearest integer.

inst. size nb size time/nb time/iteration

10× 5 18 5 74
15× 5 33 10 156
20× 5 54 15 248

10× 10 21 13 212
15× 10 40 27 445
20× 10 58 46 757
30× 10 111 101 1729
15× 15 41 54 873

first operation. This is similar to the setting in Brandimarte and Maiocco (1999); Ohta and Nakatanieng

(2006) and reflects situations, where resources are not committed to a job before the start of the job’s first

operation, and no storage costs are therefore accumulated. The unit earliness cost cearlyK for job K and the
unit intermediate storage costs cstorIntij for all consecutive operations i and j are set to 1. Finally, the tardiness

costs are calculated by taking the tardiness to the power of l. That is, job K is charged a tardiness cost of

bi(αi)(αi − dK + pi)
l, where i = K|K|. In our experiments, we set l to 1.3.

The following reasons justify the choice of this objective. First, the earliness costs model situations were

early delivery is not possible (see e.g., Brandimarte and Maiocco, 1999). Thus, the storage and earliness
costs here measure the total idle time for each job, which is equal to the total time a job spends in the

system (i.e., its flow time) minus the job’s total processing time. This performance measure can be used to

keep the total number of jobs in the system (i.e., the work-in-process) at a low level. Second, the superlinear

tardiness costs are particularly interesting if the marginal tardiness cost of a job increases with its tardiness
(Gonçalves et al., 2016) – a typical feature in practice (Hoitomt et al., 1990). Preliminary tests revealed that

quadratic tardiness costs corresponding to l = 2 are quite aggressive so that the storage and earliness costs

have almost no impact if it is not possible to schedule all jobs within their due dates. The chosen factor
l = 1.3 is therefore better suited for our experiments. Third, the simple structure of the objective makes

it possible to specify all parameter values here. Hence, other researchers can easily apply this objective for

their experiments.

We combined the proposed objective with the standard benchmark set by Lawrence (1984) frequently used

for Jm//Cmax. The Lawrence instances la01 to la40 include 50 to 300 operations (10 to 30 jobs and 5 to 15

machines). The due dates were calculated with the rule of Eilon and Hodgson (1967), i.e., dK = ⌊f ·
∑

i∈K pi⌋
for job K, where f is referred to as the due date tightness factor. It is well-known that, if the due dates are

tight and tardiness is penalized in a superlinear fashion, tardiness costs dominate the total cost and there is

little sense in considering a non-regular objective (Brandimarte and Maiocco, 1999). In contrast, if the due
dates are very loose and the tardiness costs are high compared to the other cost components, it is typically

worthwhile to consider the due dates as hard deadlines and solve a mirrored version of the problem without

any tardiness costs in order to arrive at a high-quality solution for the original problem (see e.g., Ahmadi

and Bagchi, 1992). Both cases avoid the need to trade off tardiness costs versus the other cost components
and may yield simpler problems from a practical point of view. Consequently, in an effort to demonstrate

the value of our approach we tried to set the f -values so that the tardiness costs are well balanced against

the storage and earliness costs in good solutions (see the last column in Tables 2-5).

A MIP model derived from the disjunctive programming formulation (1) and solved for each instance via

the solver Gurobi 6.5 on four threads with a time limit of 3600 s serves as a benchmark against TS for

both problem types JIT-JS-LIN and JIT-JS-SUPERLIN. The MIP model is available in the appendix (see
online supplement). The shifting bottleneck heuristic of Bülbül and Kaminsky (2013) is the second basis of

comparison for JIT-JS-LIN.

TS was implemented in Java and run on a PC with a 3.3 GHz Intel R© CoreTM i5-4590 processor and 16

GB memory. In order to assess the stochastic behavior of TS, we executed ten independent runs for every

instance, each with a time limit of maxT = 1800 s. To put this time limit into perspective, consider Table



20 Manuscript

1. The number of neighbors of the current selection S may be quite high, especially for the large instances,

and precludes us from evaluating the entire neighborhood N(S). Even with the current scheme of evaluating

no more than maxS = 15 neighbors in one TS iteration, an iteration of TS is computationally expensive as
evident from column four of Table 1 – the times per iteration range from 74ms for instances of size 10× 5 to

nearly 2 s for instances of size 30 × 10. These times translate to only about 25,000 and 1,000 iterations for

instances of size 10× 5 and 30× 10 within the time limit, respectively. For a local search with a swap-based
neighborhood, these iteration numbers are very low. Moreover, we observe another striking fact by comparing

the figures in columns three and four in Table 1. About 90% of the computation time in TS is spent toward

evaluating the neighbors, given that the total time needed for the neighbor evaluations in one TS iteration is
roughly maxS times the time expended for evaluating a single neighbor. TS runs on a single thread in the

current implementation, and the neighborhood evaluation by solving timing problems would scale linearly

with the number of threads in a parallel implementation. The computational results in the next sections

should be evaluated with this background information in mind; in principle, the same solution quality can
be attained in a much shorter amount of time. A parallel implementation and developing a faster solution

algorithm for the timing problem are both on our future research agenda.

For both JIT-JS-LIN and JIT-JS-SUPERLIN, an initial solution for TS is generated by the solution
approach proposed in Bürgy (2017) after creating a corresponding instance with a regular objective by

ignoring the storage and earliness costs. The time allotted to this method is 60 s. Given the currently

expensive nature of the TS iterations, the quality of the initial solution may factor into the final solution
quality in a significant way. This is also investigated in the sequel.

5.2 JIT-JS-LIN

5.2.1 Small JIT-JS-LIN instances

We first analyze the results obtained for the small JIT-JS-LIN instances with 4 machines and 10 jobs. Table 2

provides the results obtained with the MIP approach, the benchmark results (BK) of Bülbül and Kaminsky

(2013), and the average initial value, the average final value and the best final value of the ten TS runs. In

order to compare TS with MIP and BK, we compute the relative percent deviations (RPD) of the average
and best TS results from the benchmark values of MIP and BK. For a pair res − bench, RPD is expressed

as 100 · (res − bench)/bench %, where res and bench refer to the result from TS and the benchmark value,

respectively.

The MIP approach is able to solve all instances to optimality within 300 seconds. TS exhibits an out-

standing solution quality by finding near-optimal results for all instances. In all runs, the final objective value

is within 5% of the optimum, and RPD is already smaller than 1% on average at 300 s – refer to Figure 10

as explained below. Moreover, an optimal solution is identified in 36 out of 40 instances in at least one of

the ten runs. TS also compares favorably with BK. In particular, TS provides substantially better results

than BK for instances with f = 1.3, 1.5 and slightly better results for instances with f = 1.7. The small
difference of the RPDs associated with the average and the best objective values obtained from TS attests

to the robustness of the solutions generated by TS.

In order to analyze the progress of TS over time, we recorded the objective values of the initial solution
and the best solution found so far after 100, 300, 600, and 1800 seconds for each run and computed the

associated RPDs with respect to the optimal objective function value. We consider the RPDs of all runs

of all instances with the same f -value together and calculate the minimum, first quartile, median, third
quartile, and maximum RPD. Together with the average RPDs indicated by diamonds, Figure 10 provides

these values in box plots. For f = 1.3, the total tardiness cost contributes, on average, about 60% to the

overall cost (see the last column in Table 2), which implies that the due dates are quite tight. Therefore it

is not surprising that the quality of the initial solutions are good. Indeed, the associated optimality gap is
about 1.4% on average. TS is then able to find optimal or near-optimal solutions within the first minutes of

the search for most of the instances. As expected, the initial solutions have a slightly higher optimality gap

for the instances with f = 1.5 and 1.7, but they are still of remarkable quality. Also for these instances, TS
substantially reduces the optimality gaps in the first minutes of the search and quickly finds near-optimal



Manuscript 21

Table 2: Detailed results for the small JIT-JS-LIN instances of Bülbül and Kaminsky (2013) with f = 1.3 (top), f = 1.5 (middle),
and f = 1.7 (bottom). Column one denotes the instance, column two gives the optimal value (opt) obtained with the MIP
formulation, column three presents the reference value (BK) of Bülbül and Kaminsky (2013), and the columns four through six
depict the average initial value (init), the average final value (avg), and the best final value (best) of the ten TS runs, respectively.
The next four columns compare these values by displaying the relative percent deviation (RPD) of avg from opt, best from opt,
avg from BK, and best from BK, respectively. For each instance, the percentage of the total cost arising from the tardiness of
the jobs in a best TS solution is exhibited in the final column. All values rounded to one decimal place.

f = 1.3

MIP BK TS RPD – opt RPD – BK tard.

inst opt value init avg best avg best avg best %

Jm 01 3133.2 3456.5 3194.7 3176.7 3133.2 1.4 0.0 -8.1 -9.4 66.9
Jm 02 3068.3 3568.2 3089.0 3077.5 3068.3 0.3 0.0 -13.8 -14.0 61.4
Jm 03 2045.4 2199.1 2094.9 2045.7 2045.4 0.0 0.0 -7.0 -7.0 67.5
Jm 04 1677.8 1876.8 1682.1 1678.4 1677.8 0.0 0.0 -10.6 -10.6 60.0
Jm 05 3351.0 3427.7 3399.8 3352.6 3351.0 0.0 0.0 -2.2 -2.2 66.0
Jm 06 2915.9 3147.7 3047.4 3026.2 2990.2 3.8 2.5 -3.9 -5.0 61.6
Jm 07 2072.0 2072.0 2072.0 2072.0 2072.0 0.0 0.0 0.0 0.0 55.4
Jm 08 1765.1 1765.1 1765.1 1765.1 1765.1 0.0 0.0 0.0 0.0 56.6
Jm 09 2157.9 2241.0 2161.7 2159.4 2157.9 0.1 0.0 -3.6 -3.7 65.0
Jm 10 2119.2 2119.2 2165.7 2124.5 2119.2 0.2 0.0 0.2 0.0 64.8

average 0.6 0.3 -4.9 -5.2 62.5

f = 1.5

MIP BK TS RPD – opt RPD – BK tard.

inst opt value init avg best avg best avg best %

Jm 01 2474.0 2567.7 2544.3 2507.4 2494.1 1.3 0.8 -2.3 -2.9 56.7
Jm 02 2487.3 2751.9 2499.8 2491.4 2487.3 0.2 0.0 -9.5 -9.6 49.3
Jm 03 1651.8 1702.0 1716.0 1671.3 1651.8 1.2 0.0 -1.8 -2.9 51.1
Jm 04 1393.8 1400.1 1420.9 1395.7 1393.8 0.1 0.0 -0.3 -0.4 44.6
Jm 05 2844.3 2844.3 2919.6 2844.4 2844.3 0.0 0.0 0.0 0.0 54.5
Jm 06 2240.5 2584.5 2258.4 2242.9 2240.5 0.1 0.0 -13.2 -13.3 47.2
Jm 07 2193.1 2266.4 2243.6 2208.0 2201.5 0.7 0.4 -2.6 -2.9 45.7
Jm 08 1430.9 1470.1 1430.9 1430.9 1430.9 0.0 0.0 -2.7 -2.7 32.8
Jm 09 1774.3 1923.3 1785.5 1776.2 1774.3 0.1 0.0 -7.6 -7.7 53.2
Jm 10 1900.4 1973.2 1976.7 1904.4 1900.4 0.2 0.0 -3.5 -3.7 54.0

average 0.4 0.1 -4.4 -4.6 48.9

f = 1.7

MIP BK TS RPD – opt RPD – BK tard.

inst opt value init avg best avg best avg best %

Jm 01 2038.0 2065.4 2078.1 2060.1 2038.0 1.1 0.0 -0.3 -1.3 40.3
Jm 02 2210.7 2223.2 2272.1 2212.7 2210.7 0.1 0.0 -0.5 -0.6 35.2
Jm 03 1482.1 1482.1 1526.2 1486.6 1482.1 0.3 0.0 0.3 0.0 33.7
Jm 04 1196.6 1197.0 1278.6 1197.0 1196.6 0.0 0.0 0.0 0.0 28.1
Jm 05 2578.5 2578.5 2767.2 2578.5 2578.5 0.0 0.0 0.0 0.0 43.2
Jm 06 1998.7 2036.8 2017.3 2003.2 1998.7 0.2 0.0 -1.7 -1.9 26.9
Jm 07 1980.1 1993.3 2331.1 1983.1 1980.1 0.1 0.0 -0.5 -0.7 33.3
Jm 08 1571.0 1696.6 1590.8 1573.4 1571.0 0.2 0.0 -7.3 -7.4 24.3
Jm 09 1488.0 1543.6 1498.4 1494.3 1491.7 0.4 0.2 -3.2 -3.4 39.3
Jm 10 1714.1 1714.1 1748.9 1722.7 1714.1 0.5 0.0 0.5 0.0 36.6

average 0.3 0.0 -1.3 -1.5 34.1



22 Manuscript

0% 1% 2% 3% 4% 5% 6% 7%

0 s

100 s

300 s

600 s

1800 s

f = 1.3

0% 1% 2% 3% 4% 5% 6% 7%

0 s

100 s

300 s

600 s

1800 s

f = 1.5

0% 1% 2% 3% 4% 5% 6% 7%

0 s

100 s

300 s

600 s

1800 s

RPD from optimum

f = 1.7

Figure 10: Box plots depicting the RPDs of the TS results with respect to the optimal objective values after 0, 100, 300, 600,
and 1800 seconds for the small JIT-JS-LIN instances with f = 1.3 (top), f = 1.5 (middle), and f = 1.7 (bottom). The box plots
are cropped at 7%.

solutions. In general, solutions of very high quality are already available within 300 s across all f -values;

however, these plots clarify that the search afterwards is not in vain. The additional time helps TS attain

a more robust set of solutions – as evident from the decrease of the median and the third quartile beyond
300 s.

5.2.2 Larger JIT-JS-LIN instances

We next analyze the results obtained for the larger JIT-JS-LIN instances with 100 operations. The detailed

results appear in Tables 3-4. The MIP formulation is only able to solve 19 of these 66 instances to optimality

and hits the time limit with a feasible solution otherwise. The optimality gaps are quite large in most of
these cases. Therefore, differently from the previous section, in Figure 11 we choose to plot the progress of

TS over time with respect to the BK values.

For the instances with f = 1.3, TS improves considerably over both MIP and BK. More specifically, the
RPDs of the average objective value of the ten TS runs from the incumbent MIP solution and BK are -7.7%

and -9.9% on average, respectively. To a large extent, this is due to the good quality of the initial solutions

– see Figure 11, which in turn suggests that the due dates are quite tight. This can be confirmed by the last
column of Table 3, which shows that the total tardiness cost comprises more than 50% of the overall cost

in these instances. While the initial solutions are good, TS still further improves them by about 1.5% on

average within the first minutes of the search – refer to Figure 11.

With looser due dates, the quality of the initial solutions degrade substantially as the earliness and

intermediate storage holding costs start making up the larger share of the total cost. Based on Figure 11,

we observe that the objective value of BK is on average about 8% lower than the average objective value

of the initial solutions in TS for the instances with f = 1.5. However, TS quickly identifies substantially
better solutions and ultimately terminates with solutions that are on average 2.9% better than those of

BK. In terms of the best objective values attained by TS, the improvement over the current state-of-the-

art heuristic algorithm BK is much more impressive with a margin of 7.7%. Furthermore, the average TS
solutions perform on a par with those from MIP with a slight edge of 0.7% on average. The average RPD of

the best TS solutions offer a further sizeable advantage of 4.7% to TS over MIP.



Manuscript 23

Table 3: Detailed results for the larger JIT-JS-LIN instances of Bülbül and Kaminsky (2013) with f = 1.3 (top) and f = 1.5
(bottom). The structure of the table is similar to that of Table 2, except that for MIP both a lower (lb) and an upper (ub) bound
are reported at termination. Instances solved to optimality by MIP are indicated in bold in column ’ub’ with no corresponding
entry in column ’lb’.

f = 1.3

MIP BK TS RPD – ub RPD – BK tard.

inst ub lb value init avg best avg best avg best %

abz05 19304.1 7792.9 15625.6 14088.0 13975.9 13319.1 -27.6 -31.0 -10.6 -14.8 50.6
abz06 5806.2 7344.2 5899.6 5852.3 5806.2 0.8 0.0 -20.3 -20.9 42.4
la16 5004.3 3033.6 5443.5 5704.3 5245.6 4947.2 4.8 -1.1 -3.6 -9.1 63.7
la17 5402.0 6562.6 6326.5 5884.5 5725.4 8.9 6.0 -10.3 -12.8 57.6
la18 5491.2 2617.6 5819.5 5118.0 5079.4 4982.2 -7.5 -9.3 -12.7 -14.4 60.4
la19 7995.5 4156.1 8436.9 6590.6 6542.7 6250.7 -18.2 -21.8 -22.5 -25.9 54.3
la20 3095.3 2869.3 3396.8 3738.3 3556.5 3422.8 14.9 10.6 4.7 0.8 48.9
la21 3768.8 4279.5 3802.3 3801.2 3800.7 0.9 0.8 -11.2 -11.2 34.1
la22 8155.8 7272.3 8995.9 8179.9 7991.8 7956.3 -2.0 -2.4 -11.2 -11.6 58.5
la23 3522.5 3451.0 4852.1 3597.3 3590.0 3527.8 1.9 0.2 -26.0 -27.3 36.7
la24 4658.1 5957.3 5045.9 4942.2 4678.4 6.1 0.4 -17.0 -21.5 54.5
mt10 13088.0 5072.1 11765.8 10650.4 10579.0 10379.2 -19.2 -20.7 -10.1 -11.8 73.1
orb01 12312 4828 10958.3 10245.3 10145.6 9684.3 -17.6 -21.3 -7.4 -11.6 64.9
orb02 7011.2 3539.5 5503.3 5568.4 5539.0 5477.0 -21.0 -21.9 0.6 -0.5 60.0
orb03 15027.9 4751.4 12992.3 12052.5 11988.3 11865.4 -20.2 -21.0 -7.7 -8.7 71.5
orb04 8148.7 3758.4 8313.5 8220.1 8117.7 7926.1 -0.4 -2.7 -2.4 -4.7 62.9
orb05 8080.1 3593.7 6601.4 6485.5 6443.2 5967.4 -20.3 -26.1 -2.4 -9.6 60.9
orb06 8157.7 3672.5 8733.9 7570.4 7523.3 7287.8 -7.8 -10.7 -13.9 -16.6 56.2
orb07 5866.8 2148.4 5107.1 4869.8 4849.1 4504.7 -17.3 -23.2 -5.1 -11.8 63.4
orb08 12815.2 7339.3 13133.8 12427.2 12270.3 10962.4 -4.3 -14.5 -6.6 -16.5 69.3
orb09 9602.6 5331.1 10809.4 9844.4 9803.4 9616.3 2.1 0.1 -9.3 -11.0 67.4
orb10 9922.6 4430.7 8509.4 7358.3 7340.5 7296.2 -26.0 -26.5 -13.7 -14.3 64.0

average -7.7 -10.7 -9.9 -13.0 58.0

f = 1.5

MIP BK TS RPD – ub RPD – BK tard.

inst ub lb value init avg best avg best avg best %

abz05 11008.6 8565.6 11281.6 12530.8 11782.7 11116.4 7.0 1.0 4.4 -1.5 15.3
abz06 5189.5 5322.9 7479.6 5635.5 5434.6 8.6 4.7 5.9 2.1 22.3
la16 3526.4 3057.9 3936.4 4437.4 3764.7 3628.2 6.8 2.9 -4.4 -7.8 18.4
la17 4812.1 5292.2 6044.2 5192.1 4835.2 7.9 0.5 -1.9 -8.6 32.8
la18 3546.9 2764.4 3762.1 3821.8 3582.0 3511.5 1.0 -1.0 -4.8 -6.7 18.5
la19 4991.8 4307.6 5227.5 5813.1 5458.4 5053.4 9.3 1.2 4.4 -3.3 17.4
la20 2850.7 2611.1 3251.3 3614.3 3136.0 2963.6 10.0 4.0 -3.5 -8.8 17.3
la21 3441.9 3924.4 4536.5 3700.7 3597.9 7.5 4.5 -5.7 -8.3 5.5
la22 5938.2 7058.1 8363.4 6328.0 5938.2 6.6 0.0 -10.3 -15.9 26.6
la23 3230.5 3254.6 3733.6 3423.4 3334.6 6.0 3.2 5.2 2.5 8.3
la24 3185.0 3422.1 4132.8 3705.5 3379.5 16.3 6.1 8.3 -1.2 14.2
mt10 5908.8 4366.3 6222.1 6106.5 5961.0 5763.0 0.9 -2.5 -4.2 -7.4 33.4
orb01 9160 4208 9277.8 7282.6 7167.8 7027.5 -21.8 -23.3 -22.7 -24.3 36.1
orb02 4423.9 3779.1 4628.1 4802.9 4611.2 4510.1 4.2 1.9 -0.4 -2.5 10.1
orb03 12069.2 4094.8 8610.5 9159.6 9031.8 8119.5 -25.2 -32.7 4.9 -5.7 42.0
orb04 6201.9 3839.5 5844.5 6340.9 5705.5 5492.8 -8.0 -11.4 -2.4 -6.0 17.9
orb05 4226.5 4665.7 4698.2 4407.2 4269.1 4.3 1.0 -5.5 -8.5 12.4
orb06 7255.0 3860.0 6220.2 7622.5 6997.4 6353.4 -3.6 -12.4 12.5 2.1 38.3
orb07 3367.3 2342.7 3416.8 3823.5 3496.8 3351.4 3.8 -0.5 2.3 -1.9 12.4
orb08 13018.3 4858.6 10307.7 9079.0 8419.8 8134.8 -35.3 -37.5 -18.3 -21.1 54.3
orb09 8073.3 4106.9 7475.5 7059.6 6887.1 6416.9 -14.7 -20.5 -7.9 -14.2 37.5
orb10 5483.7 3493.4 6421.2 5243.2 5089.7 4984.8 -7.2 -9.1 -20.7 -22.4 27.6

average -0.7 -5.4 -2.9 -7.7 23.6



24 Manuscript

Table 4: Detailed results for the larger JIT-JS-LIN instances of Bülbül and Kaminsky (2013) with f = 1.7. See Tables 2 and 3
for a detailed description of the table structure.

f = 1.7

MIP BK TS RPD – ub RPD – BK tard.

inst ub lb value init avg best avg best avg best %

abz05 11866.5 10207.0 11984.4 18378.4 11933.9 11875.9 0.6 0.1 -0.4 -0.9 9.7
abz06 5752.2 5939.6 10117.4 5946.9 5779.6 3.4 0.5 0.1 -2.7 2.2
la16 3698.5 3801.7 6105.3 4007.9 3701.3 8.4 0.1 5.4 -2.6 13.9
la17 4031.2 4117.6 6733.6 4475.9 4065.7 11.0 0.9 8.7 -1.3 1.1
la18 3523.4 3333.6 3803.7 5006.0 3623.1 3540.1 2.8 0.5 -4.7 -6.9 6.0
la19 5220.3 4939.2 5592.4 7757.4 5465.6 5327.0 4.7 2.0 -2.3 -4.7 0.8
la20 3079.6 3213.9 4496.0 3319.5 3095.3 7.8 0.5 3.3 -3.7 3.9
la21 3708.6 3975.0 6159.3 3871.8 3809.8 4.4 2.7 -2.6 -4.2 7.2
la22 5879.3 5280.8 6805.9 9756.1 6387.2 6042.1 8.6 2.8 -6.2 -11.2 6.3
la23 3667.7 3717.0 5577.8 3858.1 3692.5 5.2 0.7 3.8 -0.7 5.7
la24 3670.9 3778.6 6011.0 3762.4 3670.9 2.5 0.0 -0.4 -2.8 6.1
mt10 4786.9 4740.9 5181.0 6026.8 5169.8 4871.3 8.0 1.8 -0.2 -6.0 15.2
orb01 7253 4542 6749.6 8885.9 7873.4 7255.7 8.6 0.0 16.7 7.5 24.1
orb02 4195.2 4367.0 6594.4 4719.5 4219.8 12.5 0.6 8.1 -3.4 3.1
orb03 6384.4 4586.0 6913.0 8374.2 7191.4 7015.6 12.6 9.9 4.0 1.5 14.6
orb04 5219.7 4741.9 5494.4 6621.5 5701.4 5545.3 9.2 6.2 3.8 0.9 15.8
orb05 4419.0 3558.6 4539.4 6633.5 4522.0 4274.3 2.3 -3.3 -0.4 -5.8 13.4
orb06 6198.2 5016.5 6496.3 8387.6 6546.3 6445.1 5.6 4.0 0.8 -0.8 25.7
orb07 3136.2 2871.7 3157.0 4744.0 3310.5 3136.2 5.6 0.0 4.9 -0.7 9.9
orb08 7839.3 4689.9 8441.4 9932.8 7994.6 7508.4 2.0 -4.2 -5.3 -11.1 19.9
orb09 5677.6 5040.2 6037.9 7656.1 5889.4 5609.7 3.7 -1.2 -2.5 -7.1 12.2
orb10 4393.9 3877.6 4889.2 6452.7 5032.0 4828.0 14.5 9.9 2.9 -1.3 15.6

average 6.5 1.6 1.7 -3.1 10.6

-30% -20% -10% 0% 10% 20% 30% 40% 50% 60%

0 s

100 s

300 s

600 s

1800 s

f = 1.3

-30% -20% -10% 0% 10% 20% 30% 40% 50% 60%

0 s

100 s

300 s

600 s

1800 s

f = 1.5

-30% -20% -10% 0% 10% 20% 30% 40% 50% 60%

0 s

100 s

300 s

600 s

1800 s

RPD from BK

f = 1.7

Figure 11: Box plots depicting the RPDs of the TS results with respect to the BK values after 0, 100, 300, 600, and 1800 seconds
for the larger JIT-JS-LIN instances with f = 1.3 (top), f = 1.5 (middle), and f = 1.7 (bottom). The box plots are cropped at
60%.



Manuscript 25

The pattern crystallizes when we also take into account the results for f = 1.7. Both MIP and BK gain

ground over TS with increasing f -values. In these instances, the tardiness costs contribute only about 10%

to the overall costs, which unsurprisingly results in larger RPDs for the initial TS solutions – typically in
the range from 25% to 55%. The good news is that marked improvements in solution quality accompany the

first minutes of the search, and the quality of the final TS solutions is at least comparable to that of BK.

The average TS objective values are somewhat inferior to the associated BK values with an average RPD of
1.7%; however, in 19 out of 22 instances at least one TS solution outperforms the corresponding BK solution.

The average RPD for the best TS solution with respect to BK is -3.1%. Finally, observe that increasing

f -values translate into easier instances as far as MIP is concerned. The number of optimal solutions obtained
increases from 4 to 7 to 8 for f = 1.3, 1.5, 1.7, respectively. In light of this observation, it is fair to state that

TS fares well against MIP even on instances with f = 1.7 – as justified by the average RPDs of 6.5% and

1.6% for the average and best TS solutions, respectively.

Based on the results so far on JIT-JS-LIN, a couple of concluding remarks about the performance of our

approach is in order. First off, there is room for an alternate initial solution generation method for instances

with loose due dates. Moreover, a more significant insight can be gleaned from studying Figures 10-11. On

small instances, the run time in excess of 300 s is put into good use to reduce the variability of the TS
solutions. Similarly, TS is still able to move the median by about 5% from 300 s to 1800 s on large instances

with f = 0.7. In contrast, the progress pretty much stalls at 100 s for the other two f -values while solving

the large instances. These observations imply that TS would certainly benefit from including a diversification
scheme. However, in this paper we leave such more sophisticated mechanisms to be embedded into TS – or

some other (meta)heuristic – as future research. The focus here is on the timing problem and the associated

neighborhood definition, and we prefer to keep the structure of TS simple to be able to isolate the effect
of these. Ultimately, even with a relatively basic TS implementation we get good results, and these can be

attributed to the quality of the neighborhood definition. We confidently claim that TS is the new state-of-

the-art heuristic for JIT-JS-LIN. It achieves better results than BK across the board both on small and large

instances with some mixed results for large instances with f = 1.7. TS also compares favorably against MIP
on large instances with f = 1.3, 1.5. On a final note, observe that the RPD of the best TS solution from the

corresponding MIP solution on the 19 large instances MIP solves to optimality is just 1.75% on average with

a maximum of 6.11%. This is definitely an accomplishment for a generic heuristic not tailored specifically to
this difficult job shop scheduling problem with a non-regular objective.

5.3 JIT-JS-SUPERLIN

In this section, we delve into the results obtained for the JIT-JS-SUPERLIN instances in an effort to demon-
strate the general applicability of our approach across both linear and non-linear objective functions. The

detailed performance metrics are reported in Table 5, and Figure 12 depicts the improvement in solution

quality over time for TS. The underlying benchmark data set from Lawrence (1984) in these experiments is

quite diverse with the number of operations ranging from small instances with 50 operations to very large
instances with 300 operations. As the original instances do not feature any due dates, these were produced

as specified in Section 5.1. During this process, our intention has been to create a fair set of instances –

recall a consistent pattern from Section 5.2.2 on larger instances of JIT-JS-LIN: loose due dates hurt the
performance of our approach. In this context, both the f -value and the percentage of the total cost arising

from the tardiness of the jobs in a best TS solution have been good indicators of instance difficulty for TS.

If the value of the latter indicator goes above 50%, then TS is quite likely to identify near-optimal solutions,
and lower values are associated with poorer RPDs. Ultimately, the f -values in this section were set diligently

such that we cover a wide range of values generally below 50% for the share of the total tardiness cost.

In the absence of a viable competing algorithm in the literature capable of handling JIT-JS-SUPERLIN,
TS is only benchmarked against the MIP formulation in this section. It turns out that JIT-JS-SUPERLIN is

substantially more challenging for MIP compared to JIT-JS-LIN. Only two of the smallest 10× 5 instances

are solved to optimality, and the optimality gaps are large for most of the other instances. Nevertheless, MIP

finds feasible solutions for all instances allowing us to compute the RPDs of the TS solutions with respect to
the incumbents (upper bounds) from MIP.



26 Manuscript

Table 5: Detailed results for the JIT-JS-SUPERLIN instances. The structure of the table is identical to that of Table 3 – except
that the f -values are specified on a per instance basis with an additional column, and all ’BK’ columns related to Bülbül and
Kaminsky (2013) are removed. The instances are grouped according to their size n×m.

MIP TS RPD – ub tard.

inst f ub lb init avg best avg best %

la01 1.9 2137.6 2963.8 2167.2 2165.4 1.4 1.3 46.5
la02 1.9 1392.8 1696.6 1413.7 1392.8 1.5 0.0 15.9
la03 1.9 1735.5 1513.3 1951.4 1832.6 1735.5 5.6 0.0 40.3
la04 1.9 2340.4 1359.4 2718.1 2381.6 2279.5 1.8 -2.6 65.2
la05 1.9 1980.5 1000.8 2611.4 2300.4 2076.8 16.2 4.9 49.4

10× 5 average 5.3 0.7 43.4

la06 2.4 4678.1 1135.6 5680.8 4928.5 4684.4 5.4 0.1 54.2
la07 2.4 5661.5 996.4 6303.0 5235.3 5150.2 -7.5 -9.0 55.0
la08 2.4 3669.8 953.4 4264.3 3438.4 3344.5 -6.3 -8.9 28.8
la09 2.4 5995.0 1109.7 7695.7 5995.9 5784.6 0.0 -3.5 48.9
la10 2.4 4761.4 975.1 5679.5 4725.5 4527.4 -0.8 -4.9 47.4

15× 5 average -1.8 -5.2 46.9

la11 3.1 7588.2 1093.9 8605.9 7253.6 6441.5 -4.4 -15.1 26.5
la12 3.1 6993.6 1072.2 7848.7 6112.6 5724.7 -12.6 -18.1 34.1
la13 3.1 6476.0 1117.3 8080.7 6547.5 6003.3 1.1 -7.3 21.0
la14 3.1 10454.7 1288.6 12156.4 9700.6 9151.2 -7.2 -12.5 59.9
la15 3.1 10907.6 1206.2 11642.2 9788.3 8974.1 -10.3 -17.7 56.4

20× 5 average -6.7 -14.1 39.6

la16 1.4 2827.7 945.4 2768.8 2733.6 2716.3 -3.3 -3.9 37.5
la17 1.4 2870.5 1433.5 3190.5 3003.4 2893.5 4.6 0.8 54.8
la18 1.4 2340.3 914.3 2480.1 2340.6 2338.9 0.0 -0.1 36.3
la19 1.4 2719.7 870.6 2613.9 2599.5 2478.5 -4.4 -8.9 30.0
la20 1.4 2443.4 862.1 2425.3 2419.6 2390.5 -1.0 -2.2 30.6

10× 10 average -0.8 -2.8 37.9

la21 1.7 7234.6 995.9 6095.1 5852.1 5557.9 -19.1 -23.2 32.8
la22 1.7 7630.0 932.9 6834.5 6418.9 6128.7 -15.9 -19.7 41.0
la23 1.7 6557.5 1000.1 5977.8 5515.0 5287.1 -15.9 -19.4 22.3
la24 1.7 5534.2 930.3 5223.7 5027.0 4745.9 -9.2 -14.2 8.9
la25 1.7 5302.3 900.5 5600.1 5115.7 4411.8 -3.5 -16.8 20.7

15× 10 average -12.7 -18.7 25.1

la26 1.9 18909.7 1082.3 14033.1 13133.0 11337.6 -30.5 -40.0 39.3
la27 1.9 21662.8 1046.5 15808.2 15182.0 13427.6 -29.9 -38.0 42.5
la28 1.9 15551.7 1103.5 14606.3 14230.0 12327.9 -8.5 -20.7 49.8
la29 1.9 21125.5 1015.2 12680.6 11900.4 9345.2 -43.7 -55.8 41.6
la30 1.9 17047.0 1169.2 13626.1 13016.5 11093.1 -23.6 -34.9 46.3

20× 10 average -27.3 -37.9 43.9

la31 2.9 52747.3 1270.0 26816.5 23892.2 21885.6 -54.7 -58.5 24.7
la32 2.9 32498.5 1449.4 28694.6 26058.1 23451.9 -19.8 -27.8 12.9
la33 2.9 29592.4 1332.8 25238.5 22288.8 19500.2 -24.7 -34.1 23.0
la34 2.9 36616.7 1405.2 29894.4 27397.3 23899.7 -25.2 -34.7 18.2
la35 2.9 49623.4 1340.2 29491.2 26848.7 23651.6 -45.9 -52.3 24.9

30× 10 average -34.1 -41.5 20.7

la36 1.4 11873.0 968.1 11367.5 10756.6 9450.1 -9.4 -20.4 67.8
la37 1.4 15511.4 971.8 10131.7 9590.0 8616.2 -38.2 -44.5 51.1
la38 1.4 13466.6 959.2 8486.5 8148.5 7526.7 -39.5 -44.1 45.1
la39 1.4 7515.1 913.6 6486.0 6273.6 5144.6 -16.5 -31.5 26.5
la40 1.4 9677.7 893.2 7846.2 7587.7 6723.4 -21.6 -30.5 41.6

15× 15 average -25.0 -34.2 46.4



Manuscript 27

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la01-05
(10 × 5)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la06-10
(15 × 5)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la11-15
(20 × 5)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la16-20
(10 × 10)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la21-25
(15 × 10)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la26-30
(20 × 10)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

la31-35
(30 × 10)

-50% -40% -30% -20% -10% 0% 10% 20% 30%

0 s
100 s
300 s
600 s

1800 s

RPD from MIP

la36-40
(15 × 15)

Figure 12: Box plots grouped by instance size depicting the RPDs of the TS results with respect to the incumbent solutions from
MIP after 0, 100, 300, 600, and 1800 seconds for the JIT-JS-SUPERLIN instances. The box plots are cropped at -50% and 35%.



28 Manuscript

For the instances with five machines (i.e., la01 to la15), the quality of the initial solutions is quite low

with a typical RPD of 10 to 30%. Interestingly, this is in stark contrast to the range 0.5% - 6.5% obtained

for the small JIT-JS-LIN instances with 4 machines. Usual of TS, progress in solution quality is attained
quickly in a couple of minutes. Compared to that of MIP, the solution quality of TS at termination goes

from being somewhat worse for 10 jobs to slightly better for 15 jobs, and finally to considerably better for

20 jobs – even though the average share of the tardiness costs is lowest for the 20× 5 instances. It appears
that the disadvantage of our approach stemming from the relatively smaller share of the tardiness costs is

more than offset by the growth in the instance sizes. This is a trend we did not get to observe in Section 5.2

because the sizes of the JIT-JS-LIN instances are constant.

A similar pattern is repeated for the instances with 10 and 15 machines (i.e., la16 to la40). TS and MIP
perform similarly on instances of size 10 × 10, but from this point on TS outperforms MIP by increasingly

larger margins as the number of jobs increases. The average RPD of the average TS solution per instance

group is -0.8%, -12.7%, -27.3%, -34,1%, and -25.0% for sizes 10× 10, 15× 10, 20× 10, 30× 10, and 15× 15,
respectively. In a majority of these instances, even the initial TS solution is of higher quality than the

terminal solution of MIP – which should probably be attributed to the inability of MIP to handle large

instances. In any case, TS can back up the initial solution quality with further improvements during the
search and exhibits a progressively dominant behavior against MIP as the instance size grows.

A couple of important observations stand out if we evaluate the results for JIT-JS-LIN and JIT-JS-

SUPERLIN together. On the one hand, stalling is less of an issue in Figure 12 compared to the behavior in

Figure 11. On the other hand, the variability in solution quality becomes significant for the larger instances in
Figure 12. Both of these issues point to a need for a diversification scheme combined with a faster evaluation

of the neighbors so that various broad areas in the feasible region can be scanned quickly in a quest for

better solutions. Another insight to be underlined is that the instance size is the main determinant of how
TS fares against competing methods. For a fixed instance size, the looseness of the due dates – also reflected

by the contribution of the tardiness costs to the overall cost – plays to the disadvantage of TS. However,

our approach is the clear choice for larger instances sizes with 150 operations or more and represents the

state-of-the-art in job shop scheduling with non-regular linear and non-linear convex objectives, regardless
of due date tightness.

6 Conclusion

JS–CONV is a generic job shop scheduling problem, where the objective is to minimize a sum of separable

convex cost functions attached to the operation start times and the differences between the start times of

arbitrary pairs of operations. This generic objective function makes it possible to address not only the
typical objectives pursued in the literature, such as the makespan or the total weighted tardiness, but also

more complex non-linear and non-regular objectives, including, for example, convex earliness, storage, and

tardiness cost terms. Furthermore, the objective function allows for the integration of some less conventional

managerial considerations, such as the prioritization of job completion times via modeling constructs beyond
objective weights, and certain process characteristics, such as the perishability of intermediate products.

Based on a comprehensive combinatorial problem formulation on a disjunctive graph, we developed a

tabu search heuristic for JS–CONV where neighbors are built by swapping a critical arc. The criticality
of the arcs is assessed by optimally solving a timing problem, which structurally corresponds to the dual

of a network flow problem with convex costs. As a solution method, we apply the cost-scaling algorithm

proposed in (Ahuja et al., 2003). We show that the timing problem is amenable to quick solution times, so

that it can successfully be integrated into local search approaches. We executed extensive numerical tests on
just-in-time job shop scheduling instances with linear and non-linear costs and obtained results supporting

the validity of the proposed approach.

We believe that these developments pave the way for interesting future research. From a methodological
viewpoint, the tabu search may benefit from an additional diversification mechanism as discussed in Sec-

tion 5. One could simply start some tabu search runs with different initial solutions in parallel, so as to

efficiently exploit today’s multi-core processors, or include more elaborate diversification strategies, such as



Manuscript 29

path relinking, which was successfully applied in various machine scheduling problems (see, e.g., Nowicki

and Smutnicki, 2005; Vallada and Ruiz, 2010; Peng et al., 2015). As discussed in Section 5.1, most of the

computation time of the tabu search is spent in the timing problems, which are solved from scratch each
time. Per similar discussions in (Avci, 2001; Avci and Storer, 2004), one may develop a “warm-start” strategy

for the applied cost-scaling network flow algorithm. More specifically, as we are attacking a series of similar

timing problems in the tabu search, one may study how to efficiently leverage the past calculations for solving
the timing problems in subsequent iterations. In our framework, we may draw upon the ideas of Vidal et al.

(2015). Nevertheless, we expect that solving the timing problem for JS–CONV will always remain a com-

putational bottleneck in local search methods, substantially limiting the number of iterations. Hence, it is
important to start any local search for JS–CONV with a good initial solution and keep only the promising

neighbors in the neighborhood. Therefore, one may develop constructive heuristics for JS–CONV based on

the dispatching and insertion heuristics of Wennink (1995), or devise a compact neighborhood following the

move quality analysis of Avci and Storer (2004).

From an application perspective, one could address various interesting job shop scheduling problems in

the JS–CONV framework. In addition to the applications mentioned so far, one may consider, for example,

controllable processing times. While these times are considered to be constant in most scheduling problems,
they are occasionally controllable –at least to some extent– by adjusting the allocation of resources to pro-

cessing, such as energy, manpower, money, or subcontracting (Shabtay and Steiner, 2007). Various practical

applications of this process feature are discussed in the literature: Janiak (1989), for example, considers
a scheduling problem in steel mills, Trick (1994) refers to scheduling with tooling machines, and Aktürk

et al. (2010) address the scheduling of computer numeric control (CNC) turning operations. Scheduling with

controllable processing times has received considerable attention from researchers. However, the literature
on solution methods for job shop type problems with controllable processing times is scarce according to a

recent literature survey of Shabtay and Steiner (2007). We suggest to study the application of JS–CONV

to controllable processing times with a so-called locally bounded resource consumption. This can easily be

modeled in JS–CONV by adding a node for the end time of each operation to the disjunctive graph and
defining appropriate convex processing cost functions for the time difference between the start and end of each

operation. Finally, one could integrate more complex process features into JS–CONV, such as no-storage

constraints (so-called blocking), transportation operations, or flexibility in the choice of the machines. With
these features, the timing problem may still be solvable by the same approach as in JS–CONV. However,

swapping individual critical arcs only may lead to infeasible neighbors. Job-insertion-based neighborhoods,

which were already applied successfully in various complex job shop scheduling problems (Gröflin et al., 2011;
Bürgy and Gröflin, 2016, 2017) could be employed to preserve feasibility of the neighborhood.

Appendix

We first provide the proofs of Proposition 1 and Lemma 1 and then describe the MIP formulation applied

for our computational tests.

Proof. (of Proposition 1) Among all optimal timing solutions, let ααα be an earliest start time solution, i.e.,

there exists no optimal solution ααα′ 6= ααα such that α′
i ≤ αi for all i ∈ I.

If αi ≤ U holds for all i ∈ I, we are done. Otherwise, build the following graph. Add a fictive start node

σ and a node i for each operation i ∈ I. Add an arc (i, j) if we cannot decrease the start time of j by one

time unit without possibly increasing the costs associated to the start time difference between i and j or
rendering the solution infeasible. Specifically, for each operation i ∈ I, add an arc (σ, i) with length ⌈αmin

i ⌉
if αi ≤ ⌈αmin

i ⌉. Indeed, we could decrease the start time of i by one time unit without increasing the costs

bi(αi) if αi > ⌈αmin
i ⌉ since bi is convex and has its minimum at αmin

i . Similarly, for each (i, j) ∈ S ∪ (A \Q),
add an arc (i, j) with length pi if αj − αi = pi, for each (i, j) ∈ Q \ A, add an arc (i, j) with length

⌈δmin
ij ⌉ if αj − αi ≤ ⌈δmin

ij ⌉, and for each (i, j) ∈ Q ∪ A, add an arc (i, j) with length max(pi, ⌈δ
min
ij ⌉) if

αj − αi ≤ max(pi, ⌈δ
min
ij ⌉).



30 Manuscript

Consider the constructed graph. If some nodes are not reachable from σ by a path, then a new optimal

solution ααα′ is obtained by reducing the start time αi for all non-reachable nodes i by one time unit. But then

ααα′ 6= ααα and α′
i ≤ αi for all i ∈ I, which contradicts the choice of ααα.

In the other case, all nodes are reachable from σ by a path, and the length of each path from σ to a

node i provides an upper bound for the start time αi as the time difference αj − αi is at most the length of
arc (i, j) for all arcs introduced in the graph and ασ = 0. However, by construction, these paths cannot be

longer than U = maxi∈P (⌈α
min
i ⌉) +

∑

i∈I pi +
∑

(i,j)∈Q⌈δ
min
ij ⌉. Hence, αi ≤ U must hold for all i ∈ I.

Proof. (of Lemma 1) Suppose there exists an arc e = (i, j) ∈ S \ Scrit with xe 6= 0. As arc e is not critical,
xe > 0 is implied. Then, there exist a backward arc (j, i) in the residual network Res(xxx, S). We will show

that there exists a negative-length cycle containing (j, i) in Res(xxx, S), which, using the optimality conditions

(6), contradicts that x is optimal.

Consider the timing graph T (S). By the flow balance constraint (5b) at node j and as xij > 0, there

exists an arc (j, w1) with xj,w1
> 0 or an arc (w1, j) with xw1,j < 0. In both cases, the flow balance constraint

(5b) at node w1 implies that there exists an arc (w1, w2) with xw1,w2
> 0 or an arc (w2, w1) with xw2,w1

< 0.
Repeating this procedure, we finally must arrive at node i. This means that we constructed a walk from

j to i using arcs with positive flow in forward direction and arcs with negative flow in backward direction.

Hence, there exists an (undirected) path with node set (j = v0, v1, ..., vr = i) using arcs in this way. As all

arcs with positive (negative) flow give rise to a backward (forward) arc in the residual network Res(xxx, S),
C = (j, i = vr, vr−1, ..., v0 = j) is (the node set of) a cycle in Res(xxx, S).

We show that the length of cycle C is negative. First, arc (j, i) has length −U as the left slope at xij

is U (see (5d) and Figure 6). Second, look at all backward arcs (w, v) in C. The associated arc (v, w) in

timing graph T (S) has flow xvw > 0. By (5d), function Cvw(xvw) = −Fvw(q) + qxvw for some q with

0 < xvw ≤ avw(q) = Fvw(q + 1)− Fvw(q). Hence q must be so that the value of function Fvw increases from
q to q + 1. Therefore q must be at least ⌊αmin

w ⌋ if v = σ, pv if (v, w) ∈ A and ⌊δmin
vw ⌋ if (v, w) ∈ Q \ A. The

length of arc (w, v) in C, which is the negative of the left slope of Cvw at xvw, is then at most −q, hence

it is at most −⌊αmin
w ⌋ if v = σ, −pv if (v, w) ∈ A and −⌊δmin

vw ⌋ if (v, w) ∈ Q \ A. As αmin
w ≥ 0, pv > 0 and

δmin
vw ≥ 0, all costs associated to backward arcs are non-positive. Third, similarly, we can show that for each
forward arcs (v, w) in C, its length is at most ⌈αmin

w ⌉ if v = σ, pv if (v, w) ∈ A \ Q, ⌈δmin
vw ⌉ if (v, w) ∈ Q \ A

and max(pi, ⌈δ
min
vw ⌉) if (v, w) ∈ Q ∩A.

In summary, the length of arc (j, i) is −U = −maxv∈P (⌈αmin
v ⌉)−

∑

v∈I pv −
∑

(v,w)∈Q⌈δ
min
vw ⌉ by (3). If C

visits node σ, the total length of the two arcs incident to σ is not higher than maxv∈P (⌈α
min
v ⌉), and for each

other arc (v, w) in C, its length is not larger than max(pv, ⌈δ
min
vw ⌉). Then, it is easy to see that cycle C must

be of negative length. Finally, observe that
∑

(v,w) in C c
π
vw is exactly the length of cycle C, But by (6), this

must be non-negative. Hence, if xe > 0, x cannot be an optimal flow.

MIP formulation The following MIP was applied for the computational tests. We introduce a binary variable

xij for all distinct operations i, j ∈ I with M(i) = M(j) and J(i) 6= J(j). If xij = 1, operation i is executed
before j; otherwise, xij = 0 and operation j is executed before i. To capture the earliness and tardiness

values, we introduce two non-negative continuous variables βearly
K and βtardy

K for each job K. Finally, set Q
contains all pairs (i, j) of consecutive operations in all jobs. Then, we obtain the following MIP formulation

for JIT-JS-LIN:

minimize
∑

(i,j)∈Q

cstorIntij (δij − pi) +
∑

K∈J

(

cstorK (αK1
− rK) + cearlyK βearly

K + ctardyK βtardy
K

)

(7a)

subject to:

αK1
≥ rK for all K ∈ J , (7b)

αj − αi ≥ pi for all (i, j) ∈ Q, (7c)

αj − αi ≥ pi − U(1− xij) and

αi − αj ≥ pj − Uxij for all i, j ∈ I with M(i) = M(j), J(i) 6= J(j), (7d)



Manuscript 31

αj − αi − δij = 0 for all (i, j) ∈ Q, (7e)

βearly
K + αi ≥ dK − pi and

αi − βtardy
K ≤ dK − pi for all K ∈ J and i = K|K|, (7f)

βearly
K , βtardy

K ≥ 0 for all K ∈ J , (7g)

αi ∈ Z
∗ for all i ∈ I, (7h)

xij ∈ {0, 1} for all i, j ∈ I with M(i) = M(j), J(i) 6= J(j). (7i)

The objective (7a) minimizes the sum of the weighted earliness/tardiness and the intermediate storage

holding costs. Clearly, the first term in the objective (7a) can be replaced with
∑

(i,j)∈Q cstorIntij δij by omitting

the constant
∑

(i,j)∈Q −cstorIntij pi. The correspondence of the constraints (7c)-(7e) to (1b)-(1d) is obvious –
except that the disjunctive machine capacity constraints (1c) are linearized above in constraints (7d) through

the use of the sequencing variables x and the large constant U denoting the latest start time for any operation

as defined in Section 3. The extra constraints (7b) mandate that no first operation in any job starts before

the associated job’s release time. Furthermore, (7f) ensure that αK|K|
+ pK|K|

+ βearly
K − βtardy

K = dK for
all K ∈ J given the structure of these constraints and the positive penalty coefficents associated with the

earliness and tardiness variables in the objective (7a).

For JIT-JS-SUPERLIN, the superlinear tardiness costs (βtardy
K )l, K ∈ J are linearized as follows. For

each job K ∈ J , we introduce a continuous variable zK representing the tardiness cost for job K. In the

objective function (7a), the term ctardyK βtardy
K is then replaced by zK . The value of zK is bounded from below

by adding to (7) a linear constraint

zK ≥ a+ bβtardy
K with a = tl − bt, b = (t+ 1)l − tl

for each time point t ∈ {0, ..., U+maxK∈J pK|K|
}. It can easily be verified that maxt∈{0,...,U+maxK∈J pK|K|

} a+

bβtardy
K = (βtardy

K )l in an optimal solution.

Note that quadratic tardiness costs corresponding to l = 2 can directly be specified in the objective func-

tion for Gurobi to handle. For other values of l > 1, a direct specification is not possible and a linearization

technique, such as the one above, is typically applied.



32 Manuscript

References

J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop scheduling. Management
Science, 34(3):391–401, 1988.

R. H. Ahmadi and U. Bagchi. Minimizing job idleness in deadline constrained environments. Operations
Research, 40(5):972–985, 1992.

R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the convex cost integer dual network flow problem.
Management Science, 49(7):950–964, 2003.

M. S. Aktürk, A. Atamtürk, and S. Gürel. Parallel machine match-up scheduling with manufacturing cost
considerations. Journal of Scheduling, 13(1):95–110, 2010.

P. Amorim, H. Meyr, C. Almeder, and B. Almada-Lobo. Managing perishability in production-distribution
planning: A discussion and review. Flexible Services and Manufacturing Journal, 25(3):389–413, 2013.

S. Avci. Algorithms for Generalized Nonregular Scheduling Problems. PhD thesis, Lehigh University, 2001.

S. Avci and R. H. Storer. Compact local search neighborhoods for generalized scheduling problems. Technical

Report 04T-001, Industrial and Systems Engineering, Lehigh University, 2004.

E. Balas. Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Operations Re-

search, 17(6):941–957, 1969.

E. Balas and A. Vazacopoulos. Guided local search with shifting bottleneck for job shop scheduling. Man-
agement Science, 44(2):262–275, 1998.

P. Baptiste, M. Flamini, and F. Sourd. Lagrangian bounds for just-in-time job-shop scheduling. Computers
& Operations Research, 35(3):906–915, 2008.

J. C. Beck and P. Refalo. Combining local search and linear programming to solve earliness/tardiness schedul-
ing problems. In N. Jussien and F. Laburthe, editors, Proceedings of the Fourth International Workshop on

Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimization Problems

(CPAIOR), pages 221–235, 2002.

J. C. Beck and P. Refalo. A hybrid approach to scheduling with earliness and tardiness costs. Annals of

Operations Research, 118:49–71, 2003.

C. Bierwirth and J. Kuhpfahl. Extended GRASP for the job shop scheduling problem with total weighted

tardiness objective. European Journal of Operations Research, 261(3):835–848, 2017.

P. Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research,

41:157–183, 1993.

P. Brandimarte and M. Maiocco. Job shop scheduling with a non-regular objective: A comparison of neigh-

bourhood structures based on a sequencing/timing decomposition. International Journal of Production
Research, 37(8):1697–1715, 1999.

K. Bülbül. A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness
problem. Computers & Operations Research, 38(6):967–983, 2011.

K. Bülbül and P. Kaminsky. A linear programming-based method for job shop scheduling. Journal of
Scheduling, 16(2):161–183, 2013.

K. Bülbül, P. Kaminsky, and C. Yano. Flow shop scheduling with earliness, tardiness and intermediate
inventory holding costs. Naval Research Logistics, 51(3):407–445, 2004.

R. Bürgy. A neighborhood for complex job shop scheduling problems with regular objectives. Journal of
Scheduling, 20(4):391–422, 2017.



Manuscript 33

R. Bürgy and H. Gröflin. The blocking job shop with rail-bound transportation. Journal of Combinatorial

Optimization, 31(1):152–181, 2016.

R. Bürgy and H. Gröflin. The no-wait job shop with regular objective: A method based on optimal job

insertion. Journal of Combinatorial Optimization, 33(3):977–1010, 2017.

H. Chen and P. B. Luh. An alternative framework to lagrangian relaxation approach for job shop scheduling.

European Journal of Operational Research, 149(3):499–512, 2003.

B.-C. Cheng, A. D. Stoyenko, T. J. Marlowe, and S. K. Baruah. LSTF: A new scheduling policy for complex

real-time tasks in multiple processor systems. Automatica, 33(5):921–926, 1997.

T. Cheng and J. Jiang. Job shop scheduling for missed due-date performance. Computers & Industrial

Engineering, 34(2):297–307, 1998.

K. De Bontridder. Minimizing total weighted tardiness in a generalized job shop. Journal of Scheduling, 8

(6):479–496, 2005.

M. Drótos, G. Erdős, and T. Kis. Computing lower and upper bounds for a large-scale industrial job shop

scheduling problem. European Journal of Operational Research, 197(1):296–306, 2009.

S. Eilon and R. Hodgson. Job shops scheduling with due dates. International Journal of Production Research,

6(1):1–13, 1967.

I. Essafi, Y. Mati, and S. Dauzère-Pérès. A genetic local search algorithm for minimizing total weighted

tardiness in the job-shop scheduling problem. Computers & Operations Research, 35(8):2599–2616, 2008.

K. Fagerholt. A computer-based decision support system for vessel fleet scheduling - experience and future

research. Decision Support Systems, 37(1):35–47, 2004.

P. Farahani, M. Grunow, and H.-O. Günther. Integrated production and distribution planning for perishable

food products. Flexible Services and Manufacturing Journal, 24(1):28–51, 2012.

S. Gélinas and F. Soumis. Dantzig-wolfe decomposition for job shop scheduling. In Column Generation,

pages 271–302. Springer, 2005.

F. Glover. Tabu search and adaptive memory programming - advances, applications and challenges. Interfaces
in Computer Science and Operations Research, 7:1–75, 1996.

F. W. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

T. C. Gonçalves, J. M. S. Valente, and J. E. Schaller. Metaheuristics for the single machine weighted quadratic

tardiness scheduling problem. Computers & Operations Research, 70:115–126, 2016.

M. Á. González, I. González-Rodŕıguez, C. R. Vela, and R. Varela. An efficient hybrid evolutionary algorithm

for scheduling with setup times and weighted tardiness minimization. Soft Computing, 16(12):2097–2113,
2012.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287–326, 1979.

D. Grimes and E. Hebrard. Solving variants of the job shop scheduling problem through conflict-directed
search. INFORMS Journal on Computing, 27(2):268–284, 2015.

H. Gröflin, D. N. Pham, and R. Bürgy. The flexible blocking job shop with transfer and set-up times. Journal
of Combinatorial Optimization, 22(2):121–144, 2011.

D. J. Hoitomt, P. B. Luh, E. Max, and K. R. Pattipati. Scheduling jobs with simple precedence constraints
on parallel machines. IEEE Control Systems Magazine, 10(2):34–40, 1990.



34 Manuscript

J. Hurink and S. Knust. Tabu search algorithms for job-shop problems with a single transport robot. European

Journal of Operational Research, 162(1):99–111, 2005.

A. Jain and S. Meeran. Deterministic job-shop scheduling: Past, present and future. European Journal of

Operational Research, 113(2):390–434, 1999.

A. Janiak. Minimization of the blooming mill standstills - mathematical model, suboptimal algorithms.

Mechanika, 8(2):37–49, 1989.

P. Jaskowski and A. Sobotka. Using soft precedence relations for reduction of the construction project

duration. Technological and Economic Development of Economy, 18(2):262–279, 2012.

C. A. Kaskavelis and M. C. Caramanis. Efficient lagrangian relaxation algorithms for industry size job-shop

scheduling problems. IIE Transactions, 30(11):1085–1097, 1998.

T. Kis. Job-shop scheduling with processing alternatives. European Journal of Operational Research, 151(2):

307–332, 2003.

S. Kreipl. A large step random walk for minimizing total weighted tardiness in a job shop. Journal of

Scheduling, 3(3):125–138, 2000.

J. Kuhpfahl and C. Bierwirth. A study on local search neighborhoods for the job shop scheduling problem

with total weighted tardiness objective. Computers & Operations Research, 66:44–57, 2016.

S. Lawrence. Supplement to resource constrained project scheduling: An experimental investigation of

heuristic scheduling techniques. Technical report, Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh, PA, 1984.

Y. Mati, S. Dauzère-Pérès, and C. Lahlou. A general approach for optimizing regular criteria in the job-shop
scheduling problem. European Journal of Operational Research, 212(1):33–42, 2011.

H. Matsuo, C. Suh, and R. Sullivan. A controlled simulated annealing method for the general job shop
scheduling problem. Technical Report 03-04-88, Department of Management, Graduate School of Business,

The University of Texas at Austin, Austin, TX, 1988.

J.-N. Monette, Y. Deville, and P. Van Hentenryck. Just-in-time scheduling with constraint programming. In

Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS), pages

241–248, 2009.

K. G. Murty. Linear and Combinatorial Programming. John Wiley & Sons, 1976.

K. Neumann, C. Schwindt, and N. Trautmann. Advanced production scheduling for batch plants in process

industries. OR Spectrum, 24(1):251–279, 2002.

E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem. Management Science,

42(6):797–813, 1996.

E. Nowicki and C. Smutnicki. An advanced tabu search algorithm for the job shop problem. Journal of

Scheduling, 8(2):145–159, 2005.

H. Ohta and T. Nakatanieng. A heuristic job-shop scheduling algorithm to minimize the total holding

cost of completed and in-process products subject to no tardy jobs. International Journal of Production
Economics, 101(1):19–29, 2006.

N. R. Parsa, B. Karimi, and S. M. Husseini. Exact and heuristic algorithms for the just-in-time scheduling
problem in a batch processing system. Computers & Operations Research, 80:173–183, 2017.

B. Peng, Z. Lü, and T. C. E. Cheng. A tabu search/path relinking algorithm to solve the job shop scheduling
problem. Computers & Operations Research, 53:154–164, 2015.



Manuscript 35

F. Peng and Y. Ouyang. Track maintenance production team scheduling in railroad networks. Transportation

Research Part B: Methodological, 46(10):1474–1488, 2012.

M. Pinedo and M. Singer. A shifting bottleneck heuristic for minimizing the total weighted tardiness in a

job shop. Naval Research Logistics, 46(1):1–17, 1999.

G. P. Prastacos. Blood inventory management: An overview of theory and practice. Management Science,

30(7):777–800, 1984.

B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes disjonctives. Note de synthese

et formation. No. 9, SEMA, Paris, France, 1964.

N. M. Sadeh. Focused simulated annealing search: An application to job shop scheduling. Annals of Opera-

tions Research, 63(1):77–103, 1996.

D. Shabtay and G. Steiner. A survey of scheduling with controllable processing times. Discrete Applied

Mathematics, 155(13):1643–1666, 2007.

M. Singer and M. Pinedo. A computational study of branch and bound techniques for minimizing the total

weighted tardiness in job shops. IIE Transactions, 30(2):109–118, 1998.

M. A. Trick. Scheduling multiple variable-speed machines. Operations Research, 42(2):234–248, 1994.

R. J. M. Vaessens, E. H. Aarts, and J. K. Lenstra. Job shop scheduling by local search. INFORMS Journal

on Computing, 8(3):302–317, 1996.

E. Vallada and R. Ruiz. Genetic algorithms with path relinking for the minimum tardiness permutation

flowshop problem. Omega, 38(1-2):57–67, 2010.

W.-J. Van Hoeve, C. Gomes, B. Selman, and M. Lombardi. Optimal multi-agent scheduling with constraint

programming. In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI), pages

1813–1818, 2007.

P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by simulated annealing.

Operations Research, 40(1):113–125, 1992.

L. A. Vidal, E. Sahin, N. Martelli, M. Berhoune, and B. Bonan. Applying AHP to select drugs to be produced
by anticipation in a chemotherapy compounding unit. Expert Systems with Applications, 37(2):1528–1534,

2010.

T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. Timing problems and algorithms: Time decisions for

sequences of activities. Networks, 65(2):102–128, 2015.

M. Wennink. Algorithmic Support for Automated Planning Boards. PhD thesis, Eindhoven University of

Technology, 1995.

G. I. Zobolas, C. D. Tarantilis, and G. Ioannou. Exact, heuristic and meta-heuristic algorithms for solving

shop scheduling problems. In F. Xhafa and A. Abraham, editors, Metaheuristics for Scheduling in Industrial

and Manufacturing Applications, chapter 1, pages 1–40. Springer Berlin Heidelberg, 2008.


	Introduction
	The job shop scheduling problem with convex costs
	Problem formulation on a disjunctive graph

	The timing problem
	A transformation into a linear program
	A transformation into a network flow problem
	Solving the network flow and the timing problems

	A local search heuristic for JS–CONV
	An operation-swap-based neighborhood for JS–CONV
	A tabu search for JS–CONV

	An application: just-in-time job shop scheduling
	Experimental settings
	JIT-JS-LIN
	Small JIT-JS-LIN instances
	Larger JIT-JS-LIN instances

	JIT-JS-SUPERLIN

	Conclusion

