DIVERSITY OF microRNAs AND GENES TOWARDS DEVELOPMENT OF DROUGHT-TOLERANT WHEAT

by MELDA KANTAR

Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Sabancı University

January 2015

DIVERSITY OF microRNAs AND GENES TOWARDS DEVELOPMENT OF DROUGHT-TOLERANT WHEAT

APPROVED BY:

Prof. Dr. Hikmet Budak (Thesis Supervisor)

Prof. Dr. Yusuf Menceloğlu

Assoc. Prof. Levent Öztürk

Assoc. Prof. Ali Koşar

Asist. Prof. Bahar Soğutmaz Özdemir

Buder

DATE OF APPROVAL: 30/12/2014

© MELDA KANTAR 2015

All Rights Reserved

ABSTRACT

DIVERSITY OF microRNAs AND GENES TOWARDS DEVELOPMENT OF DROUGHT-TOLERANT WHEAT

Melda Kantar Biological Sciences and Bioengineering Department PhD Thesis, 2015

Prof. Dr. Hikmet Budak (Thesis Supervisor)

Keywords : microRNA, Triticeae, drought, wheat improvement

World is threatened by global warming resulting in elevated incidence of drought, the primary cause of yield loss in wheat. Domestication of wheat species, followed by years of breeding for maximum yield, has eradicated genetic diversity in the long run and leading to the loss of valuable alleles for drought stress tolerance in today's elite cultivars. Cellular responses to stress conditions usually involve intermingled, complex networks of gene interactions. Therefore, understanding the molecular basis of stress responses in wheat and related species is highly challenging but also, crucial. In the first project, we introgressed drought-related genomic regions to elite germplasm, providing potentially high drought tolerant bread wheat. Although the capacity of plants to tolerate drought is largely coded in their genomes, it is of equal importance to understand the efficient activation of drought response mechanisms by elaborating regulation of a complex network of gene interactions. Integral to these stress responses are, undoubtedly, microRNAs, which act as post-transcriptional regulators of gene expression. In the second project, we identified and investigated microRNAs and their target genes in wheat and related species and further characterized their responses to drought. Comparative analyses of microRNA repertoires and microRNA target functions across several wheat species indicate conserved or unique patterns of drought tolerance mechanisms. microRNA repertoires reported here will be convenient for further studies expanding our understanding of gene regulation across wheat and related species and the role of microRNAs in drought tolerance.

ÖZET

KURAKLIĞA DİRENÇLİ BUĞDAY GELİŞTİRİLMESİNE YÖNELİK GENLERİN VE mikroRNA'LARIN ÇEŞİTLİLİĞİ

Melda Kantar

Biyolojik Bilimler ve Biyomühendislik Bölümü Doktora Tezi, 2014

Prof. Dr. Hikmet Budak (Tez Danışmanı)

Anahtar kelimeler: mikroRNA, Triticeae, kuraklık, buğday geliştirilmesi

Dünva genelinde buğday verim kaybının en önemli nedeni olan kuraklık, son yıllarda küresel ısınma ile büyük oranda artmıştır. Buğday türlerinin ehlilestirilmesini takiben vüksek verime vönelik ıslah calısmaları, uzun vadede gen cesitliliğini önemli ölcüde daraltmış, günümüzde kullanılmakta olan elit buğday çeşitlerinde, kuraklık direnci açısından önemli alellerin kaybına neden olmuştur. Bitkilerde, stres koşullarına hücresel vanıtlar çoğunlukla karmasık gen etkilesim ağları ile sağlanır. Bu nedenle buğdav ve ilgili türlerde stres moleküler mekanizmalarının aydınlatılması oldukça zor, ancak bir o kadar da önemlidir. Bu projede ilk olarak, kuraklığa ilişkin önemli genomik bölgeleri elit türlere aktararak, potansiyel olarak kuraklığa dirençli ekmeklik buğday geliştirdik. Kuraklığa direnç kapasitesi, büyük ölçüde bitkinin genomu tarafından belirlense de, karmasık gen etkilesim ağlarının regülasyonu incelemek, kuraklık mekanizmalarının etkili bir şekilde aktivasyonunu anlamak açısından genom bazında yapılan çalışmalar kadar önemlidir. Bu bağlamda, gen ekspresyonunun post-transkripsiyonel olarak regülasyonunda görev alan mikroRNA adlı moleküllerin incelenmesi büyük önem taşımaktadır. Projenin ikinci kısmında, buğday ve ilgili türlerde bulunan mikroRNAları ve bu moleküllerin hedef genlerini saptadık ve kuraklığa ilişkin olarak karakterize ettik. mikroRNA repertuarlarının ve fonksiyonlarının karşılaştırmalı analizi, korunmuş veya türe özgü kuraklık direnç mekanizmalarına işaret etmektedir. Bu çalışmada saptanan mikroRNAlar, buğday ve ilgili türlerde gen regülasyonunun ve mikroRNAların kuraklık direncindeki rolünün aydınlatılması kapsamında ileri çalışmalar açısından önem taşımaktadır.

With all my heart,

To all PHD students

ACKNOWLEDGEMENTS

First of all, I would like to thank to my supervisor Prof. Dr. Hikmet Budak. His advices throughout my doctroral years were priceless for me. He has influenced me in ways that transcend academics and his voice will guide me throughout my career and my life.

I would also like to thank each member of my thesis committee: Prof. Dr. Yusuf Menceloğlu, Assoc. Prof. Levent Öztürk, Assoc. Prof. Ali Koşar and Assist. Prof. Bahar Soğutmaz Özdemir. I am grateful for their valuable comments.

I wish to express my gratitude to my lab members: Dr. Stuart James Lucas for his assistance and Dr. Meral Yüce, Bala Anı Akpınar, Reyyan Bulut, Zaeema Khan, Naimat Ullah, Deniz Adalı, İpek Özdemir, Burcu Alptekin and Babar Hussain for their support. Additionally I am very grateful to Barış Tümer for his time and valuable technical assistance. I would also like to thank Yusuf Tutuş and Mustafa Atilla Yazıcı for their assistance during my experiments in the greenhouse and growth chambers. I especially want to thank Yusuf Tutuş for all his time and guidance.

I would also like to thank the Scientific and Technological Research Council of Turkey for the financial support they have provided during my doctoral years.

Finally and most important of all I would like to express my sincerest gratitude to my dear mother and father for their infinite support, patience and faith in me. I especially want to thank to my ever young sister, Selda Kantar and my dear friend with the kindest heart, Reyyan Bulut. I owe all my achievements to their unconditional support and love.

TABLE OF CONTENTS

1.INTRODUCTION	1
2.OVERVIEW	3
2.1. Triticeae	3
2.1.1. Barley as a Major Crop	5
2.1.2. Wheat as a Major Crop	6
2.2. Drought as a Major Abiotic Stress Factor	8
2.2.1. Drought Tolerance	9
2.2.2. Molecular Biology of Drought	9
2.2.3. Wild Progenitors of Domesticated Crops	11
2.2.3.1. Wild Emmer Wheat	12
2.2.4. microRNAs	13
2.2.4.1. microRNA Biogenesis and Mechanism of Silencing	14
2.2.4.2. Methods of microRNA Identification	16
2.2.5. Identification of Drought-related Molecules in <i>Triticeae</i>	18
2.2.5.1. Drought-related Quantitative Trait Locus Identification in Triticeae	18
2.2.5.2. Drought-related microRNA Identification in <i>Triticeae</i>	20
2.2.6. Improvement of Drought-Tolerant Cultivars	21
3.MATERIALS AND METHODS	23
3.1. Materials	23
3.1.1. Chemicals, Fertilizers and Enzymes	23
3.1.2. Molecular Biology Kits	23
3.1.3. Plant Material	23
3.1.4. DNA Material	24
3.1.5. Equipments	24
3.2. Methods: Barley microRNAs and Drought	24
3.2.1. Computer-based Identification of Barley microRNAs	24
3.2.1.1. Sequence Datasets	24
3.2.1.2. Homology-based In Silico microRNA Identification	25
3.2.2. In Silico Identification of microRNA Targets	26
3.2.3. Drought Responsive microRNAs and their Targets	27
3.2.3.1. Plant Materials, Growth Conditions and Dehydration Stress	27

	3.2.3.2. Total RNA Isolation from Leaf and Root	. 27
	3.2.3.3. Stem-loop Reverse Transcription of microRNAs	. 28
	3.2.3.4. microRNA Quantitative Real Time Assays	. 28
	3.2.3.5. Target mRNA Verification by Quantitative Real Time Assay	. 29
	3.2.3.6. Cleaved Target mRNA Identification by RNA Ligation Mediated Rapid Amplification of Complementary DNA ends	. 30
3	.3. Methods: Wild Emmer Wheat microRNAs and Drought	. 32
	3.3.1. microRNA Identification with Hybridization Chip	. 32
	3.3.1.1. Plant Materials, Growth Conditions and Dehydration Stress	. 32
	3.3.1.2. Total RNA Isolation from Leaf and Root	. 32
	3.3.1.3. Microarray Chip Content and Hybridization to Arrays	. 33
	3.3.1.4. Microarray Data Analysis	. 33
	3.3.2. Additional Computational Analysis	. 34
	3.3.2.1. Stem-loop Verification of microRNAs Identified by Chip	. 34
	3.3.2.2. Prediction of Targets for Drought Responsive microRNAs	. 34
3	.4. Methods: Analysis of Bread Wheat 5D Chromosome microRNA Repertoire	. 35
	3.4.1. Computer-based Identification of 5D Chromosome microRNAs	. 35
	3.4.1.1.Sequence Datasets	. 35
	3.4.1.2. Automated Homology-based In silico microRNA Identification	. 35
	3.4.2. Additional Computational Analysis	. 36
	3.4.2.1. Representation Analysis of Putativ e microRNA-coding Sequences	. 36
	3.4.2.2. Repeat Analysis of Putative microRNA-coding Sequences	. 37
	3.4.2.3. In silico Target Identification of Putative microRNAs	. 37
	3.4.2.4. In silico Expression Analysis of Putative microRNAs	37
	3.4.3. Mapping and Quantification of microRNA-coding Sequences	. 38
	3.4.3.1. Plant Materials and Growth Conditions	. 38
	3.4.3.2. Plant DNA and RNA Material	. 39
	3.4.3.3. Endpoint- and Reverse Transcription-PCR Screening of Preliminary microRN	As
		. 39
	3.4.3.4. Quantitative Real Time PCR of Preliminary microRNAs	40
3	.5. Methods: Introgression of Drought-related Quantitative Trait Loci to Elite Cultivars	. 41
	3.5.1. Plant Materials and Growth Conditions	. 41
	3.5.2. Procedure for Intercultivar Crosses	42
	3.5.3. Molecular Screening for Introgression	. 45
	3.5.4. Backcrossing Against the Parental Background	. 46

4.RESULTS
4.1. Barley microRNAs and Drought
4.1.1. Putative Barley microRNAs and their Characteristics
4.1.2. Putative Barley microRNA Targets
4.1.3. Dehydration Responsive Barley microRNAs52
4.1.4. Dehydration Responsive Barley microRNA Targets
4.1.5. Drought Induced Target Cleavage by Barley microRNAs55
4.2. Wild Emmer Wheat microRNAs and Drought57
4.2.1. Wild Emmer Wheat Root and Leaf microRNAs57
4.2.2. Dehydration Responsive Wild Emmer Wheat microRNAs
4.2.3. Stem-loop Verification for Wild Emmer Wheat microRNAs
4.2.4. Putative Targets of Dehydration Responsive Wild Emmer Wheat microRNAs 63
4.3. Analysis of Bread Wheat 5D Chromosome microRNA Repertoire
4.3.1. Putative Bread Wheat 5D Chromosome microRNA Repertoire
4.3.2. Genomic Representation of Putative Bread Wheat 5D Chromosome microRNA
Repertoire
4.3.3. Repeat Content of Putative Bread Wheat 5D Chromosome microRNA Repertoire .72
4.3.4. Putative Targets of Predicted Bread Wheat 5D Chromosome microRNAs
4.3.5. Computational Evidence for Expression of Predicted Bread Wheat 5D Chromosome pre-microRNAs
4.3.6. Localization and Quantification of pre-microRNA Coding Regions on Bread Wheat 5D Chromosome
4.3.7. Expression of pre-micro2118 from Bread Wheat 5D Chromosome
4.4. Introgression of Drought-related Quantitative Trait Loci to Elite Cultivars
4.4.1. Establishment of F1 Plants Carrying Drought-related Quantitative Trait Loci81
4.4.2. Establishment of BC3F2 Plant Carrying Drought-related Quantitative Trait Locus 82
5.DISCUSSION
6.CONCLUSION
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G

APPENDIX H	
APPENDIX I	
APPENDIX J	110
APPENDIX K	
APPENDIX L	
APPENDIX M	114
APPENDIX N	117
APPENDIX O	119
APPENDIX P	
APPENDIX R	
APPENDIX S	
REFERENCES	

LIST OF TABLES

Table 1 Fraction length values of homozygous bread wheat group-5 chromosome
deletion lines used in this research
Table 2 List of computer based newly identified barley microRNAs and their
characteristics
Table 3 Major characteristics of predicted barley preliminary microRNAs
Table 4 Expressed sequence tag and protein hits obtained by computational analysis of
barley cleaved sequences identified using RNA ligation mediated rapid amplification of
complementary DNA ends
Table 5 Wild emmer wheat microRNAs complementary to microarray probes showing
altered expression in response to drought stress
Table 6 Targets of drought responsive microRNAs identified by the microarray and
their functions
Table 7 List of identified putative bread wheat 5D chromosome microRNAs
Table 8 Statistics for selected putative preliminary microRNAs of short and long arms
of bread wheat 5D chromosome
Table 9 Representation of putative microRNA coding regions on bread wheat short and
long chromosome arms separately and cumulatively71
Table 10 Putative bread wheat 5D chromosome microRNAs and DNA transposon
contents of their preliminary microRNA sequences74
Table 11 miRBase deposited experimentally confirmed targets for homologs of bread
wheat 5D chromosome microRNAs
Table 12 List of expressed sequence tags that have high homology to putative bread
wheat 5D chromosome microRNAs

LIST OF FIGURES

Figure 1 Phylogenetic tree of <i>Triticeae</i> species with divergence time estimates
Figure 2 Geographic distribution of average production of (a) barley (b) wheat between
years 1993-2013
Figure 3 Geographic distribution of percentage of water withdrawal for agricultural use
between years 1990-2010
Figure 4 Simplified model of microRNA biogenesis and function in plants
Figure 5 Flow chart showing steps of in silico homology based microRNA
identification and its automation with two in-house perl scripts
Figure 6 Multiple bread wheat plant sets grown for cross-pollination of different
cultivars. (a) multiple plant sets sown with 5-10 days intervals (b) one representative
Tosunbey plant from each set sown with 5-10 days intervals
Figure 7 Procedure of cross-pollination. (a) spikes at the appropriate developmental
stage to be used as a male (left) and female (right) (b) female (left) and male (right)
spikes prepared for crossing (c) female plants for cross-pollination: Kukri (upper left),
Tosunbey (upper right), RAC875 (lower left) and Bolal (lower right)
Figure 8 Drought related quantitative trait loci mapped to bread wheat chromosome 3B
using Kukri and RAC875 recombinant inbred lines46
Figure 9 Multiple sequence alignment of predicted barley preliminary microRNA160a
and preliminary microRNA160a's in other species
Figure 10 Quantification of barley microRNAs and their targets in leaf and root tissues
in response to dehydration. (a) microRNA171-target BQ4610131.1 (b) microRNA156-
target AV910992.1 (c) microRNA408-microRNA166
Figure 11 Barley microRNA166 amplification in control and drought stressed leaf and
root tissues and confirmation of specific amplification with no reverse transcription and
no RNA controls through melting curve analysis and agarose gel electrophoresis. (a)
amplification and melting curves of quantitative real time PCR (b) agarose gel
electrophoresis of quantitative real time PCR products
Figure 12 Venn diagram indicating common and unique differentially expressed wild
emmer wheat microRNAs in two different tissues under two different drought
treatments

Figure 13 Heat map of microarray data showing differentially expressed wild emmer
wheat microRNAs by tissue and drought treatment, clustered according to expression
pattern. (a) clustering performed by the self-organizing map method using Euclidean
distance in which green indicates low signal intensity and red high signal intensity (b)
complete hierarchical clustering carried out using Euclidean distance in which color
coding is according to the scale given61
Figure 14 Predicted stem-loop structures of wild emmer wheat microRNAs identified
by the microarray
Figure 15 Mature microRNA length distribution of putative bread wheat 5D
chromosome microRNAs67
Figure 16 Predicted stem-loop structures of selected putative bread wheat 5D
chromosome microRNAs
Figure 17 Distribution of repeats of distinct subfamilies in putative bread wheat 5D
chromosome preliminary microRNA repertoire. (a) for the long chromosome arm
microRNAs (b) for the short chromosome arm microRNAs73
Figure 18 Distribution of predicted target functions of putative bread wheat 5D
chromosome microRNAs75
Figure 19 Screening for the specific presence of preliminary microRNA coding regions
on long and short arms of bread wheat 5D chromosome. (a) microRNA169 (b)
microRNA5085 (c) microRNA5070 (d) microRNA6220 (e) microRNA211877
Figure 20 Screening for the location of preliminary microRNA coding regions on short
and long arms of bread wheat 5D chromosome. (a) microRNA169 (b) microRNA5085
Figure 21 Quantification of gene copy number of preliminary microRNA coding
regions. (a) comparative levels of microRNA169, microRNA5085, microRNA6220 and
microRNA5070 coding regions in bread wheat cultivar Chinese Spring (b) comparative
levels of microRNA5070 coding regions on 5D chromosome and other bread wheat
chromosomes with its quantification in nullitetrasomic line N5DT5A and bread wheat
cultivar Chinese Spring
Figure 22 Evidence for preliminary microR2118 expression in bread wheat adult leaves.
(a) agarose gel electrophoresis of samples amplified by endpoint PCR (b) quantitative
real time PCR amplification and melting curves80

Figure 23 Amplification of XBARC77 simple sequence repeat marker in filial 1 plants.
(a) three Bolal female X Kukri male plants (b) three RAC875 female X Tosunbey male
plants (c) Tosunbey male X Kukri female plant
Figure 24 Amplification of XBARC77 simple sequence repeat marker in backcross 3
filial 2 plants succeded from Bolal female X Kukri male filial 1 plants

ABBREVIATIONS

°C	Degree Celcius
5DS	5D chromosome short arm
5DL	5D chromosome long arm
μ	Micro
μΡC	MicroPC
ABA	Abscisic acid
AGO	Argonaute
BAC	Bacterial Artificial Chromosome
BLAST	Basic Local Alignment Search Tool
BLASTn	Nucleotide-Nucleotide BLAST Algorithm
BLASTP	Protein-Protein BLAST Algorithm
BLASTX	Nucleotide-Protein BLAST Algorithm
bp	Basepair
bp cal	Basepair Calory
-	-
cal	Calory
cal cDNA	Calory Complementary DNA
cal cDNA CP1	Calory Complementary DNA C-Terminal Domain Phosphatase-Like1 Protein
cal cDNA CP1 CV	Calory Complementary DNA C-Terminal Domain Phosphatase-Like1 Protein Coefficient of Variation
cal cDNA CP1 CV DCL1	Calory Complementary DNA C-Terminal Domain Phosphatase-Like1 Protein Coefficient of Variation Dicer-Like 1 Protein
cal cDNA CP1 CV DCL1 DH	Calory Complementary DNA C-Terminal Domain Phosphatase-Like1 Protein Coefficient of Variation Dicer-Like 1 Protein Doubled Haploid
cal cDNA CP1 CV DCL1 DH DNA	Calory Complementary DNA C-Terminal Domain Phosphatase-Like1 Protein Coefficient of Variation Dicer-Like 1 Protein Doubled Haploid Deoxyribonucleic Acid
cal cDNA CP1 CV DCL1 DH DNA dNTP	Calory Complementary DNA C-Terminal Domain Phosphatase-Like1 Protein Coefficient of Variation Dicer-Like 1 Protein Doubled Haploid Deoxyribonucleic Acid Deoxynucleotide

En/Spm	Enhancer/Suppressor-Mutator Transposable Element Family
EST	Expressed Sequence Tag
F	Filial
FAO	Food and Agricultural Organization of the United Nations
FL	Fraction Length
g	Gram
gDNA	Genomic DNA
G+C	Guanine-Cytosine
HEN1	HUA ENHANCER1
HSP	Heat Shock Protein
HST	HASTY
HYL1	HYPONASTIC LEAVES 1
k	Kilo
1	Liter
LEA	Late Embryogenesis Abundant Protein
LINE	Long Interspersed Nuclear Element
LTR	Long Terminal Repeat
m	Mili
М	Molar
m7Gppp	5' 7-methylguanosine cap
MAS	Marker-Assisted Selection
$MFE(\Delta G)$	Minimum Folding Free Energy
MFEI	Minimal Folding Free Energy Index
MgCl ₂	Magnesium Chloride
min	Minute
MIR	microRNA Encoding Gene

miRNA	microRNA
miRNA*	microRNA Passenger Strand
mol	Mole
mRNA	Messenger RNA
MuDR	Mutator Transposable Element Family
n	Nano
NCBI	National Center for Biotechnology Information
ncRNA	Non coding RNA
NGS	Next Generation Sequencing
NIL	Near Isogenic Line
nt	Nucleotide
ORF	Open Reading Frame
PCR	Polymerase Chain Reaction
PIWI	P-element induced wimpy testis
PlantGDB	Plant Gene DataBase
poly(A)	Polyadenylate
ppm	Parts Per Million
pre-miRNA	Preliminary microRNA
pri-miRNA	Primary microRNA
qRT-PCR	Quantitative-Real Time Polymerase Chain Reaction
QTL	Quantitative Trait Loci
RIL	Recombinant Inbred Line
RISC	RNA-induced silencing complex
RLM-RACE	RNA Ligation Mediated Rapid Amplification of complementary DNA ends
RNA	Ribonucleic Acid
RNase	Ribonuclease

ROS	Reactive Oxygen Species
rRNA	Ribosomal RNA
RT	Reverse Transcription
RT-PCR	Reverse Transcription PCR
S	Second
SE	SERRATE
siRNA	Small Interfering RNA
sRNA	Small RNA
SSR	Simple Sequence Repeat
Taq	Thermus Aquaticus
TcMar	TcMariner Transposable Element family
TGH	TOUGH
tRNA	Transfer RNA
U	Unit
UTR	Untranslated Region

1.

1.INTRODUCTION

With increasing demands on land and water, simply relying on existing resources is not possible and we need to produce more from the available resources. This is not the first time world has faced such a challenge. Approximately half a century ago, population growth threatened to overtake food production and at that point, it was discovered that semi-dwarf mutants of wheat produced much more grain than their taller relatives. A series of research, development and technology transfer initiatives socalled Green Revolution has led to steady annual increases in grain production, in which selective breeding for yield and other important traits played an important role (Kantar, Lucas, and Budak 2011).

However, this growth may no longer be adequate to meet future demand (Tester and Langridge 2010). World is threatened by global warming resulting in increased incidence of environmental stresses, making stabilizing yields as much of a challenge as increasing them. Climate change has detrimental consequences particularly for crops which hold great economic value (Habash, Kehel, and Nachit 2009). Drought, arguably the most significant single abiotic stress factor is currently increasing worlwide, effecting progressively more arable land and impacting agricultural production.

Wheat and its related species are of great importance, constituting the primary sources of food and feed consumption. However, domestication of wheat species, followed by years of cultivation, genetics and breeding practices has considerably narrowed gene pools of today's elite cultivars. These practices introduce an artificial selection pressure for yield, ultimately eradicating genetic diversity, resulting in the loss of valuable alleles for drought stress tolerance. Ironically, the semi-dwarfism trait that drastically improved grain yields 50 years ago makes wheat more vulnerable to drought in many cases. Therefore, it is crucial to take initiatives for the next Green Revolution to develop wheat yielding high even under water-limited environments.

For improvement of drought tolerant wheat varieties, understanding the molecular basis of stress responses in modern crops and their drought tolerant wild progenitors; and effective transfer of this molecular information to breeding are crucial. However, this is also highly challenging since cellular responses to stress usually involve intermingled networks of molecular interactions. Although the capacity of plants to tolerate drought is coded from their genomes, it is of equal importance to understand the efficient activation of drought response mechanisms by elaborating the complex system of gene regulation. Integral to this stress regulation are, undoubtedly, microRNAs (miRNAs) which act as post-transcriptional regulators of gene expression.

Here, we identified and investigated miRNAs and their target genes in different *Triticaea* species and further characterised their responses to drought. Comparative miRNA repertoires reported here hold valuable information regarding to conserved or unique patterns of molecular response to stress. This information will be convenient for further studies expanding our understanding of gene regulation across *Triticaea* and the role of miRNAs in drought tolerance. Besides, also in this project, in an effort to improve drought tolerance in modern wheat with high yield characteristics, we introgressed a recently identified drought related genomic region from South Austrialian cultivars to European elite germplasm. This new wheat genotype potentially high yielding under water-limited environments is available for further physiological and environment targeted field testing.

2.OVERVIEW

2.1. Triticeae

The tribe *Triticeae* of the subfamily *Pooideae* in the monocototyledonous grass family (Poaceae), includes nearly 400 perennial and 100 annual taxa. Triticeae has played an extremely valuable role in human civilization and it includes species that are indispensable for human welfare. It encompasses forage and lawn grasses as well as several agriculturally important domesticated major crops from the genera Hordeum (barley), Triticum (wheat) and Secale (rye), which are traditionally cultivated in the temperate zone. These species have been used as staple food and beverages in various ways throughout the history of mankind. Triticeae species have a complex evolutionary history being subjected to domestication. A phylogenetic tree of Triticeae species with divergence time estimates is shown in Figure 1 (Middleton et al. 2014). Triticeae tribe has a basic chromosome number of seven and comprises diploids (2n=2x=14), as well as species with varying degrees of polyploidy up to duodecaploids (2n=12x=84). Allopolyploidization, a cytogenetic process during hybridization resulting in the presence of complete chromosome sets of both parents in the progeny, has been and still is the major driving force on this tribe's evolution. Hence, this natural process has been utilized to artificially create species through intergeneric or interspecific hybridization, increasing the genetic variability within the tribe. For instance, Triticale (Triticosecale), a currently commercial crop was synthesized by artificial hybridization to develop a crop with high grain quality and quantity of wheat, and superior stress tolerance of rye. Elucidation of molecular mechanisms underlying differential yield and stress characteristics of Triticeae genera, species, subspecies and cultivars and their

integration into breeding programmes is crucial for further improvement of their agronomic performance and ameliorate the effects of climate change (Middleton et al. 2014; Wang and Lu 2014; Wang et al. 2010).

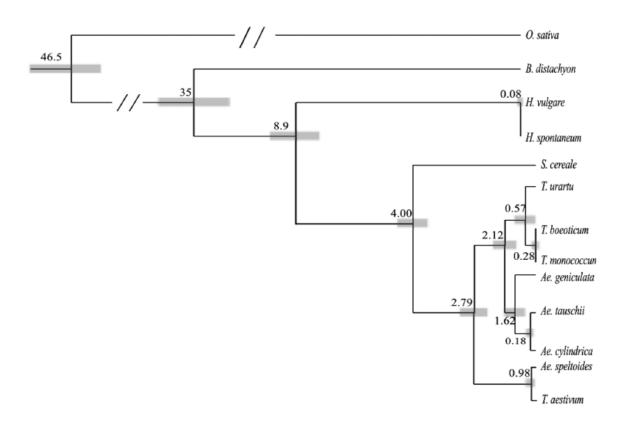


Figure 1 Phylogenetic tree of *Triticeae* species with divergence time estimates. Divergence times are shown as numbers at anchors in million years. Gray boxes represent standard deviations of divergence times.
Analysis was performed using chloroplast sequences and tree was drawn according to the divergence of *Oryza sativa* and *Brachypodium distachyon* as anchor points.
(*O.sativa: Oryza sativa, B. distachyon: Brachypodium distachyon, A.geniculata: Aegilops geniculata, A. cylindrica: Aegilops cylindrica, A. speltoides: Aegilops speltoides, A. tauschii: Aegilops tauschii, T. aestivum: Triticum aestivum, T. monococcum: Triticum monococcum, T. boeticum: Triticum boeticum, T. urartu: Triticum urartu, H. spontaneum: Hordeum spontaneum, H. vulgare: Hordeum vulgare, S. cereale: Secela cereale*) (Middleton et al. 2014)

2.1.1. Barley as a Major Crop

Cultivated barley (*Hordeum vulgare* L; 2n=2x=14), domesticated from its wild progenitor Hordeum vulgare ssp. spontaneum 10,000 years ago in the Near East Fertile Crescent, is among the founder crops of agriculture (Badr et al. 2000). It is currently the fourth most abundant cereal grain globally both in terms of agricultural area (approximately 5 million hectar) and annual production (approximtely 145 million metric tons) based on Food and Agriculture Organization of United Nations (FAO) statistics of 2013 (http://faostat.fao.org). Geographic distribution of average barley production between years 1993-2013 is shown in Figure 2 a. This crop is majorly used as an animal feed (75%) and also malted for beverage production (20%). It is also recently becoming popular as human food owing to the high content of soluble diatary fibre in its grain, which reduces the risk of multiple serious human diseases. In addition to its agricultural importance, due to its diploid, relatively low complexity genome and self-pollinating nature, it has been traditionally considered as a *Triticeae* model species for genetics and breeding. Hence, currently, an extensive amount of barley genetic resources and tools are available including molecular markers, genetic maps, large collection of expressed sequences, bacterial artificial chromosome (BAC) clone constructs, mutant collections, large scale of double haploids and barley transformation techniques. Recently, a physical map representing 95% of the barley genome (haploid barley genome: 5.1 gigabasepairs) was also developed. Barley genome was estimated to contain approximately 30,400 genes. Through homology to annotated genomes of Pooaceae model species 26,159 genes were determined with high confidence, of which 24,154 were positioned on the physical/genetic scaffold (Mayer et al. 2011, 2012). Full annotation of barley genome is expected to be available in the near future (http://webblast.ipk-gatersleben.de/barley/index.php). As its sequence databases are enriched, large collections of germplasm containing barley elite varieties and wild accessions are also available. These are undoubtedly rich resources for crop improvement since barley is more stress tolerant than its close relative wheat, being widely adapted to diverse environmental conditions (Kantar, Unver, and Budak 2010; Mayer et al. 2012; Mrízová et al. 2014)

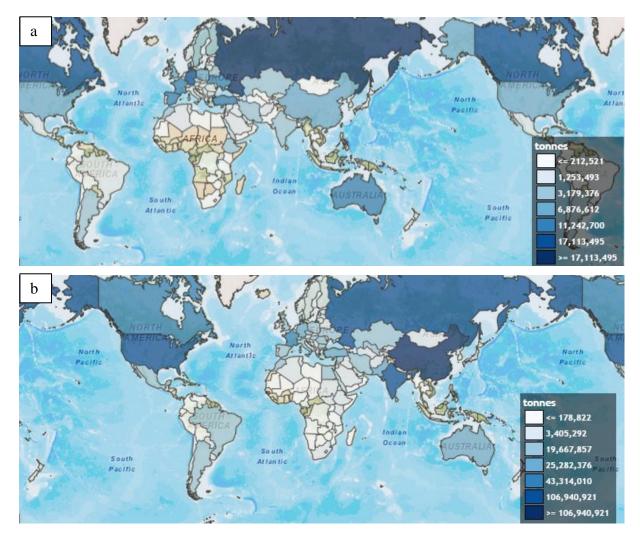


Figure 2 Geographic distribution of average production of (a) barley (b) wheat between years 1993-2013. (http://faostat.fao.org)

2.1.2. Wheat as a Major Crop

Wheat is currently the most extensively grown crop in the world covering 30% of the agricultural area (approximately 218 million hector) used for cereal cultivation. With a global annual production of over 713 million tones, wheat is the third most abundantly produced crop, following maize and rice (based on FAO statistics of 2013; <u>http://faostat.fao.org</u>). Geographic distribution of average wheat production between years 1993-2013 is shown in Figure 2 b. Wheat is a fundamental source for protein, vitamins and minerals for human food consumption, providing almost 20% of the human dietary energy supply in calories (http://www.fao.org, 2011). Wheat cultivation and domestication has been directly associated with the spread of agriculture. Cultivated

wheat refers mainly to two types: hexaploid bread wheat (*Triticum aestivum* L.; AABBDD, 2n=6x=42) accounting for about 95% of world wheat production, and the tetraploid durum wheat (*T. turgidum* ssp. *durum;* AABB, 2n=4x=28) accounting for the remaining 5%. Domesticated tetraploid durum is one of the oldest cultivated cereal species in the world and its domestication from wild emmer wheat (*T. turgidum* ssp. *dicoccoides*; AABB, 2n=4x=28) in the Near East Fertile Crescent, dates to approximately 10,000 year ago. Allohexaploid bread wheat is originated from a hybridization between cultivated allotetraploid emmer wheat and diploid goat grass (DD, *Aegilops tauschii*) approximately 8,000 years ago in the Near East Fertile Crescent. The three diploid genome progenitors: *Triticum urartu* (AA), *Aegilops tauschii* (DD) an unknown BB progenitor (possibly *Sitopsis* section species similar to *Aegilops speltoides*) radiated from a common *Triticeae* ancestor 2.5-4.5 million years ago and AABB tetraploids arose less than 0.5 million years ago (Brenchley et al. 2012; Feldman 2001; Kurtoglu, Kantar, and Budak 2014).

Large (~17 gigabasepairs), highly repetitive (80%) wheat genome with three homeologous, but divergent subgenomes has for long been considered refractory to sequencing. Despite its complexity, recently a great progress has been achieved in elucidating the genomic background of wheat with the development of next generation sequencing technologies. Hence, wheat genome was estimated to harbour 94,000-96,000 genes, of which two-thirds were assigned to subgenomes through comparisons to diploid ancestral genomes (Brenchley et al. 2012). Besides, the recent advent of chromosome flow sorting technique rendered the study of individual chromosomes, resolving the problem of identifying which sub-genome a particular feature belongs to. Draft survey sequencing of bread wheat chromosomes is currently available (Berkman et al. 2011; Hernandez et al. 2012; Lucas and Budak 2012; Tanaka et al. 2014; Vitulo et al. 2011). Projects are now underway to develop chromosome based physical maps, so far reported for 1AL, 1AS, 1BS, 1BL, 3B and 6A (Breen et al. 2013; Lucas et al. 2013; Paux et al. 2008; Philippe et al. 2013; Poursarebani et al. 2014; Raats et al. 2013). These physical maps will serve as substrates to the end of completing the reference sequences of all bread wheat chromosomes (International Wheat Genome Sequencing Consortium, www.wheatgenome.org) as produced recently for 3B (Choulet et al. 2014). Increasing knowledge on wheat genome structure has accelerated discovery of genes underlying important agronomic traits to the end of improving this major crop.

2.2. Drought as a Major Abiotic Stress Factor

To meet the demands of the ever-growing population, world food production needs to be doubled by the year 2050 (Qin, Shinozaki, and Yamaguchi-Shinozaki 2011; Tilman et al. 2002). Abiotic stresses, as the primary causes of agricultural loss worldwide, are estimated to result in an average yield loss of more than 50% for most crops (Akpinar, Lucas, and Budak 2013; Boyer 1982; Bray, Bailey-Serres, and Weretilnyk 2000; Qin et al. 2011). Global environmental warming, with the prospect of increasing environmental stresses threatens the world's food supply, making stabilizing yields as much of a challenge as increasing them (Kantar, Stuart J Lucas, et al. 2011; Nevo and Chen 2010). Drought in crop production results from a shortage of water in the root zone (Nevo and Chen 2010; Salekdeh et al. 2009). Constant and sproadic periods of drought is currently the most prominent and widespread abiotic stress, accounting for a significant portion of the yield loss resulting from abiotic factors and effecting more than 10% of arable land (Akpinar et al. 2013; Bray et al. 2000; Kantar, Stuart J Lucas, et al. 2011). Geographic distribution of water withdrawal for agricultural use between years 1990-2010 (<u>http://faostat.fao.org</u>) is shown in Figure 3.

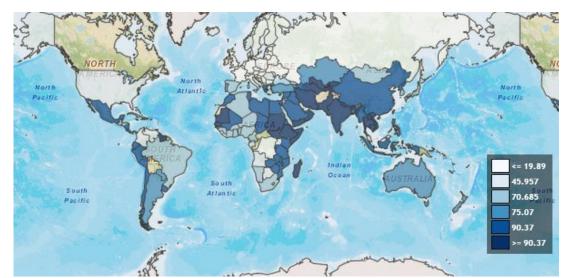


Figure 3 Geographic distribution of percentage of water withdrawal for agricultural use between years 1990-2010. (http://faostat.fao.org)

2.2.1. Drought Tolerance

Drought tolerance is the ability of a plant to access soil water and use it efficiently to live, grow and reproduce satisfactorily under conditions of limited water supply or under periodic conditions of water deficit (Fleury et al. 2010; Kantar, Stuart J Lucas, et al. 2011; Munns et al. 2010; Richards et al. 2010; Turner 1979). Tolerance strategies include resistance mechanisms, which enable plants to survive osmotic stress, and avoidance mechanisms, which prevent plants' exposure to dehydration through growth habits like deeper rooting for better access soil water, or shortened growth span through faster development and maturation (Fleury et al. 2010; Kantar, Stuart J Lucas, et al. 2011; Nevo and Chen 2010). Most plants have developed strategies to cope with drought stress having evolved in habitats with limited water availibility (Kantar, Stuart J Lucas, et al. 2011). However, modern crop species, have drastically lost their tolerance to environmental stresses, including drought through the process of domestication, followed by centuries of cultivation (refer to Section 2.2.3) (Dubcovsky and Dvorak 2007; Kantar, Stuart J Lucas, et al. 2011; Nevo and Chen 2007; Tang, Sezen, and Paterson 2010).

2.2.2. Molecular Biology of Drought

The capacity of plants to tolerate drought depends largely on the drought adaptation mechanisms within their genomes, and how efficiently these mechanisms are activated when plants are exposed to stress. Few agronomic traits are controlled by single genes or isolated biological pathways. Likewise, genetic control of plant response to drought is a complex trait controlled by an intermingled network of gene interactions regulated at multiple levels and highly effected by environmental factors. Elucidation the complete molecular basis of drought response and tolerance is highly challenging, yet crucial.

Drought has a multitude of detrimental effects on plant cellular function. Drought responses of plants include attenuated growth and suppression of core metabolism.

Exposure to drought is followed by a decrease in osmotic potential and cellular dehydration, causing reduced cytosolic and vacuolar volumes. With the suppression of core metabolism, reactive oxygen species (ROS) (e.g. singlet oxygen and hydrogen peroxide) are highly accumulated majorly from chloroplasts and to some extend from mitochondria, causing oxidative stress, resulting in cellular and protein damage (Ergen et al. 2009; Kantar, Stuart J Lucas, et al. 2011)

Plant response to drought aims to minimize these harmful effects for continuation of plant survival, growth and reproduction. This includes stimulation of multiple signal transduction cascades consisting of a network of protein interactions mediated by reversible phophorylation (e.g. mitogen activated protein kinases, sucrose nonfermenting-like kinases, phosphotases) and release of secondary messengers (e.g. phospholipid and calcium signalling) triggering cellular and physiological changes. Following dehydration, compatible solutes, sugars, sugar alcohols, amino acids, or other nontoxic molecules (e.g. proline, glycine betaine), are highly accumulated in the cytoplasm and are believed to confer osmotic adjustment without interfering with the metabolism (Barnabás, Jäger, and Fehér 2008; Bartels and Sunkar 2005; Valliyodan and Nguyen 2006). Likewise, levels of chemical (e.g. ascorbate, carotenoids) and enzymatic (e.g. superoxidase dismutase, catalase) antioxidants, which cope with oxidative damage by scaveging ROS, are also drought induced (Shinozaki and Yamaguchi-Shinozaki 2007). To ameloriate the effects of oxidative damage, late embryogenesis abundant proteins (LEAs) (e.g. dehydrin) and molecular chaperones like heat shock proteins (HSPs) also accumulate during osmotic stress aiding in functional protection of essential proteins (Mahajan and Tuteja 2005; Wang, Vinocur, and Altman 2003). Drought response is a complex process, in which several other cellular mechanisms have been implicated including signalling through molecules like salicyclic acid, or nitric oxide; as well as regulation of transport through aquaporins and ion channels.

Activation of various cellular mechanisms for triggering drought response demands the synthesis of new proteins and degradation of existing ones that are not or less essential in this environment (Barnabás et al. 2008; Bartels and Sunkar 2005; Mahajan and Tuteja 2005). These alterations in expression profiles is regulated elaborately in multiple levels: transcriptional, post-transcriptional, post-translational. Transcriptional regulation of drought-induced gene products is achieved through activation of several transcription factors and trancriptional regulators; and abscisic acid (ABA)-dependent and -independent pathways are two well-established transcriptional regulatory circuits induced by drought. Plant genes involved in drought response are also known to be regulated at the post-transcriptional level by the action of miRNAs (refer to Section 2.2.4). Similarly, a number of post-translational modifications (e.g. ubiquitination, small ubiquitin-like modifier-ylation, isoprenylation) with different cellular roles have also been shown to contribute to regulation in response to drought (Ergen et al. 2009; Kantar, Stuart J Lucas, et al. 2011).

2.2.3. Wild Progenitors of Domesticated Crops

As the availability of water for agriculture is becoming limited, as explained in Section 2.2, there is growing emphasis on the need to identify and dissect novel drought-response mechanisms to utilize in the genetic improvement of cultivated crops for stress tolerance. Domestication of crops, followed by centuries of cultivation has considerably narrowed the gene pools of today's elite cultivars, drastically reducing their stress tolerance. Common agricultural practices favor breeding under tightly controlled conditions, which introduces an artificial selection pressure for production yield, which eradicates the crop germplasm diversity in the long run, and leads to the loss of valuable alleles for stress tolerance. For development of high yielding cultivars under stress conditions, investigation of naturally occuring relatives of modern crops hold great potential as these drought- resistant ancestors are valuable sources harbouring advantegous stress adaptation and tolerance pathways. As progenitors of cultivated wheat and barley: *T. dicoccoides* and *H. spontaneum* have recently gained prominenence as genetic resources for novel drought mechanisms (Akpinar et al. 2013; Ergen et al. 2009; Kantar, Lucas, and Budak 2011; Nevo and Chen 2010).

2.2.3.1. Wild Emmer Wheat

T. dicoccoides is the tetraploid progenitor of both bread wheat and domesticated tetraploid durum wheat, as noted in Section 2.2.1. It is thought to have originated in north-eastern Israel and the Golan and diversified into the Near East Fertile Crescent, through adaptation to a spectrum of ecological conditions. As revealed by the analysis of allozyme and DNA marker variations, wild emmer wheat populations exhibit a high level of genetic diversity, showing significant correlation with environmental factors. Hence T: dicoccoides gene pool harbours a rich allelic repertoire of agronomically important traits (Dong et al. 2009; Fahima et al. 1999, 2002; Nevo and Beiles 1989; Nevo et al. 1982; Wang et al. 2008) including drought (Peleg et al. 2005, 2008). Some of its accessions are even fully fertile under extreme arid environments (Nevo et al. 1984) and compared to durum wheat, several thrive better under water limitation (Ergen and Budak 2009; Peleg et al. 2005). Two highly promising drought tolerant varieties originating from southeastern Turkey where the climate is characterized by long drought periods are TR39477 and TR38828 evident by morphological observations and physiological measurements in response to slow dehydration stress (Ergen and Budak 2009). Although T. dicoccoides genome sequence is currently unavailable, information regarding transcript, protein and/or metabolite profiles of Turkish (drought tolerant TR39477; drought sensitive TTD-22) and Isralean (drought tolerant: Y12-3 and drought sensitive: A24-39) varieties is swiftly accumulating, revealing pathways unique to dehydration tolerant wild emmer wheat (Budak, Akpinar, et al. 2013; Ergen and Budak 2009; Ergen et al. 2009; Krugman et al. 2010, 2011). Some of the drought related gene candidates discovered in these studies (integral transmembrane protein inducible by tumor necrosis factor- α ; dehydration responsive element binding factor 1, autophagy related protein 8) were even further functionally characterized in relation to their roles in dehydration (Kuzuoglu-Ozturk et al. 2012; Lucas, Dogan, and Budak 2011; Lucas, Durmaz, et al. 2011). With its high drought tolerance and compatibility in crossing with durum and bread wheat (Feldman and Sears 1981), wild emmer wheat is an important resorvoir of novel drought-related mechanisms and highly suitable as a donor for improving drought tolerance (Budak, Kantar, and Kurtoglu 2013; Nevo and Chen 2010; Peng, Sun, and Nevo 2011, 2011; Xie and Nevo 2008).

2.2.4. microRNAs

Not all transcribed genes are translated into proteins and the majority of the eukaryotic transcriptome consists of non coding RNAs (ncRNAs), which have diverse, significant cellular functions. These ncRNAs are classified into several subcategories, one of which is small RNAs (sRNAs), molecules that exert RNA-mediated silencing of genes (Yi et al. 2014). A well-defined class of sRNAs is miRNAs: endogenous 18-25 nucleotide-long molecules generated from double stranded RNA regions of hairpin-shaped precursors and function as post-transcriptional regulators of gene expression (Zhang and Wang 2015). The first miRNA to be identified was *Caenorhabditis elegans* Lin-4 (Lee, Feinbaum, and Ambros 1993) and in the decade following its discovery, miRNAs were shown to be ubiquitous to other invertebrates and vertebrates. In 2002, these small molecules were also found to be present in a variety of plant species (Llave, Kasschau, et al. 2002; Llave, Xie, et al. 2002; Mallory et al. 2002; Marker et al. 2002; Park et al. 2002).

Since then, miRNAs has been attracting huge attention and miRNA-related research has currently become one of hottest research topics of molecular biology. miRNAs have been shown to be involved in a variety of physiological processes in relation to plant growth, development and response to stress (Zhang and Wang 2015). With the increasing evidence on their important cellular roles, major efforts have been put into developing advanced methods for their identification. Hence with the advance of new technologies and bioinformatics tools, the number of miRNA related publications have boosted in the last decade (refer to Section 2.2.4.2). The known miRNA repertoires of plants is continuously growing, enriching miRNA repositories like miRBase (<u>http://www.mirbase.org</u>) (Griffiths-Jones 2004; Griffiths-Jones et al. 2008; Kozomara and Griffiths-Jones 2014). The current version of miRBase (version 21, June 2014) contains 6,995 preliminary miRNA (pre-miRNAs) and 8,508 mature miRNA sequences from 74 plant species (refer to Section 2.2.4.1).

2.2.4.1. microRNA Biogenesis and Mechanism of Silencing

miRNA biogenesis is a highly complex mechanism, however it has been the most intensively investigated area in the miRNA field through the last decade and its general machinary is extensively dissected. A simplified model of miRNA biogenesis and function in plants is given in Figure 4 (Zhang, Pan, Cobb, et al. 2006). Plant miRNAs are encoded as independent transcription units by their own genes (MIRs) at diverse intergenic and much less frequently genic locations. miRNA biogenesis starts with the transcription of a long single stranded primary transcript with the action of RNA polymerase II, which is recruited to MIR promoters by the general transcriptional coactivator, Mediator. The generated transcript is referred as the primary miRNA (primiRNA), stabilized by the addition of a 5' 7-methylguanosine (m7Gppp) cap and 3' polyadenylate (poly(A)) tail to avoid potential degradation and folded into an imperfect double stranded RNA (dsRNA) hairpin through base pairings. Pri-miRNAs are than sequentially processed into short mature miRNA sequences in multiple steps. First, stem-loop hairpin structures that form within pri-miRNA are cleaved near the base of their stem generating smaller fold-back stem loop intermediates termed pre-miRNA. Pre-miRNAs are further cleaved to produce duplexes, which include both miRNA guide strand and miRNA passenger strand (miRNA*) with 2 nucleotide 3' overhangs. These processes are controlled through the action of Dicer-like nucleases (members of Ribonuclease (RNase) III endonucleases); in fact majorly DICER-LIKE 1 (DCL1). Several other proteins are also involved in the regulation of miRNA processing. These include RNA binding proteins that interact with DCL1 in the *microprocessor* complex (TOUGH (TGH), SERRATE (SE) and HYPONASTIC LEAVES 1 (HYL1)) possibly required for DCL1 recruitment and/or function. Phosphorylation is an important regulatory mechanism during processing and C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 (CPL1) is known to maintain the phosphorylated state of HYL1. Several of the above mentioned miRNA biogenesis proteins (DCL1, TGH, SE, HYL1 and CPL1) were recently found to colocalize in nucleolus-associated bodies along with miRNA precursors, highlighting these subnuclear loci as dicing centers (Budak, Khan, and Kantar 2014; Kumar 2014; Rogers and Chen 2012, 2013; Zhang and Wang 2015).

After dicing is completed in the nucleus, generated miRNA/miRNA* duplex, is transported into the cytoplasm by HASTY (HST). The 3' nucleotides of miRNA and miRNA are 2'-O-methylated in the duplex by the methyltransferase HUA ENHANCER 1 (HEN1) and subsequently the duplex is separated by helicase. miRNA* is degraded and mature miRNA enters the ribonucleoprotein complex known as the RNA-induced silencing complex (RISC), directing it to the target complementary messenger RNA (mRNA). After their loading to RISC, plant miRNAs can presumably exert gene regulation through different mechanisms. Target mRNA cleavage' is the most commonly adopted mechanism by plant miRNAs, in which the RNaseH-like P-element induced wimpy testis (PIWI) domain of ARGANOUTE (AGO) proteins form an RNaseH-like fold with a slicer endonuclease activity and cleaves RNA targets that are complementary to the loaded guide strand. Two other mechanisms of miRNA exerted gene regulation, well-established in animals are (1) translational inhibition, in which regulation is achieved by hampering ribosome movements along the mRNA and (2) mRNA decay, in which deadenylation of 3' poly(A) tail or decapping of 5' end of the mRNA results in its destabilization and progressive degradation. Although to date there is no biochemical proof for the presence of these alternative mechanisms in plants, several lines of evidence support the existence of slicing independent miRNA exerted regulation. Hence, some Arabidopsis mutants were found to be selectively impaired in miRNA-mediated gene repression at the protein, but not mRNA levels and this repression was further shown to be insensitive to inhibition of AGO1 slicing (Budak et al. 2014; Kumar 2014; Rogers and Chen 2012, 2013; Zhang and Wang 2015).

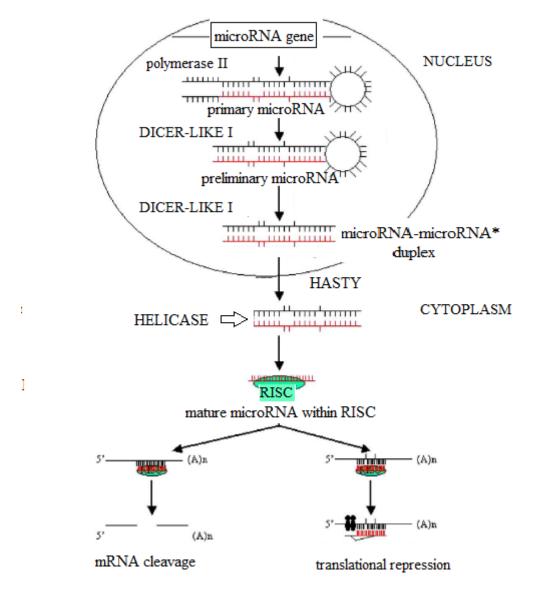


Figure 4 Simplified model of microRNA biogenesis and function in plants. (RISC: RNA-induced silencing complex, (A)n: polyadenylate tail) (modified from Zhang, Pan, Cobb, et al. 2006)

2.2.4.2. Methods of microRNA Identification

As evidence on the significant physiological roles of miRNAs in cellular processes increases, the techniques for their identification are becoming progressively more sophisticated. One of the conventional techniques for miRNA identification has been forward genetic screening, which has the advantage of providing information in relation to miRNA function. Yet, being cost and time ineffective, as well as incidental, this method has enabled the discovery of only a limited number of miRNAs. In order to overcome some of the shortcomings of this approach, high-throughput transcriptomics techniques: hybridization-based platforms (microarrays) and deep-sequencing of sRNA libraries, were implemented for miRNA detection. These techniques hold an additional advantage of wide-scale comparison of miRNA profiles in distinct tissues, at different developmental stages and in plants grown under different conditions (Budak et al. 2014).

Bioinformatics tools, as essential components of high-throughput experimental sRNA data interpretation aside, are also extensively utilized as principal and less resource-intensive strategies for miRNA discovery in species where genome or transcriptome sequence information is available. While, these methods are automated and new bioinformatics tools are developed to process high-throughput data with high specificity, sequence datasets of many plants, which may serve as comprehensive inputs for miRNA prediction are swiftly accumulating. Hence, widespread application of next generation sequencing (NGS) technologies has highly contributed to miRNA identification, boosting related computational and high-throughput experimental studies (Budak et al. 2014).

Still, functional implications of especially computationally identified miRNAs necessitate verification through other experimental procedures, such as quantitative real time polymerase chain reaction (PCR) (qRT-PCR), Northern blotting, RNA Gel blots, or splinted-ligation based detection. Additionally, in order to place miRNAs on a broader context, the knowledge on their respective target(s) is a key to understand the functional relevance of miRNAs at the cellular level; thus, miRNA data should always be evaluated with the corresponding target data. miRNA targets can be identified either through computational approaches (web-based tools like psRNATarget, plantgrn.noble.org/psRNATarget) (Dai, Zhuang, and Zhao 2011), and/or experimental methods like RNA ligation-mediated rapid amplification of complementary DNA (cDNA) ends (RLM-RACE) or its high-throughput application, 'degradome sequencing' (Thomson, Bracken, and Goodall 2011).

2.2.5. Identification of Drought-related Molecules in Triticeae

Prior to focusing on individual drought-related components for improvement of wheat or its related species, identification of sets of probable dehydration stress-related molecules or quantitative trait loci (QTLs) is necessary. One method for identifying potential markers for stress tolerance is QTL mapping of yield related traits under drought prone environments. Another means of identifying such markers is transcript, protein, and/or metabolite profiling to monitor changes in response to dehydration, or comparing differential repertoires of plants with varrying tolerance to drought. In the long run, these markers can aid in screening cultivars for drought tolerance/sensitivity and/or improvement of drought tolerance in wheat and its related species (Budak, Kantar, et al. 2013).

2.2.5.1. Drought-related Quantitative Trait Locus Identification in Triticeae

Elaborating drought tolerance, effected by multiple loci necessitates the identification of related QTLs. Although QTL cloning requires a large investment in relation to resources, technology, and time, QTL discovery provides great advantages to the end of developing better yielding cultivars (refer to Section 2.2.6). Recent progresses in functional and comparative genomics have boosted resources such as BACs, sequence data, molecular markers and bioinformatic tools, rendering construction of molecular maps, which are utilized in QTL mapping. Several appropriate wheat and barley mapping populations including recombinant inbred lines (RILs) and near isogenic lines (NILs) have been established, available to be used in mapping and fine mapping of candidate regions of traits, prior to their positional cloning (Budak, Kantar, et al. 2013).

Recently, through linkage analysis and association mapping, several QTLs related to particular components of drought response were identified in mapping populations, derived from crosses of *T. aestivum*, *T. durum*, *H. vulgare* and their wild progenitors, *T. dicoccoides* and *H.spontaneum* (Budak, Kantar, et al. 2013; Fleury et al. 2010; Nevo and Chen 2010). However, despite the substantial research efforts on QTL mapping and

the recent acceleration in positional cloning with the increase in availability of genetics resources (Collins, Tardieu, and Tuberosa 2008), to date only a limited number of studies have succeeded in positional cloning of barley and wheat QTLs and none in the context of drought. The genomic regions associated with individual QTLs are still very large and usually inappropriate for screening in breeding programmes (Fleury et al. 2010).

Yield being the highest priority trait to breeders, to date the majority of QTLs were mapped through assessment of yield and yield components under water-limited environments. However, this research is complicated due to yield and drought both being complex traits controlled by multiple genes and showing environmental interactions. QTLs identified from one environment may not be consistent with those discovered in another, hence, large scale phenotyping trials in multiple fields, taking into account the environmental differences hold great value (Fleury et al. 2010). In this regard, recent studies performed on doubled haploid (DH) populations derived from crosses between two southern Australian bread wheat cultivars: RAC875 and Kukri hold great importance. These parentals lines have differential tolerance to water deficit and have been extensively evaluated in relation to yield, yield component traits and morpho-physiological mechanisms under different severities of drought (Izanloo et al. 2008). Hence, in a number of studies, RILs established from these parentals, were investigated under a variety of environments including multiple field and year combinations in distinct seasonal conditions. Multienvironmental analysis was performed in both advantageous and adverse conditions, including nonirrigated fields. Linkage maps were constructed revealing several genomic regions or gene blocks for grain yield and quality; other yield components and morphophysiological traits (Bennett, Izanloo, Edwards, et al. 2012; Bennett, Izanloo, Reynolds, et al. 2012; Bennett, Reynolds, et al. 2012; Bonneau et al. 2013). QTLs identified in these studies are highly promising in eventually finding their way into practical wheat breeding programmes in relation to drought.

2.2.5.2. Drought-related microRNA Identification in *Triticeae*

With the application of next-generation deep sequencing and advanced bioinformatics, as outlined in Section 2.2.4.2, miRNA-related studies have expanded to non-model plants including *Triticaea* species (Budak et al. 2014; Zhang and Wang 2015). In the past years, the number of identified miRNAs in bread wheat (Budak et al. 2014) and barley (Hackenberg et al. 2013; Kruszka et al. 2014; Ozhuner et al. 2013) has dramatically increased. Since miRNAs play a critical role in almost all biological processes, most of these studies focussed on particular phases and aspects of plant development (Houston et al. 2013; Tang et al. 2012) and/or plant response to a variety of abiotic (Ozhuner et al. 2013; Xin et al. 2010) or biotic (Liu et al. 2014; Xin et al. 2010) stresses (Zhang and Wang 2015).

As partial miRNA repertoires accumulate from disparate studies, this growth should be succeeded with careful assessment of available data in the genomic, subgenomic and transcriptomic contexts. At this point, this aspect is particularly important for bread wheat, for which currently a huge amount of partial and disparate miRNA data is available (Budak et al. 2014). On the other hand, despite the huge progress in *T. aestivum*, miRNA research in *T. turgidum* species has lagged behind. The knowledge on *T. turgidum* miRNAs is currently limited to those identified in a couple of studies in *T. turgidum* ssp dicoccon (Li et al. 2014) and durum wheat (Dryanova, Zakharov, and Gulick 2008; Kenan-Eichler et al. 2011). Hence, in the current state of research, it is crucial that actions are taken for large-scale discovery of miRNAs in *T. turgidum* species.

miRNAs provide a unique strategy for crop improvement, yet their effective utilization in breeding for stress tolerance requires the determination of novel miRNAregulated pathways valuable for conferring stress tolerance. To this end, comparative evaluation of stress regulated miRNA reportoires of elite varieties and their stress tolerant progenitors is crucial for revealing conserved and distinct stress related mechanisms. Although, miRNA repertoires of wheat and barley have been investigated extensively in relation a variety of stress factors, suprisingly related research conducted in the context of drought has been limited. Only very recently, a number of drought responsive miRNAs in modern species: bread wheat (Gupta et al. 2014) and barley (Hackenberg et al. 2014; Kapazoglou et al. 2013) were reported. With the exception of our's group's study on wild emmer wheat (Kantar, Stuart J. Lucas, et al. 2011), no miRNA related research has been yet conducted in wild species of the genus *Triticeae*.

2.2.6. Improvement of Drought-Tolerant Cultivars

Recent advances in molecular biological, functional, and comparative tools open up new opportunities for the molecular improvement of modern wheat. Recently developed techniques enable faster identification and characterization of drought-related components. Natural variants of modern species harbor a large repertoire of potential drought-related genes and hold a tremendous potential for wheat improvement. Introduction of drought-related components of wheat can be performed either with breeding through marker-assisted selection or transgenic methods (Budak, Kantar, et al. 2013; Nevo and Chen 2010).

Transgenic methods are adventageous since they enable the transfer of only the desired loci from a source organism to elite wheat cultivars, avoiding possible decrease in yield due to the cotransfer of unwanted adjacent gene segments. Components integral to several stress related pathways are the most appealing targets for crop improvement, since their introduction can potentially enhance tolerance to multiple environmental threats (Budak, Kantar, et al. 2013). Hence, overexpression of a number of such proteins (cotton and *Arabidopsis* Dehydration-Responsive Element-Binding proteins (DREBs) and barley LEA) were observed to increase drought tolerance in wheat under laboratory and experimental field conditions (Guo et al. 2009; Hoisington and Ortiz 2008; Pellegrineschi et al. 2004). Similarly being central to regulation of multiple stress related and developmental pathways, miRNAs are also promising candidates for genetic improvement of wheat. For instance, a combined approach of artifical miRNA and artificial target mimicry was recently developed and succeeded in improving panicle exsertion in rice, resulting in higher yields (Chen et al. 2013). Overall, transgenics hold

great potential for improvement of drought tolerant common commercial crops, the current methods used for wheat transformation are laborious and time consuming, but new transgenics methodologies are currently being developed (Chauhan and Khurana 2011).

A more established method for crop improvement is molecular breeding, which utilizes molecular markers for the screening of specific traits across cultivars. Loci that are targeted in marker-assisted selection (MAS) are most often derived from QTL mapping studies of quantitative traits. MAS is most often performed based on physiomorphological characteristics related to yield under drought conditions. Most commonly used molecular markers in such a context include SSR (simple sequence repeat) markers (Budak, Kantar, et al. 2013). For instance, SSR marker, gwm312 is being routinely used in durum breeding programs (James, Davenport, and Munns 2006) to transfer and select for the presence of sodium (Na⁺) exclusion (Nax) genes, which are involved in sequestration of Na⁺ in the vacuole compartment, enhancing osmotic adjustment capability and ameliorating the negative effects of drought (Brini et al. 2005). Currently the major challange to MAS is that most of the potential drought related genes which can be used for selection purposes (e.g. DREBs) belong to large gene families (Wei et al. 2008). Hence, identification and successful isolation of a single drought-related loci is complicated by the members of the same family with high sequence similarity and in the case of bread wheat its complex, polyploid genome. However, in the very near future, completion of wheat reference genome will pace the identification of specific loci and the development of markers to be used in selection during breeding processes (Witcombe et al. 2008). Recent increase in sequence availability has already contributed to the discovery of drought-related QTLs and provided several high quality genetic markers for breeding (Bennett, Izanloo, Edwards, et al. 2012; Bennett, Izanloo, Reynolds, et al. 2012; Bennett, Reynolds, et al. 2012; Bonneau et al. 2013).

Up until now, no drought tolerant wheat or barley genotype has been produced through conventional and molecular approaches, which has found its way to the farmer's field. However, it is not unreasonable to predict in the following decades, such cereals will be transferred to the fields as a common commercial crop owing to recent efforts and advances.

3.

3.MATERIALS AND METHODS

3.1. Materials

3.1.1. Chemicals, Fertilizers and Enzymes

Chemicals, fertilizers and enzymes used in this research are listed in Appendix A.

3.1.2. Molecular Biology Kits

Molecular biology kits used in this research are listed in Appendix B.

3.1.3. Plant Material

Two lines of the bread wheat nulli-tetrasomic series lacking 5D chromosome (N5D-T5A and N5DT5B) and four homozygous lines from the bread wheat group-5 chromosome deletion series (5DS-2, 5DS-5, 5DL-5, 5DL-7) were obtained from Kansas State University. Australian bread wheat cultivars (Kukri and RAC875) were obtained

from Australian Centre for Plant Functional Genomics. Elite cultivars (bread wheat variants: Tosunbey and Bolal and barley variant: Bülbül-89) were obtained from Field Plants Centre Research Institute, Turkish Ministry of Agriculture. Bread wheat cultivar Chinese Spring and wild emmer wheat lines TR39477 and TR38828 in Sabanci University (SU) were used in this research.

3.1.4. DNA Material

Flow sorted 5D chromosome short (5DS) and long arms (5DL) were obtained from J. Dolez'el and his colleagues (IEB, Olomouc, Czech Republic; unpublished).

3.1.5. Equipments

Equipments used in this research are listed in Appendix C.

3.2. Methods: Barley microRNAs and Drought

3.2.1. Computer-based Identification of Barley microRNAs

3.2.1.1. Sequence Datasets

Reference miRNA dataset corresponded to a total of 1,988 mature miRNA sequences. It contained 1,763 mature miRNA sequences deposited in miRBase (version 13, March 2009, <u>http://mirbase.org/</u>) from 12 plants (Griffiths-Jones et al. 2008), as well as other miRNAs previously identified in close relatives of barley: 93 bread wheat and 132 *B. distachyon* miRNAs reported by Wei et al. and Unver and Budak, respectively (Unver and Budak 2009; Wei et al. 2009). *H. vulgare* expressed sequence tags (ESTs) were obtained from GenBank at the National Center for Biotechnology Information

(NCBI) (<u>http://www.ncbi.nlm.nih.gov/</u>, July, 2009) and corresponded to a total number of 525,527.

3.2.1.2. Homology-based In Silico microRNA Identification

Homology-based computational strategy developed by Zhang and his collegues was used for the identification of barley miRNAs (Zhang et al. 2005). This method is based on two important parameters: (1) homology of mature miRNA sequences to a previously known plant miRNA and (2) pre-established features of pre-miRNA secondary structure. A flow chart of this method is presented in Figure 5. Known plant mature miRNA sequences were searched as a query against H. vulgare ESTs using the Basic Local Alignment Search Tool (BLAST), nucleotide-nucleotide BLAST (BLASTN) algorithm, BLAST 2.2.21 (28 July, 2009) (Altschul et al. 1997) with parameters adjusted for short input sequences. EST sequences showing only 0-3 nucleotide mismatch(es) to a miRNA sequence query were retained and subjected to the Zuker folding algorithm for a second filtering. This was performed using the web-based software, MFOLD 3.2 (http://frontend.bioinfo.rpi.edu/applications/mfold/cgi-bin/rnaform1.cgi), which predicts lowest minimum folding free energy (MFE) secondary structure of a given sequence (Mathews et al. 1999; Zuker 2003). Generated outputs: predicted secondary structures represented as images, dot-bracket notations and connect files were downloaded along with the other characteristics of secondary structures. The minimal folding free energy index (MFEI), which is an important parameter to distinguish pre-miRNAs from other RNAs was calculated for each structure with the formula

MFEI=((MFE/length of the RNA sequence)X100)/(G+C)%(1)

and further elimination was performed on the structures regarding to their consistency with pre-established pre-miRNA secondary structure characteristics to determine putative barley miRNAs (Yin et al. 2008; Zhang, Pan, and Anderson 2006; Zhang, Pan, Cobb, et al. 2006). Further validation for putative barley miRNAs was performed with the web-based tool RNAfold (<u>http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi</u>), CLC RNA workbench (http://www.ckbio.com/index.php?id=1042), and MicroPC (µPC)

(http:// <u>www.biotec.or.th/isl/micropc</u>) (Mhuantong and Wichadakul 2009). Using µPC, homologs of putative barley miRNAs in other plants were also detected.

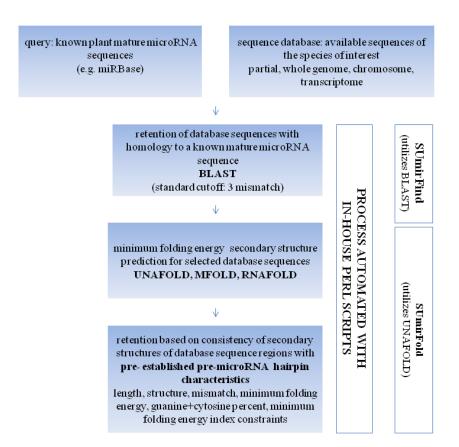


Figure 5 Flow chart showing steps of *in silico* homology based microRNA identification and its automation with two in-house perl scripts.

3.2.2. In Silico Identification of microRNA Targets

The target transcripts including complementary sequences of newly identified miRNAs were found by using the BLASTN algorithm. *H. vulgare* miRNAs targets detected were also subjected to homology search against the protein-coding mRNA databases of all plant species. Some criteria was previously applied to predict potential target transcripts of given plant miRNAs (Yin et al. 2008; Zhang, Wang, and Pan 2007; Zhang, Wang, et al. 2007). We have also followed previous principles which are (1) mismatches at complementary sites between miRNA and the target gene transcript should not be more than four nucleotides (Bartel, Lee, and Feinbaum 2004; Rhoades et

al. 2002; Schwab et al. 2005); (2) mismatches at positions 10 or 11 of the miRNA sequence at the site of complementarity between miRNA and target mRNA, which are assumed to be cleavage sites, are not allowed; however, up to three mismatches between 12–23 nucleotides can be allowed and (3) no more than three continuous mismatches are allowed in the miRNA–mRNA pair. miRU, a plant miRNA target finder software (http://bioinfo3.noble.org/miRNA/miRU.htm) was used for further validation as outlined by Unver and his collegues (Unver, Namuth-Covert, and Budak 2009).

3.2.3. Drought Responsive microRNAs and their Targets

3.2.3.1. Plant Materials, Growth Conditions and Dehydration Stress

Seeds of barley variant Bülbül-89, resistant to drought, were surface sterilized in 4% sodium hypochlorite for 10 min and pre-germinated in petri dishes with 5 ml milipore water for 11 days at $25^{\circ}C\pm1$ at dark. Seedlings of a similar developmental stage were transferred to continuously aerated Hoagland's solution renewed every 3 days and grown under controlled conditions (15 hour photoperiod, temperature $23/21^{\circ}C$, relative humidity 60/70%, and photon flux density of $600-700 \mu$ molmeter⁻²s⁻¹). At four-leaf stage, plant stress treatment was applied (Ergen et al. 2009). Plants were stressed by removing them from tanks and leaving on paper towels under the same lightning conditions for 8 hour while control plants were kept in fresh hydroponic solution. Root and leaf tissue samples from both stress and control plants were collected, directly frozen and stored at $-80^{\circ}C$.

3.2.3.2. Total RNA Isolation from Leaf and Root

Total RNA was isolated from leaves and roots of 8 hour stress and control samples as performed elsewhere (Ergen et al. 2009). Isolation was performed using 0.05 g frozen tissue using Trizol reagent (Invitrogen) according to manufacturer's instructions. The quality and quantity of isolated leaf RNAs were measured using a Nanodrop ND-100 spectrophotometer (Nanodrop Technologies, Wilmington, DE,

USA) and integrity of the isolated RNA was confirmed by separating the major ribosomal (rRNA) bands on agarose gels. DNase treatment of 1 μ g of total RNA was performed in 10 μ l reaction mixture with 1 U of RNase-free DNase I dioxyribonuclease I (Fermentas). The reaction was maintained at 37°C for 30 min and terminated by adding 1 μ l of 25 mM ethylenediaminetetraacetic acid (EDTA) followed by an incubation at 65°C for 10 min. For miRNA quantification, DNase-treated samples were ethanol precipitated and then dissolved in 20 μ l RNase-free water. All samples were stored at -20°C.

3.2.3.3. Stem-loop Reverse Transcription of microRNAs

Stem-loop reverse transcription (RT) primers for predicted barley miR156, miR166, miR171 and miR408 were designed according to Varkonyi-Gasic et al. (Varkonyi-Gasic et al. 2007) (Appendix D). miRNA-specific stem-loop RT reactions were performed using Superscript III First-Strand Synthesis System for RT-PCR (Invitrogen) as outlined by Unver and his collegues (Unver et al. 2009). The miRNA stem-loop RT involved 1, 10, and 100 ng of total RNAs (1 μ l), 1 μ l 10 mM deoxynucleotide (dNTP) mix, 1 μ l stem-loop RT primer (1 μ M), and 7.75 μ l nuclease-free water. They were incubated for 5 min at 65°C and incubated on ice for 2 min. We added 2 μ l first-strand buffer (10X), 4 μ l 25 mM magnesium chloride (MgCl₂), 2 μ l 0.1 M Dithiothreitol (DTT), 1 μ l RNaseOUT (40 U/ μ l), and 0.25 μ l SuperScript III (200 U/ μ l; Invitrogen) to each tube and performed the pulsed RT reaction as follows: 30 min at 16°C, 60 cycles at 30°C for 30 s, 42°C for 30 s, and 50°C for 1 s. The RT reactions were terminated at 85°C for 5 min. With miRNA cDNA synthesis, we also performed no-RT primer and no-RNA control reactions.

3.2.3.4. microRNA Quantitative Real Time Assays

In order to experimentally validate barley miRNAs and measure their expression level differences in leaf and root tissues upon dehydration shock, quantitative real time polymerase qRT-PCR was performed. Reactions were performed using Brilliant II SYBR Green QPCR Master Mix (Stratagene) on an Icycler Multicolor Real-time PCR Detection Systems (Bio-Rad) following the protocol in (Unver and Budak 2009). Using 3 μ l RT stem-loop cDNA products qRT-PCR reactions were performed using 10 μ l 2X master mix, 0.6 μ l forward (300 nM), 0.6 μ l reverse (300 nM) primers, 0.3 μ l (30 nM) reference dye and 5.5 μ l nuclease-free water. The specific forward primers were designed for each individual miRNA and a universal reverse primer was used (Varkonyi-Gasic et al. 2007) (Appendix D). Specified qRT-PCR thermal setup was adjusted as follows: heated to 95°C for 10 min, followed by 40 cycles of 95°C for 30 s, 56/58°C for 1 min, and 72°C for 30 s, followed by 72°C for 10 min. The annealing temperature was optimized to 58°C in miR408 quantification. The annealing temperature for the remaining miRNAs were optimized to 56°C. The melting curves were generated using the following program: PCR products were denatured at 95°C and cooled to 65°C. The fluorescence signals were collected continuously from 65°C to 95°C as the temperature increased at 0.2°C per s. All reactions were repeated three times. Separation of PCR products was performed using 3% agarose gels.

3.2.3.5. Target mRNA Verification by Quantitative Real Time Assay

Expression level differences of computationally predicted barley miRNA target transcripts upon dehydration shock were measured with qRT-PCR experiments. These included miR156 target EST (AV910992.1), miR171 target EST (BQ461013.1) and miR408 target EST (BU995745.1). ESTs for target quantification analysis were selected based on two criteria: (1) protein found in BLAST search should be a previously published target of the related miRNA in another plant species and (2) The EST should have a possible protein-coding open reading frame (ORF) that can allow us to design qRT-PCR primers for the non-conserved 3' untranslated region (UTR). The following criteria were set to design specific qRT-PCR primers for the above genes using Primer3: (1) Primer 3' self complementary was set to 0; (2) primer annealing temperatures were limited to $62 \circ C \ 0\pm 3$ and (3) product size for primer pairs was limited to 80-120 base pair (bp). Total cDNAs were synthesized from 80 ng RNA using Superscript III First-Strand Synthesis System for qRT-PCR (Invitrogen) according to manufacturer's instructions. qRT-PCR analysis was performed as previously outlined (Unver and Budak 2009). Briefly, 1 µl of this cDNA was amplified with 300 nM of specific primers in a total of 20 µl volume using Brilliant II SYBR Green QPCR Master Mix

(Stratagene) with Icycler Multicolor Real-time PCR Detection Systems (Bio-Rad). The quantification was performed using 18s rRNA (GenBank ID:AF147501) as a normalizer and three independent PCR results with acceptable efficiency (1.8–2.2) were averaged. Specified qRT-PCR thermal setup was adjusted as follows: heated to 95°C for 10 min, followed by 40 cycles of 95°C for 30 s, 55°C for 1 min followed by 72°C for 7 min. The melting curves were generated using the following program: PCR products were denatured at 95°C and cooled to 55°C. The fluorescence signals were collected continuously from 55°C to 95°C as the temperature increased at 0.5°C per s. All reactions were repeated three times. miRNA target and rRNA gene primers are listed in Appendix D.

3.2.3.6. Cleaved Target mRNA Identification by RNA Ligation Mediated Rapid Amplification of Complementary DNA ends

For the verification of computationally proposed miRNA targets and possible discovery of novel miRNA-cleaved mRNAs, we performed a modified version of 5' RLM-RACE (Arenas-Huertero et al. 2009)(Wei et al. 2009). We applied RACE reactions using computationally proposed miRNA target ESTs: miR1436 target (GenBank ID: CB862673.1), miR156 target (GenBank ID: BE060620.2), miR408 target (GenBank ID: BU995745.1). For selection of EST targets of each miRNA for RACE analysis, first ESTs were in silico translated. Then they were searched against protein databases of Viridiplantae using nucleotide-protein BLAST algorithm (BLASTX) and protein-protein BLAST algorithm (BLASTP) for determination of the corresponding putative miRNA target transcripts. Selection of an EST for each miRNA was performed using the following criteria: (1) protein found in BLAST search should be a previously published target of the related miRNA in another plant species and (2) EST sequence should have an ORF encoding a protein similar in size to its protein homologues in other plant species. Specific reverse primers were designed for 5' RLM RACE for each EST using Primer3 (Appendices D, E). Primers were designed at least 150-200 bp downstream of the miRNA cleavage site. The following criteria were set during primer design: (1) Primer 3' self-complementary was set to zero; (2) primer annealing

temperatures were limited to $65^{\circ}C\pm 5$. (3) (G+C)% was set to 50 ± 1 ; (4) primer size was set to 20–24. Control and stress-treated leaf total RNAs (1 µg) were ligated with adaptor and used as template for cDNA synthesis using the RLM-RACE kit (Ambion) following the manufacturer's procedures. To select mRNAs cleaved by miRNAs, calf alkaline phosphatase and tobacco acid pyrophosphatase steps were omitted. Using 5' RACE outer primers (0.4 μ M) and gene-specific reverse primers (0.4 μ M) PCR amplification of cDNA fragments was performed. The PCR reaction and cycling conditions were setup following the manufacturer's protocol. Annealing temperatures were adjusted for the specific primers. PCR fragments were cloned and single clones were sequenced to identify the 5' end of the amplified target genes. The corresponding barley ESTs for each cleaved sequence were found using the BLAST algorithm of GrainGenes against all GrainGenes sequences. (http://wheat.pw.usda.gov/GG2/blast.shtml) Then these ESTs were searched against all Viridiplantae protein-coding databases using NCBI BLASTX. All hits which had a score >30 were saved for further analysis. The cleaved sequences were also searched for their miRNA partners both among computationally identified miRNAs in this study and among 1,763 miRNAs deposited in miRBase. For the selection of miRNA partners from other species two criteria were followed: (1) No less than seven matches is allowed. (2) three mismatches are allowed because during computational prediction of new miRNAs, up to three mismatches with its homolog is accepted. Barley miRNAs were selected on the basis of no mismatch between miRNA and cleaved target complementary sites.

3.3. Methods: Wild Emmer Wheat microRNAs and Drought

3.3.1. microRNA Identification with Hybridization Chip

3.3.1.1. Plant Materials, Growth Conditions and Dehydration Stress

Wild emmer wheat [*T. turgidum* ssp. *dicoccoides* (Korn.) Thell.] drought-tolerant genotypes TR39477 and TR38828 were selected for the miRNA microarray study. Seeds were surface sterilized in 4% sodium hypochlorite for 10 min. They were vernalized and pre-germinated for 21 days at 4°C in petri dishes with 5 ml milipore water at dark. They were transferred to hydroponics and grown under controlled conditions (16 hour photoperiod, temperature 24/22°C, relative humidity 60%, and photon flux density of 600–700 µmolmeter⁻²s⁻¹). Hydroponics in Hoagland's solution, application of shock dehydration stress, as well as collection and storage of tissues were performed according to methods outlined in (Ergen et al. 2009) and explained in detail in Section 3.2.3.2. Root and leaf tissue samples were collected from both stress and control plants at the fourth and eighth hour of stress.

3.3.1.2. Total RNA Isolation from Leaf and Root

Total RNA isolation from leaf and root tissues of 4 and 8 hour drought shocked and control plants was performed using Trizol reagent (Invitrogen) as outlined by (Ergen et al. 2009) and explained in detail in Section 3.2.3.2.

3.3.1.3. Microarray Chip Content and Hybridization to Arrays

The miRNA chip included 853 miRNA probes from 21 plant species corresponding to miRNA transcripts listed in miRBase (version 12, October 2008, http://www.mirbase.org/) (Griffiths-Jones et al. 2008) with 56 hybridization control probes. The miRNA microarray was synthesized in situ by LC Sciences (Houston, TX, USA; <u>http://www.kcsciences.com/</u>mirna.html) where chip hybridization was also performed. The microarray was probed with pooled RNA isolated from 4 *T. diccocoides* seedlings under each condition. 5 μ g total RNA was used to probe the microarray. For each miRNA probe, 8 technical replicas were tested for the control condition and 4 replicas for each stress condition.

3.3.1.4. Microarray Data Analysis

An Axon Gene Pix 4000B Microarray Scanner was used for data collection and ArrayProTM image analysis software (Media Cybernetics, Silver Spring, MD, USA) was used for data extraction and image processing. The signal values were derived by background subtraction and normalization performed with a LOWESS method to remove system-related variations. A miRNA signal was accepted as detectable if it met two conditions: signal intensity higher than 3X background standard deviation, and spot coefficient of variation (CV) calculated with formula

CV = signal standard deviation/signal intensity (2)

Lower than 0.5. Signals from four technical replicates each of RNA derived from stressed and control plants were compared using paired, two-tailed Student's *t* test; only signals with *P* values <0.05 and >3-fold increased or decreased differential expression were considered as significant. The clustering analysis was performed using Cluster 3.0 and heat map was visualized using Heatmap builder and TreeView (Eisen et al. 1998).

3.3.2. Additional Computational Analysis

3.3.2.1. Stem-loop Verification of microRNAs Identified by Chip

To ensure that the candidates are miRNAs rather than other sRNA types, their stem-loop forming pre-miRNA hairpins must also be detected. For this purpose, we searched all sequences corresponding to miRNA probes that gave a positive signal in the microarray study against T. dicoccoides ESTs allowing 3 mismatches. T dicoccoides ESTs were obtained from NCBI (http://www.ncbi.nlm.nih.gov) corresponding to a total LIBEST_023453, biosamples LIBEST_023452, of 9,343 sequences from LIBEST_023455 and LIBEST_023454 (Ergen and Budak 2009). MFE secondary structures were predicted for selected EST sequences, which were further evaluated regarding to their consistency with pre-established pre-miRNA secondary structure characteristics (Yin et al. 2008; Zhang, Pan, and Anderson 2006; Zhang, Pan, Cobb, et al. 2006), as noted in Section 3.2.1.2. Alignment and secondary structure prediction steps were performed using in house perl programs: two in-house Perl scripts: SUmirFind and SUmirFold, which will be explained in Section 3.4.1.2 (Lucas and Budak 2012).

3.3.2.2. Prediction of Targets for Drought Responsive microRNAs

Sequences of differentially expressed miRNA probes from the microarray study were used to interrogate sequences for target sites on the psRNAtarget web server (<u>http://bioinfo3.noble.org/psRNATarget/</u>), and updated version of miRU noted in Section 3.2.2 (Kantar et al. 2010; Unver et al. 2009). The analysis was first carried on *T. dicoccoides* sequences and than expanded to other *Triticum* species due to the limited availibility wild emmer wheat sequences. Target database used included *T. dicoccoides* ESTs from (Ergen and Budak 2009). *T. durum* unique transcripts from Plant Gene Database (PlantGDB) (<u>http://www.plantgdb.org/</u>). and *T. aestivum* gene index (release 9.0) (Lee et al. 2005).

3.4. Methods: Analysis of Bread Wheat 5D Chromosome microRNA Repertoire

3.4.1. Computer-based Identification of 5D Chromosome microRNAs

3.4.1.1.Sequence Datasets

A total of 5,940 mature miRNA sequences from 67 plant species deposited in miRBase were downloaded (version 19, August 2012, http://www.mirbase.org/) (Kozomara and Griffiths-Jones 2011). In order to prepare a nonredundant query for miRNA prediction, in cases where multiple miRNAs had identical mature miRNA sequences, only one was retained, leaving a total of 3,228 unique, mature miRNA sequences. To be used for miRNA prediction, flow sorted T. aestivum (variant Chinese Spring) chromosome arms: 5DS and 5DL were sequenced using GS Titanium Rapid Library Preparation Kit, the GS FLX Titanium LV emulsion PCR (emPCR) Kit and GS FLX Titanium Sequencing (XLR70) Kit following the manufacturer's instructions (Roche). A total of 3,208,630 reads; 937,264 for 5DS and 2,271,366 for 5DL were obtained corresponding to 1.34x and 1.61x coverage, respectively (EBI Sequence Read Archive, accession number ERP002330, http:// www.ebi.ac.uk/ena/data/view/ERP002330) (Kurtoglu et al. 2013).

3.4.1.2. Automated Homology-based In silico microRNA Identification

For miRNA identification, the strategy first developed by Zhang and his collegues described in Section 3.2.1.2, was adopted (Zhang et al. 2005). However, the process was automated by using two in-house Perl scripts: SUmirFind and SUmirFold decribed in detail in our group's publications and represented in Figure 5 (Kantar et al. 2012; Kurtoglu et al. 2013, 2014; Lucas and Budak 2012). First, two separate databases were generated from sequence reads noted in Section 3.4.1.1 for 5DS and 5DL using the BLAST version 2.2.25+ (March 2011) (Camacho et al. 2009). Then, SUmirFind

program that uses BLAST version 2.2.25+ with parameters adjusted for short input sequences was run to search miRNA query referred in Section 3.4.1.1 against the generated databases. Cutoff set to 3, allowed the retention of database sequences, which had less than 3 base pairs of mismatch to a query miRNA sequence. Remaining sequences were then subjected to SUmirFold, utilizing UNAFold version 3,8 (an implementation of the Zuker folding algorithm) for prediction of their MFE secondary structures (Markham and Zuker 2008). SUmirFold initially predicts the secondary structure and examines base pairing between the putative miRNA:miRNA* duplex for all assembly sequences, remaining after SUmirFind implementation. For all hits passing this criteria, the sequence region surrounding the putative miRNA:miRNA* is excised, refolded and checked for several other pre-established characteristics of a pre-miRNA structure (Yin et al. 2008; Zhang, Pan, and Anderson 2006; Zhang, Pan, Cobb, et al. 2006) as noted in Section 3.2.1.2. Structures were further manually inspected to eliminate multi-branch loops and in cases where identical miRNAs were predicted from two similar query mature miRNA sequences, only one was retained. Results were evaluated both individually and collectively for 5DS and 5DL (Kurtoglu et al. 2013).

3.4.2. Additional Computational Analysis

3.4.2.1. Representation Analysis of Putativ e microRNA-coding Sequences

Representation for each miRNA was calculated by counting its corresponding stem-loop coding regions. In order to prevent overrepresentation, identical hits corresponding to the same miRNA were removed. Representation dataset included all identical pre-miRNA sequences predicted to be located in different reads or at different locations on the same read, in addition to all unique putative pre-miRNA sequences. Identical pre-miRNA sequences located at the same genomic region were also included separately to the fold analysis, in cases when the mature miRNA was located on the different arms of the hairpin. Representation was analyzed both individually and collectively for 5DS and 5DL (Kantar et al. 2012; Kurtoglu et al. 2013, 2014; Lucas and Budak 2012).

3.4.2.2. Repeat Analysis of Putative microRNA-coding Sequences

Repetitive elements in the pre-miRNA coding regions predicted to be present in the 5DS and 5DL were identified. For this purpose, pre-miRNA sequences were masked against a custom repeat library assembled from the *Triticeae* Repeat Sequence Database (TREP, release 10; <u>http://wheat.pw.usda.gov/ITMI/Repeats/</u>) using a semi-automated pipeline, RepeatMasker version 3.2.9 (<u>www.repeatmasker.org</u>). Transposable elements that are present in putative pre-miRNA coding regions in 5DS and 5DL were listed and compared (Hernandez et al. 2012; Kantar et al. 2012; Kurtoglu et al. 2013, 2014; Lucas and Budak 2012; Vitulo et al. 2011).

3.4.2.3. In silico Target Identification of Putative microRNAs

First, known targets of homologous of predicted *T. aestivum* miRNAs were obtained from miRBase (version 19, August 2012, <u>http://www.mirbase.org/</u>) (Kozomara and Griffiths-Jones 2011). Next, *T. aestivum* miRNA target prediction was also performed on a dataset including one mature miRNA sequence corresponding to each miRNA predicted, using the online software psRNAtarget against the DFCI Gene Index Release 12. (<u>http://plantgrn.-noble.org/psRNATarget/</u>) (Kantar et al. 2012; Kurtoglu et al. 2013, 2014). Possible target functions of newly identified miRNAs were searched manually using QuickGO (http://www.ebi.ac.uk/QuickGO/), a web based browser for gene ontology terms and annotations provided by the UniProt-GOA project at EBI.

3.4.2.4. In silico Expression Analysis of Putative microRNAs

To provide *in silico* pre-miRNA expression evidence, for each new miRNA detected in 5DS and 5DL, one corresponding pre-miRNA sequence was searched against the ESTs of *T. aestivum* in NCBI (January 2013, 1,286,372 sequences) using NCBI BLASTN. Hits above a threshold query coverage of 99% and maximum identity

of 98% were recorded for each potential miRNA. To identify candidate pre-miRNA coding ESTs, all EST matches were compared to the non-redundant protein database at NCBI using BLASTX. All ESTs matching any protein sequence at an e-value of 1E-03 or lower were considered to be protein-coding, and were eliminated. Predicted miRNAs and the corresponding accession codes of corresponding EST hits were listed (Kantar et al. 2012; Kurtoglu et al. 2013, 2014).

3.4.3. Mapping and Quantification of microRNA-coding Sequences

3.4.3.1. Plant Materials and Growth Conditions

T. aestivum (variant Chinese Spring), its nullitetrasomic and 5D deletion line series were grown. First, seeds were surface sterilized with 4% sodium hypochlorite for 10 min and vernalized in petri dishes with 5 ml milipore water for 3-4 days at 4°C at dark. Seedlings were transferred to pots containing soil supplemented with 200 parts per million (ppm) nitrogren, 100 ppm phosphorus and 20 ppm sulfur and grown in normal greenhouse conditions (16 hour light at 22°C and 8 hour dark at 18°C). Leaf tissue was collected from adult plants (Chinese Spring, nullitetrasomic and deletion series) and stored at 80°C. Two lines of the nulli-tetrasomic series (N5D-T5A and N5DT5B: with the genomic constitution of AABBAA and AABBBB, respectively) were used. These lines lacked homoeologous 5D chromosomes (nullisomic condition) that were replaced by another homoeologous chromosome pair (tetrasomic condition) : 5A and 5B in N5D-T5A and N5D-T5B, respectively. Four homozygous lines from the group-5 wheat chromosome deletion series (5DS-2, 5DS-5, 5DL-5, 5DL-7) with different deletion breakpoints were used. The length of the remaining chromosome arm in each deletion line is referred as the 'fraction length' (FL). Corresponding FL values of each deletion line used are given in Table 1.

Deletion line	Fraction length value				
5DS-2	0.78				
5DS-5	0.67				
5DL-5	0.76				
5DL-7	0.29				

Table 1 Fraction length values of homozygous bread wheat group-5 chromosome deletion lines used in this research

3.4.3.2. Plant DNA and RNA Material

RNA isolation from frozen Chinese Spring leaf tissue was carried out using TRI Reagent (Sigma) according to the manufacturer's instructions as performed elsewhere (Ergen et al. 2009) (refer to Section 3.2.3.2 for RNA quality and quantity measurement, RNA integrity check and DNase treatment). First strand cDNA was synthesized from 100 ng of DNase treated RNA with RevertAid H- M-MuLV RT (Fermentas). Genomic DNA (gDNA) isolation from frozen leaf tissue of wheat (Chinese Spring, nullitetrasomic and deletion series) was performed using WizardH Genomic DNA Purification Kit (Promega) according to the manufacturer's instructions. All nucleic acid samples including flow sorted chromosome arms: 5DS and 5DL were stored at 20°C.

3.4.3.3. Endpoint- and Reverse Transcription-PCR Screening of Preliminary microRNAs

To experimentally validate 5D chromosome localization of selected pre-miRNAs (miR169, miR5085, miR2118, miR5070, miR6220), PCR screening was carried out using DNA from flow sorted 5D chromosome arms: 5DS and 5DL. To identify 5D chromosome specific miRNAs, PCR screening of these pre-miRNAs using gDNA from Chinese Spring and nullitetrasomic lines that lack 5D chromosome (N5D-T5A and N5D-T5B) was also performed. Additionally, using gDNA from wheat group-5 deletion series, chromosome arm specific pre-miRNAs were screened to determine their location

on the chromosome arm. To check the expression of these pre-miRNAs in adult leaf tissue in wheat grown under standard conditions, Chinese Spring leaf cDNA was used for reverse transcription PCR (RT-PCR).

PCR reactions were performed using 1 μ l (10 ng/ μ l) template (DNA or cDNA) and were performed in a 20 μ l PCR mix including 2 μ l 10X Thermus aquaticus (Taq) polymerase buffer (final concentration: 1X), 1.6 μ l 2.5 mM dNTP (final concentration: 0.2 mM), 0.6 μ l 10 μ M primer mix (final concentration: 300 nM from each primer) and 0.1 μ l of 5U/ μ l Taq polymerase (0.5 U) (Fermentas). 2.5 mM MgCl₂ (stock concentration: 25 mM) was used for the amplification of miR6220, miR5070 and miR2118 and this value was optimized to 2 mM and 3 mM for the miR5085 and miR169 amplicons. Thermal cycling setup was adjusted as follows: heated to 95°C for 5 min; followed by 35 cycles of 95°C for 1 min, 50°C/60.5°C/62°C for 30 s and 72°C for 30 s, followed by 72°C for 10 min. For amplification of miR2118 and miR5070, the annealing temperature was optimized to 50°C and 60.5°C, respectively. The annealing temperature sfor the remaining miRNAs were optimized to 62°C. Primers used for PCR analysis are listed in Appendix D. Separation of PCR products was performed using 3% agarose gels.

3.4.3.4. Quantitative Real Time PCR of Preliminary microRNAs

To quantify pre-miRNA gene copy number and expression in Chinese spring, qRT-PCR was performed using FastStart Universal SYBR Green Master (ROX) (Roche) on an Icycler Multicolor Real-time PCR Detection Systems (Bio-Rad). Using 1 µl of template (DNA or cDNA), qRT-PCR reactions were performed as 20 µl including 10 µl 2X Master mix and 0.6 µl primer mix (300 nM from each primer). Specified qRT-PCR thermal setup was adjusted as follows: heated to 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 56°C /58°C for 30 s, and 72°C for 30 s, followed by 72°C for 7 min. The annealing temperature was optimized to 56°C for miR6220 and miR2118 quantification. The annealing temperatures for the remaining miRNAs were optimized to 58°C. The melting curves were generated by collecting fluorescence signals from 55 °C to 95°C as the temperature increased 0.5°C with a dwell time of 10 s for 80 cycles. Pre-miR2118 gene copy number quantification could not be performed due to the

presence of an additional nonspecific band. For quantification of pre-miR5070, located both on 5D and other wheat chromosomes, additionaly analysis was performed using nullitetrasomic lines along with Chinese Spring to quantify its 5D specific gene copy number. Normalization was performed with BF474284 primers (Appendix D), located to the long arm of wheat chromosome 1A. For quantification, PCR efficiency calculations were performed using the program LinRegPCR retrieved from the publication of Rujiter and his colleagues (Ruijter et al. 2009).

3.5. Methods: Introgression of Drought-related Quantitative Trait Loci to Elite Cultivars

3.5.1. Plant Materials and Growth Conditions

Bread wheat varieties: South Australian cultivars: Kukri and RAC875 with differring physiological abilities to cope with osmotic stress (Izanloo et al. 2008); and public elite lines with high yield characteristics: Tosunbey and Bolal) were selected for the study. First, seeds were surface sterilized in 4% sodium hypochlorite for 10 min. They were vernalized and pre-germinated in petri dishes in 5 ml milipore water for 4-6 weeks at 4°C at dark. Seedlings were transferred to pots containing soil supplemented with 200 ppm nitrogen, 100 ppm phosphorus, 25 ppm sulfur and 155 ppm potassium and grown in normal greenhouse conditions (refer to Section 3.4.3.1). Additionally, 100 ppm nitrogen was added to the soil at the 20th and 40th days of plant development. The sowing of plants was performed as multiple sets at 5-10 days intervals in order to render the simultaneous presence of different cultivars at the appropriate developmental stage for performing intercultivar crosses (Figure 6 a-b). Other methods were also used to synchronize development of different cultivars including keeping the faster developing cultivars at 10°C to delay their growth and/or supplementing with additional fertilizers to increase the number of spikes.

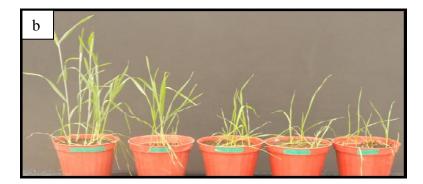


Figure 6 Multiple bread wheat plant sets grown for cross-pollination of different cultivars. (a) multiple plant sets sown with 5-10 days intervals (b) one representative Tosunbey plant from each set sown with 5-10 days intervals (photographed at 48 days after sowing of the first set)

3.5.2. Procedure for Intercultivar Crosses

Intercultivar crosses were performed between South Australian cultivars (Kukri, RAC875) and public elite lines (Tosunbey and Bolal) to produce new genotypes. In order to perform cross-pollination between two distinct varieties, two spikes, each from a plant of different genotype (one Australian cultivar and one elite line) were selected. One of these spikes were prepared as the female parent and the other as the male parent. During wheat development, heading is followed by flowering, in which pollination and fertilization occur. Selection of the female and male spikes were performed in the transition stage from heading to flowering.

Wheat spike contains several spikelets, and a spikelet has multiple florets with male and female reproductive organs. Each floret has one pistil containing stigma and ovary; and three anthers that contain pollens. Maturity begins at the central spikelet of the head and spreads outwards. Spikes were selected to be used as a female if their heads were still partially encapsulated by the flag leaf sheath and anthers in their central spikelet were still green (Figure 7 a). At the same time, the availibility of spikes to be used as males during cross-pollination was also checked and any spike with its base leveling with the base of the flag leaf; slightly more mature than the female and would soon begin to produce pollen were spotted and marked as prospective males.

In order to prepare the female spikes for cross-pollination, basal and apical spikelets, and inner florets of the remaining spikelets were eliminated with a fine point forceps. Then using an embroidery scissors, the top half of every spikelet was cut, without injuring the pistil and the spikes were emasculated by the removal of all the anthers with the forceps (Figure 7 b). The vulnearable female spikes were covered with a glassine crossing bag to protect them from damage and polen (Figure 7 c).

A few days later after the preparation of the female (approximately three days), when the females and males were ready, cross-pollinations were performed. At this stage, the females were sexually mature: their florets were opened and stigmas were largened. The base of the males spikes were higher than the base of the flag leaf and in these males flowering was either in process in the central spikelets or about to begin (Figure 7 a). With the scissors, the top of the male spikes were cut and males were stimulated by rubbing and exposure to sunlight (Figure 7 b). Cross-pollination was performed by the transfer of suitable anthers, which have not lost their pollens to self-fertilization, to the female spikelets. The cross-pollinated females were reclosed with a bag (Placido et al. 2013; Randhawa et al. 2009) (Figure 7 c). After appropriate time, Filial 1 (F1) seeds were collected from cross-pollinated females.

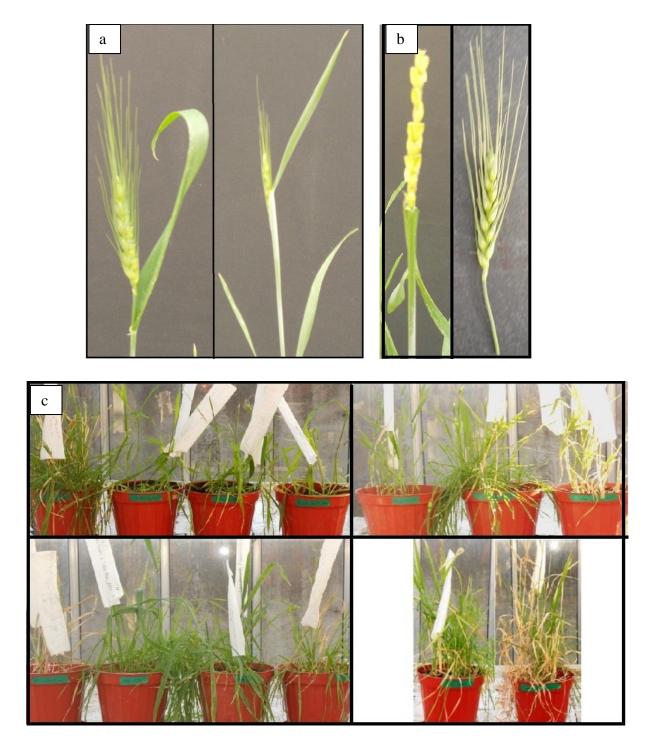


Figure 7 Procedure of cross-pollination. (a) spikes at the appropriate developmental stage to be used as a male (left) and female (right) (b) female (left) and male (right) spikes prepared for crossing (c) female plants for cross-pollination: Kukri (upper left), Tosunbey (upper right), RAC875 (lower left) and Bolal (lower right)

3.5.3. Molecular Screening for Introgression

One of the drought related QTLs previously identified through assessment of DH populations derived from crosses between RAC875 and Kukri, in field trials under water limited conditions, was selected for the study (Bennett, Izanloo, Edwards, et al. 2012; Bennett, Izanloo, Reynolds, et al. 2012; Bennett, Reynolds, et al. 2012). In order to screen plants for the presence of this locus mapped to bread wheat chromosome 3B, a linked polymorphic SSR: XBARC77 was used as a molecular marker (Somers, Isaac, and Edwards 2004) (Figure 8). Primers to perfom PCR amplifications of XBARC77 were obtained from GrainGenes (<u>http://wheat.pw.usda.gov/GG2/index.shtml</u>) and are listed in Appendix D.

PCR screening of drought related QTL was performed in parentals, F1, BC1F2, BC2F2 and BC3F2 plants (refer to Sections 3.5.2 and 3.5.4). Leaf tissue from plants were collected, directly frozen and stored at -80° C. DNA Isolation was carried out with WizardH Genomic DNA Purification Kit (Promega) according to the manufacturer's instructions. PCR mix included 2 µl (50 ng) DNA, 1.6 µl (25 mM) MgCl₂, 1.6 µl (2.5 mM) dNTP, 0.25 µl (10 µM) forward and reverse primers and 0.1 µl (5U/µl) Taq polymerase (Fermentas). PCR temperature cycling conditions was set to 95°C for 5 min, 35 cycles of 95°C for 1 min, 60°C for 30 s, 72°C for 30 s, and 72°C for 10 min. Separation of PCR products was performed using 2.3% agarose gels.

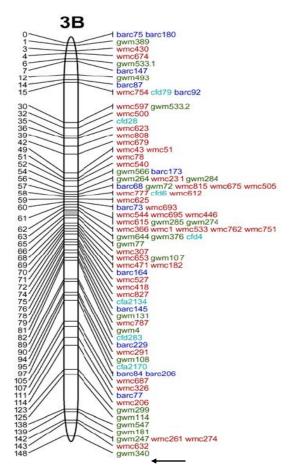


Figure 8 Drought related quantitative trait loci mapped to bread wheat chromosome 3B using Kukri and RAC875 recombinant inbred lines.

3.5.4. Backcrossing Against the Parental Background

F1 seeds were sown and grown using soil and greenhouse conditions noted in Section 3.5.1. After plant self-pollination and maturation, F2 seeds were collected. In order to limit the loss of good yield characteristics from the elite cultivar, backcrossing against parental genotypes was performed until BC3F2. In each backcrossing trial, plants were grown in soil and greenhouse conditions noted in Section 3.5.1. Parentals were sown as multiple sets at 5-10 days intervals. Cross-pollination was performed following the procedure in Section 3.5.2. Prior to further backcrossing, in each step, the obtained plants (F1, BC1F2, BC2F2 and BC3F2) were screened with methods outlined in Section 3.5.3 for the presence of the drought related QTL.

4.

4.RESULTS

4.1. Barley microRNAs and Drought

4.1.1. Putative Barley microRNAs and their Characteristics

Using *in silico* homology-based method, a total of 28 putative barley miRNAs were identified (Table 2, Appendix F). Of the identified *H. vulgare* mature miRNAs, 15 (52%) were found to be located in the 3' arm, while the rest (48%) were in the 5' arm of the stem-loop pre-miRNA hairpin. Lengths of barley mature miRNA sequences were observed to vary between 20 and 24 nucleotides. Most of the barley mature miRNA sequences (18 of the 28) had uracil as their first nucleotide in agreement with other results (Zhang, Wang, and Pan 2007)(Zhang, Wang, Wang, et al. 2007). Predicted barley miRNAs were classified into 18 miRNA families. The family of miR-172 was found to contain four members, while four other families (miR-160, miR-166, and miR-168) included two members and the remaining miRNA families were represented by only one member (Table 2).

Through μ PC searches, possible homologues in other plants were identified for all putative barley mature miRNAs with the exception of miR1119, miR1139, and

miR2055. Most of the barley miRNA homologues were detected in bread wheat, maize and tomato (Appendix G). Conservation across other plant species was further analyzed for putative barley miR160a pre-miRNA. Across plant species, miRNA sequence of miR160a was found to be more conserved than its corresponding miRNA* sequence (Figure 9).

Pre-miRNA sequences of *H. vulgare* were observed to vary both in structure and in size. The size of identified pre-miRNAs ranged between 46–114 nucleotides in length with an average sequence size of 77.14±18.48 and median of 78 (Table 3). Eighteen of the detected pre-miRNAs contained more than 70 nucleotides in agreement with previous results (Unver and Budak 2009; Yin et al. 2008) (Table 2). MFE is used for the determination of RNA and DNA structures and lower MFE provides higher stability for secondary stem-loop hairpin structure. Previous studies had shown that pre-miRNAs have negative MFE and many researchers noted that their predicted pre-miRNAs have negative lower MFE value. MFEs found for the putative barley miRNAs here varied from -14.7 to -63.6 kcal/mol (with an average of -30.88 ± 13.71 and median of -27.4kcal/mol; Tables 2 and 3) representing good agreement with previous plant miRNA identification studies (Yin et al. 2008; Zhang, Pan, and Stellwag 2008; Zhang, Wang, and Pan 2007; Zhang, Wang, Wang, et al. 2007). MFEI incorporates major characteristics for pre-miRNAs including MFE of secondary structure, as well as sequence length and percent of guanine+cytosine ((G+C)%) content. Therefore the index provides a valuable criteria to distinguish miRNAs from other types of RNAs. MFEIs of other RNA types were characterized: transfer RNAs (tRNAs) (0.64), rRNAs (0.59), and mRNAs (0.62–0.66) and miRNAs were observed to have higher MFEIs than other types of RNAs (Schwab et al. 2005; Yin et al. 2008). In consistency with previous studies, here, MFEIs of predicted barley pre-miRNAs were detected to be higher (average 0.805 ± 0.269 with median of 0.79) than other RNA types. For the majority of putative barley pre-miRNAs, this index was found to be greater than 0.66 (Tables 2 and 3).

New barley microRNA	Barley mature microRNA sequence	Accession	Homologous microRNA	Location	ΔG (kcal/mol)	LP	LM	G+C (%)	MFEI
miR1119	uggcacggcgcgaugcucagucag	GH227471.1	tae-miR1119	3'	-22.9	86	24	58.2	0.45
miR1120	acauucuuauauuaugggacggag	BJ486588.1	tae-miR1120	3'	-42.6	84	24	35.7	1.42
miR1121	cauagugaucuaaacgcucuua	FD522234.1	tae-miR1121	3'	-28.3	57	21	50.3	0.99
miR1122	uagauacauccguaucuaaa	EX593109.1	tae-miR1122	5'	-25.8	90	21	32.3	0.89
miR1126	ucaacuauggacuacauacggaa	BU974512.1	tae-miR1126	5'	-30.2	104	23	31.8	0.91
miR1139	gaaguaacuuagacuaguaaca	BQ471108.1	bdi-miR1139	5'	-23.6	46	21	34.8	1.47
miR1436	acauuaugggacggaggagu	EX572464.1	osa-miR1436	3'	-29.4	63	21	44.5	1.05
miR1438	uuuuggaacggagugaguaau	GH215029.1	osa-miR1438	3'	-37	91	21	34.1	1.19
miR156a	ugacacgagagagagagagac	FD528446.1	sbi-miR156a	5'	-18	75	21	56	0.43
miR159a	uuuggauugaagggagcucug	BJ456281.1	tae-miR159a	3'	-26.5	88	21	50	0.61
miR160a	ugccuggcucccuguaugccu	BF622299.2	tae-miR160a	3'	-39.7	100	21	51	0.78
miR160b	ugccuggcucccuguaugccu	BU986263.1	tae-miR160b	5'	-21.6	65	21	55.4	0.6
miR165	ucggaccaggcuucauucccc	BQ760548.1	tae-miR165	3'	-51.5	107	21	60.8	0.8
miR166m	ucggaccaggcuucauucccc	BQ760548.1	osa-miR166m	3'	-40.2	78	21	64	0.8
miR166n	ucggaccaggcuucauucccc	BY841849.1	osa-miR166n	3'	-63.6	102	21	59.9	1.04
miR168a	ucgcuuggugcagaucgggac	CA003609.1	osa-miR168a	5'	-51.6	86	21	73.3	0.82
miR168b	ucgcuuggugcagaucgggac	CA003589.1	tae-miR168b	5'	-42.4	66	21	69.9	0.96
miR171	ugauugagccgugccaauauc	CA009309.1	tae-miR171	5'	-44.5	78	21	61.5	0.93

Table 2 List of computer based newly identified barley microRNAs and their characteristics

miR172a	aggaucuugaugaugcugcc	GH215809.1	tae-miR172a	5'	-16	53	20	43.4	0.69
miR172b	agaauccugaugaugcugcag	GH213313.1	tae-miR172b	5'	-16	59	21	42.4	0.64
miR172c	gaggaucuugaugaugcugcc	BY867399.1	tae-miR172c	5'	-15.3	52	21	44.3	0.65
miR172d	aggaucuugaugaugcugccg	CX627187.1	tae-miR172d	5'	-15.3	52	21	46.2	0.64
miR2055	uuuccuugggaaggggguuuu	BG416283.1	osa-miR2055	3'	-14.7	63	21	30.2	0.77
miR395a	uccaaagggaucgcauugucu	GH212603.1	tae-miR395a	3'	-21.6	67	21	58.2	0.54
miR397	guugagugcagcguugaugaa	CA014459.1	tae-miR397	5'	-53.9	85	21	69.5	0.91
miR399g	ugccaaaggagauuugccccg	AV835204.1	vvi-miR399g	3'	-17	78	21	48.8	0.44
miR408	cugcacugccucuucccugcg	GH218076.1	osa-miR408	3'	-22.8	71	21	67.7	0.51
miR444	uugcugccucaagcuugcugc	CB882722.1	bdi-miR444	3'	-32.7	114	21	46.5	0.62

Accession: NCBI Genbank ID of the expressed sequence tag used for microRNA prediction (<u>http://www.ncbi.nlm.nih.gov/</u>, July, 2009), Homologous microRNA: miRBase ID of the query microRNA used for microRNA prediction (version 13, March 2009, http://mirbase.org), Location: location of the mature microRNA on the preliminary microRNA hairpin, ΔG : minimum folding free energy of the microRNA hairpin, LP: length of preliminary microRNA, LM: length of mature microRNA, G+C: guanine+cytosine percent of preliminary microRNA sequence, MFEI: minimum folding free energy index, tae: *Triticum aestivum*, bdi: *Brachypodium distachyon*, osa: *Oryza sativa*, sbi: *Sorghum bicolor*, vvi: *Vitis vinifera*

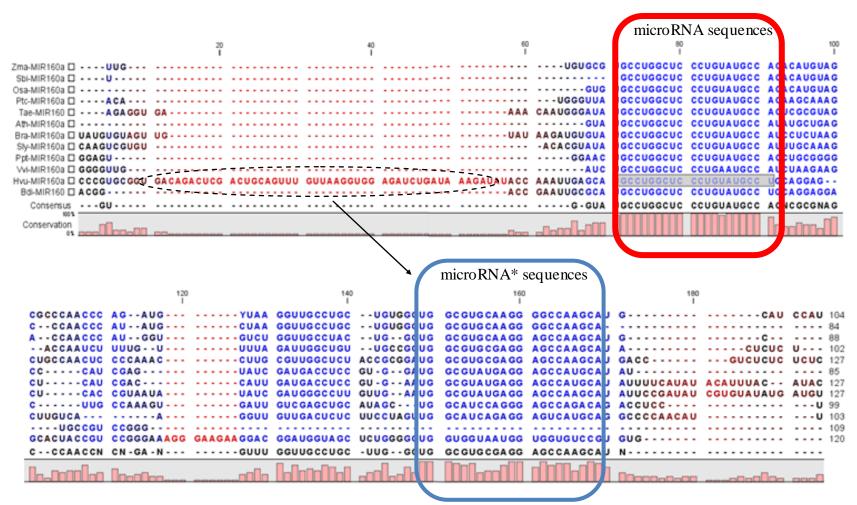


Figure 9 Multiple sequence alignment of predicted barley preliminary microRNA160a and preliminary microRNA160a's in other species. (miRBase version 13, March 2009, http://mirbase.org)

Characteristic	Minimum	Maximum	Median	Average	Standard deviation
Sequence length	46	114	78	77	18
G+C (%)	30.2	73.3	50.2	50.8	12.6
MFEI	0.43	1.47	0.79	0.81	0.27
ΔG (kcal/mol)	-63.6	-14.7	-27.4	-30.9	13.7

Table 3 Major characteristics of predicted barley preliminary microRNAs

G+C: guanine+cytosine percent of sequence, MFEI: minimum folding free energy index, Δ G: minimum folding free energy

4.1.2. Putative Barley microRNA Targets

Regulation of gene expression at the post-transcriptional level is provided by binding of miRNAs to complementary sites in target mRNA. By the guidance of miRNA the target

transcript is cleaved or its translation is inhibited (Bartel et al. 2004). We predicted putative mRNA targets of predicted barley miRNAs by searching their mature miRNA sequences against *H. vulgare* EST database and further filtering based on additional criteria (refer to Section 3.2.2). We found a total of 445 potential barley miRNA targets and at least one target was identified for each barley miRNA query except miR166n, miR166m, miR168a, miR168b, miR160b, and miR399g (Appendix H). Barley miRNA target genes were observed to vary in sequence and function, and most of them were classified as transcription factors, as well as functional proteins in plant metabolism, and stress response in consistency with other studies (Bonnet et al. 2004; Rhoades et al. 2002; Zhang, Pan, and Anderson 2006).

4.1.3. Dehydration Responsive Barley microRNAs

In order to detect whether some of the predicted barley miRNAs were regulated by drought, we performed qRT-PCR for quantification of selected barley miRNAs. Four of the 28 predicted miRNAs were measured in leaf and root tissues under dehydration stress conditions. Induced barley miRNAs in leaf tissue were: miR156, miR166, miR171 and miR408. In root tissue, expression of miR156, miR171, and miR408 were not changed upon dehydration stress, while miR166 was found to be suppressed (Figure 10). The qRT-PCR products were shown to be specific by melting analysis in qRT-PCR and agarose gel electrophoresis along with no-RT and no-RNA controls (Figure 11).

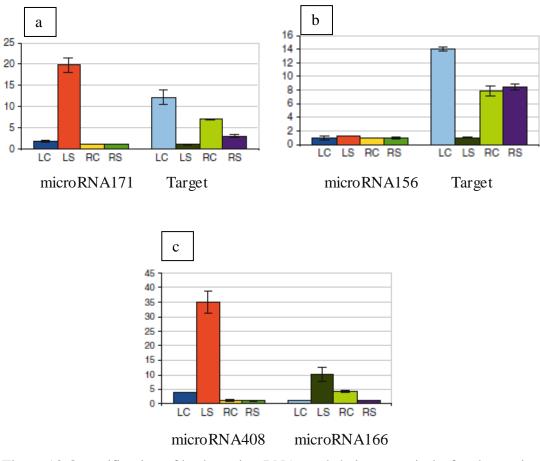


Figure 10 Quantification of barley microRNAs and their targets in leaf and root tissues in response to dehydration. (a) microRNA171-target BQ4610131.1 (b) microRNA156target AV910992.1 (c) microRNA408-microRNA166 LC: leaf control, LS: leaf stress, RC: root control, RS: root stress Quantification is based on quantitative real time PCR results and designated with bar graphs.

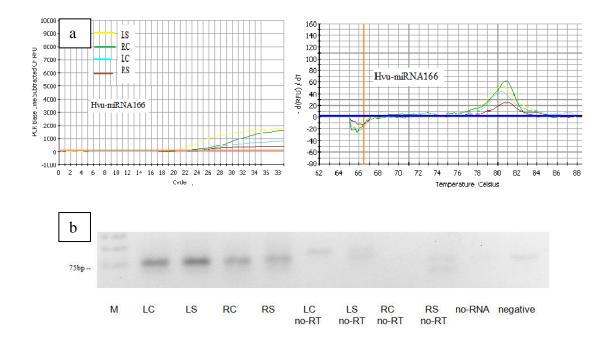


Figure 11 Barley microRNA166 amplification in control and drought stressed leaf and root tissues and confirmation of specific amplification with no reverse transcription and no RNA controls through melting curve analysis and agarose gel electrophoresis (a) amplification and melting curves of quantitative real time PCR (b) agarose gel electrophoresis of quantitative real time PCR products LC: control leaf, LS: drought stressed leaf, RC: control root, RS: drought stressed root, bp: base pairs, M: RNA ladder, no-RT: no reverse transcription control, no-RNA: no

RNA control, negative: negative control

4.1.4. Dehydration Responsive Barley microRNA Targets

One *in silico* identified target for each miRNA quantified was selected for qRT-PCR, except for miR166, for which no target could be predicted. Expression levels of the target genes of barley miR156, miR171, and miR408 were quantified relative to controls in dehydration shocked barley root and leaf tissues. miR156 and miR171 target mRNA levels were found to be suppressed in stress applied leaf samples. Since an inverse correlation between levels of miR156, miR171 expression, and their corresponding target mRNA transcripts was observed, drought triggered regulation of mRNA expression by these miRNAs in barley leaf was validated. However, in dehydration-stress-treated root samples, Hvu-miR156 target was seen to be increased, while miR171 and miR408 targets were decreased. These changes in target transcripts can be due to other mechanisms unrelated to miRNA-guided regulation (Figure 10). miR408 expression was not detected in either control or stressed leaf samples.

4.1.5. Drought Induced Target Cleavage by Barley microRNAs

Experimental validation of target mRNAs with 5' RLM-RACE takes advantage of the preferred mode of action of plant miRNAs, which is target cleavage. In this work a modified 5' RLM-RACE experiments were performed with total RNA extracted from leaf stress tissues. The predicted target ESTs of miR156, miR408, and miR1436 could not be verified with 5' RLM-RACE. On the other hand, we have detected seven new target transcripts cleaved by miRNA-guided RISC cleavage (Appendix I). The cleaved sequences match with 13 ESTs and these ESTs were found to encode 15 protein homologues (Table 4). These sequences are most likely to be targets of six computationally proposed *H. vulgare* miRNAs: miR165, miR166, miR156, miR2055, miR171, miR172, miR397 and miR159. It is also possible that barley homologues of miRNAs in other species might target for cleavage. Possibly these transcripts are the targets of miR408, miR1510, miR1511, miR5p, miR538, miR1214, and miR853 (Appendix J).

Table 4 Expressed sequence tag and protein hits obtained by computational analysis of barley cleaved sequences identified using RNA ligation mediated rapid amplification of complementary DNA ends

Sequence	Expressed sequence tag ID	Protein ID
1.	CA021754	ref XP_002532325, ref NP_195851.2, emb CAB85535.1
2.	BE421101	gb ABR26072.1, emb CAL55828.1, emb CAJ43715.1, emb CAJ43714.1
3.	CB014764, CB019633	gb ABA27052
4.	CV0547724,CV054294	gb ABA27052
5.	BF263515	gb ABC74511.1,gb ABC74510.1, gb ABC74512.1
6.	Bcll163ct1723cn5537, BF619398, barley1_14852	gb ABA974982, ref NP_566111.1, gb ABG21980.1, ref XP_002523062.1,gb AA027294.1,emb C AA12242.1, ref NP_001148843.1
7.	BF617393, BE437840, BE437720	prf 1603356c, dbj BAB85481.1, ref YP_784093.1, dbj BAC57648.1, emb CA002552.1
Sequence	Protein	Protein family
1.	ubiquitin ligase	zinc finger in N-recognin (UBR box) domain
2.	biosynthesis protein, H+- ATPase, sinapyl alcohol dehydrogenase, 4-coumaryl- CoA ligase	alcohol dehydrogenase GroES-like protein, zinc-binding dehydrogenase
•	-	
3.	T071-3	-
3. 4.		-
	ТО71-3	- - AP2 domain found in APETALA2 and EREBP
4.	TO71-3 TO71-3 DRF-like transcription factor	- AP2 domain found in APETALA2 and

Sequence: cleaved sequence identified by RNA ligation mediated rapid amplification of complementary DNA ends, Expressed sequence tag ID: Graingenes barley expressed sequence tag(s) that the cleaved sequence gives hit to (http://wheat.pw.usda.gov/GG2), Protein ID: homologue NCBI *Viridiplantae* protein(s) that the expressed sequence(s) gives hit to above a score of 30

4.2. Wild Emmer Wheat microRNAs and Drought

4.2.1. Wild Emmer Wheat Root and Leaf microRNAs

A plant miRNA chip microarray was used to detect differentially regulated miRNAs at 4 and 8 hour drought shock conditions in leaf and root tissues of T. diccocoides. Dehydration shock was selected as the stress condition because, as reported by (Ergen et al. 2009), for profiling the majority of drought-responsive genes. A total of 205 miRNAs (out of 853 miRNA probes on chip) were detected in unstressed tissues. Of these, 46 were found to be leaf specific and 21 were found to be root specific, the remaining 138 miRNAs being detected in both leaf and root tissues (Appendix K). In drought-stressed tissues, a total of 438 miRNAs (out of 853 miRNA probes on chip) were detected. Of these, 78 were specific to 4 hour stressed leaves; 43 were specific to 8 hour stressed leaves; and 20 were leaf specific and detected after both stress periods. Among root-specific miRNAs, 48 were specific to 4 hour stressed roots, 7 were detected only after 8 hour stress, and 15 were found to be present at both time points. Expression of 19 miRNAs was detected in both leaf and root tissues only at 4 hour of dehydration, and 8 miRNAs in both tissues only after 8 hour of drought stress. Finally, 143 miRNAs were expressed in both tissues under all drought treatments, the majority (135) of which had also been detected in also in unstressed tissues (Appendix L).

4.2.2. Dehydration Responsive Wild Emmer Wheat microRNAs

The microarray results showed that the expression of 5 of the 205 miRNAs expressed in control tissues was not detected during drought stress, whereas 236 out of 438 miRNAs expressed in stressed tissues were not detected in control tissues. This indicates that drought stress causes an overall increase in the number of miRNAs expressed. Differential expression due to drought stress was analyzed for those 141 miRNAs that were detected both in controls and stress conditions (Appendices K, L). miRNAs that showed >3-fold increased or decreased expression with a P value <0.05 were determined (Table 5). In leaf tissue, miR1867 and miR896 were found to be

differentially regulated under both drought conditions; miR1867 was upregulated at both timepoints while miR896 expression was downregulated after 4 hour but upregulated after 8 hour stress. Also after 8 hour stress, probes for 2 different miR398 family members were upregulated while miR528 was downregulated. In root tissue, miR474 was strongly induced under both drought treatments, similary at both stress time points, miR398 was also upregulated. After 4 hours of drought, levels of miR396 transiently decreased while miR1450 increased, but both had returned to control levels by 8 hour post-stress induction. Roots that had been drought-stressed for 8 hour showed the most changes in miRNA levels: in addition to miR474 and miR398, four other miR156, miR894, miR1432 and miR1881) were induced, while miR166 and miR171 were downregulated. The distribution of differentially expressed miRNAs by tissue and drought condition is displayed by the venn diagram (Figure 12).

Tissue- drought stress condition	microRNA	Homologous microRNA probe	Signal intensity		Mean fold change from control to stress	P value
			Control	Stress		
Leaf-	miR1867	osa-miR1867	32.1 ± 1.8	116.9 ± 10.9	+3.89	0.0004
4 hour	miR896	ppt-miR896	$4,060 \pm 423$	$1,252 \pm 18.8$	-3.25	0.0009
	miR1867	osa-miR1867	30.4 ± 8.8	151.6 ± 39.6	+4.87	0.0071
T	miR398	pta-miR398	8.23 ± 3.31	61.5 ± 8.9	+8.19	0.0005
Leaf- 8 hour	1111K 398	ath-miR398b	25.84 ± 5.55	96.0 ± 6.8	+3.98	< 0.0001
0 110 01	miR528	osa-miR528	$1,985 \pm 413$	459.9 ± 63.1	-4.26	0.0045
	miR896	ppt-miR896	$1,552 \pm 154$	5,290 ± 161	+3.36	< 0.0001
	miR1450	ptc-miR1450	$21,538 \pm 1,536$	85,708 ± 3,065	+3.99	< 0.0001
	miR396	osa-miR396d	$2,379 \pm 462$	790.6 ± 69.9	-3.02	0.0056
Root-	miR398	ath-miR398b	9.49 ± 2.29	43.96 ± 7.03	+5.11	0.0012
4 hour	miR474	ptc-miR474c	36.0 ± 10.0	$1,940 \pm 347$	+54.93	0.0016
		ptc-miR474a	50.1 ± 15.8	$2,164 \pm 287$	+46.40	0.0007
		ptc-miR474b	46.1 ± 8.7	$2,067 \pm 331$	+44.62	0.0012
	miR1432	osa-miR1432	73.7 ± 9.2	215.1 ± 21.3	+3.17	0.0002
	miR156	ptc-miR156k	291.8 ± 60.2	$1,255 \pm 73.2$	+4.51	< 0.0001
	IIIKIJO	vvi-miR156e	76.6 ± 15.7	232.9 ± 31.4	+3.15	0.0006
		vvi-miR166a	118.8 ± 31.3	32.8 ± 10.3	-4.48	0.0083
	miR166	osa-miR166k	343.5 ± 88.2	104.1 ± 18.5	-3.19	0.0105
		ptc-miR166p	439.1 ± 74.6	146.4 ± 26.0	-3.10	0.0023
D 4	miR171	osa-miR171h	161.2 ± 25.1	52.99 ± 4.38	-2.91	0.0027
Root- 8 hour	miR1881	osa-miR1881	20.5 ± 1.4	281.9 ± 24.4	+13.87	0.0002
onour		ath-miR398b	8.67 ± 1.89	66.3 ± 11.6	+7.70	0.0018
	miR398	ath-miR398a	7.97 ± 4.43	61.8 ± 13.4	+7.64	0.0023
		pta-miR398	7.18 ± 3.21	42.5 ± 7.4	+5.13	0.0009
		ptc-miR474b	380.4 ± 70.0	$9,568 \pm 387$	+26.12	< 0.0001
	miR474	ptc-miR474c	361.2 ± 58.7	$9,375 \pm 587$	+25.90	0.0001
		ptc-miR474a	394.7 ± 73.8	$9,433 \pm 430$	+25.02	< 0.0001
	miR894	ppt-miR894	452.0 ± 75.9	2,653 ± 82.1	+6.17	< 0.0001

 Table 5 Wild emmer wheat microRNAs complementary to microarray probes showing altered expression in response to drought stress

Signal intensities are given as mean ± standart deviation of four replicates. P values between four control replicates and four stress replicates for each probe were calculated using unpaired, 2-tailed student's t test Osa: Oryza sativa, ppt: Physcomitrella patens, pta: Pinus taeda, ath: Arabidopsis

thaliana, ptc: Populus trichocarpa, vvi: Vitis vinifera

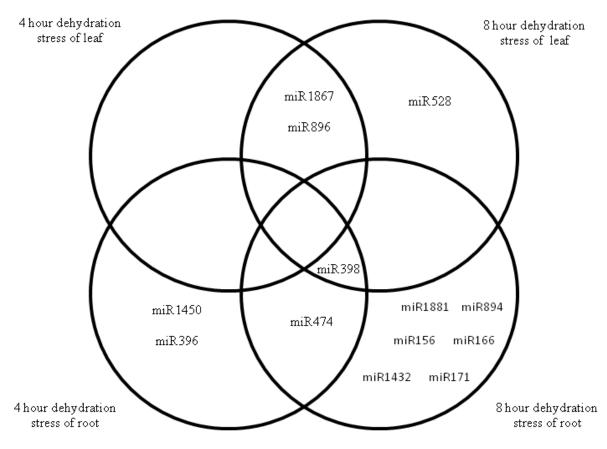


Figure 12 Venn diagram indicating common and unique differentially expressed wild emmer wheat microRNAs in two different tissues under two different drought treatments

In several cases multiple probes from the same family were detected as differentially expressed (miR398, miR474, miR156 and miR166). As miRNA family members usually differ from each other by only 2 or 3 bases, it is difficult to tell whether these multiple signals come from a single *T. dicoccoides* miRNA or several closely related ones. However, some indication is given by comparing their expression levels and cluster analysis (Figure 13). For example, all three miR474 probes were observed to be upregulated to a similar degree, suggesting that they are detecting the same *T. dicoccoides* miR474, or several miR474s that are regulated similarly. For miR-156 and -166 family members, although mean expression levels vary, they group together in the cluster analysis again suggesting a single corresponding *T. dicoccoides* miRNA or miRNA family. However, the different miR398 probes do not consistently cluster together, and show different levels of induction from each other (or no induction) depending on the drought condition. Therefore, it is probable that *T. dicoccoides* contains 2 or more miR398 family members that are induced under drought conditions but to different amounts depending on the tissue and drought conditions.

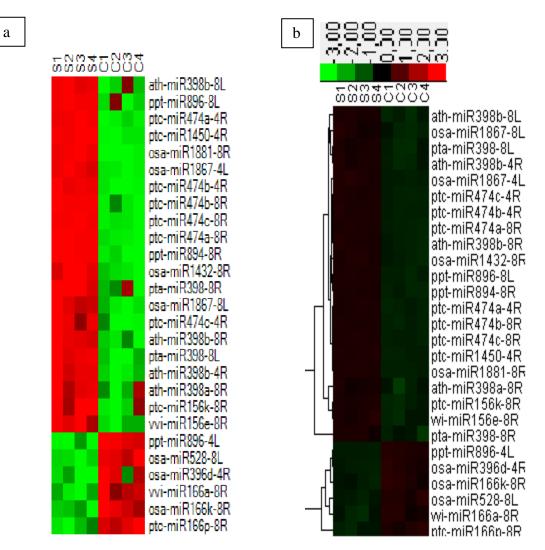
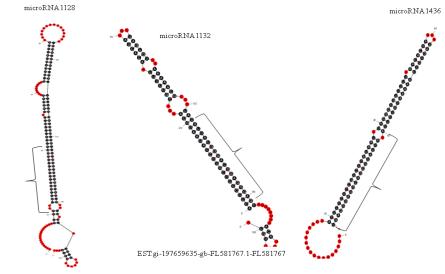



Figure 13 Heat map of microarray data showing differentially expressed wild emmer wheat microRNAs by tissue and drought treatment, clustered according to expression pattern. (a) clustering performed by the self-organizing map method using Euclidean distance in which green indicates low signal intensity and red high signal intensity (b) complete hierarchical clustering carried out using Euclidean distance in which color coding is according to the scale given 4L: 4 hour dehydration stress of leaf, 8L: 8 hour dehydration stress of leaf, 4R: 4 hour dehydration stress of root, 8R: 4 hour dehydration stress of root

4.2.3. Stem-loop Verification for Wild Emmer Wheat microRNAs

Although mature miRNA expression obtained by microarray studies is valuable, an ultimate verification for the presence of a miRNA in a species also necessiates premiRNA stem-loop evidence. This is crucial to differentiate miRNAs from other types of sRNAs since miRNAs are processed through a unique biogenesis pathway, in which hairpin shaped precursors are intermediates. Here, by searching sequences of all probes that gave a postive signal in the microarray, to wild emmer wheat ESTs, stem-loop forming secondary structures consistent with pre-miRNA characteristics were found for three miRNAs: miR1436, miR1128 and miR1132 (Figure 14). Three nucleotide mismatch flexibility was allowed to account for the occurences of miRNA-probe binding through a few mismatches and also taking into account differences in sequence between cultivars. The latter is important since microarray study was performed on a pool of TR39477 and TR38828, however in prediction of secondary structures, TR39477 and TTD-22 ESTs, the only currently available T. dicoccoides sequences, were used. Other miRNAs detected by the microarray await similar stem-loop evidence, which can be achived in the following years with an increase in T. dicoccoides genomic and transcriptomic sequence availibility.

EST gi-197659968-gb-FL583158.1-FL583158

EST.gi-197670288-gb-FK828073.1-FK828073

Figure 14 Predicted stem-loop structures of wild emmer wheat microRNAs identified by the microarray. Preliminary microRNA sequences were identified by BLAST to *T. dicoccoides* sequences NCBI (http://www.ncbi.nlm.nih.gov) (Ergen and Budak 2009) and their secondary structures were predicted by UNAFold. Mature microRNA sequences are shown with brackets.

4.2.4. Putative Targets of Dehydration Responsive Wild Emmer Wheat microRNAs

Several of the differentially expressed miRNAs had experimentally confirmed targets in model plant species (Table 6). However, as the majority have not, we computationally predicted targets for all the differentially expressed miRNAs. Using wild emmer wheat sequences as the target dataset, only one predicted target was found for a differentially expressed miRNA: a putative heat-shock protein containing thioredoxin and DnaJ domains as a target of miR396. Therefore, the analysis was expanded to the set of available durum and bread wheat sequences. For miR156, miR166, miR396 and miR398, targets were predicted in *Triticeae* that matched those experimentally verified in model species (Table 6). For all the differentially expressed miRNAs except miR896, there was either a experimentally verifed target in model plant species, and/or a predicted target from *Triticum* ESTs or gene sequences.

Table 6 Targets of drought responsive microRNAs identified by the microarray and
their functions

Target	s experimentally verified in	n other plant species a	and their functions
microRNA	Experimentally verified target	Reference	Target function
miR398	copper superoxide dismutases; cytochrome C oxidase subunit V	Sunkar et al (2006); Jones-Rhoades & Bartel (2004)	copper homeostasis, response to oxidative stress, enzyme involved in respiration
miR474	kinesin, a pentatricopeptide repeat (PPR) family protein	Lu et al (2005)	motor functions, organelle biogenesis
miR166	HD-ZipIII transcription factors	Juarez et al (2004)	regulation of axillary meristem initiation and leaf development
miR156	squamosa-promoter binding protein (SBP)-like transcription factors	Wu & Poethig (2006)	development, especially flowering time
miR171	GRAS domain or SCARECROW-like proteins, a family of transcription factors	Llave et al (2002)	radial patterning in roots, light signaling, gibberellin signaling
miR396	growth regulating factor- like (GRL) transcription factors, ceramidase genes	Jones-Rhoades & Bartel (2004); Liu & Yu (2009)	development of leaves and cotydelons, lipid metabolism
Function	al annotation of targets pr	edicted using availabl	e <i>Triticum</i> sequences
microRNA	Source of sequence used in target prediction	Target description	Target function
miR156	Triticum aestivum	squamosa binding protein-like	development, flowering time
miR166	Triticum aestivum	HD-ZipIII transcription factors	regulation of axillary meristem initiation, leaf development
miR396	Triticum dicoccoides	heat-shock protein containing thioredoxin and DnaJ domains	response to abiotic stress
miR396	Triticum aestivum	GRF-1 homologue	development of leaves and cotyledons
miR398	Triticum durum	Cu-Zn superoxide	copper homeostasis,

	Triticum aestivum	dismutases	response to oxidative stress
miR528	Triticum aestivum	similar to plantacyanin	guidance of pollen tubes into the style, reproduction
miR894	Triticum aestivum	similar to protein phosphatase PP2A-4	signalling pathways
miR1432	Triticum aestivum	phenylalanine tRNA synthetase-like	protein synthesis
miR1450	Triticum durum	Mn superoxide	response to oxidative
111111450	Triticum aestivum	dismutases	stress
miR1867	Triticum durum	putative protein,	
	Triticum aestivum	DUF1242 superfamily	-

Sequences used for prediction consisted of *Triticum dicoccoides* expressed sequence tags (Ergen and Budak 2009), *Triticum durum* unique transcripts (PlantGDB, <u>http://www.plantgdb.org/</u>) and *Triticum aestivum* gene index release 9.0 (Lee et al. 2005).

4.3. Analysis of Bread Wheat 5D Chromosome microRNA Repertoire

4.3.1. Putative Bread Wheat 5D Chromosome microRNA Repertoire

Using the *in silico* homology-based method through implementation of in house perl scripts, 55 different bread wheat miRNAs were identified from chromosome 5D sequences. miRNA variety was observed to be slightly higher in the long arm (48 miRNAs; 13 specific to 5DL) compared to the short arm (42 miRNAs; 7 specific to 5DS). 35 miRNAs were detected to be common to both chromosome arms, revealing the presence of separate clusters in 5DS and 5DL encoding for the same miRNAs. Fourteen of a total of 55 predicted miRNAs were identified for the first time in bread wheat, of which 7 were found to be common to both chromosome arms, while 4 and 3 were specific to 5DS and 5DL, respectively (Table 7).

Table 7 List of identified putative bread wheat 5D chromosome microRNAs			
identified only in the	short arm of bread w	heat 5D chromosome	
miR395	<u>miR482</u>	<u>miR6224</u>	
miR845	<u>miR950</u>		
identified only in the	long arm of bread wh	eat 5D chromosome	
miR160	miR169	miR2275	
miR437	miR5085	miR5086	
miR5169	<u>miR5281</u>	<u>miR6220</u>	
As identified from bot	h arms of bread whea	at 5D chromosome	
miR1118	miR1120	miR1121	
miR1125	miR1127	miR1128	
miR1131	miR1133	miR1135	
miR1137	miR1139	miR1436	
miR167	miR1847	miR2118	
miR5049	miR5067		
IIIIK3049	IIIK3007	<u>miR5068</u>	
miR5049	miR5180	miR5068 miR5181	
	identified only in the simiR395 miR395 identified only in the miR160 miR437 miR5169 As identified from bot miR1118 miR1125 miR1131 miR1137 miR167	identified only in the short arm of bread wimiR395miR482miR395miR950identified only in the long arm of bread withmiR160miR169miR437miR5085miR5169miR5281As identified from both arms of bread wheatmiR1118miR1120miR1125miR1127miR1131miR1133miR1137miR1139miR167miR1847	

Table 7 List of identified putative bread wheat 5D chromosome microRNAs

microRNAs identified for the first time in this research are underlined.

Each of the predicted miRNAs were observed to correspond to a variable number of putative pre-miRNA and mature miRNA sequences. Genomic representation in relation to different pre-miRNA coding genomic regions will be discussed in detail in Section 4.3.2. Regarding to mature miRNA sequences, a total of to 926 nonidentical were identified from 5D sequences, of which 654 and 428 were encoded from 5DL and 5DS, respectively. Mature miRNAs is size is crucial in terms of its function. Previous studies have shown that 22 nucleotide (nt) miRNAs are more likely to trigger small interfering RNA (siRNA) biogenesis from their target transcripts (Chen et al. 2010) and experimental analysis has revealed that 22 nt mature miRNA sequences were most effectively sorted and loaded onto AGO (Manavella, Koenig, and Weigel 2012). Here, we investigated the size distribution of 926 mature miRNAs encoded from 5D chromosome. Sizes of the majority of mature miRNAs predicted ranged between 20-24 nucleotides with an average of approximately 21,85 nucleotides (Figure 15).

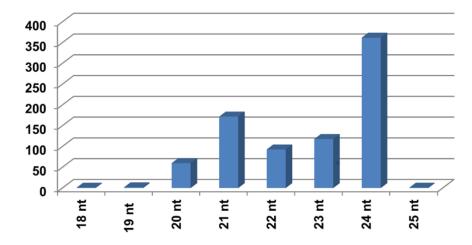


Figure 15 Mature microRNA length distribution of putative bread wheat 5D chromosome microRNAs. x-axis: mature microRNA length, y-axis: number of predicted bread wheat 5D chromosome mature microRNAs with the specified length nt: nucleotide

Predicted pre-miRNAs were observed to vary in sequence and stem-loop characteristics (Figure 16). For each chromosome arm, datasets containing one selected pre-miRNA sequence for each predicted miRNA were constructed to comparatively evaluate pre-miRNA statistics of 5DS and 5DL (Appendices M, N, O, P). By the cumulative assessment of these datasets containing 48 and 42 pre-miRNA sequences from 5DL and 5DS, respectively, pre-miRNA characteristics were found to correlate well with previous plant miRNA identification studies (Schwab et al. 2005; Unver and Budak 2009; Yin et al. 2008; Zhang et al. 2008; Zhang, Wang, and Pan 2007; Zhang, Wang, et al. 2007). Descriptive statistics in relation pre-miRNA sequence length and (G+C)% content; MFE values of pre-miRNA stem-loop secondary structures and MFEI indices are listed in Table 8 (refer to Section 4.1.1 for explanation of pre-miRNA characteristics). Although 5DL pre-miRNAs were detected to be slightly longer; due to their lower (G+C)% content and higher stability evident with more negative MFEs, they were observe to have MFEIs comparable those of 5DS pre-miRNAs, corresponding to an approximate average of 1,2. (Table 8).

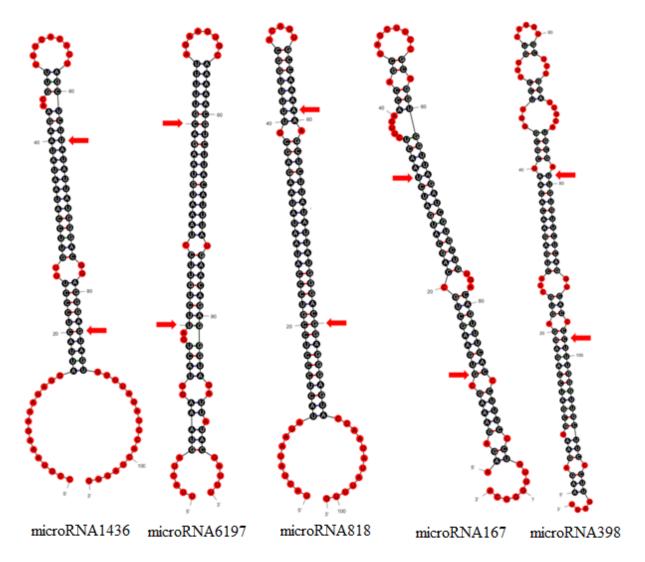


Figure 16 Predicted stem-loop structures of selected putative bread wheat 5D chromosome microRNAs. Mature microRNA start and end positions are designated with arrows. Structures were predicted using UNAFold.

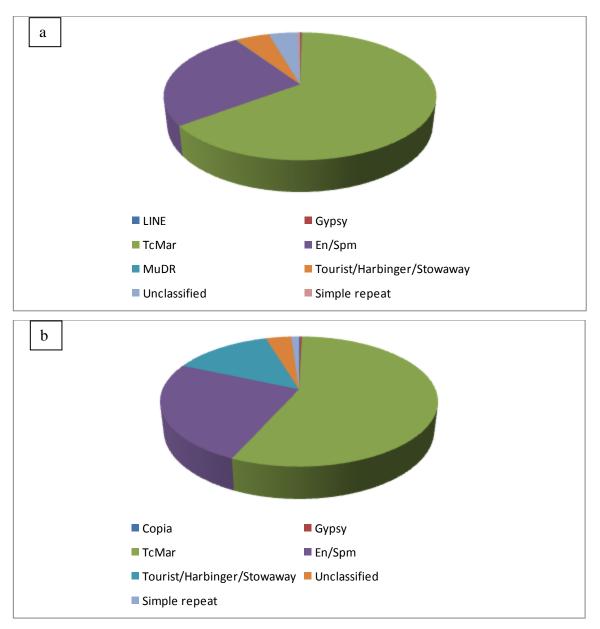
For the combination	on of preliminary micro		hort and	long
(chromosome arms of 5I) chromosome		
	Sequence length	ΔG (kcal/mol)	G+C (%)	MFEI
Average	130.02	-61.83	40.46	1.2
Minimum	74	-161.5	26.07	0.68
Maximum	291	-23.4	67.01	2.08
Median	122	-59.7	38.02	1.18
Standard deviation	39.39	23.44	8.61	0.27
For the preliminar	y microRNA dataset of	the long arm of 5D	chromos	ome
			G+C	
	Sequence length	ΔG (kcal/mol)	(%)	MFEI
Average	136.88	-63.35	39.6	1.2
Minimum	90	-161.5	26.07	0.72
Maximum	291	-29.2	59.41	2
Median	130	-61.3	37.69	1.16
Standard deviation	46.61	28.21	8.83	0.3
For the preliminary	microRNA dataset of	the short arm of 5D) chromo	some
			G+C	
	Sequence length	ΔG (kcal/mol)	(%)	MFEI
Average	122.19	-60.08	41.5	1.2
Minimum	74	-134.4	27.84	0.68
Maximum	273	-23.4	67.01	2.08
Median	117	-58.05	39.2	1.19
Standard deviation	34.32	21.42	8.73	0.27

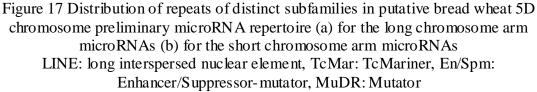
Table 8 Statistics for selected putative preliminary microRNAs of short and long arms of bread wheat 5D chromosome

 ΔG : minimum folding free energy, G+C: guanine+cytosine percent of sequence, MFEI: minimum folding free energy index

4.3.2. Genomic Representation of Putative Bread Wheat 5D Chromosome microRNA Repertoire

A total of 3143 genomic loci coding for putative 55 miRNAs were predicted to be present on 5D chromosome. Long arm was observed to contain a higher genomic representation of miRNAs compared to the short (1952 for 5DL; 1191 for 5DS), as might be expected from its larger size. The differences in the amount of representation of individual miRNAs on 5D were found to be highly variable. For instance, representation of miR5049 coding loci on 5D was observed to be as high as 326: 120 and 206 from the short and long arms, respectively. Other 5D miRNAs with the highest apparent representation (over 200 copies) were miR1117, miR1120, miR1122 and miR1436, with variable, but high contributions to their representation from two chromosome arms. On the other hand, some miRNAs had low genomic representation. In fact, eleven miRNAs were only detected at a single locus throughout the whole chromosome: 7 on 5DS and 4 on 5DL. Two genomic coding loci was identified for miR5070, one on the long and one on the short arms. Four others miRNAs were also represented by only one genomic locus on 5DS, but that had higher folds on 5DL. Although this analysis does not render the determination of absolute copy number of each miRNA with certainity since some genomic miRNAs may be covered by more than one sequence read, while others may not be covered at all. However, the representation of each miRNA within the dataset provides a useful estimate of its prevalence on the chromosome. It is also noteworthy that 11 of the 14 newly identified miRNAs were observed to have representations lower than 20 copies. Up until now, they may have been overlooked in expression based studies due to their low representation (Table 9).


k	ong chroi	nosome	arms se	parately and cumula	tively	-	-
microRNA	5DS	5DL	5D	microRNA	5DS	5DL	5D
miR1117	117	176	293	<u>miR482</u>	1	0	1
miR1118	1	22	23	miR5021	12	7	19
miR1120	101	131	232	miR5049	120	206	326
miR1121	8	3	11	miR5067	14	24	38
miR1122	80	160	240	<u>miR5068</u>	1	9	10
miR1123	0	3	3	miR5070	1	1	2
miR1125	1	24	25	miR5085	0	1	1
miR1127	38	45	83	miR5086	0	1	1
miR1128	53	65	118	<u>miR5161</u>	0	6	6
miR1130	56	90	146	miR5169	0	4	4
miR1131	47	105	152	miR5175	18	11	29
miR1133	7	25	32	miR5180	7	14	21
miR1135	32	120	152	miR5181	18	27	45
miR1136	31	113	144	miR5203	10	3	13
miR1137	64	59	123	<u>miR5205</u>	25	60	85
miR1139	106	56	162	<u>miR5281</u>	0	5	5
miR1436	119	146	265	<u>miR5387</u>	15	80	95
miR1439	34	42	76	<u>miR5568</u>	11	7	18
miR160	0	4	4	<u>miR6191</u>	3	10	13
miR167	4	2	6	<u>miR6197</u>	12	25	37
miR169	0	9	9	<u>miR6219</u>	1	9	10
miR1847	12	11	23	<u>miR6220</u>	0	3	3
miR2118	5	5	10	<u>miR6224</u>	1	0	1
miR2275	0	1	1	miR818	0	17	17
<u>miR3700</u>	1	0	1	miR834	1	0	1
miR395	1	0	1	miR845	1	0	1
miR398	0	1	1	<u>miR950</u>	1	0	1
miR437	0	4	4		-	•	•
	C' 1 C .	1 6					


Table 9 Representation of putative microRNA coding regions on bread wheat short and long chromosome arms separately and cumulatively

microRNAs identified for the first time in this research are underlined. 5DS: short arm of bread wheat 5D chromosome, 5DL: long arm of bread wheat 5D chromosome

4.3.3. Repeat Content of Putative Bread Wheat 5D Chromosome microRNA Repertoire

The high representation of some of the putative miRNAs detected on chromosome 5D suggests that some or all of their genomic loci could be repetitive sequences. *Triticeae* genomes are known to be highly repetitive (85-90%) (Lucas et al. 2012, 2013) and repeat related activities were observed to result in new gene and pseudogene formation, contributing to genome evolution (Wicker et al. 2011). Besides, recent evidence suggests that miRNA gene evolution is also driven by the activities of transposons (Li et al. 2011). Therefore, all putative pre-miRNA hairpin sequences detected above were searched against a database of known repetitive elements. Interestingly, the long arm stem loop sequences were masked with repeats slightly less (83.84%) compared to those on the short arm (84.38%). The distribution of repeat elements also showed variation between 5DL and 5DS. Such differences in composition and distribution of transposable elements between different chromosomes, and even distinct regions of the same chromosome in wheat species have been reported previously (Li et al. 2004; Paux et al. 2006; Sabot et al. 2005). In here, pre-miRNA hairpins were found to be rich especially for DNA transposons, encompassing 81.54% of 5DL and 81.98% of 5DS stem-loop coding sequences. However, for retrotransposons these values were only 0.03% and 0.16% corresponding to 5DL and 5DS, respectively, indicating low retrotransposon representation in stem-loop coding loci. The most predominant Class II transposon families identified in the stem-loops were TcMariner (TcMar) and Enhancer/Suppressor-mutator (En/Spm) for both chromosome arms. Tourist/Harbinger/Stowaway subfamily was also detected in the stem-loops of both arms with a much higher represention in 5DS pre-miRNAs. Repeats of this family were specifically found to be located in miR1139 and miR5049 encoding stem-loops. Additionally, Mutator (MuDR) elements were found to be present in the stem-loops of 5DL, but not in those located on 5DS. Regarding to Class I transposon families, 5DL stem-loops were observed to contain long interspersed nuclear elements (LINE), as well as long terminal repeat (LTR) retrotransposons of the Gypsy subfamily. On the contrary, 5DS stem-loops were not detected to harbour LINEs, but found to harbour LTR retrotransposon of both Copia and Gypsy subfamilies. Hairpins were also identified to encompass other non-transposon repeat elements including simple repeats (Figure 17).

Overall, thirty-six out of 55 predicted miRNAs were detected to contain repeats of the DNA transposon family. Since retrotransposons are known to constitute the major portion of repetitive elements in plant genomes, the accumulation of Class II elements in miRNA coding regions is noteworthy and supports the view that Class II elements contribute to miRNA evolution (Li et al. 2011). Pre-miRNAs and their corresponding DNA transposon content is listed in Table 10.

microRNA	Repeat families	microRNA	Repeat families
miR1117	En/Spm	miR437	TcMar, En/Spm
miR1118	TcMar, En/Spm	miR5021	En/Spm
miR1120	TcMar, En/Spm	miR5049	TcMar, En/Spm, Stowaway
miR1121	TcMar	miR5067	TcMar
miR1122	TcMar	miR5161	TcMar
miR1123	MuDR	miR5169	TcMar
miR1125	TcMar	miR5175	TcMar
miR1127	TcMar, En/Spm	miR5180	TcMar
miR1128	TcMar, En/Spm	miR5203	TcMar
miR1131	En/Spm	miR5205	TcMar, En/Spm
miR1133	TcMar	miR5281	TcMar, En/Spm
miR1135	TcMar	miR5387	En/Spm
miR1136	TcMar	miR5568	TcMar
miR1137	TcMar	miR6191	TcMar
miR1139	Harbinger	miR6219	En/Spm
miR1436	TcMar, En/Spm	miR6224	TcMar, En/Spm
miR1439	TcMar, En/Spm	miR818	TcMar
miR1847	En/Spm	miR834	En/Spm

Table 10 Putative bread wheat 5D chromosome microRNAs and DNA transposon contents of their preliminary microRNA sequences

TcMar: TcMariner, En/Spm: Enhancer/Suppressor-mutator, MuDR: Mutator

4.3.4. Putative Targets of Predicted Bread Wheat 5D Chromosome microRNAs

All of the putative wheat miRNAs on chromosome 5D were found to have predicted or experimentally confirmed targets, involved in biological or metabolic processes and in stress responses. For all putative 55 miRNAs, *in silico* targets were identified (Appendices R and S), yet only 3 had homologs in other species with confirmed targets (Table 11). Putative wheat miRNA target genes varied in sequence and function, and most of them were classified as transcription factors, functional proteins in plant metabolism, and protein subunits (Figure 18). Predicted targets of newly identified miRNAs were involved in a broad range of biological and molecular functions: including hydrolase activity (miR3700: TC412324), nucleic acid binding transcription factor activity (miR5205: TC413453), transferase activity (miR5568: TC446402, TC395950), oxidoreductase activity (miR482: CO348589), metal ion binding activity (miR6197: AL821953) and response to stresses (miR5387: BE637541) such as drought. The majority of miRNAs were observed to have more than one potential regulatory target, while one target could be regulated by more than one miRNA. This observation supports the idea that miRNA studies should focus on a regulatory network in which more than one miRNA with different targets are involved.

Table 11 miRBase deposited experimentally confirmed targets for homologs of bread wheat 5D chromosome microRNAs

microRNA	Species in which the target was identified	Target
miR167	ath/osa	auxin response factors
miR395	ath/osa	ATP sulphurylase
miR160	ath/osa	auxin response factors

ath: Arabidopsis thaliana; osa: Oryza sativa

miRBase (version 19, August 2012, <u>http://www.mirbase.org/</u>) (Kozomara and Griffiths-

Jones 2011)

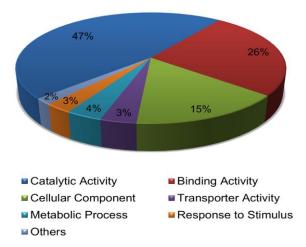


Figure 18 Distribution of predicted target functions of putative bread wheat 5D chromosome microRNAs. Piechart was constructed based on predicted targets of 14 newly identified microRNAs. DFCI Gene Index Release 12 (<u>http://plantgrn.-noble.org/psRNATarget/</u>) was used as the target sequence dataset. QuickGO provided by UniProt-GOA project at EBI (<u>http://www.ebi.ac.uk/QuickGO/</u>) was used for annotation.

4.3.5. Computational Evidence for Expression of Predicted Bread Wheat 5D Chromosome pre-microRNAs

Unlike other sRNAs, miRNAs are generated from pri-miRNA transcripts, which are capped and polyadenylated in the same manner as protein-coding mRNAs (Lee et al. 2004). Therefore, pri-miRNA sequences may be found in EST databases, albeit rarely (Dryanova et al. 2008). Here, in order to provide expression evidence for putative miRNAs; non-protein coding, candidate pre-miRNA coding ESTs that show high similarity to our dataset of predicted pre-miRNA sequences were determined. Through searches 6 miRNAs matched an EST with no significant similarity to known proteins, suggesting that these putative pre-miRNA sequences are transcribed (Table 12). The remaining putative pre-miRNAs may also be transcribed, but absent from the currently available EST databases.

Table 12 List of expressed sequence tags that have high homology to putative bread wheat 5D chromosome microRNAs

microRNA	Expressed sequence tag
miR1122	CJ632148.1
miR1439	CJ510559.1
miR1436	AL816538.1
miR167	CJ846906.1, CJ833771.1
miR5205	CJ631979.1, CJ523432.1
miR1136	CJ665546.1, CD876589.1, BE591362.1

Hits with a query coverage or maximum identity lower than 99% and 98%, respectively or with similarity to a protein coding sequence at an e-value equal to or lower than 1E-03 were eliminated. Expressed sequence tag: Genbank (NCBI (January 2013) accession ID of the expressed sequence tag

4.3.6. Localization and Quantification of pre-microRNA Coding Regions on Bread Wheat 5D Chromosome

In order to verify 5D chromosome localization, five of the predicted pre-miRNA coding regions were amplified from flow sorted 5D chromosome arms by PCR. screening. Our experimental results supported our in *silico* predictions: 5DS was verified to harbour regions coding for pre-miR2118 and pre-miR5070, and 5DL was confirmed to contain both of the above plus pre-miR6220, pre-miR5085 and pre-miR169 coding regions. Furthermore, in order to confirm that these pre-miRNAs are specifically located on chromosome 5D, we also screened gDNA from Chinese Spring and nullitetrasomic lines. pre-miR169, pre-miR5085 and pre-miR2118 coding regions were found to be 5D chromosome specific. miR2118 was shown to be located on both arms of the 5D chromosome (5D specific), while miR5085 and miR169 were found to be specific to the long arm (Figure 19).

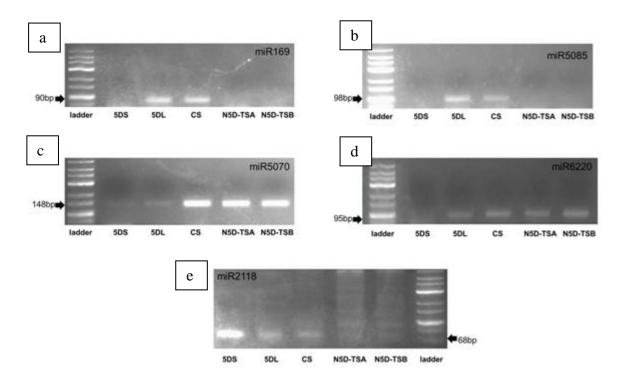
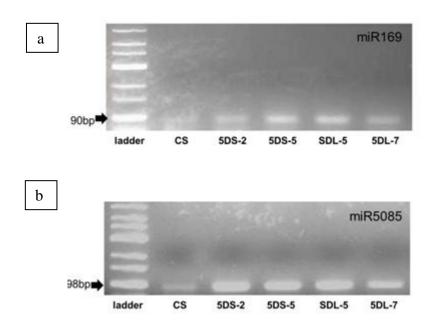



Figure 19 Screening for the specific presence of preliminary microRNA coding regions on long and short arms of bread wheat 5D chromosome. (a) microRNA169 (b) microRNA5085 (c) microRNA5070 (d) microRNA6220 (e) microRNA2118
ladder: DNA ladder, 5DS: flow sorted bread wheat 5D chromosome short arm, 5DL: flow sorted bread wheat 5D chromosome long arm, CS: bread wheat cultivar Chinese Spring, N5D-T5A, N5D-T5B: bread wheat nullitetrasomic lines that lack 5D chromosome

For screening, PCR was performed and products were visualized through agarose gel electrophoresis.

Furthermore, to map the chromosomal positions of 5DL specific miRNAs, gDNA of group-5 deletion lines were also screened. Coding regions of both 5DL specific premiRNAs (pre-miR5085, pre-miR169) were found to be located between the breakpoint of 5DL-7 (FL : 0.29) and the centromere (Figure 20).

Quantification with real-time PCR using Chinese Spring gDNA suggested that coding regions of the selected pre-miRNAs had variable copy number: pre-miR169, pre-miR5085 and pre-miR5070 were shown to have approximately 86, 2.2 and 1.5 fold more copies than pre-miR6220. Gene copy number of pre-miR6220 was also separately evaluated with qRT-PCR in nullitetrasomic lines in comparison to Chinese Spring, to determine its gene copy number restricted to the 5D chromosome. Approximately 9% of pre-miR6220 coding sequence copies from the whole wheat genome were observed to be located on chromosome 5D (Figure 21).

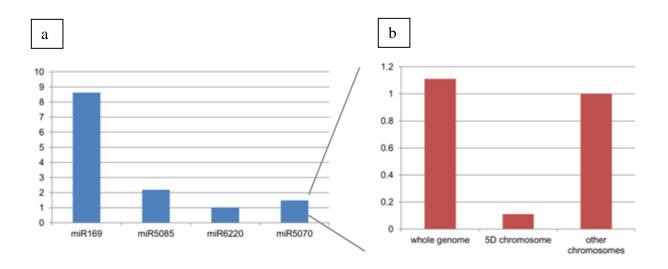


Figure 21 Quantification of gene copy number of preliminary microRNA coding regions. (a) comparative levels of microRNA169, microRNA5085, microRNA6220 and microRNA5070 coding regions in bread wheat cultivar Chinese Spring (b) comparative levels of microRNA5070 coding regions on 5D chromosome and other bread wheat chromosomes with its quantification in nullitetrasomic line N5DT5A and bread wheat cultivar Chinese Spring

Quantification is based on quantitative real time PCR results and designated with bar graphs.

4.3.7. Expression of pre-micro2118 from Bread Wheat 5D Chromosome

In order to show expression of selected pre-miRNAs (pre-miR2118, pre-miR169, pre-miR5085, pre-miR6220, premiR5070), RT-PCR and qRT-PCR was performed using Chinese Spring cDNA. Expression of pre-miR2118 in adult leaves of wheat, grown under standard greenhouse conditions was shown. Expression was not unequivocally confirmed for the other 5D specific pre-miRNAs, but as individual miRNA expression is frequently tissue/developmental stage/environmental condition specific, their expression may be detectable under specific conditions that were not tested here, most probably stress

conditions (Figure 22).

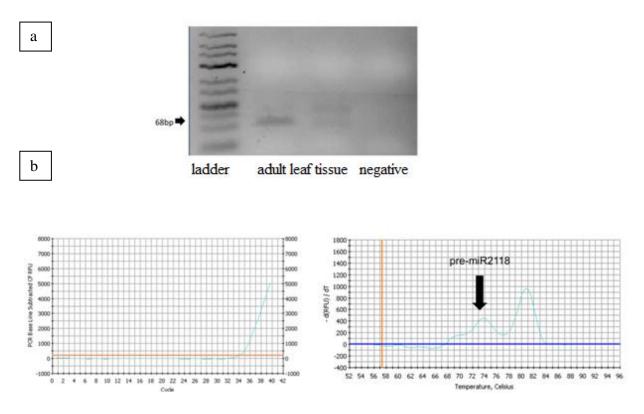


Figure 22 Evidence for preliminary microR2118 expression in bread wheat adult leaves. (a) agarose gel electrophoresis of samples amplified by endpoint PCR (b) quantitative real time PCR amplification and melting curves Experiments were carried out in bread wheat cultivar Chinese Spring. ladder: RNA ladder

4.4. Introgression of Drought-related Quantitative Trait Loci to Elite Cultivars

4.4.1. Establishment of F1 Plants Carrying Drought-related Quantitative Trait Loci

Here, we introgressed drought related genomic regions from two South Australian cultivars into European elite germplasm. For this purpose, we performed all different possible combinations of intercultivar crosses between Australian cultivars (Kukri and RAC875) and public elite lines (Tosunbey and Bolal). Rate of plant development was observed to vary between varieties and in one trial approximate heading times were recorded as 42 days for Kukri, 47 days for Tosunbey, 51 days for Bolal and 53 days for RAC875.

Several seeds were obtained from cross-pollinated females after intercultivar crosses. Viable F1 plants were screened for successful introgression of drought related key regions on chromosome 3B from Kukri or RAC875, depending on the cross performed, using a linked SSR marker, XBARC77. We confirmed the successful introgression of drought related key regions in seven F1 genotypes from crosses between Bolal female X Kukri male (3 plants); RAC875 female X Tosunbey male (3 plants) and Tosunbey male X Kukri female (1 plant) (Figure 23).

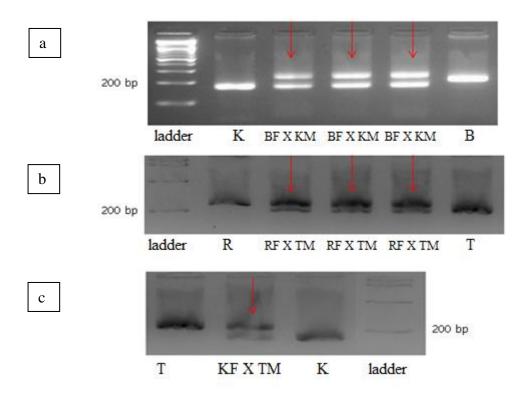


Figure 23 Amplification of XBARC77 simple sequence repeat marker in filial 1 plants.
(a) three Bolal female X Kukri male plants (b) three RAC875 female X Tosunbey male plants (c) Tosunbey male X Kukri female plant
ladder: DNA ladder, K: Kukri, B: Bolal, R: RAC875, T: Tosunbey, F: female, M: male Screening was performed with PCR and products were visualized by agarose gel electrophoresis.

4.4.2. Establishment of BC3F2 Plant Carrying Drought-related Quantitative Trait Locus

In order to limit the loss of good yield characteristics from the elite cultivar, obtained plants carrying the drought related key regions (refer to Section 4.4.1) were backcrossed against their parental backgrounds until BC3F2. BC3F2 plants carrying the drought related key region on chromosome 3B were obtained from backcrossing of obtained Bolal female X Kukri male F1 plants (Figure 24). These plants are promising for high performance in drought prone environments and are available for further experimental field testing.

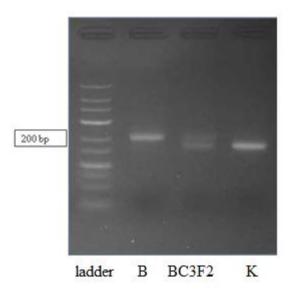


Figure 24 – Amplification of XBARC77 simple sequence repeat marker in backcross 3 filial 2 plants succeded from Bolal female X Kukri male filial 1 plants
ladder: DNA ladder, B: Bolal, BC3F2: backcross 3 filial 2 plants succeded from Bolal female X Kukri male filial 1 plants, K: Kukri
Screening was performed with PCR and products were visualized by agarose gel electrophoresis.

5.

DISCUSSION

Wheat and its related species are of great economic value, yet their domestication followed by selective breeding for higher yield has resulted in the loss of valuable alleles for drought tolerance in modern wheat. Drought is arguably the single abiotic factor threating wheat yields and its occurence is increasingly emphasized globally due to environmental warming. In order to stabilize wheat yields, an important consideration is the improvement of modern cultivars to perform better in water limited environments. To this end, elucidation of molecular mechanism of drought response and the effective transfer of acquired knowledge to breeding programmes are crucial.

miRNAs are central to post-transcriptional regulation of gene expression and have been shown to be involved in responses to a variety of stress factors including drought. Suprisingly, miRNA regulatory networks in *Triticeae* in the context of drought has been majorly overlooked. Here, we report drought related miRNAs and their respective targets in two different *Triticeae* species: barley and wild emmer wheat. Of these, barley, widely adapted to diverse environmental conditions, is more tolerant to drought compared to its close relative wheat. Wild emmer wheat holds particularly great value with its superior stress tolerance harboring valuable novel mechanisms lost during transition to modern wheat. In this research, drought related miRNA regulatory mechanisms were observed to be highly tissue specific and effected by the severity of stress treatments. Besides, comparative analysis of drought induced fluctuations in miRNA repertoires across barley and wild emmer wheat pointed to both conserved and unique patterns of drought tolerance. The expressions of all four drought responsive miRNAs (miR408, miR171, miR156 and miR166) identified in barley, were also significantly altered in wild emmer wheat in response to drought. Although, the modes and/or levels of drought induced changes of some of these miRNAs were also detected to be paralel and/or comparable across species, this research also highlighted several differential tissue- and stress treatment- specific regulatory mechanisms exerted by homolog miRNAs in two different species. Putative drought related miRNAs identified in this research are available for further functional studies to the end of elaborating common and novel drought regulatory mechanisms in different *Triticaea* species and use of this knowledge for the development of cultivars with better performance under water deficiency.

In addition to identifying drought related miRNAs, an equally important aspect is the dissection of complete miRNA repertoires of plants and their careful evaluation in the genomic and/or subgenomic contexts. In recent years, bread wheat miRNAs expressed in different tissues, at distinct developmental stages and under certain environmental conditions were reported. However, results retrieved from these sRNA library- or microarray- based studies do not represent the whole miRNA repertoire, since miRNA expression is highly tissue specific and extensively regulated through development and by stress conditions. Hence, in order to assess the overall bread wheat 5D chromosome miRNA content, we systematically predicted the whole catalogue of miRNA coding regions on this chromosome with in silico analysis of high-throughput genomic sequence data. Fifty-five miRNAs were predicted to have coding regions on 5D chromosome. Genomic representations of different putative 5D chromosome miRNAs were observed to be highly variable: possibly an important factor in the degree of corresponding mature miRNA expression and its target regulation. Coding regions of miRNAs with high genomic representations were detected to be rich for DNA transposons, supporting the view that transposon activities contribute to MIR evolution. Approach adopted in this research: systematic in silico miRNA prediction from highthroughput genomic sequence data, followed by localization and quantification of miRNA coding regions on 5D chromosome through screening of nullitetrasomic and

chromosome deletion lines, provides a basis to the end of elaborating the complete bread wheat repertoire.

Although elucidation of drought related molecular pathway components is important, the ultimate goal of related research is to transfer such knowledge effectively to breeding programs. Hence, here we also introgressed drought related key genomic regions on chromosome 3B identified in South Australian bread wheat cultivars into European elite bread wheat lines. We confirmed the successful transfer of the region from Kukri to Bolal and from RAC875 to Tosunbey in newly obtained bread wheat genotypes using a linked SSR marker. Furthermore, in order to limit the loss of good yield characteristics from the elite cultivar, backcrossing was performed until BC3F2 for Bolal X Kukri genotype. These newly developed genotypes are promising for high performance under drought prone environments. Future directions include extensive characterization of the obtained plants for their yield components and water use efficiency under water limited conditions in the greenhouse and further multienvironment field testing.

•

CONCLUSION

6.

Comparative miRNA repertoires reported here hold valuable information regarding to conserved or unique patterns of molecular response to stress. This information will be convenient for further functional studies expanding our understanding of gene regulation across *Triticaea* and the role of miRNAs in drought tolerance. Besides, new bread wheat genotypes obtained by introgression of drought related QTLs, identified in drought related Australian cultivars, to elite germplasm are highly promising in terms of their performance and await to be tested in terms of physiological parameters and in multiple fields.

APPENDIX A

Chemicals and Enzymes

6X DNA Loading dye	Thermo Scientific	R0611
Absolute ethanol	Riedel de Haen	32221
Agarose	PRONA	8016
Ampicillin	Sigma	A9393
Boric acid	Sigma	B6768
Calcium chloride (CaCl ₂)	Sigma	B6768
Calcium nitrate (Ca(NO ₃) ₂)	Sigma-Aldrich	237124
Chloroform	Merck	102.445
Diethyl pyrocarbonate (DEPC)	Sigma-Aldrich	40718
Dioxyribonuclease I (DNase I)	Thermo Scientific	EN0525
DL-Dithiothreitol	Sigma	D9779
dNTP Mix	Thermo Scientific	R0193
EDTA iron (III) sodium salt	Sigma-Aldrich	E6760
Ethidium bromide	Applichem	A1151
Ethylenediaminetatraaceticacid (EDTA)	Calbiochem	324503
GeneRuler 100 bp DNA Ladder	Thermo Scientific	SM0241
GeneRuler DNA Ladder Mix	Thermo Scientific	SM0332
Hoagland's No.2 basal salt mixture	Sigma-Aldrich	H2395
Isopropanol	Merck	1.09634
LB Agar	Sigma	L2897
LB Broth	Sigma	L302214
Magnesium chloride (MgCl ₂)	Fluka	63063
Nuclease free water	Qiagen	129114

Potassium phosphate monobasic (KH ₂ PO ₄)	Sigma-Aldrich	P0662
Potassium sulfate (K ₂ SO ₄)	Sigma-Aldrich	P0772
RevertAid H- M-MuLV RT	Thermo Scientific	EP0451
RNaseOUT	Life Technologies	10777-019
Sodium acetate (CH3COONa)	Sigma-Aldrich	S2889
Sodium hypochlorite (NaClO)	Sigma-Aldrich	425044
Taq DNA polymerase (recombinant)	Thermo Scientific	EP0401
TRI Reagent	Sigma	T9424
Trisbase	Sigma	T1503
Zinc sulfate (ZnSO ₄)	Sigma-Aldrich	96495

APPENDIX B

Molecular Biology Kits

FirstChoice RLM-RACE Kit	Ambion	AM1700
Brilliant II SYBR Green QPCR Master Mix	Stratagene	600028
DH5 α^{TM} Competent Cells	Invitrogen	18265-017
FastStart Universal SYBR Green Master (ROX)	Roche	4913922001
GeneJET Gel Extraction Kit	Thermo Scientific	K0691
pGEM®-T Easy Vector System I	Promega	A1360
Plasmid Purification Kit	Qiagen	12123
SuperScript® III First-Strand Synthesis System	Invitrogen	18080-051
WizardH Genomic DNA Purification Kit	Promega	A1120

APPENDIX C

Equipments

Autoclave:	Hirayama, Hiclave HV-110, JAPAN
	Nüve 0T 032, TÜRKİYE
Balance:	Sartorius, BP221S, GERMANY
	Schimadzu, Libror EB-3 200 HU, JAPAN
Camera	Olympus C-7070, JAPAN
Centrifuge:	Microfuge 18 Centrifuge Beckman Coulter, USA
	Kendro Lab. Prod., Heraeus Multifuge 3S-R, GERMANY
	Kendro Lab. Prod., Sorvall RC5C Plus, USA
	Eppendorf, 5415D, GERMANY
	Eppendorf, 5415R, GERMANY
Deepfreeze:	-20 °C Bosch, TURKEY
	-80 °C Thermo electron corporation, USA
Distilled Water:	Millipore, Elix-S, FRANCE
	Millipore, MilliQ Academic, FRANCE
Electrophoresis:	Labnet Gel XL Ultra V-2, USA
	Biogen Inc., USA
	Biorad Inc., USA
Fiter papers:	Whatman General Purpose Filtration Paper WHASE1141,
	Sigma, MO, USA
Gel Documentation:	Biorad Universal Hood II F1-F2 Fuses Type T2A, USA
	Biorad, UV-Transilluminator 2000, USA
Glassine crossing bags:	Focus Packaging & Design Ltd, North Lincolnshire, UK
Growth chamber:	Digitech DG12, Ankara, TURKEY
Heating block:	HDV Life Sciences, AUSTRIA
	Thermostat Bio TDB-100, LATVIA
Hydroponic tanks:	GroWell, UK
Ice Machine:	Scotsman Inc., AF20, USA
Incubator:	Innova 4330, USA
	Memmert, Modell 300, GERMANY

	Memmert, Modell 600, GERMANY
Laminar Flow:	Holten LaminAir Model 1.8 82034000, DENMARK
	Heraeus, Modell HS 12, GERMANY
Magnetic Stirrer:	VELP Scientifica, ITALY
Microarray:	Custom-made by LC Sciences, Houston, TX, USA
Microarray analysis:	GenePix 4000B Microarray Scanner, Axon Instruments,
	USA
	Array-Pro TM Analyzer, Media Cybernetics, Silver Spring,
	MD, USA
Microliter Pipette:	Gilson, Pipetman, FRANCE
	Eppendorf, GERMANY
Microscope	Olympus SZ61, JAPAN
	Olympus LG-PS2, JAPAN
Microwave digestion:	CEM-MARS Xpress system, USA
Microwave Oven:	Bosh, TÜRKİYE
Nitrogen tanks:	Linde Industrial Gases, TURKEY
Oven:	Memmert D06062 Modell 600, GERMANY
pH Meter:	WTW, pH540, GLP MultiCal, GERMANY
Power Supply:	Biorad, PowerPac 300, USA
Real-Time PCR:	iCycler iQ Multi Color Real Time PCR Detection
	System, Bio-Rad, USA
Refrigerator:	+4 °C Bosh, TÜRKİYE
Sequencer:	Roche 454 GS FLX Sequencer, Basel, SWITZERLAND
Shaker:	Forma Scientific, Orbital Shaker 4520, USA
	GFL, Shaker 3011, USA
	New Brunswick Sci., InnovaTM 4330, USA
	New Brunswick Scientific Excells E24, USA
Spectrophotometer:	Amersham Biosciences Ultraspec 2100 pro, USA
	Nanodrop, ND-1000, USA
Sterilizer:	Steri 350, Simon Keller Ltd., SWITZERLAND
Thermocyler:	Eppendorf, Mastercycler Gradient, GERMANY
	Biorad Gradient Cycler DNA Engine, USA
Tissue Lyser:	Qiagen Retsch, USA
Vacuum:	Heto, MasterJet Sue 300Q, DENMARK

Vortex Mixer: Water bath: VELP Scientifica 2X3, ITALY Memmert, GERMANY

APPENDIX D

List of Primers Used in This Research

Barley microRNA study primers

Universal mature miRNA R:	5'GTGCAGGGTCCGAGGT3'
mature miR156 F:	5'GCGGCGGTGACAGAAGAGAGT3'
mature miR166 F:	5'TCGCTTCGGACCAGGCTTCA3'
mature miR171 F:	5'TTCCTTGATTGAGCCGCGCC3'
mature miR408 F:	5'GCGGCGGATGCACTGCCTCTTC3'
mature miR156 RT:	5'(stem-loop region)TGTGCT3'
mature miR166 RT:	5'(stem-loop region)GGGGAA3'
mature miR171 RT:	5'(stem-loop region)GATATT3'
mature miR408 RT:	5'(stem-loop region)GCCAGG3'
miR156 T (AV910992.1) F:	5'TCCCTTGAATGCCATGAACC3'
miR156 T (AV910992.1) R:	5'GGGATGCATTTATCTAGTCAGCA3'
miR171 T (BQ461013.1) F:	5'TGACCTCTACCTCACCCGAAA3'
miR171 T (BQ461013.1) R:	5'AGGAAGGCTGGAGCTGGAA3'
miR408 T (CB881899.1) F:	5'TTCAGGAGCACGCAGACGA3'
miR408 T (CB881899.1) R:	5'GAGTGAGTGTTTGATCGGTAGGA3'
RACE miR1436 T (CB862673.1):	5'GGGCAGGATCAAGAAGGTCAAA3'
RACE miR1436 T (CB862673.1):	5'ATCTTCCCTGCATCAGCTTTCC3'
RACE miR1436 T (CB862673.1):	5'GGAAGGGGTGGTGTCTTA3'
RACE miR156 (BE060620.2):	5'CAAGTCATTGTTGTCCGAGGTAGA3'

94

RACE miR156 T (BE060620.2):	5'GGGGATGTGTTCAGTCTGTTGG3'
RACE miR408 T (BU995745.1):	5'GATCGGTGGAGTCGAAATCAAA3'
RACE miR408 T (BU995745.1):	5'GCGCCGGACTTGTAGACCTT3'

stem-loop region:

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGAC

Bread wheat microRNA study primers

pre-miR169 F:	5'GTGGTAAGGGCTTCTTCTGG3'
pre-miR169 R:	5'CATATATACATGCAGAGATGTAAGTGT3'
pre-miR2118 F:	5'CCTGTGCAACTAGGGTCG3'
pre-miR2118 R:	5'TGGGAGGCATCGGGAAAT3'
pre-miR5070 F:	5'TCGAAGAACTAATTTAGTACTTTCCTA3'
pre-miR5070 R:	5'TGAAACCATCAGGGGTACAC3'
pre-miR5085 F:	5'AAGATAAAAAAAATGCCTTGTGAATAGA3'
pre-miR5085 R:	5'CAAGTTTCGATGAAAAGGGACATTT3'
pre-miR6220 F:	5'TACTACCTCCATCTCAAATCATAAGAC3'
pre-miR6220 R:	5'CCATTCCAACTCATCTATTTCCTC3'
	Introgression study primers
XBARC77 F:	5'GCGTATTCTCCCTCGTTTCCAAGTCTG3'
XBARC77 R:	5'GTGGGAATTTCTTGGGAGTCTGTA3'
	Normalization primers
BF474284 F:	5'CCATACTTGCATCCCCATCT3'
BF474284 R:	5'GTGTTGGATGAGCGCATTT3'
18s rRNA F:	5'GTGACGGGTGACGGAGAATT3'

T: target, F: forward, R: reverse, RT: reverse transcription, RACE: RNA ligation mediated rapid amplification of cDNA ends, pre-miR: preliminary miRNA

APPENDIX E

Putative miRNA Cleavage Sites on Barley microRNA Targets Selected for Verification with RNA Ligation Mediated Rapid Amplification of Complementary DNA Ends

Putative miR1436 target expressed sequence tag: CB862673.1 encoding for a hypothetical protein

AATATGGT<u>ACTCCCTCCGTLCCCATAAT</u>ATAAGGGCGTTTTCGACACTAGCA TAATACATGAGTAACATAGAGCTATGAAGTACATAAAAGGAGTTTGTGCGG TTGGCTTAGAGGTTTATAAATACCAGGACAACCGTACGCTGCTATATAGGC AGAACTTTGGGCTATCACATTTGAAGTACATAAGCAAATAGTAAAGCACCA GTTCGACGATTATTTTTAGTACTACAAAGGAGCAGGATCGAAGGGCGGCCC CTTAGACGGCAGATGGATCAGTTGTTCTAACAACTCGTGGCGCTCTCTCCAT GAGGACCAGTGGTTTTGGTCCGGCACAGTTGGCCTTCTTATTCTCCTTCTG GGATAT**GGAAAGCTGATGCAGGGAAGAT**CTTAGAAAAGCCGGCAATACT CTTGCAGATGAGCTTACCGGTTGCTGGTTCATCANGGGAGATCTCCTCCACT GGGAGCCACACCATGAGCTCCCTGGGTCTTTATCCCTTT**GACCTTCTGAT CCTGCCC**TTCTCTGCAAAAGCAGTGNTCTCTGTGCCA**TAAGACACCACCCC TTCC**TAAGGCCCTGGGNAGACGTGGGCCAACCC

Putative miR156 target expressed sequence tag: BE060620.2 encoding for teosinte glume architecture 1

Putative miR408 target expressed sequence tag: BU995745.1 encoding for chemocyanin

Primers are shown in bold. Putative mature miRNA binding sequence on target is underlined. Putative mature miRNA cleavage site on target is designated with \downarrow .

APPENDIX F

Preliminary microRNA Sequences of Predicted Barley microRNAs

microRNA	Sequence	
miR1119	CUACGUGGCACGGCGCGAUGCUCAGUCAGCCAGUGGAGUGGA GUGGGGUGCUACCUUUUUACUACGAGUACGUACUAGGUGUGG GG	
miR1120	CUACUCCCUCCUUCCCAUAUAUAAGAGUGUUUUUAAUACUAC ACUAGUGUGAAAAACAUUCUUAUAUUAUGGGACGGAGGAGU U	
miR1121	AAGAGUGUUUAGAUCACUAACAUAGUGAUCUAAACGCUCUUA CAGUGGCUGAAACUG	
miR1122	AAUUAGUUGACUCAGAUUUGUCUAGAUUCGACAUGUUUUAGU GUUAGAUACAUCCGUAUCUAAACAAAUCUAAGACAACUAAUU UGGGAC	
miR1126	UUUUUAAAGAUUCAACUAUGGACUACAUACGGAACAAAAUGA GUGAACUUACACUCUGAAUUAUGUCUAUAUAUAUAUAUCCAUAU GUAGCCCAUAGGGAAAUCUC	
miR1139	GGAAGUAACUUAGACUAGUAACAUGUUACUAGUCUAUGUUAC UACC	
miR1436	GGCUUCCCUGUAUACAGACAGAGUCAUACUCCCUCCAUAAUG UAGUACGGUUUUUGACACUACUACAUUAUGGGACGGAGGGAG	
miR1438	GGUACUCCCUCCGUUCCAAAAUACUUGUUGUACUUUUUGUUC AAAUUUGAACUAAAACCAUGACAAAUAUUUUUGGAACGGAGU GAGUA	
miR156a	UGACAGAAGAGAGAGAGAGCACAGUCCGAGUCGAGCACCGGAGU CAGACCAUCGGAGAACAUCUUGCUGCUGCUGCU	
miR159a	UUGUGGUUUGCAUGAUCGAGGAGCCGCUUCGAUCCCUCGCUG ACCGCUGUUUGGAUUGAAGGGAGCUCUGCAUCUUGAUCUAUU ACUA	
miR160a	CCCGUGCGGUGACAGACUCGACUGCAGUUUGUUAAGGUGGAG AUCUGAUAAAGAUAUACCAAAUUGAGCAUGCCUGGCUCCCUG UAUGCCUGCAGGAGUGCCGUCCGGG	
miR160b	UGCCUGGCUCCCUGUAUGCCUGCAGGAGAGUUGUUGUCCGAG UAACAGCAUAGGGGGCUGUUGUA	
miR165	CGUCAUGGUUGUCGAGGGGAAUGACNCCGGGUCCNAAAGAGA GACNCUCGCAUGGCGUGCGCGUGGUGCGUUUCGGACCAGGCU UCAUUCCCCAUGACUCCAUCAUG	
miR166m	GGGGAAUGACNCCGGGUCCNAAAGAGAGACNCUCGCAUGGCG UGCGCGUGGUGCGUUUCGGACCAGGCUUCAUUCCCC	

miR166n	GGGGAAUGUUGUCUGGUCCGAGACCUAACACCGGGCGGAAUG GCGGAUUCAGCUGCAGCUAAGCAAGCUAGGUGGGGGGGUUUCG GACCAGGCUUCAUUCCCC
miR168a	CGCCUCGGGCUCGCUUGGUGCAGAUCGGGACCCUCCGCCGCC CCGACGGGCCGGAUCCCGCCUUGCACCAAGUGAAUCGGAGCC G
miR168b	UCGCUUGGUGCAGAUCGGGACCCUCCGCCCGCCCGACGGGCC GGAUCCCGCCUUGCACCAAGUGA
miR171	GAUGUUGGCUCGACUCACUCAGACCACGCCGGAGGGAGCCAU CUGCGGCGGCGGUUCUGAUUGAGCCGUGCCAAUAUC
miR172a	AGGAUCUUGAUGAUGCUGCCGAGAAGGCUGUAAAAGCAUCGG UCAAAUGAUUA
miR172b	AGGAUCUUGAUGAUGCUGCCGAGAAGGCUGUGAAAGCAUCGG UCAAAUGAUUAAUGAUU
miR172c	AGGAUCUUGAUGAUGCUGCCGAGAAGGCUGUAAAAGCAUCGG UCAAAUGAUU
miR172d	AGGAUCUUGAUGAUGCUGCCGAGAAGGCUGUGAAAGCAUCGG UCAAAUGAUU
miR2055	GGGCUUUAUGGUGCUGGAUCCCUUAUAACUGAAGGUUUCCUU GGGAAGGGGGUUUUUUUAGGA
miR395a	AGCUGUCGGCAUGCGCCCAGGGUCAAUGAGCACGACGACAUC CAAAGGGAUCGCAUUGUCUCCAGCU
miR397	GUUGAGUGCAGCGUUGAUGAACCGUCCGGCCAUGGCCCGUCC GCCUCCACCGAGGCCGGAGCGGUUCACCGGCGCUGCACGCAAC
miR399g	GUACUGUAGGUAGGUUUUGCCAAAAGGAGAUUUGCCCCGAAC UAUCGGUAGGUUUGCCAAAGGAGAUUUGCCCCGAAG
miR408	GCUGCGUUCAGGAGCACGCAGACGAGCAGCACGCCCACAACC ACGGCUGCACUGCCUCUUCCCUGCGUCGC
miR444	AGGCACAAGUAGGACACCAACAUUACCUGCAAGCAAGACGCA AAAUUAAUAGAACAUCACCAUACUUGUGGCUUUCUUGCAAGU CGUGCAGUUGCUGCCUCAAGCUUGCUGCCU

APPENDIX G

List of Newly Identified Barley microRNAs and their Homologous microRNAs Detected in MicroPC

microRNA	Homologus microRNA(s) from MicroPC	
miR1119	-	
miR1120	tae-miR1120, osa-miR818e, osa-miR818d, osa-miR818c, osa-miR818b, osa-miR818a, osa-miR1436	
miR1121	tae-miR1121	
miR1122	tae-miR1122	
miR1126	tae-miR1126	
miR1139	-	
miR1436	osa-miR1436, tae-miR1118	
miR1438	osa-miR1439	
miR156a	zma-miR156j, gma-miR156b, mtr-miR156, sbi-miR156d, osa-miR156k, ppt-miR529g, vvi-miR156h, ppt-miR529d, ppt-miR529c, ppt-miR529b	
miR159a	tae-miR159a, tae-miR159b, zma-miR159b, zma-miR159a, sof-miR159d, sof-miR159b, sof-miR159a, sbi-miR159, osa-miR159b, osa-miR159a	

miR160a	ppt-miR160a	
miR160b	sly-miR160a, vvi-miR160f, vvi-miR160d, vvi-miR160c, tae-miR160, smo-miR160b, smo-miR160a, ppt-miR160f, ppt-miR160e,	
	ppt-miR160a	
miR165	sly-miR166b, sly-miR166a, vvi-miR166h, vvi-miR166g, vvi-miR166f, vvi-miR166e, vvi-miR166d, vvi-miR166c, bna-miR166d,	
IIIK105	bna-miR166c	
	sly-miR166b, sly-miR166a, vvi-miR166h, vvi-miR166g, vvi-miR166f, vvi-miR166e, vvi-miR166d, vvi-miR166c, bna-miR166d,	
miR166m	bna-miR166c	
	sly-miR166b, sly-miR166a, vvi-miR166h, vvi-miR166g, vvi-miR166f, vvi-miR166e, vvi-miR166d, vvi-miR166c, bna-miR166d,	
miR166n	bna-miR166c	
D1 (0)	zma-miR168b, zma-miR168a, sof-miR168a, sbi-miR168, osa-miR168a, vvi-miR168, bna-miR168, ptc-miR168b, ptc-miR168a,	
IIIIK IDAY	gma-miR168	
	zma-miR168b, zma-miR168a, sof-miR168a, sbi-miR168, osa-miR168a, vvi-miR168, bna-miR168, ptc-miR168b, ptc-miR168a,	
IIIK IOAN	gma-miR168	
·D151	sly-miR171a, tae-miR171, ptc-miR171i, ptc-miR171h, ptc-miR171g, ptc-miR171f, ptc-miR171e, zma-miR171i, zma-miR171e,	
mik I / I	zma-miR171j	
D172-	sly-miR172b, sly-miR172a, vvi-miR172d, vvi-miR172c, ptc-miR172h, ptc-miR172g, ptc-miR172f, ptc-miR172e, ptc-miR172d,	
miR172a	ptc-miR172c	
	sly-miR172b, sly-miR172a, vvi-miR172d, vvi-miR172c, ptc-miR172h, ptc-miR172g, ptc-miR172f, ptc-miR172e, ptc-miR172d,	
miR172b	ptc-miR172c	
	sly-miR172b, sly-miR172a, vvi-miR172d, vvi-miR172c, ptc-miR172h, ptc-miR172g, ptc-miR172f, ptc-miR172e, ptc-miR172d,	
	ptc-miR172c	
D 170 1	sly-miR172b, sly-miR172a, vvi-miR172d, vvi-miR172c, ptc-miR172h, ptc-miR172g, ptc-miR172f, ptc-miR172e, ptc-miR172d,	
$\mathbf{m}\mathbf{k}\mathbf{l}/2\mathbf{d}$	ptc-miR172c	
miR2055		
IIIIK2055	-	
	vvi-miR393a, gma-miR393, vvi-miR393b, bna-miR393, ptc-miR393d, ptc-miR393c, ptc-miR393b, ptc-miR393a, zma-miR393,	
miR395a	mtr-miR393	
	sly-miR397, vvi-miR397b, vvi-miR397a, bna-miR397b, bna-miR397a, ptc-miR397b, ptc-miR397a, osa-miR397b, osa-miR397a,	
mik (y/	ath-miR397a	

miR399g	ptc-miR399a, ath-miR399d, vvi-miR399g, vvi-miR399e, bna-miR399, ptc-miR399c, ptc-miR399b, mtr-miR399e, mtr-miR399a, mtr-miR399c
miR408	tae-miR408, zma-miR408, sof-miR408d, sof-miR408c, sof-miR408b, sof-miR408a, osa-miR408, vvi-miR408, smo-miR408, ppt-miR408b
miR444	osa-miR444e, osa-miR444d.1, osa-miR444d.2, tae-miR444, osa-miR444a.1, osa-miR444a.2, osa-miR444d.3, osa-miR444f, osa-miR444c.1, osa-miR444b.1

tae: Triticum aestivum, osa: Oryza sativa, zma: Zea mays, gma: Glycine max, mtr: Medicago truncatula, sbi: Sorghum bicolor, ppt: Physcomitrella patens, vvi: Vitis vinifera, sof: Saccharum officinarum, sly: Solanum lycopersicum, smo: Selaginella moellendorffii, ptc: Populus trichocarpa, bna: Brassica napus, ath: Arabidopsis thaliana

APPENDIX H

Predicted Targets of Putative Barley microRNAs

microRNA	Target sequence	Target protein
miR1119	GH228802.1, GH223038.1, GH223037.1, FD527818.1, FD525832.1, FD525157.1, BY874148.1, BY864489.1, BY873820.1, BY873695.1, BY872818.1, BY861857.1, BY870666.1, BY860649.1, CB881890.1, CB880638.1, CB880289.1, CB880289.1, CB876132.1, CB875296.1, CB874935.1, CB874734.1, CB874459.1, CB874191.1, CB874075.1, CB872600.1, CB872453.1, CB872284.1, CB872255.1, CB872108.1, CB871762.1, CB871755.1, CB870604.1, CB868554.1, CB868369.1, CB867081.1, CB866608.1, CB859747.1, CB858914.1, CB858768.1, CB858345.1, CB858181.1, CA029265.1, CA028720.1, CA027359.1, CA027063.1, CA026736.1, CA025269.1, CA020594.1, CA018933.1, CA018263.1, CA017073.1, A016083.1, BU994188.1, BU993977.1, BU986680.1, BU975947.1, BU975470.1, BU973972.1, BU973892.1, BU973607.1, BU971666.1, BU970318.1, BQ761269.1, BQ761024.1, BQ760313.1, BQ756701.1, BQ756674.1, BI776713.2, BI776712.2, BI776941.2, BM441507.2, BM372872.2, BM372821.2, BM096529.2, BM096491.2, BI781077.2, BM443814.2, BQ665864.1, BQ661979.1, BQ660599.1, BQ660575.1, BQ134689.1, BQ467836.1, BQ462148.1, AJ486203.1, AJ486202.1, BM445267.1, BM444358.1, BM444122.1, BM44360.1, BM443638.1, BG343309.2, BG342907.2, BI960270.1, BI959664.1, BI959039.1, BI946902.1, BI776735.1, BG417782.1	
miR1120	EX584378.1, FD519329.1, EX584378.1, BU974091.1, BQ766259.1, BJ460470.1, AJ461536.1	unknown, csAtPR5, proteinase inhibitor, acid phosphatase/vanadium-dependent haloperoxidase related

miR1121	BY867242.1, DN186686.1, BQ761197.1, BQ656484.1, BQ458760.1, AV928265.1, GH208317.1, FC555790.1, EX591441.1, EX591437.1, EX587628.1, EX587623.1, DN187056.1, CK569040.1, CK568591.1, CK565957.1, U970654.1, BJ461877.1, BJ448740.1, AV944995.1, BI956127.1, AV836141.1, BE216561.2, EX601113.1, EX601112.1, BY848300.1, BY845018.1, DN188870.1, AJ484964.1, AJ484963.1, BJ455329.1, BJ447578.1, AV927890.1, AV918531.1, AV912245.1, AV910077.1	cell cycle control protein-related, coiled-coil domain-containing protein 94, ptil kinase-like protein, serine/threonine protein kinase,
miR1122	BY876819.1, FD518678.1, DN157625.1, EX585467.1, EX585466.1, CX627768.1, BI953109.1	pp70 ribosomal protein S6 kinase, NBS-LRR resistance protein RGH2, zinc finger (C3HC4- type RING finger),
miR1126	CX629047.1, CA012080.1, AJ469590.1, CX631396.1, GH209357.1, EX594051.1, EX581233.1, BY875458.1	high-affinity potassium transporter, B70; transcription factor,
miR1139	EX582279.1, EX582278.1, BQ464633.1	poly(A) polymerase-like protein
miR1436	DN159362, BM100733.2, BJ485923.1, BJ485923.1, BJ485913.1, GH219034.1, FD519329.1, EX573766.1, EX595547.1, EX595552.1, EX600769.1, BY877744.1, BY874438.1, BY865147.1, CV064340.1, CK569835.1, CD663278.1, CD057247.1, CB863041.1, CB862673.1, CA010088.1, BM371881.2, BJ482549.1, BJ468182.1, AV834592.1, AW983316.2, GH213790.1, FD521311.1, EX581160.1, DN187130.1, DN184585.1, DN180754.1, CX629150.1, CB877969.1, CA010562.1, BU996201.1, BU977032.1, BU968160.1, BQ662944.1, BQ661883.1, BQ661628.1, BQ657747.1, BQ467319.1, BJ486097.1, AV834234.1, AL509815.1, AL503060.1, AL500558.1, GH217963.1, GH212963.1, EX575535.1, EX583817.1, EX592251.1, EX592250.1, EX593248.1, EX591321.1, EX591500.1, EX583713.1, EX583708.1, EX593880.1, EX580539.1, EX580538.1, BY874640.1, CB871794.1, CB867028.1, BM443538.2, BG344337.1	Avr9/Cf-9 rapidly elicited protein, expressed protein, hypothetical protein OsI_34102, hypothetical protein SORBIDRAFT_05g026800, bZIP transcription factor bZIP109, NADH dehydrogenase

miR1438	BF256174.1, BU984969.1, BJ473266.1, BJ472225.1, BJ471375.1, BJ470543.1, GH218489.1, FD528314.1, FD528241.1, FD520850.1, FD520292.1, FD518968.1, EX595629.1, EX595574.1, EX595570.1, EX575273.1, EX587834.1, EX592026.1, EX592021.1, EX585864.1, EX583410.1, EX572525.1, EX572520.1, EX597806.1, EX597805.1, EX585782.1, EX585781.1, EX583409.1, BY864230.1, BY864094.1, BY863662.1, BY862007.1, BY859316.1, BY858575.1, BY877400.1, BY865328.1, BY874243.1, DN185957.1, DN159007.1, DN157326.1, CK568443.1, CD664034.1, CB879598.1, CB862607.1, BU988058.1, BU981792.1, BU974046.1, BU971496.1, BU968784.1, BM377451.2, BQ661000.1, BQ658389.1, BQ658360.1, BJ479954.1, BJ466768.1, BJ464326.1, AJ463403.1, AJ434654.1, AV930760.1, AV923231.1, BI950824.1, BF625612.3, BF253848.2	AAA-type ATPase family protein, unknown protein, DNA helicase-like,
miR156a	FD528446.1, FD526024.1, FD526024.1, FD527301.1, EX597081.1, EX597080.1, EX598089.1, CA032492.1, CA020690.1, BJ478354.1, BF258419.2, BE060620.2, GH228608.1, BQ665502.1, BJ485673.1, AV910992.1, AV909109.1, BQ757841.1, BG300360.1, EX576980.1, EX593949.1, CB858958.1	teosinte glume architecture 1, squamosa promoter-binding protein, SBP-domain protein 6,9, squamosa promoter binding protein-like 4
miR159a	AJ475696.1, BJ448559.1, CA006699.1, AJ480356.1, AJ480355.1	transcription factor GAMyb Myb33
miR160a	GH209508.1, BU986263.1, BJ472971.1, BJ472971.1, BJ471957.1, BJ471544.1, BJ469735.1, BJ469445.1, AV934494.1, AV934488.1, AV933114.1, AV932125.1, BF622299.2, CA002787.1, BF622307.1	auxin response factor 16, auxin response factor 10
miR165	BY841849.1	-
miR171	BQ461013.1	SCL6 transcription factor

miR172a	BY867399.1, DN185554.1, CX627187.1, CV062201.1, CV060423.1, CV059650.1, CB872997.1, CB872642.1, CB868609.1, CB864455.1, BJ553068.1, BJ552631.1, BJ551880.1, BJ550102.1, BJ549954.1, BJ549884.1, BJ549797.1, BJ549795.1, BJ549763.1, BJ549614.1, BJ546100.1, BJ546031.1, BU991171.1, BQ763181.1, BQ760907.1, AJ436477.1, AV921360.1, BF261929.2, FD525656.1, FD519858.1, CB883643.1, CB859285.1, CB858710.1, CA031544.1, BU977981.1, BU977689.1, BU977520.1, BQ468903.1, AL511903.1, AL501298.1, AL499992.1, GH206429.1	succinyl-CoA ligase beta-chain
miR2055	GH219150.1, FD522016.1, FD519704.1, BY877030.1, CB863733.1, CB862831.1, BQ660241.1, BQ657284.1, BJ467047.1, AJ434678.1, AV921187.1, AV919340.1, BM100874.1, AL511307.1,	minichromosome maintenance protein, ATPase
miR395a	CV055207.1, CB860441.1, CA004635.1, BU973213.1, BJ461212.1, BJ453671.1, AJ432418.1, BE603282.2, BI953281.1	transport inhibitor response, AFB2 (AUXIN SIGNALING F-BOX 2), auxin-responsive factor TIR1-like protein,
miR397	FD518508.1, CA007960.1, CA005607.1, BU966899.1, BU966762.1, BQ665274.1, BQ665274.1, BQ461815.1, BM097863.1, BG415888.2, DN179783.1, BU973559.1, BQ663574.1, BI960614.1, BI960367.1, BI960433.1, BI957285.1, BI957118.1, BI956799.1	
miR408	CB881899.1, BU995745.1, BU995231.1, BU976391.1, BQ768355.1, BM372993.2, BQ468842.1, BM817241.1, BG344510.1, GH228273.1, CA021788.1, BU995189.1, BU994743.1, BI958939.1, BI957261.1	chemocyanin, blue copper-binding protein
miR444	GH228935.1, CA019616.1, CA008118.1, CA006693.1, BQ765702.1, BQ765438.1, BQ754066.1, AL504006.1, CX630154.1, DN188095.1, GH224063.1	putative transcription factor MADS27, cryptochrome 1b

Target sequence: GeneBank accession

APPENDIX I

microRNA Cleaved Barley Sequences Identified by RNA Ligation Mediated Rapid Amplification of Complementary DNA ends

sequence 1

5'GGTCCCTGGGAAGAGACTTCACAATCTGGCTATGGGTTGGCATCCCCAAC AGACTGAACACATCCC3'

sequence 2

5'GGGGGTCGCAGTGACCAGGCCCGGGCGACTGTTTACCAAAAACACAGGTC TCCGCAAAGTCGTAAGACCATGTATGGGGGGCTGACGCCTGCCCAGTGCCGG AAGGTCTACAAGTCCGGCGC3'

sequence 3

5'TACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCA TGCATGTGCAAGTATGAACCAATTTGACCTTCTTGATCCTGCCC3'

sequence 4

5'AAGCCATGCATGTGCAAGTATGAACCAACAGACTGAACACATCCC3'

sequence 5

5'TCTCATGGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCATGCTTA ACACATGCAAGTCGAACGGGAAGTGGTGTTTCCAGTGGCGAACGGGTGAGT AACGCGTAAGAACCTGCCCTTGGGAGGGGAACAACAACTGGAA ACGGTTGC TAATACCCCGTAGGCTGAGGAGGAGCAAAAGGAGAAATCCGCCCAAGGAGGGG CTCGCGTCTGATTAGCGAGTTGGTGAGGCAATAGCTTACCAAGGCGATGAT CAGTAGCTGGTCCGAGAGGATGATCAGCCACACTGGGGGCTGAGACACGGCC CAGACTCCTACGGGAGGCANCAGTGGGGGAATTTTCCGCAATGGGCGAAAGC CTGACGGANCAATGCCGCGTGGAGGTGGAAGGCCTACGGGTCGTCAACTTC TTTTCTCGGAGAAGAAACAATGACGGTATCTGAGGAATAAGCATCGGCTAA CTCTGTGCCAGCAGCGCGGTAAGACAGANGATGCAAGCGTTATCCGGGAA AGCTGATGCAGGGAAGAT3'

sequence 6

sequence 7

5'TCAAAAGAGGAAAGGCTTGCGGTGGATACCTAGGCACCCAGAGACGAGG AAGGTCTACAAGTCCGGCG3'

APPENDIX J

Putative microRNAs that Cleave Sequences Obtained by Rapid Amplification of

Complementary DNA ends and their Known Targets

Sequence	microRNA	Known targets
	hvu-miRNA165	HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV)
1.	hvu-miRNA166	HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV)
	ath-miRN A408	plantacyanin, copper ion binding
	mtr-miRNA1510	resistance genes, aminophospoholipid ATPase, ATP binding cassette transporter, brassionosteroid receptor
2.	_	_
	gma-miRNA1511	GRAS family transcription factor
3.		similar to AP endonuclease/reverse transcriptase
	ppt-miRNA900-5p	branched-chain aminotransferase 4, similar to microfilarial sheath protein SHP3 precursor
	· · · DNIA 520	similar to AP endonuclease/reverse transcriptase,
4.	ppt-miRNA538	serine/threonine protein phosphatase 2A, similar to microfilarial sheath protein SHP3 precursor
F	hvu-miRNA156	squamosa-promoter binding protein (SBP) box
5.	ppt-miRNA1214	beta, beta-carotene 9,10-dioxygenase
6.	hvu-miRNA2055	nucleic acid binding protein, Zn-finger, RanBP-type containing protein, stripe rust resistance protein, ATP binding protein, retrotransposon protein, protein neuralized, laccase
	hvu-miRNA171	GRAS domain or SCARECROW-like proteins
7	hvu-miRNA172	Apetala 2 (AP2) proteins
7.	hvu-miRNA397	laccases and beta-6 tubulin
	hvu-miRNA159	MYB proteins

		ath-miRN A853	retroposon, Ty3-gypsy class
--	--	---------------	-----------------------------

Known targets are listed from miRBase (version 13, March 2009)

hvu: Hordeum vulgare, ath: Arabidopsis thaliana, mtr: Medicago truncatula, gma: Glycine max, ppt: Physcomitrella patens

APPENDIX K

Probes Detecting Homologous microRNAs in Wild Emmer Wheat Control Tissues

ath-miR156a	mtr-miR395a	osa-miR50-5p	ptc-miR474b
ath-miR156g	mtr-miR395b	osa-miR535	ptc-miR474c
ath-miR156h	mtr-miR395g	ppt-miR1034	sbi-miR156e
ath-miR157a	mtr-miR395h	ppt-miR1066	sbi-miR164c
ath-miR157d	mtr-miR395p	ppt-miR160b	sbi-miR166a
ath-miR159a	mtr-miR399b	ppt-miR160c	sbi-miR171f
ath-miR159a	mtr-miR3996 mtr-miR399d	ppt-miR166j	sly-miR319
	osa-miR1318		
ath-miR159c		ppt-miR166m	sly-miR395a
ath-miR160a	osa-miR1427	ppt-miR167	sly-miR397
ath-miR164a ath-miR164c	osa-miR1432 osa-miR1436	ppt-miR390c	smo-miR1082a smo-miR1082b
		ppt-miR395	
ath-miR165a	osa-miR156l	ppt-miR477a-3p	smo-miR1091
ath-miR166a	osa-miR159a	ppt-miR536a	smo-miR1105
ath-miR167a	osa-miR159c	ppt-miR893	smo-miR156b
ath-miR167c	osa-miR159d	ppt-miR894	smo-miR156c
ath-miR167d	osa-miR159e	ppt-miR896	smo-miR156d
ath-miR168a	osa-miR159f	pta-miR1310	smo-miR171b
ath-miR169a	osa-miR160e	pta-miR159a	sof-miR159e
ath-miR169b	osa-miR164c	pta-miR159b	sof-miR168b
ath-miR169d	osa-miR164d	pta-miR159c	tae-miR1118
ath-miR169h	osa-miR164e	pta-miR166c	tae-miR1125
ath-miR171a	osa-miR166e	pta-miR319	tae-miR1132
ath-miR171b	osa-miR166i	ptc-miR1447	tae-miR1134
ath-miR172e	osa-miR166k	ptc-miR1450	tae-miR399
ath-miR319a	osa-miR166m	ptc-miR156k	vvi-miR156e
ath-miR319c	osa-miR168a	ptc-miR159d	vvi-miR156h
ath-miR393a	osa-miR168b	ptc-miR159e	vvi-miR159a
ath-miR395a	osa-miR169e	ptc-miR159f	vvi-miR166a
ath-miR395b	osa-miR169n	ptc-miR160e	vvi-miR166b
ath-miR397a	osa-miR171h	ptc-miR160g	vvi-miR166c
ath-miR398a	osa-miR1846a-3p	ptc-miR160h	vvi-miR166d
ath-miR398b	osa-miR1846a-5p	ptc-miR164f	vvi-miR167c
ath-miR399b	osa-miR1846d-3p	ptc-miR166n	vvi-miR1691
ath-miR399d	osa-miR1858a	ptc-miR166p	vvi-miR169m
ath-miR404	osa-miR1861n	ptc-miR167f	vvi-miR1690
ath-miR853	osa-miR1867	ptc-miR167h	vvi-miR171a
ath-miR854a	osa-miR1883a	ptc-miR1690	vvi-miR171g
bna-miR156a	osa-miR319a	ptc-miR169q	vvi-miR171h
bna-miR167a	osa-miR393b	ptc-miR169s	vvi-miR171i
bna-miR169c	osa-miR395a	ptc-miR169t	vvi-miR319b
bna-miR171g	osa-miR395b	ptc-miR169v	vvi-miR319e
bna-miR393	osa-miR395c	ptc-miR169x	vvi-miR319g
ghr-miR156c	osa-miR395f	ptc-miR171c	vvi-miR396a
gma-miR1532	osa-miR395o	ptc-miR171e	vvi-miR396b
gma-miR156b	osa-miR395t	ptc-miR171k	vvi-miR399i
gma-miR159b	osa-miR396d	ptc-miR319e	vvi-miR535a
gma-miR159c	osa-miR397b	ptc-miR319i	zma-miR171b
gma-miR167c	osa-miR415	ptc-miR395a	zma-miR171c
gma-miR169c	osa-miR444a.1	ptc-miR397b	zma-miR171f
	054-1111(+++4.1		
gma-miR171a	osa-miR444a.2	ptc-miR398b	
gma-miR171a gma-miR319a gma-miR319c			

		only in leaf					
		only in root					
		in both control tissues					
		in controls but not					
	<u>miR</u>	stressed					
		refer to miRBase for					
	microRNA nomenclature						

APPENDIX L

Probes Detecting Homologous microRNAs in Wild Emmer Wheat Dehydrated Tissues

	C	, C				2			
4 hou	r stressed leaf	4 hour s	tress, both tissue	s bold & ita	<i>lic</i> in all tissue	s and timepoints	5		
8 hou	r stressed leaf		tress, both tissue		miR only in stress samples, not in controls				
4 hou	r stressed root	leaf only	, both timepoints		refer to miRBase for microRNA nomenclature				
8 hou	r stressed root		y, both timepoint						
0.000			,	~					
ath-miR156a	ath-miR778	gma-miR319a	osa-miR1858a	ppt-miR1029	ppt-miR902c-3p	ptc-miR397b	sof-miR159e		
ath-miR156g	ath-miR779.1	gma-miR319c	osa-miR1861g	ppt-miR1030a	ppt-miR902h-3p	ptc-miR398b	sof-miR168b		
ath-miR156h	ath-miR779.2	gma-miR390b	osa-miR1861n	ppt-miR1030i	ppt-miR903	ptc-miR399f	sof-miR408e		
ath-miR157a	<u>ath-miR780.1</u>	gma-miR482	osa-miR1867	ppt-miR1031a	ppt-miR904a	ptc-miR399h	tae-miR1118		
ath-miR157d	<u>ath-miR780.2</u>	<u>mtr-miR171</u>	<u>osa-miR1868</u>	<u>ppt-miR1032</u>	<u>pta-miR1309</u>	<u>ptc-miR399i</u>	<u>tae-miR1124</u>		
ath-miR158a	ath-miR781	mtr-miR395a	<u>osa-miR1870</u>	ppt-miR1033a	pta-miR1310	ptc-miR399j	tae-miR1 125		
ath-miR159a	ath-miR782	mtr-miR395b	<u>osa-miR1875</u>	ppt-miR1034	<u>pta-miR1311</u>	<u>ptc-miR3991</u>	<u>tae-miR1128</u>		
ath-miR159b ath-miR159c	ath-miR824 ath-miR826	mtr-miR395g mtr-miR395h	<u>osa-miR1876</u> osa-miR1877	<u>ppt-miR1035</u> ppt-miR1041	pta-miR1312 pta-miR1314	<u>ptc-miR472a</u> ptc-miR472b	tae-miR1129 tae-miR1132		
ath-miR160a	ath-miR827	mtr-miR395n mtr-miR395p	<u>osa-miR1879</u>	ppt-miR1043-3p	pta-miR1315	ptc-miR473a	tae-miR1132		
ath-miR161.1	ath-miR829.1	mtr-miR399b	osa-miR1881	ppt-miR1047-3p	pta-miR1316	ptc-miR473b	tae-miR1134		
ath-miR163	<u>ath-miR829.2</u>	mtr-miR399d	osa-miR1883a	<u>ppt-miR1050</u>	pta-miR156a	ptc-miR474a	tae-miR399		
ath-miR164a	<u>ath-miR830</u>	<u>osa-miR1317</u>	osa-miR319a	ppt-miR1053-3p	pta-miR156b	ptc-miR474b	vvi-miR156e		
ath-miR164c	<u>ath-miR832-5p</u>	osa-miR1318	osa-miR393b	<u>ppt-miR1054</u>	pta-miR159a	ptc-miR474c	vvi-miR156h		
ath-miR165a	ath-miR833-3p	<u>osa-miR1423</u>	osa-miR395a	<u>ppt-miR1055</u>	pta-miR159b	ptc-miR475a	vvi-miR159a		
ath-miR166a ath-miR167a	ath-miR839	osa-miR1423b	osa-miR395b	ppt-miR1056	pta-miR159c	ptc-miR475d	vvi-miR166a		
ath-miR16/a ath-miR167c	ath-miR841 ath-miR843	osa-miR1425 osa-miR1427	osa-miR395c osa-miR395f	ppt-miR1057 ppt-miR1058	pta-miR166c pta-miR319	<u>ptc-miR478d</u> <u>Ptc-miR482.1</u>	vvi-miR166b vvi-miR166c		
ath-miR167d	<u>ath-miR846</u>	osa-miR1431	osa-miR3950	ppt-miR1058	pta-miR398	Ptc-miR482.2	vvi-miR100c vvi-miR166d		
ath-miR168a	ath-miR847	osa-miR1432	osa-miR395t	ppt-miR1068	pta-miR482a	ptc-miR530b	vvi-miR160a		
ath-miR169a	ath-miR852	osa-miR1433	osa-miR395u	ppt-miR1069-3p	pta-miR482d	sbi-miR156e	vvi-miR169b		
ath-miR169b	ath-miR854a	<u>osa-miR1435</u>	osa-miR395v	ppt-miR1076-3p	pta-miR946a*	sbi-miR164c	vvi-miR169i		
ath-miR169d	<u>ath-miR855</u>	osa-miR1436	osa-miR396d	ppt-miR1077-5p	<u>pta-miR949</u>	sbi-miR166a	vvi-miR1691		
ath-miR169h	<u>ath-miR856</u>	<u>osa-miR1437</u>	osa-miR397b	ppt-miR1223a	<u>pta-miR952a</u>	sbi-miR171f	vvi-miR169m		
ath-miR170	ath-miR858	<u>osa-miR1439</u>	osa-miR399h	ppt-miR1223b	<u>ptc-miR1448</u>	<u>Sly-miR171d</u>	vvi-miR1690		
ath-miR171a	<u>ath-miR862-3p</u>	osa-miR1440	osa-miR399k	ppt-miR1223d	<i>ptc-miR1450</i>	<u>Sly-miR1916</u>	vvi-miR169r		
ath-miR171b ath-miR172e	ath-miR863-3p ath-miR864-5p	<u>osa-miR1441</u> osa-miR1442	<u>osa-miR408</u> osa-miR413	ppt-miR1223e ppt-miR1223h	ptc-miR156k ptc-miR159d	<u>Sly-miR1919a</u> sly-miR319	vvi-miR169t vvi-miR169v		
ath-miR319a	<u>ath-miR865-3p</u>	osa-miR156l	osa-miR415	ppt-miR1223i	ptc-miR159a ptc-miR159e	sly-miR395a	vvi-miR169y		
ath-miR319c	<u>bna-miR1140a</u>	osa-miR159a	osa-miR438	ppt-miR160b	ptc-miR159f	sly-miR397	vvi-miR171a		
ath-miR390a	bna-miR1140b	osa-miR159c	osa-miR444a.1	ppt-miR160c	ptc-miR160e	smo-miR1080	vvi-miR171b		
ath-miR393a	bna-miR156a	osa-miR159d	osa-miR444a.2	ppt-miR160d	ptc-miR160g	smo-miR1082a	vvi-miR171f		
ath-miR394a	<u>bna-miR161</u>	osa-miR159e	osa-miR444b.1	ppt-miR160h	ptc-miR160h	smo-miR1082b	vvi-miR171g		
ath-miR395a	bna-miR167a	osa-miR159f	<u>osa-miR444b.2</u>	ppt-miR166j	ptc-miR164f	<u>smo-miR1083</u>	vvi-miR171h		
ath-miR395b	bna-miR169c	osa-miR160e	osa-miR444f	ppt-miR166m	ptc-miR166n	smo-miR1084	vvi-miR171i		
ath-miR396a	bna-miR169g	osa-miR164c osa-miR164d	osa-miR528	ppt-miR167	ptc-miR166p ptc-miR167f	<u>smo-miR1086</u>	vvi-miR172b vvi-miR319b		
ath-miR396b ath-miR397a	<u>bna-miR169m</u> bna-miR171g	osa-miR164a	osa-miR529a osa-miR530-3p	ppt-miR390c ppt-miR395	ptc-miR167h	<u>Smo-miR1088-5p</u> smo-miR1091	vvi-miR3190 vvi-miR319e		
ath-miR398a	bna-miR393	osa-miR166e	<u>osa-miR530-5p</u>	ppt-miR408b	ptc-miR169aa	smo-miR1092	vvi-miR319e		
ath-miR398b	bna-miR397a	osa-miR166i	osa-miR531	ppt-miR477a-3p	ptc-miR169ab	smo-miR1093	vvi-miR395n		
ath-miR399a	ghr-miR156c	osa-miR166k	osa-miR531b	ppt-miR529a	ptc-miR1690	<u>smo-miR1097</u>	vvi-miR396a		
ath-miR399b	<u>gma-miR1516</u>	osa-miR166m	osa-miR535	ppt-miR529d	ptc-miR169q	<u>smo-miR1098</u>	vvi-miR396b		
ath-miR399d	<u>gma-miR1517</u>	osa-miR168a	<u>osa-miR810a</u>	<u>ppt-miR529e</u>	ptc-miR169s	<u>smo-miR1100</u>	vvi-miR399g		
ath-miR399e	<u>gma-miR1519</u>	osa-miR168b	osa-miR814a	ppt-miR529g	ptc-miR169t	<u>Smo-miR1101-3p</u>	vvi-miR399i		
ath-miR399f	<u>gma-miR1520a</u>	osa-miR169e	<u>osa-miR815a</u>	ppt-miR533a	ptc-miR169u	<u>smo-miR1102</u>	<i>vvi-miR535a</i>		
ath-miR400 ath-miR401	<u>gma-miR1522</u> gma-miR1524	osa-miR169n osa-miR171h	osa-miR820a osa-miR821a	ppt-miR533a* ppt-miR533b-5p	ptc-miR169v ptc-miR169x	<u>smo-miR1103-5p</u> smo-miR1105	vvi-miR845c zma-miR169d		
ath-miR402	gma-miR1524	osa-miR171n osa-miR1846a-3p	<u>osa-miR821a</u> osa-miR827	ppt-miR533b-5p	ptc-miR169x	<u>smo-miR1105</u>	<u>zma-miR1690</u> zma-miR169e		
ath-miR404	gma-miR1532	osa-miR1846a-5p	ppt-miR1023a-3p	ppt-miR536f	ptc-miR171e	<u>smo-miR1110</u>	zma-miR171a		
ath-miR413	gma-miR156b	osa-miR1846c-3p	ppt-miR1023a-5p	ppt-miR893	ptc-miR171j	smo-miR156b	zma-miR171b		
ath-miR447a	gma-miR159b	osa-miR1846d-3p	ppt-miR1023c-3p	ppt-miR894	ptc-miR171k	smo-miR156c	zma-miR171c		
ath-miR472	gma-miR159c	osa-miR1847.1	ppt-miR1023c-5p	ppt-miR896	ptc-miR319e	smo-miR156d	zma-miR171f		
ath-miR774	gma-miR167c	<u>osa-miR1847.2</u>	<u>ppt-miR1024a</u>	<u>ppt-miR900-3p</u>	ptc-miR319i	smo-miR171a	zma-miR399b		
ath-miR775	gma-miR169c	osa-miR1848	<u>ppt-miR1026a</u>	ppt-miR900-5p	ptc-miR395a	smo-miR171c			
ath-miR776	gma-miR171a	<u>osa-miR1850</u>	<u>ppt-miR1028c-5p</u>	ppt-miR902a-3p	ptc-miR396f	<u>smo-miR319</u>			

APPENDIX M

Characteristics of Selected Preliminary microRNAs Predicted from the Long Arm of Bread Wheat Chromosome 5D

New bread wheat microRNA	Bread wheat mature microRNA sequence	Accession	Homologous miRNA	Location	ΔG (kcal/mol)	LP	LM	GC (%)	MFEI
miR1117	UAGUACCGGUUCGUGGCACGAACC	HRFOW6E02IYSKI	tae-miR1117	5'	-104.8	152	24	57.23684	1.204598
miR1118	CACUACAUUAUGGAAUGGAGGGA	HRFOW6E02H3OY4	tae-miR1118	3'	-127.2	291	23	32.98969	1.325
miR1120	ACGUUCUUAUAUUAUGGGACGGAG	HRFOW6E02I6LX0	tae-miR1120	3'	-37.8	110	24	38.18182	0.9
miR1121	UAUAUUGAUCUAAACGCUCUUA	HRFOW6E02HC5B0	tae-miR1121	3'	-29.2	96	22	32.29167	0.941935
miR1122	UAGAUACAUCCGUAUUUAGA	HRFOW6E02H7L52	bdi-miR1122	3'	-50	93	20	26.88172	2
miR1123	CACGUGAGACCUGGUCUCAUAGA	HJKAX1S02HNBZ4	tae-miR1123	3'	-161.5	252	23	49.60317	1.292
miR1125	AACCAACGAGACCGACUGCGGCGG	HRFOW6E02JQX8D	tae-miR1125	5'	-87.4	153	24	37.2549	1.533333
miR1127	AACUACUCCCUCCGUCCCAUA	HRFOW6E02JBR5E	bdi-miR1127	5'	-71.1	130	21	40	1.367308
miR1128	UACUACUCCCUCCGUCCGAAA	HRFOW6E02G37AT	tae-miR1128	5'	-76.3	164	21	40.85366	1.138806
miR1130	CCUCCGUCUCAUAAUGUAAGACG	HRFOW6E02IEDIM	tae-miR1130	5'	-65.7	117	23	42.73504	1.314
miR1131	UAGUACCGGUUCGUGGCUAACC	HRFOW6E02JH3PY	tae-miR1131	5'	-63	97	22	56.70103	1.145455
miR1133	GUUAUACUCCCUCCGUCCGAAA	HRFOW6E02FKQJJ	tae-miR1133	5'	-53.3	156	22	37.82051	0.90339
miR1135	CUGCGACAAGUAAUUCCGAACGGA	HRFOW6E02I89BW	tae-miR1135	3'	-80.5	131	24	41.98473	1.463636
miR1136	UUGUCGCAGGUAUGGAUGUAUCUA	HRFOW6E02G8ADT	tae-miR1136	5'	-69.1	105	24	40.95238	1.606977
miR1137	UAGUACAAAGUUGAGUCAUC	HRFOW6E02F1AHM	tae-miR1137	3'	-61.2	93	20	36.55914	1.8
miR1139	AGAGUAACUUACACUAGUAACA	HRFOW6E02IN3KE	tae-miR1139	5'	-31.7	90	22	36.66667	0.960606
miR1436	ACAUUAUGGGACGGAGGGAGU	HRFOW6E02JT210	hvu-miR1436	3'	-53.8	122	21	33.60656	1.312195
miR1439	UUUUGGAACGGAGUGAGUAUU	HRFOW6E02IP2QZ	osa-miR1439	3'	-64.7	130	21	37.69231	1.320408
miR160	GCCUGGCUCCCUGUAUGCCAC	HJKAX1S02HK6ZI	csi-miR160	5'	-61.5	130	21	57.69231	0.82

miR167	UGAAGCUGCCAGCAUGAUCUA	HRFOW6E01B8W5L	aqc-miR167	5'	-46.7	104	21	51.92308	0.864815
miR169	UAGCCAAGGAUGACUUGCCUG	HRFOW6E02HHZHF	hvu-miR169	5'	-69.9	152	21	45.39474	1.013043
miR1847	UGGCCCACAUGUAAGUGCCGCAAC	HRFOW6E02F3PCZ	osa-miR1847.2	3'	-61.8	96	24	54.16667	1.188462
miR2118	GGCAUGGGAACAUGGAGGAAGG	HRFOW6E01EDC6I	sbi-miR2118-5p	3'	-62.8	218	22	39.90826	0.721839
miR2275	UUUGGUUUCCUCCAAUAUCUCA	HJKAX1S02F9QUH	osa-miR2275a	3'	-38.4	104	22	40.38462	0.914286
miR398	UGUGUUCUCAGGUCACCCCU	HJKAX1S02IGMAR	ahy-miR398	3'	-55.7	119	20	53.78151	0.870313
miR437	AAACUUAAAGAAGUUUGACUU	HRFOW6E02J272H	bdi-miR437	3'	-55.4	211	21	26.06635	1.007273
miR5021	GAAGAAGAAGAAGAAGAAAA	HRFOW6E02GY5DN	ath-miR5021	5'	-60.7	153	20	35.29412	1.124074
miR5049	AGUAUUUUGGUACAGAGGGAG	HJKAX1S02H4BRH	hvu-miR5049b	3'	-61.6	108	21	43.51852	1.310638
miR5067	UCAGCGACAACUAAUAUGGAU	HRFOW6E02HL5QH	bdi-miR5067	3'	-41.5	99	21	39.39394	1.064103
miR5068	AUCGGGUAUAGUGGGUACGGGUAU	HRFOW6E02H92KA	bdi-miR5068	5'	-39.9	103	24	37.86408	1.023077
miR5070	AACUAAGUAGGGUCAGAAGGU	HRFOW6E02JW399	bdi-miR5070	3'	-56.9	142	21	35.21127	1.138
miR5085	AAGGACAUUUUUUGUGGCAUG	HJKAX1S02GQ2PM	tae-miR5085	5'	-50.4	151	21	29.80132	1.12
miR5086	AUAUUGGUGGAAGGCGUGGUA	HRFOW6E01B5HVW	tae-miR5086	5'	-53.2	135	21	34.07407	1.156522
miR5161	UCUGGAUCAGAGGGAGUAAU	HRFOW6E02GP401	osa-miR5161	3'	-46.5	135	20	37.03704	0.93
miR5169	UUUGACCAAGUUUGUAGAAAA	HRFOW6E02H2IV3	bdi-miR5169	5'	-73.7	180	21	26.66667	1.535417
miR5175	AAGUAUUUAGGAACGGAGGGA	HRFOW6E02I3KW6	bdi-miR5175a	3'	-48.8	155	21	36.77419	0.85614
miR5180	UAAGUGUCUCAGUUUUGAACU	HRFOW6E01CPK9C	bdi-miR5180a	5'	-43.6	100	21	34	1.282353
miR5181	UGAUCCAUAAUAAGUGUCGCU	HJKAX1S02IAE2V	bdi-miR5181a	5'	-67.3	122	21	35.2459	1.565116
miR5203	ACUUAUUAUGGAUCGGAGGGA	HRFOW6E02IOMJ2	bdi-miR5203	3'	-71.6	129	21	38.75969	1.432
miR5205	CAUACAUUUUGGGAUGGAGGGAG	HRFOW6E02H1EYQ	mtr-miR5205a	3'	-50.8	117	23	33.33333	1.302564
miR5281	UCUUAUAAUUAGGAACGGAGGGAG	HRFOW6E01CWSVA	mtr-miR5281b	3'	-85	192	24	33.85417	1.307692
miR5387	UGGCACGAACCGGUGCUAAAGGAUC	HRFOW6E01ELY06	sbi-miR5387a	3'	-74.4	156	25	52.5641	0.907317
miR5568	AUCUUAUAAUUUGGAAUGGAG	HRFOW6E02G2G72	sbi-miR5568f-3p	3'	-52.3	177	21	33.89831	0.871667
miR6191	UAGAUUUGUCUAGAUAUGGA	HRFOW6E02IFVP1	hvu-miR6191	5'	-61.3	113	20	31.85841	1.702778
miR6197	UCUGUUCCUAAAUGUAAGACG	HJKAX1S02GC931	hvu-miR6197	5'	-36.1	98	21	31.63265	1.164516
miR6219	CAACCGGGACUAAAGGUGGGUCAU	HRFOW6E01D9CO5	sbi-miR6219-5p	3'	-127.6	170	24	59.41176	1.263366

miR6220	AUGUCUUAUAAUUUGGGAUAGAGG	HJKAX1S02IIDAG	sbi-miR6220-3p	3'	-34.1	98	24	34.69388 1.0029) 41
miR818	ACACCCUUAUAUUAUGGGACGG	HRFOW6E01E40EP	osa-miR818a	3'	-63	121	22	36.36364 1.4318	318

Accession: 454 sequencing read ID used for microRNA prediction (EBI Sequence Read Archive, accession number ERP002330, http:// www.ebi.ac.uk/ena/data/view/ERP002330), Homologous microRNA: miRBase ID of the query microRNA used for microRNA prediction (version 19, August 2012, <u>http://www.mirbase.org/</u>) Location: location of the mature microRNA on the preliminary microRNA hairpin, ΔG: minimum folding free energy of the microRNA hairpin, LP: length of preliminary microRNA, LM: length of mature microRNA, G+C: guanine+cytosine percent of preliminary microRNA sequence, MFEI: minimum folding free energy index, tae: *Triticum aestivum*, bdi: *Brachypodium distachyon*, hvu: *Hordeum vulgare*, osa: *Oryza sativa*, csi: *Citrus sinensis*, aqc: *Aquilegia caerulea*, sbi: *Sorghum bicolor*, ahy: *Arachis hypogaea*, ath: *Arabidopsis thaliana*, mtr: *Medicago truncatula*

APPENDIX N

Characteristics of Selected Preliminary microRNAs Predicted from the Short Arm of Bread Wheat Chromosome 5D

New bread wheat microRNA	Bread wheat mature microRNA sequence	Accession	Homologous miRNA	Location	ΔG (kcal/mol)	LP	LM	GC (%)	MFEI
miR1117	UAGUACCGGUUCGUGGCACGAACC	HJKAX1S01AGLAK	tae-miR1117	3'	-71.5	135	24	54.07407	0.979452
miR1118	CACUAUAUUUUGAAAUGGAGGGA	HJKAX1S01A9CAH	tae-miR1118	3'	-114.8	273	23	36.26374	1.159596
miR1120	ACAUUCUUAUAUUAUGGGACGGAG	HJKAX1S01EOW2N	hvu-miR1120	3'	-56.8	111	24	37.83784	1.352381
miR1121	AGUAGUGAUCUAAACGCUUUUA	HJKAX1S01BYG30	tae-miR1121	3'	-35	97	22	27.83505	1.296296
miR1122	UAGAUACAUCCGUAUUUAGA	HJKAX1S01D7NDW	bdi-miR1122	3'	-23.4	74	20	33.78378	0.936
miR1125	AACCAACAAGACCGACUGCGGCGG	HJKAX1S01ED9TT	tae-miR1125	5'	-79.4	144	24	38.19444	1.443636
miR1127	AACUACUCCCUCCGUCCCAUA	HJKAX1S01A5Q15	bdi-miR1127	5'	-57.4	131	21	33.58779	1.304545
miR1128	AACUACUCCCUCCGUCCCAAA	HJKAX1S01AIORH	ssp-miR1128	5'	-60.8	144	21	34.72222	1.216
miR1130	UCUGUAACUUAAUAUAAGACG	HJKAX1S01A34BS	hvu-miR1130	5'	-44.8	113	21	34.51327	1.148718
miR1131	UAGUACCGGUUCGUGGCUAACC	HJKAX1S01DQ274	tae-miR1131	5'	-49.4	97	22	54.63918	0.932075
miR1133	AUUAUACUCCCUCCGUCCGAAA	HJKAX1S01CYWO6	tae-miR1133	5'	-67	143	22	38.46154	1.218182
miR1135	UUGCGACAAGUAAUUCCGGACGGA	HJKAX1S01DBQQA	bdi-miR1135	3'	-67.2	140	24	38.57143	1.244444
miR1136	UUGUCGCAGGUAUGGAUGUAUCUA	HJKAX1S01C19Z9	tae-miR1136	5'	-43.8	92	24	35.86957	1.327273
miR1137	UAGUACAAAGUUGAGUCAUC	HJKAX1S01AJCAZ	tae-miR1137	3'	-62.3	82	20	36.58537	2.076667
miR1139	UAGUAACAUAGACUAGUAACA	HJKAX1S01CYHF3	bdi-miR1139	5'	-25.3	87	21	42.52874	0.683784
miR1436	ACAUUAUGGGACGGAGGGAGU	HJKAX1S01AY96G	hvu-miR1436	3'	-51.7	121	21	33.8843	1.260976
miR1439	UUUUGGAACGGAGGAGUAUC	HJKAX1S01AYKWP	osa-miR1439	3'	-67.1	128	21	44.53125	1.177193
miR167	UGAAGCUGCCAGCAUGAUCUG	HJKAX1S01AGHMM	ahy-miR167-5p	5'	-58.8	113	21	50.44248	1.031579
miR1847	UGGCCCACAUGUCAGUGACACAAC	HJKAX1S01CJWBA	osa-miR1847,2	3'	-58	96	24	50	1.208333

miR2118	GGCAUGGGAACAUGGAGGAAGG	HJKAX1S01B3R27	sbi-miR2118-5p	5'	-65.4	136	22	45.58824	1.054839
miR3700	GACGACCAAAACAGAAGGUCA	HJKAX1S01DS87J	pab-miR3700	5'	-35.5	89	21	51.68539	0.771739
miR395	CUGAAGUGUUUGGGGGAACUC	HJKAX1S01A2W1J	aly-miR395b-3p	3'	-48.6	104	21	50.96154	0.916981
miR482	UUUUUCCAAUGCCUCCCAUUCC	HJKAX1S01AE5TY	gra-miR482	3'	-56.8	133	22	41.35338	1.032727
miR5021	GAAGAAGAAGAAGAAGAAAA	HJKAX1S01D1LIE	ath-miR5021	5'	-31.7	104	20	28.84615	1.056667
miR5049	AAUAUUUCGGUACAGAGGGAG	HJKAX1S01CVFM6	hvu-miR5049b	3'	-64.2	123	21	42.27642	1.234615
miR5067	UCAGCGACAACUAAUAUGGAA	HJKAX1S01ATV4H	bdi-miR5067	3'	-71.7	122	21	40.98361	1.434
miR5068	AUUGGGUAGAGCGGGUACGGGUAU	HJKAX1S01AKTZK	bdi-miR5068	5'	-78.6	93	24	50.53763	1.67234
miR5070	AACUAAGUAGGGUCGGAGGGU	HJKAX1S01C8C0O	bdi-miR5070	3'	-68.6	123	21	39.8374	1.4
miR5175	AAGAAUUUUGGGACGGAGGGA	HJKAX1S01AMO0V	bdi-miR5175a	3'	-93	159	21	35.84906	1.631579
miR5180	AAAGUGUCUCAGUUUUGAACU	HJKAX1S01BS4ER	bdi-miR5180a	5'	-60.6	102	21	40.19608	1.478049
miR5181	UGAUCCAUAAUGAGUGUCACA	HJKAX1S01EK0AJ	bdi-miR5181a	5'	-41	110	21	35.45455	1.051282
miR5203	ACUUAUUUUGGAACGGAGGGA	HJKAX1S01EBP59	bdi-miR5203	3'	-49.1	137	21	32.84672	1.091111
miR5205	CUUACAAUAUGGGACGGAGGGAG	HJKAX1S01AX4HJ	mtr-miR5205a	3'	-51.6	119	23	42.85714	1.011765
miR5387	CGUGGCACGAACCGGUGCUAAAGG	HJKAX1S01DZTO2	sbi-miR5387b	3'	-74.2	158	24	53.16456	0.883333
miR5568	ACUUAUAUUUUGGAACGGAGG	HJKAX1S01A4MRK	sbi-miR5568c-3p	3'	-80	191	21	35.60209	1.176471

Accession: 454 sequencing read ID used for microRNA prediction (EBI Sequence Read Archive, accession number ERP002330, http://
 <u>www.ebi.ac.uk/ena/data/view/ERP002330</u>), Homologous microRNA: miRBase ID of the query microRNA used for microRNA prediction (version 19, August 2012, <u>http://www.mirbase.org/</u>) Location: location of the mature microRNA on the preliminary microRNA hairpin, ΔG: minimum folding free energy of the microRNA hairpin, LP: length of preliminary microRNA, LM: length of mature microRNA, G+C: guanine+cytosine percent of preliminary microRNA sequence, MFEI: minimum folding free energy index, tae: *Triticum aestivum*, hvu: *Hordeum vulgare*, bdi: *Brachypodium distachyon*, ssp: *Saccharum* sp, osa: *Oryza sativa*, ahy: *Arachis hypogaea*, sbi: *Sorghum bicolor*, pab: *Picea abies*, aly: Arabidopsis lyrata gra: *Gossypium raimondii*, ath: *Arabidopsis thaliana*, mtr: *Medicago truncatula*

APPENDIX O

Selected Preliminary microRNAs Predicted from the Long Arm of Bread Wheat Chromosome 5D

microRNA	Sequence
	GCCGGUUCGUGUUGAACCUUUAGUACCGGUUCGUG
	GCACGAACCGGUACUAAAGGGGUGGUGGCAGGCUG
miR1117	GCGUCAGGCCAGGGCCCCACGAUCACCUUUAGUAC
	CGGUUCGUGGCACGAACCGGUACUAAAGGUCUAAA
	CUUUAGUACCGG
	AGUCUAUGUUACUAGUACUCCCUCGUUCCAUAAUG
	UAGUGCCUAUAAUUUUUGCAAAAAGUCAAACAUUA
	CAAACUUUGACCGUAUUUAUAGAGAAAAGUAGGUA
	CAUCUAGAAUACCAAAUGCACACCAUUGGAUACAU
miR1118	CAUGAGUUAUAUUUCAUAAUGUACAUGUUUGGUAU
	UGUAGAUGUAGACUGUUUCUUCUAUACACUUGGUC
	AAAGUUGAUAAAGUUUGAUUUUCACAAAAAUCUAU
	AGGCACUACAUUAUGGAAUGGAGGGAGUACCUUCA
	UAGUGUGUAGU
	UACAAAAUGAACCAAUCCCUCUUCCCAUAAUACAA
miR1120	GAGUGUUUUGAACACUGGUGUACUGUACAAAACGU
mmx1120	UCUUAUAUUAUGGGACGGAGGGAGCAGCUGUUAAU
	AUAAG
	GUAAGAAAUAUAAGAGCGUUUAGAUCACUAGUAUA
miR1121	AGAGCGUUUAGAUCACUACUAUAUUGAUCUAAACG
	CUCUUAUUCUUUAUGGAGGGAGUAUU
	AUUCUUGUCUUACAUUUGUUUAGAUACGGAUGUAU
miR1122	CUAACACUAAAAUGUAACUAGAUACAUCCGUAUUU
	AGACAAAUUUAAGACAAGAAUUU
	AAGGUGCGCGGAAAAAAUUAUAUGAGACCCAGGUC
	UUAUAUUUAGCAGGUGAGACCGCCCUGAUGGAUGA
	CACGUGGCAUUCACAAAUUACAAAGUAUCUAAUCU
miR1123	CUCCCCUCUCCCCCUCUCCCCCCUGAUUUCAAGUG
	GGGGUGGGUAGAUGCUUUGUGAUUUGUGGAUGCCA
	CGUGUCAUCCAUCAGGGCGGGUCUCACUGCUAACA
	CGUGAGACCUGGUCUCAUAGAAUUCUUUUUCAAGG
	UGCGCC
	CCAACUUUGACCGUAAAUUUUAACCAACGAGACCGA
	CUGCGGCGGGAGAAAAAAUUAUAUAUAUGAAAAGU
miR1125	UUUUUUGAAUACGAAUUCACUGGUAUAAUUUUUGC
	UCCCGCUGCAGUUGGUCUCGUUAGUUAAAUUUGUG
	GUCAAAGUUGAAG
miR1127	ACACUUUUAUUUAUUGUCUGAACUACUCCCUCCGU

	CCCAUAAUGUAAGACGUUUUUCACACUACACUAGU
	GUCAAAAAGCAUCUUAUAUUAUGGGACGGAGGAGGAG
	UAGUAGACAAAGUAUGGAAGGCUGG
	AAAUGUCUCGAGCUGCUUGAUACUACUCCCUCCGU
	CCGAAAAUACUUGUCGGAGGAACGAAUGCAUCUAG
miR1128	ACGUAUUUUAGUUCUAGAUACAUCAAUUUUUUAUGC
	AUUUCUCCGACAAGUAUUUCUGGACGGAGGAGUA
	GAUUUGUAGUGUCUGGAGUUUUCA
	UCGAUUUCAAUCUGGUACUCCCUCCGUCUCAUAAU
	GUAAGACGUUUUUUUACACUACACUAGUGUCAAGA
miR1130	AGCGUCUUAUAUUAUGGGACGGAGGGAGUAGCUUU
	UAGUCCGUCGUG
	GCUAGCCGGGCCGCUCUCAUUAGUACCGGUUCGUG
miR1131	GCUAACCUUUAGCACCGGUUCGUGCCACGAACCGG
IIIIXIIJI	UACUAAUGAGAGUGGUGGCAGGAUGUU
	AGUCCAGUAGUCUGAAUUGGGUUAUACUCCCUCCG
	UCCGAAAAUACUUGUCCUAGAGUGGCUGUAUAUCUA
miR1133	GAUUUAUUUAGUUAUAGAUACAUUCAUUUUAUUCA
IIIIX1133	UUUGUCUAUUUCCGGACGGAGGAAGUACAUGAUAC
	CAGACUCUUGACUGAU
	UGCUAGAAUGCUACUCCCUCCGUUCGGAAUUACUU
	GUCUUGGAAAUGGAUGUAUCUAAAACUAAAUACU
miR1135	
	UCUAGAUACAUCCAUUUCUGCGACAAGUAAUUCCG
	AACGGAGGGAGUAGGUGGUACUCCAG
'D1126	CUCCCUCCGUUCCAAAUUACUUGUCGCAGGUAUGG
miR1136	AUGUAUCUAGAUGUAUUUUAGUUCUAGAUACAUCC
	AUUUAUGCGACGAGUAAUUUGGAAACGGUAGGGAG
	UCCCUCCGUUCCAAAAUAGAUGACCCAACUUUGUA
miR1137	CUAAUUUUGUACUAAAGUUAGUACAAAGUUGAGUC
	AUCUAUUUUGGAACAGAGGGAGU
	AGGCUAGUCAUAGUGGAGAGUAACUUACACUAGUA
miR1139	ACAUGCAUAUGUUACUAGUCUAUGUUACUACCUUC
	AUAGUGGGUAGUGUCAUAUA
	UUAGUAUCAUUGUAAACUACUUCCUCCGUUUCAUA
miR1436	AUGUAAGACGCUUUUUGACACUAUACUAGUAUGAA
	AAAAAGUCUUACAUUAUGGGACGGAGGGAGUAAA
	UGAUACGACUGUGAAAA
	UAGGGCGUUGCGAGAUUUGAUACUCCCUCCGUUUC
miR1439	AAAAUAGAUGACUCAACUUUGUACUAUAAAAUUAG
	UACAAAGUUGAGAAAUCUAUUUUGGAACGGAGUGA
	GUAUUCGUAUGGUUCUUCAGUCUCC
	AGGUGAAAACAAUGGGAUAUGCCUGGCUCCCUGUA
miR160	UGCCACUCGCGUAGCUGCCAACUCUCCAAACCCAGC
	GUUGGCUCUACCGCGGAUGGCGUGCGAGGAGCCAA
	GCAUGACCGUCUCUCUCUCUCUCU
	AAGAGAAAGCGUGAAGCUGCCAGCAUGAUCUAACU
miR167	CUUGAACCAGCUAGCUUCCGCGGGUGGUUAGAUCG
	UGCUGUGACAGUUUCACCCUUUCCCUGUUGGGCA

miR169	GUGGUAAGGGCUUCUUCUGGUAGCCAAGGAUGACU UGCCUGUGGAUAUAUAGCUUGAUCGAUUACACUUA CAUCUCUGCAUGUAUAUAUGUGAUUUCUCACUAUG UACAACAGGCAGUCUCCUUGGCUAGCCCGAGUGGC CCUUAUCUUCCA UACUUAACUGCAGGUGCAGUUGGGUCACUGGCAUG
miR1847	UGGGCCCAAGAGGAAUCUGGCCCACAUGUAAGUGC CGCAACUGCACCUGCUGUUAUGUCAC
miR2118	GCACCAAGAUUAUUUCGUGAUUUCCCGAUGCCUCC CAUGCCUAUUGUUCUUAUGUAUUCCUUCCUUUUUC UAUUUUCAUGCGCAACUAUCAAAACAAAUGUGCAC AUUUAGGUUUAGAUGAUCGGGUUGUGAAGGCAAGU UAGGAAGAGGAAGAAAAUGAACAUCUAGGACCAUU AGGCAUGGGAACAUGGAGGAAGGCCUAAACUAAUU AUUCCAAC
miR2275	AACCUUGCAAGCUGAAUGUGAGAUUUGGAUGGAAC CAAAUCUUCAGCUAUAAUGGCACAAGAUUUGGUUU CCUCCAAUAUCUCAUCUUCAACUGUCCCUGAUGA
miR398	AAGAGAAGGCGAUCCAGAGGAGUGCCACUGAGAAC ACAAGCGCGGGUUCCUUUGUCAGGUGCUCUGGAUC GCAUGCGAUUGUGUUCUCAGGUCACCCCUUUGGGU UGCUUCCCUUGAUU
miR437	GGGGUAUUAUUUGAUGGAAAGUCAAAUUUCUUAAC UUUGAACAAGUUUAGAGCCAAAAAUAUCGACAUCC GCAAUAUUAAAGAAAAAUAUAUGAAAAUUCAUUUC UUGAUGAAUCUAAUAACACCGAUUUGAUAUUAUGA AUUUUGAUUUAUUUCUCUACAAUUUUGAUCAAACU UAAAGAAGUUUGACUUUUCAAACUAAUAAUACGCC A
miR5021	AGGAAGAAAAGAGGAAGAAGGAAGAAGAAGAAGA AGAAAAGGAAGGAGUGGAAAAAGGAAAAUAAGAA GAGGAAGACUUCUUUUUUUUUCUUCGAUCUUCUCCU CUAUUCCUUUCUUCUUCUCCUCUAUUUUUCUUCUUC GAUCUUUUUUCCUCU
miR5049	ACCACGUGACUAGUACUACUCCCUCCGUACUGAAA UACUUGUAGUUGGGGGGCUGUCCCCCAACUACAAGU AUUUUGGUACAGAGGGAGUACUAGAUAAAAAUACU UGA
miR5067	GUUUACCACCCCCUCUGAUCCAUAUUAAUUGUCG CUGAUUUUAGUAAUUGUACUAAAUCAGCGACAACU AAUAUGGAUCGGGAGUACAACAAUUUCGG
miR5068	AAUAGGAAAAUUUGAAACCCAUCGGGUAUAGUGGG UACGGGUAUGGUUUAGUAUAACCCAUACCCGUGUA CCCAUGUACCUGCAUGUAAUAUGAUUUUUUUAA
miR5070	UCGAAGAACUAAUUUAGUACUUUCCUACCCUUCUU AGUUCAGCCAAAUGAACUAAUUUUUCAAAAGUCAG GUGAUUUCUGAAAUUUUAGUUCAUUUAGUUGAACU AAGUAGGGUCAGAAGGUGUGUACCCCUGAUGGUUU CA

	ACAAAAUUUCGGUGAAAAAAGGACAUUUUUUGU
	GGCAUGUAUAAAAAAAGAUAAAAAAAUGCCUUGU
miR5085	GAAUAGAUGUAAUCAAGCAUCGAAAAUUGUCUUUU
	UUACACAAGCUACAAAAAAUGUCCCUUUUCAUCGA
	AACUUGGUGCA
	AUCACGAAAUCAUAUUGGUGGAAGGCGUGGUAAAA
	AAUAAUGAUGCUUUAAAAUGUUACUUCCAAAAGUA
miR5086	UGUUGGAGCUCUGAUUUUUUUUUGCCACGAGUUGU
	ACCAAUGUGAUUUCGUGAUGAAAUUUUGCA
	GCUACUUAUUCAUAAUUUCAUACUCCCUCCGAUCC
	GUAAUAAGUGUCGCGGGUUUGAAAUAAGUUGAAGU
miR5161	AACCUUAGUUCAAAACUACGAUGCUUAUUCUGGAU
	CAGAGGGAGUAAUAUAUUUUCAGCUGCAU AGAAGUCAAACUUUGCAAACUUUGACCAAGUUUGU
	AGAAAAAAUAUUUAUAUCUACAAUAGCAAAAAUA
miR5169	UAUAAUGCAAAACUACAUCAUAUGAUGAAUCUAGU
	GAUAUAUGUUUCAAACUUUAGAUGUAAAUAUUUUC
	UCCACAAACUUGGUCAAAGUUUGUGAGGUUUGACU
	AGUAGCCUUAAUAUUUACUCCCGUCGUUCCUAAAU
'D 5185	AUUUAAGGUAUAGAUUCACUCAUUUUGCUCCGUAU
miR5175	GUACUCAUUGCGGUGUAGUCACAAGUUGAAAUCUC
	UAGAAAGACAAGUAUUUAGGAACGGAGGAGUAUU
	UGCUAACUAAUACCA
	UUAGUCCGUUCGAUCCAUAAUAAGUGUCUCAGUUU
miR5180	UGAACUAAGGUUGAAUUAACCUUAGUUCAAAAUUG
	CACACAUAUUAUGUAUCAGAGGGAGUACAA
	AACAUAGUAAGUACUCCCUCUGAUCCAUAAUAAGU
miR5181	GUCGCUCAUUUUGUACUAAGCUAGUACAAACUUUG
	UACUAAAUGAGCGACACUUAUUAUGGAUCGGAAGG
	AGUACAAAAUAUGAUGA
	ACAUGGUUUAUACACUACUCCCUCCGAUCCAAAAU
miR5203	AAAUGUCGCAGUUUUGAACUAAGUUUAGUUCAACC
	UUAGUUCAAAACUGCGACACUUAUUAUGGAUCGGA
	GGGAGUAGAUCAGAUCGAAGAGAA
	AAUUAAUGAUAAUAUAGACUCCCUCCGCCCCAAAA
miR5205	UGUAAGACAUUUUUAACACUAUAUAGUGUCAAAAA
	ACGUCAUACAUUUUGGGAUGGAGGGAGUAUAUGUU
	AACUAAUCCUCA
	AUAAUAGCUAAAUUCUUACUCCCUCUAUUCAUAAA
	UAUAAGACCUUUUAGAGAUUCCACUAUAGACUACA
miR5281	UAGGGAGCAAAAUGAGUGAAUCUACACUCUAAAAC
	AUGUCUAUAUCCGUAUGUAGUCCAUGGUAGAAUCU
	CUAAAAGGUCUUAUAAUUAGGAACGGAGGAGUAC
	AUAUCAGAUAAGCAUUG
	UUUAUAUAGGACGACCUUCAGUACCAGUUCGUGGC
	ACGAACCGGUACUAAAGGUGCUGGAGGGGGCCCCAC
miR5387	UCUGACAACAUCCUGCCACCACUCUCAUUAGUACC
	GGUUUGUGGCACGAACCGGUGCUAAAGGAUCGCCA
	UGAACCGGUACUAAUG

	GGCUCAAAUUAGUACUACCUUCGUUCCAAAUUAUA
	AGAUGUUUUGGAUAUUUCAAUAUGGUCUACAUAGA
	CUGAAAUGAGUGAACAAACACACUAAAACACGUCU
miR5568	AUAUACAUCCGAUUCUCAUUUUGUUUACAAGAUCU
	UAUAAUUUGGAAUGGAGGGAGUACGUUCUGGUUGU
	AG
	CCGUCCCAAAAUUCUUGUCUUAGAUUUGUCUAGAU
ID (101	AUGGAUGAAUCUAAUACUAAAACAUGACUUGAUAC
miR6191	AUCCGUAUUUAGACAAAUUUAAGACAAUAAUUUUG
	GGAUGGAG
	UUACUAGUAAAGGUACUGAUUCUGUUCCUAAAUGU
miR6197	AAGACGUUUUUAGAAGUGCAAAAACGUCUUACAUU
	UAUGAACAGAGGGUAGAUUAUACGAUUU
	GGCACAAACCGGGACCAAGUGCACCCGUUUAGUCC
	CGGUUAGGUGCCACCAACCGGAACCAAAGGUCAAC
miR6219	UUUUUCGGCAGCCCAAUGGGUGGGAAGCAGAGGCC
	UUUGGUCCCGGUUGGUGGCACCAACCGGGACUAAA
	GGUGGGUCAUUUGGUCCCGGUUGGUGCCAC
	AAAUACUACCUCCAUCUCAAAUCAUAAGACAUUUU
miR6220	GGGUGGGCUAUUACCAAAAAUGUCUUAUAAUUUGG
	GAUAGAGGAAAUAGAUGAGUUGGAAUGG
	GUUUUUUUACUACUCCCUCCGUCCCAUAAUAUAAG
miR818	AGUGUUUUUGACACUUGUAGUGUCAAAAACGUUAA
пшкото	GUGUCAAACACACCCUUAUAUUAUGGGACGGAGGA
	AGUAGAAAGUAGUAUA

APPENDIX P

Selected Preliminary microRNAs Predicted from the Short Arm of Bread Wheat Chromosome 5D

microRNA	Sequence
	AGGACGACCUUUAGUACCGGUUCGUGAUACGACCCGGUACUA
miR1117	AAGAUGCUGGAGGGGCCCUGGACUAACAACAUCCUGCCACCA
mixi117	CUCACUUUAGUACCGGUUCGUGGCACGAACCGGUGCUAAAAG
	GUUCACCAC
	UGUGUAUAUAUAUAGUACUCCCUCUAUUUUAUAACGUAGUGC
	UUCCUCUAUCCCCGUGCUUUAAUUUUGACUAUGAAUUUAACU
	ACCAAGAUCGAUUACGGCGGGGAACAAAAUUAUUAGUGAA
miR1118	UUCGUAUUCGAAAGAAGUUUUUCAAUUAUAUAUUUUUUUU
	CGUCGCAGUUGGUCUCGUUGAUUAAAUUUAUGGUCAAAGUUG
	GACCUCGAAAAGUGCGGGCGCACUAUAUUUUGAAAUGGAGGG
	AGUACUACAAGCAGACACGUA
	UCUCCGUCCCAAAAUUCUCUCCGUCCCAAAAUAUAAGAACGU
miR1120	UUUUGAUACUAGUGUAGUGUCGAAAACAUUCUUAUAUUAUGG
	GACGGAGGGAGUAGAUGUUAGAGAUUU
	ACUAACUAAUACUUAAUAUAAGAGUGUUUAGAUCACUAAAGU
miR1121	UAAUAUAAGAGCGAGUAGUGAUCUAAACGCUUUUAUAUUAGU
	UUACAGAAGGAGU
miR1122	UUCUUGUCUUAGAUUUUGUCUAGACACGGUUGUAUCUAACAC
	UAAAACGUACUAGAUACAUCCGUAUUUAGAC
	ACCAUAAAUUUAACCAACAAGACCGACUGCGGCGGGAGCAAA
miR1125	AAUUAUAUAUUGAAAACUUCGUUUGAAUACGAAUUCGUUGG
	UAUAACUUUUGCUCCCGCCACAGUCGGUCUCAUUGGUUAAAU
	UUAUGGUCAAAGUUGAAG
	AAGGACAAACUUUGUUUAUGAACUACUCCCUCCGUCCCAUAA
miR1127	UAUAAGAACGUUUUUUUACACUACACUAAUGUCAAAAACGUUC
	UUAUAUUAUGGGACGGAGGAGAGAGUACAUAAUAUACUUUAAAC AUGCA
	GAAAUAGUGAUACAUGUAAUAACUACUCCCUCCGUCCCAAAA
	UAAGUGUCUCAACUUUGUACUAACUACUUUAGUACAAAUUUGUAC
miR1128	UAAGGUUGAGACAGAUAUUUUGGGACAGAGGGAGUAUAUGU
	UAGUUUAGUCAUGUGACAU
miD1120	GCAGACAAUUUAAUACUCCCUCUGUAACUUAAUAUAAGACGU
miR1130	UUUUUCACACUAUGACAUUGUCAAAAAAUGUCUUCUCUUAAG UUACAGAGGGAGUAGCACAACAGAAUCUG
·D1121	GGCUAGCCGGGCCUCUUCAUUAGUACCGGUUCGUGGCUAACC
miR1131	UUUAGCACCGGUUCGUGCCACGAAUCGGUACUAAUGAGAGUG
	GUGGCAGGAUGUU

	UUUACGGAAUACAUGCCUACAUUAUACUCCCUCCGUCCGAAA UAAGUGACUCAAGUUUGUACUAACUUUGUACUAAACUUAGUA
miR1133	CAAUUUGAGUCACUUAUUUUGGGACGAAGGGAGUAUUUAUG
	AACGGGAGCUAGUGCCA
	UCCCUCAAAUGUACUCCCUCCAUCCGGAAAUACUUGUCAAAG
	AAAUGGAUGUAUCUAGAUAUAUUUUAGUUCUAGAUACAUCCG
miR1135	CUUUUAUCCAUUUUGCGACAAGUAAUUCCGGACGGAGGGAG
	AUAUAUCUAGCAUC
	GAAUUAUUUGUCGCAGGUAUGGAUGUAUCUAGAUGUAUUUU
miR1136	AGUUCUAGAUACAUCCAUUUCUGCGAUGAGUAAUUUGAAACG
	GAGGGAGUA
miR1137	UUCCUCCGUUUCAAAAUAGAUGACUCAACUUUGUACUAUAGU
	UAGUACAAAGUUGAGUCAUCUAUUUUGGAACGGAGGGAGU
	CAACGGCAAACUUCGCGCAGUAGUAACAUAGACUAGUAACAU
miR1139	AUGCAUGUUACUAGUCCAAGUUACUCACCACUAUGACCAGCC
	UAA
	UUAAAAAAUCUAAAUAUUACUCCCUCCGUCCCAAAAUAUAAG
miR1436	ACGUUUUUUGAUUCUAGUGUAUUGUUAAAAAAUGUCUUACAU
	UAUGGGACGGAGGGAGUAGAAUGGUUCCUGCAAUUGC
	AGCUCUUUCUCUCUCUGCUACUCCCUCCGUUCCAAAAUAG
miR1439	AUGACUCAACUUUAGUAUAAAGUUAGUACAAAGUUGAGUCAU
	CUAUUUUGGAACGGAGGAGGAGUAUCUCUCACGGGCCUCCCUC
miR167	CAAGGUGCACCACAAGCUGGUGAAGCUGCCAGCAUGAUCUGA UGACCUAAGUCAUGGAUCAGAAUCCAUGUCAAUCAGGUCAUG
	CUGGAGUUUCAUCUGCUGGUCGGAGCAC
	UUACUUAACUGCAGGUGCAUUGGGUCACUGACAUAUGGGCAC
miR1847	AACAGGAGUCUGGCCCACAUGUCAGUGACACACACUGGACCUG
million,	CAGUUAAGUCAG
	AUGAGCAUCUAAGAGCAUUGGGCAUGGGAACAUGGAGGAAGG
	CCUAAACUAGUGUGUCCCUGUGCAACUAGGGUCGAACAUUUG
miR2118	UUUUGGAAAUUUCCCGAUGCCUCCCAUGCCUAUUGUUCUUAG
	GUGUUUGAUA
	GUGGCCUGGGCAGACACCUAGACGACCAAAACAGAAGGUCAU
miR3700	AGGAUCUAACGACCUUUUGUUUGGUCGUUGCCUUCCACGACC
	UGAGA
·D 205	CGAGUUUGGCCUCGUCAGGAGUUCUCUUCAAGCACUUCGGGA
miR395	CGCUUCUGUUCGAGAACUUCUCUGAAGUGUUUGGGGGGAACUC
	GAGGGUCCAAGAGUAGUAUGAAUGGGAACAUUGAGGAAAACA AGAGCUUUCUAGAUUUCAUCUCCUAAGGAAUUAGAGAUCUAG
miR482	UUCUGUGUUUUUCCAAUGCCUCCCAUUCCUAUUGUUCUUGGG
	UGCUCCU
	UAGAAGAAGAAGAAGACUAGCUAGAAGAAGAAGAAGAAGAAGAAAAAA
miR5021	GAAGAAAAAAAUUUCUUCUCUUUUUUUUUCUCUCUCUCUC
	UUCUUUAUCUUAUUCUUCUU

miR5049	AUAGGGGCAAUUGUACUACUCACUCUGUACCGAAAUAUUUGU AGCUGAGGGAAUGUUCUCCAGCUAUGUUCCCCCAGCUACAAA UAUUUCGGUACAGAGGGAGUACUACGCAAUUUACUUCAU
miR5067	AAAUAAGUACUCCCUCCGUUCCAUUUUAGCUGUCGCUCAAAC GGAUGUAUCUAGCACUAAAUACGUCUACAUACAUCCGUUUCA GCGACAACUAAUAUGGAACGGAGGAGUAACUGUUAAU
miR5068	AUAGGGAAAAUCUCAAACCCAUUGGGUAGAGCGGGUACGGGU AUGGGUAUGUGAUCCCAUACCCGUACCCGCUCUACCCAAUGG GUUUGAGA
miR5070	AUUGGGAACCUAAAGGGUACCUUCUGACCCUUCUUAGUUCAA CCAAAUAAACUAAUUUUUCCUAAUUUAGUUCAUUCAGUUGAA CUAAGUAGGGUCGGAGGGUACCCUGGAGGUGCCAAAUUU
miR5175	UUCACCGAUAUCUUAUACUCCCUCCAUCCCAAAAUUCUUGUC UUAGAUUAGUCUAGAUACGGAUGUAUCUAAUACCAAAACGUG ACUUGAUACAUCCGUAUUUAGACAAAUCUAAGACAAGAAUUU UGGGACGGAGGGAGUAUUUCAUUGGAUUUAACA
miR5180	CUACUCCCUCUGAUCCAUAAAAAGUGUCUCAGUUUUGAACUA AGGUUGAACUAGCCAUAGUGCAAAACUGUGACACUUAUUUUC GGAUCAGAGGGAGUAGUU
miR5181	GCUUACUGUAGUACUAUCUCUGAUCCAUAAUGAGUGUCACAG UUUUAAACUAACCCCAGUUCAAAACCGUGACACUUAUUUUGG AUAAGAGGGAAUAAAUUAUUUUAGGG
miR5203	AUCAUUUUUUUUUUUAGCUGCCUCUGUUUCCAAAAUAAGUGU CAACUUUAGUAGCAGUAGUACAACUUUGUAUUAAAGUUUUCA CAAAGUUGAGACACUUAUUUUGGAACGGAGGGAGUACAUAUU UGCUAUGAUCU
miR5205	CGUUUUGCCUAAAAAUUACUCCCUCCGUCCCAUAAUGUAAGA CGCUUUUUCACACUAGUGUACUGUCAAAAAACGCCUUACAAU AUGGGACGGAGGAGUAUCAAGCUAGCUUGUGACA
miR5387	AGGGUUUAUGUAGGACGACCUUUAGUACUGGUUCGUGACACA AACCGGUACUAAAGGUGCUGGAGGGGGCCCCAGGACUGACAAC AUCCUGCCACCACUCACUUUAGACCUGGUUCGUGGCACGAAC CGGUGCUAAAGGUCACCACGAACCGGUACUAA
miR5568	CUUCUUUAAUAUGUACUCUCUCCGUUCCUAAAUACAAGUCUU UGUAUAGAUUCCACCAUGGACUACAUAUGGAGCAAAAUGAGU GAAUCUACACUCUAAAAUGUAUCUGGAUACAUCUGUAUGUGA UCCAUAGUGGAAAUCUCUACCAAGACUUAUAUUUUGGAACGG AGGGAGUAUUAUAGUAGUACAGU
miR6191	CUGUCCCACAUUUCUUUUCUUAGAUUUGUCUAGAUAUGGAUA UAUCUAAUACUAAAAUGUGACUUGAUACAGCCGUAUCUAGAC AAAUCUAAGACAAGAAUUUUGGGACAGAG
miR6197	UUCCCUUAGUAAGUACUCCCUCUGUUCCUAAAUGUAAGACGU UUUUGCAGUUCGUUAAAAAACGUCUUACAUUUAGGAACAAAG GGACUAUAUGCUGGCAAGGGG

miR6219	UGGCACCAACAGGUACCAAUGCCCCCUUUAGUCUCGGUUGGU GCCACCAACUGGGACCAAAGGUCUCUUUUUAGCAGCCCAAAG GGCGGGAAGCGGUGGCCUUUGGUCCCAGUUGGUGGCACCAAC CGGUACUAAAGGGGGGACAUUGGUACCGGUUGGUGCCACG
miR6224	AACUCUUUACAUAGUACUCCCCUGUCCCAUAAUAUAAGAAC AUUUUUCAAACUAUGUUAGCUUGAAAAAUGUUCUUAUAUUAU AGGACGGAGGAGUAGUAUGUACCGUAAUUU
miR834	GCUACCGCGCUACAGCUAAGUUGUAGCAGUAGCGCUGGUAAG GGCAGCGCUACUGGUAAGUAUGGUUAGCAGUAGCGCUGCCUU GACCAACGCUACUGCUAACUCUCUGUAGCGCUUGAACAAA
miR845	CUAGUCGAUAACUAGCACUUUCAAUUGGUAUCAGAGCAAGGU ACUCCCUUGUUCUGUGUGAUCCAGUUGAAUGAACUUCUUGAC AUCA
miR950	CAGAGAUGGGGACGGUCCUCAAGGAAUCGCCUGGACCCCCAG AGCCUCCCGAGGCUCAGGGCCCCGGUGGUUCAUGAGGAACAA CCCCUUCGCCGCG

APPENDIX R

microRNA	Target sequence	Target protein
	TC413428	Chloroplast methionine sulfoxide reductase B2 precursor
'D1117	CK216289	Histone H2A.1
miR1117		30S ribosomal protein S17, chloroplast
	CK211158	precursor
	CK211728	PS II 10 kDa protein
	CK211670	Cytochrome c
	CK211508	Trypsin inhibitor
	TC391048	UDP-glucose dehydrogenase
	TC405271	RNA recognition motif (RRM)-containing protein-like
	TC435744	Ferredoxin-sulfite reductase precursor
	CA723738	Aquaporin
	TC455991	Glucosamine-6-phosphate acetyltransferase
	TC451865	Alcohol dehydrogenase ADH1
	TC408973, TC383766	Beta-carotene hydroxylase
	CK196934, TC369361	Calmodulin TaCaM2-1
	TC418995	Glutathione S-transferase 2
miR1118	TC437336	Ribulose bisphosphate carboxylase large chain
	TC391749	Protein HVA22
	AL821011	Sugar transporter
	TC370181	Calmodulin TaCaM2-3
	TC440827	F-box domain containing protein-like
	TC379298	Geranylgeranyl hydrogenase
	CK216826	Cold-regulated protein BLT14
	TC373115	Leucine zipper protein-like
	TC452368	GTP-binding protein
	TC392645, TC413383, TC418029	Low temperature and salt responsive protein
	TC411582, TC411582	JD1 calcium ion binding, transferase activity, transferring acyl groups
	DR732284	ERN3
miR1120	TC402657	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic
	TC390499, TC449066	S-adenosylmethionine decarboxylase proenzyme
	CJ668032	Leucine Rich Repeat family protein
	TC373115	Leucine zipper protein-like

Predicted Targets of Putative microRNAs of Bread Wheat 5D Chromosome Long Arm

	TC405470	Protein translation factor SUI1 homolog
	CK215752	High light protein
	TC453849	U2AF large subunit
miR1121	TC446821	Preprotein translocase secA subunit
	CJ839181	Ubiquitin carrier protein
	TC372427	Catalase-1
	TC410034	Actin-related protein 2/3 complex subunit 5
	CD883901	Fusarium resistance protein I2C-5-like
miR1122	AL819672	Sodium/hydrogen exchanger
	TC388938	Eukaryotic peptide chain release factor subunit 1-3
	CJ531707	Betanidin 6-O-glucosyltransferase-like protein
	CD882751, TC455169	Rab3-GAP regulatory domain-like
miR1123	TC433565	Polygalacturonase inhibitor
	TC379745	WRKY DNA binding domain containing protein, expressed
	CD454825	Plasma membrane proton ATPase
miR1125	CK151922	Tryptophan synthase, alpha subunit (TSA1) precursor
	TC402418, TC382890	Farnesyl pyrophosphate synthetase (FPP synthetase) (FPS) (Farnesyl diphosphate synthetase)
	GD187740	Gag-pol polyprotein
	TC439689	Calreticulin-like protein
miR1127	TC409696	Branched-chain-amino-acid aminotransferase-like protein 1
	TC375086, TC400854	Universal stress protein family protein, expressed
miR1128	TC439689, BE516586	Calreticulin-like protein
	TC374504	UDP-D-glucose epimerase 1
	TC405058	Protein kinase domain containing protein, expressed
	TC415559	Malic enzyme
	CK198514	Peroxidase 6
	TC387297	Pollen allergen Lol p 2-A
	BQ838905	Early nodulin protein
	GH726155	Type 1 non-specific lipid transfer protein precursor
	DR731606	DEAD-box ATP-dependent RNA helicase 42
	TC409696	Branched-chain-amino-acid aminotransferase-like protein 1
	BE442673	Methylthioribose kinase
	TC448466	Glycine-rich_protein_(Aa1-291) precursor
	TC369045	CBFIVd-B22

	TC425744	Truncated COL1
	TC381299	Gamma-secretase subunit PEN2-like
	TC434949	Sialyltransferase like protein
	TC369447	Zinc finger protein ZFP-like
	CJ868604	Transcriptional activator-like
	CJ907078	Brain protein 44-like
	CK168772	Monodehydroascorbate reductase
	TC381627	Cinnamyl-alcohol dehydrogenase-like protein
D 1120	CD911932	Endonuclease-like
miR1130	CJ864198	NB ARC domain containing protein
	TC378043	Seryl-tRNA synthetase family protein, expressed
	TC395633	Ethylene receptor-like protein
	CJ861664	Phosphatidylinositol transfer-like
	TC461034	Ubiquitin conjugating enzyme 7 interacting protein 4-like
	TC440127	RNA polymerase II complex component SRB7 protein-like
	CK211052	NADPH-cytochrome P450 reductase
	CA707384, CA678412	Chlorophyll a-b binding protein, chloroplast precursor
miR1131	CV522963	Obtusifoliol 14alpha-demethylase
mixiii	TC446901	Sucrose-phosphate synthase 9
	TC431084	Metallothionein-like protein type 3
	CK212340	Hydrolase, alpha/beta fold family-like
	TC432746	Potassium channel protein
	CA676769, CA679919	Chlorophyll a-b binding protein 1, chloroplast precursor
	TC398242,TC395320	Beta-amylase
	TC372505	Ribulose bisphosphate carboxylase/oxygenase activase A, chloroplast precursor
miR1133	TC394164	Phosphatidylinositol transfer protein, expressed
	BE516586	Calmodulin-like protein
	CK198514	Peroxidase 6
	BQ838905	Early nodulin protein
	GH726155	Type 1 non-specific lipid transfer protein precursor
	DR731606	DEAD-box ATP-dependent RNA helicase 42
	TC368568	SET domain protein
	TC439651	Selenium-binding protein-like
	TC454714	ATP sulfurylase
	CJ943226	Hydrolase, alpha/beta fold family protein,
	L	- • • • •

		expressed
	TC434949	Sialyltransferase like protein
	TC391404	Cysteine synthase (O-acetylserine sulfhydrylase) (O- acetylserine (Thiol)-lyase)
	TC395662	Serine/threonine-specific receptor protein kinase-like
	TC374504	UDP-D-glucose epimerase 1
	TC389947	Ribonucleoside-diphosphate reductase
	TC369045	CBFIVd-B22
	CJ562562	Phytase
	TC388253	Speckle-type POZ protein-like
	CD888735	Delta1-pyrroline-5-carboxylate synthetase
	CD931690	Cytochrome P450
	TC433142	Alliin lyase-like
miR1135	TC445105, TC394690, TC404007, TC441900, TC424561, TC401095	Monodehydroascorbate reductase
	TC374375, TC376089	Mitochondrial 2-oxoglutarate/malate translocator
	TC383624	Peroxidase 6
	TC456258	Importin beta-like protein
	CJ560586	Ribosome recycling factor, chloroplast precursor
	TC395537	At1g66240/T6J19_6 (metal ion binding)
	TC374632	Fructan exohydrolase
	TC390088	Coatomer subunit zeta-1
	CJ531707	Betanidin 6-O-glucosyltransferase-like protein
	TC418688	Arogenate dehydratase mutant
miR1136	TC405058	Protein kinase domain containing protein, expressed
	BJ263423	Early light-inducible protein ELIP
	TC374375, TC376089	Mitochondrial 2-oxoglutarate/malate translocator
miR1137	TC418521	Expansin-like A1 precursor
	TC397585	Transcription factor Myb1
miR1139	CJ636238	Glycine cleavage system H protein, mitochondrial precursor
	CK158705	Quinone reductase
	TC436825	Sodium/hydrogen exchanger
	TC436537	General substrate transporter
	TC386006	Cyclin-dependent kinases regulatory subunit
	TC391844	Gamma-TIP-like protein
	TC387148	SAR DNA binding protein

	TC405700	C3HC4 zinc finger containing protein
	TC453849	U2AF large subunit
miR1436	TC433753	Proline-rich spliceosome-associated protein- like
	CV762246	Glycosyltransferase
	BE425224	Receptor-like kinase 17 precursor
	CK161922	D-xylose-proton symporter-like 2
	CK196934	Calmodulin TaCaM2-1
	TC370176	Resistance-related receptor-like kinase
	TC418995	Glutathione S-transferase 2
	TC437336	Ribulose bisphosphate carboxylase large chain
	TC373115	Leucine zipper protein-like
	CV779218	RAB1X
	TC370181	Calmodulin TaCaM2-3
miR1439	TC369361	Calmodulin TaCaM2-1
	TC405876	Ring zinc finger protein-like
	TC379298	Geranylgeranyl hydrogenase
	CK207929	U2AF large subunit
	TC452182	Glyoxalase II
	TC456061	Delta 1-pyrroline-5-carboxylate synthetase
	CJ796908	F1E22.16
	TC406001	Histone H2B.1
	TC425204	Phytepsin precursor (Aspartic proteinase)
	CV764254	Glycosyltransferase
	TC383543	Citrate synthase
	TC383916	Glutathione transferase
	TC380076	BRI1-KD interacting protein 109
	TC394286	CTV.22 transcription cofactor activity
	TC412104, TC416747	Auxin response factor 8
miR160	TC425315	Auxin response factor 22
	TC405771	Histone H2B.2
	CJ806355	Tubulin folding cofactor B
	CK213447	Chlorophyll a-b binding protein, chloroplast precursor
miR167	TC407440,TC399806, TC408373, TC375994, TC433708,TC448400	Proteasome subunit alpha type-5
	TC407798	Ribulose bisphosphate carboxylase small chain clone 512
	TC379113	Auxin response factor 9
miR169	TC426343, TC370257	CCAAT-box transcription factor complex WHAP12
	TC430923	CCAAT-box transcription factor complex

		WHAP6
	CA664884	Photosystem II 10 kDa polypeptide, chloroplast precursor
	TC377727	RAPB protein
	TC387436	CCAAT-box transcription factor complex WHAP12
miR1847	TC369329	WRKY transcription factor
	TC416401	Alpha tubulin-2A
D2 110	TC447958	Light stress-responsive one-helix protein-like
miR2118	TC439977, TC415030	GTP-binding protein-like
	TC403906	Triticain beta
	TC435268	Kinase R-like protein
	TC394406, TC422650	DNA-binding protein family-like
	CV779069	Light induced protein like
	TC425646, TC421071	NBS-LRR type RGA
	GH725089	S-like RNase
	TC401833	NPR1-like 1
miR2275	CA627100	COP8-like protein
	TC440979, TC385932, TC424445	Nicotianamine aminotransferase A
	TC401011	Cell Division Protein AAA ATPase family
miR398	CA702164, CA709966, CA635382, CA669113, CA665414, CA614433,CA606891, CA700248, CA598436, CA682577, CA598953, CA663864, CA650645, CA707648, CA607185, CA647068	Superoxide dismutase [Cu-Zn]
	CA671304, CA712263, CA602586, CA613247, CA609950, TC419428, CA606248	Superoxide dismutase [Cu-Zn] 4A
	CV770576	Fructose-bisphosphate aldolase
	TC437415	Alpha-glucan phosphorylase, H isozyme
miR437	TC397956	Bifunctional nuclease
_	BQ579749	Phosphoglucomutase
	TC386008	Aquaporin
	TC389697	Zinc finger protein-like
	TC421920	Avenin precursor
	BJ323295	Receptor protein kinase
miR5021	CK205372	Expansin EXPA12
	TC373827	Pistil-specific extensin-like protein precursor

	TC424354	FERONIA receptor-like kinase
	TC402816, TC387108, TC438021	GASA2-like protein
	CA613725	Serine/threonine-protein phosphatase PP1
	CK156225	MAR-binding protein
	BJ221255	TO71-3
	CD911426	Membrane related protein
	TC403644	Gt-2
miR5049	TC436590	Lipid transfer protein 4
	CD903703	SGRP-1 protein
	TC433193	1-aminocyclopropane-1-carboxylate oxidase
	GR303850	Carboxylesterase-like
	TC421317	Spermidine synthase 1
	TC410073, AL819672	Sodium/hydrogen exchanger
	TC444618	Abscisic stress ripening-like protein
	TC416512	Citrate synthase
	TC398706	PG3
	TC394286	CTV.22
	TC423054	T6A9.6 protein
	CA741812	Pollen allergen Lol p 2-A
	TC413664, TC406001	Histone H2B.1
	CA711590	Nucellin-like aspartic protease
	TC403828	DNA-binding protein
	CD931690	Cytochrome P450
	CJ531707	Betanidin 6-O-glucosyltransferase-like protein
	TC406957	Homeobox domain containing protein, expressed
	TC394191	Susceptibility antioxidant protein
	TC382066	Protein phosphatase 2C
	TC394281	40S ribosomal protein S15
	TC460644	P-type R2R3 Myb proteind
	TC436262	Cyclic nucleotide gated channel
	TC426391	Protein phosphatase type 2-C
	TC421485	TAP42-like family protein, expressed
	TC431549	Enhancer of rudimentary homolog
	TC377619	Lecithin:cholesterol acyltransferase
	TC384659	Chloroplast 50S ribosomal protein L31
	TC414990	Low molecular mass early light-inducible protein HV90, chloroplast precursor
	TC461985	MAP kinase
	TC421291	CMP/dCMP deaminase, zinc-binding
	TC438644	Wpk4 protein kinase
l	10730077	Protein Killase

	TC423859	Short-chain dehydrogenase/reductase protein-like
	TC414519	Acyl carrier protein 3, chloroplast precursor
	TC379110	Calnexin
	BJ257353	Peroxidase
	TC382725	Lon protease homolog
	TC380088	NBS-LRR type resistance protein-like
	CJ530860	SNF7 protein-like
	BJ308107	AGO1-2 nucleic acid binding
	CK207999	Major pollen allergen Hol 11 precursor
	TC401095, TC424561	Monodehydroascorbate reductase
	TC438644	Wpk4 protein kinase
miR5067	CK155004	Geraniol 10-hydroxylase
	BJ257353	Peroxidase
	TC400158	Sigma-54 dependent response regulator
	TC374008	Calnexin
	BJ307801	Transducin family protein-like
	TC453848	Cytochrome P450 family protein, expressed
	TC422449	Inositol 1,3,4,5,6-pentakisphosphate 2-kinase
miR5068	CV066196	Allergen C-C
miR5070	TC438766	Replication protein-like
	TC411423, TC380718	Initiator binding protein
miR5085	CJ661506	Target of rapamycin
miR5086	CA731664	Extracellular invertase
	DR739186	Sucrose:sucrose 1-fructosytransferase
	CA735478	Type II LHCI
miR5161	CA647968	LEM3-like
mix3101	CJ530860	SNF7 protein-like
	CK204669	6-phosphogluconolactonase
	TC387475	Pyruvate kinase
	TC414519	Acyl carrier protein 3, chloroplast precursor
	TC379110	Calnexin
	CV066415	Aspartic proteinase
	CD452777	F6I1.13 protein
miR5169	TC395865	Class I chitinase
	TC444765	U1 snRNP-interacting 70 kDa protein
	TC440827	F-box domain containing protein-like
	TC432055	Cytochrome P450
	TC392729	Pentatricopeptide (PPR) repeat-containing protein-like
	TC395705	Ent-kaurene oxidase 1
miR5175	TC394281	40S ribosomal protein S15
1	TC387478	Methylenetetrahydrofolate reductase

	TC431549	Enhancer of rudimentary homolog
	TC377619	Lecithin:cholesterol acyltransferase
	TC370810	RadA-like protein
	TC426391, TC382066	Protein phosphatase type 2-C
	DR731536	DEAD-box ATP-dependent RNA helicase 50
	TC380076	BRI1-KD interacting protein 109
	TC416752, TC438186	Harpin-induced protein 1 containing protein, expressed
	CJ554691	Phosphoenolpyruvate
miR5180	CD903828	Starch branching enzyme I precursor
	TC413536	TIA-1 related protein
	CJ608275	Photosystem II polypeptide
	CJ596436	Translin family protein, expressed
		Ribulose bisphosphate carboxylase small
miR5181	BE412130	chain
mixsioi	TC374061, TC384192	Nuclear movement protein-like
	TC411114	Membrane protein COV-like
	TC431308	Dehydrin 11
	CA660270	Beta-glucosidase aggregating factor-like protein
	CA635916	Branched-chain amino acid aminotransferase-like
	BQ744502, DR740657, TC395009	Hin1-like protein
	CA731524	Carbonic anhydrase, chloroplast precursor
miR5203	TC385465	Non-specific lipid-transfer protein
	CJ530860	SNF7 protein-like
miR5205	TC412474	60S ribosomal protein L44
	TC459951	Protein kinase domain containing protein, expressed
	TC452182	Glyoxalase II
	TC433753	Proline-rich spliceosome-associated protein- like
	TC453849	U2AF large subunit
	TC398674	Phytoene dehydrogenase, chloroplast/chromoplast precursor
	TC389043	Malate dehydrogenase [NADP], chloroplast precursor
	AL821953	CHY zinc finger family protein, expressed
	TC383983	Utp14 protein, expressed
	DR732905	MIKC-type MADS-box transcription factor WM22A
	CK214985, CK211600,CK216047, CK214076	High light protein

	CN012529	Mitochondrial transcription termination factor-like protein
	TC420918	Arf6/ArfB-family small GTPase
	CD879785	Probable protein ABIL1
	TC430550	Aldehyde oxidase-2
	TC407053	NADPH-cytochrome P450 reductase
	TC413453	F-box domain containing protein, expressed
	TC402657	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic
	CD880846	Flowering promoting factor-like 1
	TC449066,TC390499	S-adenosylmethionine decarboxylase proenzyme
	CD879878	Serine-threonine protein kinase
	TC377933	ATP dependent Clp protease ATP-binding subunit ClpX1
	TC406931	Ribosomal protein L7
	CJ883403	Cysteine synthase
	CJ563368	Lipid transfer protein-like
	TC377545	Ubiquitin-conjugating enzyme-like protein
	TC384047	Glycosyltransferase
	AL821953	CHY zinc finger family protein, expressed
miR5281	TC398674	Phytoene dehydrogenase, chloroplast/chromoplast precursor
	TC389043	Malate dehydrogenase [NADP], chloroplast precursor
	BQ166729	HAT family dimerisation domain containing protein, expressed
	TC383983	Utp14 protein, expressed
	TC415094	Cell division inhibitor-like
	TC424763	Protein kinase domain containing protein, expressed
	TC425550	Lipase class 3-like
	TC430886	SMC5 protein
miD 5207	TC437702	Histone H3.2
miR5387	BE637541	LEA protein
	TC387640	Heterogeneous nuclear ribonucleoprotein A2/B1-like
miR5568	TC393805	Protein kinase
	TC390967	Glutaredoxin-C1 precursor
	DR732905	MIKC-type MADS-box transcription factor WM22A
	AL821953	CHY zinc finger family protein, expressed
	TC405376	Serine carboxypeptidase family protein, expressed

	CK211600, CK216047, CK214985, CK214076	High light protein
	TC392962	Serine protease-like protein
	TC379065	Proteinase inhibitor
	TC452003	Subtilisin-chymotrypsin inhibitor 2
miR6191	CJ868604	Transcriptional activator-like
	TC371963	Alpha-1,2-fucosidase
	TC453681	Ribosomal protein L15
	TC400735	SET domain containing protein, expressed
	TC440668	Ribosomal Pr 117
	TC383983	Utp14 protein, expressed
miR6197	TC446402	Glutathione gamma- glutamylcysteinyltransferase 1
	TC380096	haloacid dehalogenase-like hydrolase family protein
	AL821953	CHY zinc finger family protein, expressed
	TC391197	Leucine Rich Repeat family protein, expressed
	TC442517	Protein HVA22
	TC438131	Ice recrystallisation inhibition protein
	TC415220	Kinase, CMGC CDKL
	TC379438	Germin-like protein 1 precursor
	TC397912	Adenosine diphosphate glucose pyrophosphatase precursor
	TC381279	Metallo-beta-lactamase-like
	TC452182	Glyo xalase II
	CO348282	Mono-or diacylglycerol acyltransferase
miR6219	CA697004	Auxin-repressed protein-like protein ARP1
	TC376658	Peroxidase 8
	CA617623	Vacuolar ATP synthase 16 kDa proteolipid subunit
	TC378198	Cinnamyl alcohol dehydrogenase
	CA731724	Glycosyltransferase
miR6220	CK211600, CK216047,CK214985, CK214076	High light protein
	TC377933	ATP dependent Clp protease ATP-binding subunit ClpX1
	TC433753	Proline-rich spliceosome-associated protein- like
	TC392962	Serine protease-like protein
	TC453352	Probable esterase PIR7A
miR818	TC390499, TC449066	S-adenosylmethionine decarboxylase

	proenzyme
TC408578	Lipase class 3-like
TC420068, CD936868, TC430395	Pathogenesis-related protein precursor
TC445541	Wali2 protein
TC452182	Glyoxalase II
TC373115	Leucine zipper protein-like
TC433753	Proline-rich spliceosome-associated protein- like
TC377933	ATP dependent Clp protease ATP-binding subunit ClpX1

Target sequence: DFCI Index accession

APPENDIX S

Predicted Targets of Putative microRNAs of Bread Wheat 5D Chromosome Short Arm

microRNA	Target sequence	Target Protein
	BJ310907	30S ribosomal protein S5, chloroplast precursor
miR1117	CA723738	Aquaporin
mixi117	CK203951	Aspartate aminotransferase, cytoplasmic
	TC394273	Aspartokinase
	CK165300	AT4g15940/dl4011w
	TC408973, TC383766	Beta-carotene hydroxylase
	TC413428	Chloroplast methionine sulfoxide reductase B2 precursor
	CO347756	Cytochrome b5
	TC435744	Ferredoxin-sulfite reductase precursor
	BJ232689, TC391859	Initiator binding protein
	CJ675529	Nucleobase-ascorbate transporter 12
	TC405271	RNA recognition motif (RRM)-containing protein-like
	TC391048	UDP-glucOse dehydrogenase
miR1118	TC369361, CK196934, TC370181	Calmodulin TaCaM2-1
	TC379298	Geranylgeranyl hydrogenase
	TC418995	Glutathione S-transferase 2
	TC391749	Protein HVA22
	CV773860	Type 1 non specific lipid transfer protein precursor
	TC402657	Glyceraldehyde-3-phOsphate dehydrogenase, cytOsolic
miR1120	CJ668032	Leucine Rich Repeat family protein
	TC373115	Leucine zipper protein-like
	CJ572772	OJ000126_13.4 protein
	TC390499	S-adenOsylmethionine decarboxylase proenzyme
	TC449066	S-adenOsylmethionine decarboxylase proenzyme
miR1121	TC372427	Catalase-1
	TC405028	Extracellular invertase

	TC440824	O-methyltransferase family protein, expressed
	TC404730, TC389275	Peroxidase 6
	TC446821	Preprotein translocase sec A subunit
	CJ839181	Ubiquitin carrier protein
	TC409078	40S ribOsomal protein S12
miR1122	CJ531707	Betanidin 6-O-glucOsyltransferase-like proteir
	CD883901	Fusarium resistance protein I2C-5-like
	AL819672	Sodium/hydrogen exchanger
miR1125	CD454825	Plasma membrane proton ATPase
miR1127	TC434949	Sialyltransferase like protein
	BE516586	Calmodulin-like protein
	CK162453	Acyl-coenzyme A oxidase 2, peroxisomal precursor
	TC426247	AP-2 complex subunit sigma-1
miR1128	TC403387	At2g44820/T13E15.17
	TC454714	ATP sulfurylase
	CJ907078	Brain protein 44-like
	TC409696	Branched-chain-amino-acid aminotransferase- like protein 1
	BE516586	Calmodulin-like protein
	TC439689	Calreticulin-like protein
	TC369045	CBFIVd-B22
	DR731606	DEAD-box ATP-dependent RNA helicase 42
	BJ263423	Early light-inducible protein ELIP
	BQ838905	Early nodulin protein
	TC381299	Gamma-secretase subunit PEN2-like
	TC448466	Glycine-rich_protein_(Aa1-291) precursor
	CJ943226	Hydrolase, alpha/beta fold family protein, expressed
	TC415559	Malic enzyme
	CK168772	Monodehydroascorbate reductase
	CK198514	Peroxidase 6
	GH728396	Potential autophagy related protein-like
	BJ323295	Receptor protein kinase
	TC405876	Ring zinc finger protein-like
	TC434949	Sialyltransferase like protein
	TC388253	Speck le-type POZ protein-like
	CJ868604	Transcriptional activator-like

	GH726155	Type 1 non-specific lipid transfer protein precursor
	TC374504	UDP-D-glucOse epimerase 1
	TC369447	Zinc finger protein ZFP-like
	TC381627	Cinnamyl-alcohol dehydrogenase-like protein
miR1130	CD911932	Endonuclease-like
	TC395633	Ethylene receptor-like protein
	CA599831	Lipase (Class 3)-like protein
	CJ861664	PhOsphatidylinOsitol transfer-like
	TC453352	Probable esterase PIR7A
	TC378043	Seryl-tRNA synthetase family protein, expressed
	TC461034	Ubiquitin conjugating enzyme 7 interacting protein 4-like
	CD491034	3-phOsphOshikimate 1- carboxyvinyltransferase
miR1131	CA707384, CA678412	Chlorophyll a-b binding protein, chloroplast precursor
	TC431084	Metallothionein-like protein type 3
	TC372505	RibulOse bisphOsphate carboxylase/oxygenase activase A, chloroplast precursor
	CK211747, CK215758, CK213931	WCOR719
	TC454714	ATP sulfurylase
	CJ907078	Brain protein 44-like
miR1133	CK196934	Calmodulin TaCaM2-1
	BE516586	Calmodulin-like protein
	BQ838905	Early nodulin protein
	TC448466	Glycine-rich_protein_(Aa1-291) precursor
	CK198514	Peroxidase 6
	TC394164	PhOsphatidylinOsitol transfer protein, expressed
	TC405876	Ring zinc finger protein-like
	TC439651	Selenium-binding protein-like
	GH726155	Type 1 non-specific lipid transfer protein precursor
miR1135	TC433142	Alliin lyase-like
	TC390088	Coatomer subunit zeta-1
	CD931690	Cytochrome P450

	CD888735	Delta1-pyrroline-5-carboxylate synthetase
	TC374632	Fructan exohydrolase
	TC418338	GAD1
	TC456258	Importin beta-like protein
	TC374375, TC376089	Mitochondrial 2-oxoglutarate/malate translocator
	TC445105, TC394690, TC404007, TC441900, TC424561, TC401095	Monodehydroascorbate reductase
	TC383624	Peroxidase 6
	BJ263423	Early light-inducible protein ELIP
miR1136	TC405058	Protein kinase domain containing protein, expressed
miR1137	TC418521	Expansin-like A1 precursor
	CK197784	HGA1
	DR740890, DR740868, TC369138	At1g05520/T25N20_16
	TC405700	C3HC4 zinc finger containing protein
miR1139	TC386006	Cyclin-dependent kinases regulatory subunit 1
	TC391844	Gamma-TIP-like protein
	TC436537	General substrate transporter
	CJ636238	Glycine cleavage system H protein, mitochondrial precursor
	TC427924, TC414420	Kelch motif family protein, expressed
	TC424689, TC390083, TC391891, CA607350	L-lactate dehydrogenase A
	CK158705	Quinone reductase
	TC387148	SAR DNA binding protein
	TC429437	Senescence-associated protein 12
	TC397585	Transcription factor Myb1
	TC436930	WD-40 repeat protein-like
miR1436	TC377933	ATP dependent Clp protease ATP-binding subunit ClpX1
	TC369361, CK196934, TC370181	Calmodulin TaCaM2-1
	TC383543	Citrate synthase
	TC376766	DEAD-box ATP-dependent RNA helicase 42
	DR732284	ERN3
	TC440827	F-box domain containing protein-like
	TC418995	Glutathione S-transferase 2

	TC402657	Glyceraldehyde-3-phOsphate dehydrogenase, cytOsolic
	CV762246	GlycOsyltransferase
	TC452182	Glyoxalase II
	TC373115	Leucine zipper protein-like
	CJ563368	Lipid transfer protein-like
	DR732905	MIKC-type MADS-box transcription factor WM22A
	CJ572772	OJ000126_13.4 protein
	TC433753	Proline-rich spliceOsome-associated protein- like
	TC459951	Protein kinase domain containing protein, expressed
	BE425224	Receptor-like kinase 17 precursor
	DR732123	Regulatory protein of P-starvation acclimation response Psr1
	TC370176	Resistance-related receptor-like kinase
	TC437336	RibulOse bisphOsphate carboxylase large chain
	CJ557246	RNA pseudouridylate synthase family protein expressed
	TC390499, TC449066	S-adenOsylmethionine decarboxylase proenzyme
	TC453849	U2AF large subunit
	TC444038	Zinc finger CCCH domain-containing protein ZFN-like 1
miR1439	CJ936328	Alpha-L-arabinofuranOsidase/beta-D- xylOsidase isoenzyme ARA-I
	TC369361, TC370181	Calmodulin TaCaM2-1
	TC409271	CDK5 activator-binding protein-like
	TC383543	Citrate synthase
	TC394286	CTV.22
	TC376766, DR731536	DEAD-box ATP-dependent RNA helicase 42
	TC456061	Delta 1-pyrroline-5-carboxylate synthetase
	TC379298	Geranylgeranyl hydrogenase
	TC383916	Glutathione transferase
	TC452182	Glyoxalase II
	TC406001,TC413664	Histone H2B.1
	TC415559	Malic enzyme

	TC401095, TC424561, TC441900, TC404007, TC394690, TC445105	Monodehydroascorbate reductase
	TC459951	Protein kinase domain containing protein, expressed
	TC405876	Ring zinc finger protein-like
	CJ557246	RNA pseudouridylate synthase family protein expressed
	TC434687	Small GTP-binding protein
	TC459612	Wall-associated kinase 2
	TC402134	ABP-1
miR167	TC398445	Multidrug resistance associated protein 1
	CK193500	NADPH oxidoreductase homolog
	CK213113	Protochlorophyllide reductase A, chloroplast precursor
	TC395319	transcription factor jumonji (jmjC) domain- containing protein
miR1847	TC416401	Alpha tubulin-2A
IIIK104/	TC450471	F5I14.29/F5I14.29
	TC437514	F-box protein-like
	CK163755	Malic enzyme
	TC459671	Respiratory burst oxidase protein A
	TC401001	T1K7.26 protein
	TC451647	Alkaline invertase
miR2118	CK199587	Early nodulin 75-like protein
	TC439977, TC415030	GTP-binding protein-like
	TC422336	Kinase associated protein phOsphatase
	TC447958	Light stress-responsive one-helix protein-like
	CK212176	PhotOsystem 1 subunit 5
	TC371825	Serine/threonine protein phOsphatase
	TC403906	Triticain beta
miR3700	TC371315, TC371563,TC372626, TC437840	Polyubiquitin
	TC412324	P-type H+-ATPase
	TC409264	SET domain protein-like

miR395	TC401715, CV776184, TC455080, TC402080, TC441063, ,CK197311, CV761940	ATP sulfurylase
	TC370044	RibOsomal protein L19
	CA618183, CA734658, TC386520	SacIy domain containing protein, expressed
	CK193704	SucrOse transporter
	TC425646, TC421071	NBS-LRR type RGA
miR482	CA678894, TC393142, TC421789, TC410768	OJ000223_09.9 protein
	TC402759	RibOsomal L14 protein
	CO348589	Short-chain alcohol dehydrogenase
	TC392013	60S ribOsomal protein L30
	TC427967	BHelix-loop-helix transcription factor
	CD910148	BZIP transcription factor
	CD925597	Cupin family protein, expressed
miR5021	CK205372	Expansin EXPA12
	TC424354	FERONIA receptor-like kinase
	TC402816, TC387108, TC438021	GASA2-like protein
	TC428351	Glutathione transferase
	TC403644, TC407139	Gt-2
	TC426868	Lustrin A-like
	TC373827	Pistil-specific extensin-like protein precursor
	TC387438	SedoheptulOse-1,7-bisphOsphatase, chloroplast precursor (SedoheptulOse bisphOsphatase) (SBPase) (SED(1,7)P2ase)
	CA613725, TC385467	Serine/threonine-protein phOsphatase PP1
	TC421839	Sodium/hydrogen exchanger
	TC385179	WRKY transcription factor 28
miR5049	TC433193	1-aminocyclopropane-1-carboxylate oxidase
	TC394281	40S ribOsomal protein S15
	TC444618	Abscisic stress ripening-like protein
	TC414519	Acyl carrier protein 3, chloroplast precursor
	CJ531707	Betanidin 6-O-glucOsyltransferase-like protein
	TC416512	Citrate synthase

	TC394286	CTV.22
	TC436262	Cyclic nucleotide gated channel
	CJ727851	Cyclin-dependent kinase D-1
	CD931690	Cytochrome P450
	TC431549	Enhancer of rudimentary homolog
	TC435443	Expansin EXPB8
	TC418521	Expansin-like A1 precursor
	CD891662	F-box protein-like
	CA611067	Glutathione-S-transferase 28e45
	TC416752, TC438186	Harpin-induced protein 1 containing protein, expressed
	TC376269	High molecular mass early light-inducible protein HV58, chloroplast precursor
	TC413664	Histone H2B.1
	TC406957	Homeobox domain containing protein, expressed
	TC422449	InOsitol 1,3,4,5,6-pentakisphOsphate 2-kinase
	TC377619	Lecithin cholesterol acyltransferase
	CK215459	Low molecular mass early light-inducible protein HV90, chloroplast precursor
	TC438636	Mitochondrial phOsphate transporter
	TC376188	MYB20 protein
	TC380088	NBS-LRR type resistance protein-like
	CA711590	Nucellin-like aspartic protease
	TC398706	PG3
	TC449345	Phytepsin precursor (Aspartic proteinase) [Contains Phytepsin 32 kDa subunit
	TC382066, TC426391	Protein phOsphatase 2C
	TC370810	RadA-like protein
	CD903703	SGRP-1 protein
	TC423859	Short-chain dehydrogenase/reductase protein- like
	CJ530860	SNF7 protein-like
	AL819672	Sodium/hydrogen exchanger
	TC396713	SucrOse-phOsphate synthase 9
	TC423054	T6A9.6 protein
	TC432536	VMP3 protein
	TC438644	Wpk4 protein kinase
	TC452930	WRKY39
miR5067	TC374008	Calnexin
	CA676115	CI2C

	TC393687	Flavonoid 7-O-methyltransferase
	CK155004	Geraniol 10-hydroxylase
	TC422449	InOsitol 1,3,4,5,6-pentakisphOsphate 2-kinase
	TC371448	Methionyl-tRNA synthetase-like protein
	BJ257353	Peroxidase
	BJ307801	Transducin family protein-like
	TC438644	Wpk4 protein kinase
miR5068	CA605881	Acidic ribOsomal protein
	BE217043	Phenylalanine ammonia-lyase
miR5070	TC457231	Proline-rich protein
	TC440699	Translation initiation factor eIF5
	GH722323	10-deacetylbaccatin III-10-O-acetyl transferase-like
	TC444618	Abscisic stress ripening-like protein
miR5175	TC380076	BRI1-KD interacting protein 109
	TC439689	Calreticulin-like protein
	TC394286	CTV.22
	TC391404	Cysteine synthase (O-acetylserine sulfhydrylase) (O- acetylserine (Thiol)-lyase)
	DR731536	DEAD-box ATP-dependent RNA helicase 50
	TC391647	Oxidoreductase, 2OG-Fe oxygenase family protein, expressed
	TC398706	PG3
	CJ868604	Transcriptional activator-like
D 5 1 9 0	AL816051	BARE-1 polyprotein
miR5180	TC425152	Peptidyl-prolyl cis-trans isomerase
	CJ608275	PhotOsystem II polypeptide
	CD903828	Starch branching enzyme I precursor
	TC413536	TIA-1 related protein
miR5181	TC387235	Citrate synthase
	TC374061, TC384192	Nuclear movement protein-like
	CJ596436	Translin family protein, expressed
	CJ963181	Zinc-finger motif
miR5203	TC383543	Citrate synthase
	CA647968	LEM3-like
	TC385465	Non-specific lipid-transfer protein
	CJ557246	RNA pseudouridylate synthase family protein expressed

	CJ553250	Serine carboxypeptidase family protein, expressed
	CJ530860	SNF7 protein-like
	TC444618	Abscisic stress ripening-like protein
	TC420918	Arf6/ArfB-family small GTPase
	TC377933	ATP dependent Clp protease ATP-binding subunit ClpX1
	AL821953	CHY zinc finger family protein, expressed
miR5205	CJ883403	Cysteine synthase
IIIK5205	TC385385	Exoglucanase precursor
	CD880846	Flowering promoting factor-like 1
	TC452182	Glyoxalase II
	CK211600, CK216047, CK214985, CK214076	High light protein
	TC389043	Malate dehydrogenase [NADP], chloroplast precursor
	DR732905	MIKC-type MADS-box transcription factor WM22A
	CN012529	Mitochondrial transcription termination factor- like protein
	TC398674	Phytoene dehydrogenase, chloroplast/chromoplast precursor
	CD879785	Probable protein ABIL1
	TC433753	Proline-rich spliceOsome-associated protein- like
	TC459951	Protein kinase domain containing protein, expressed
	TC406931	RibOsomal protein L7
	TC449066, TC390499	S-adenOsylmethionine decarboxylase proenzyme
	CD879878	Serine-threonine protein kinase
	TC395950	STF-1
	TC453849	U2AF large subunit
	TC383983	Utp14 protein, expressed
miR5387	TC437702	Histone H3.2
miR5568	TC397912	AdenOsine diphOsphate glucOse pyrophOsphatase precursor
	CJ936328	Alpha-L-arabinofuranOsidase/beta-D- xylOsidase isoenzyme ARA-I
	TC420918	Arf6/ArfB-family small GTPase
	CJ883403	Cysteine synthase
	TC401164	Fb14

	TO 115100	Glutathione gamma-
	TC446402	glutamylcysteinyltransferase 1
	TC452182	Glyoxalase II
	CK214076, CK214985, CK216047, CK211600	High light protein
	TC389043	Malate dehydrogenase [NADP], chloroplast precursor
	CN012529	Mitochondrial transcription termination factor- like protein
	TC398674	Phytoene dehydrogenase, chloroplast/chromoplast precursor
	CD879785	Probable protein ABIL1
	TC392962	Serine protease-like protein
	CD879878	Serine-threonine protein kinase
	TC395950	STF-1
	TC383983	Utp14 protein, expressed
	AL821953	CHY zinc finger family protein, expressed
	TC398842	Glutamine synthetase
miR6197	TC446402	Glutathione gamma- glutamylcysteinyltransferase 1
	TC380096	haloacid dehalogenase-like hydrolase family protein
	TC438131	Ice recrystallisation inhibition protein
	TC391197	Leucine Rich Repeat family protein, expressed
	TC369729	LRK14
	CA601255	Membrane bound O-acyl transferase MBOAT
	CK200742	Metallo-beta-lactamase-like
	CJ861664	PhOsphatidylinOsitol transfer-like
	TC442517	Protein HVA22
	TC440668	RibOsomal Pr 117
	CJ868604	Transcriptional activator-like
	CJ705099	Uncharacterized protein At1g55300.2
	TC383983	Utp14 protein, expressed
	TC419868	Zinc finger protein
miR6224	TC402657	Glyceraldehyde-3-phOsphate dehydrogenase, cytOsolic
miR834	TC400043	Chitinase
	CK213195	Histone H1
	DR733985	Auxin-repressed protein

miR845	TC399949	CRS2-associated factor 2, chloroplast precursor
	BQ902506	Triticain gamma
	TC436507	Hypersensitive response protein
miR950	TC400027	C2H2 zinc-finger protein
	TC441942	60S ribOsomal protein L19-like protein

Target sequence: DFCI Index accession

REFERENCES

- Akpinar, Bala Ani, Stuart J. Lucas, and Hikmet Budak. 2013. "Genomics Approaches for Crop Improvement against Abiotic Stress." *The Scientific World Journal* 2013.
- Altschul, Stephen F. et al. 1997. "Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs." *Nucleic Acids Research* 25:3389–3402.
- Arenas-Huertero, Catalina et al. 2009. "Conserved and Novel miRNAs in the Legume Phaseolus Vulgaris in Response to Stress." *Plant Molecular Biology* 70:385–401.
- Badr, A. et al. 2000. "On the Origin and Domestication History of Barley (Hordeum Vulgare)." *Molecular biology and evolution* 17:499–510.
- Barnabás, Beáta, Katalin Jäger, and Attila Fehér. 2008. "The Effect of Drought and Heat Stress on Reproductive Processes in Cereals." *Plant, Cell and Environment* 31:11–38.
- Bartel, David P., Rosalind Lee, and Rhonda Feinbaum. 2004. "MicroRNAs: Genomics , Biogenesis , Mechanism , and Function Genomics: The miRNA Genes." 116:281–97.
- Bartels, Dorothea, and Ramanjulu Sunkar. 2005. "Drought and Salt Tolerance in Plants." Critical Reviews in Plant Sciences 24:23-58.
- Bennett, Dion, Matthew Reynolds, et al. 2012. "Detection of Two Major Grain Yield QTL in Bread Wheat (Triticum Aestivum L.) under Heat, Drought and High Yield Potential Environments." *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik* 125(7):1473–85. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/22772727).
- Bennett, Dion, Ali Izanloo, Matthew Reynolds, et al. 2012. "Genetic Dissection of Grain Yield and Physical Grain Quality in Bread Wheat (Triticum Aestivum L.) under Water-Limited Environments." TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 125(2):255–71. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/22374139).
- Bennett, Dion, Ali Izanloo, James Edwards, et al. 2012. "Identification of Novel Quantitative Trait Loci for Days to Ear Emergence and Flag Leaf Glaucousness in a Bread Wheat (Triticum Aestivum L.) Population Adapted to Southern Australian Conditions." *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik* 124(4):697–711. Retrieved December 7, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/22045047).
- Berkman, Paul J. et al. 2011. "Sequencing and Assembly of Low Copy and Genic Regions of Isolated Triticum Aestivum Chromosome Arm 7DS." *Plant Biotechnology Journal* 9:768–75.

- Bonneau, Julien et al. 2013. "Multi-Environment Analysis and Improved Mapping of a Yield-Related QTL on Chromosome 3B of Wheat." *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik* 126(3):747–61. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/23262551).
- Bonnet, Eric, Jan Wuyts, Pierre Rouzé, and Yves Van de Peer. 2004. "Detection of 91 Potential Conserved Plant microRNAs in Arabidopsis Thaliana and Oryza Sativa Identifies Important Target Genes." *Proceedings of the National Academy of Sciences of the United States of America* 101:11511–16.
- Boyer, J. S. 1982. "Plant Productivity and Environment." Science (New York, N.Y.) 218:443-48.
- Bray, E. A., J. Bailey-Serres, and E. Weretilnyk. 2000. "Responses to Abiotic Stresses." Pp. 1158–1249 in *Biochemistry and Molecular Biology of Plants*, edited by W. Gruissem, B. Buchannan, and R. Jones. Rockville, MD.: American Society of Plant Physiologists.
- Breen, James et al. 2013. "A Physical Map of the Short Arm of Wheat Chromosome 1A." *PLoS ONE* 8.
- Brenchley, Rachel et al. 2012. "Analysis of the Bread Wheat Genome Using Whole-Genome Shotgun Sequencing." *Nature* 491:705–10. Retrieved (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3510651&tool=pmcen trez&rendertype=abstract).
- Brini, Faïçal, Roberto a Gaxiola, Gerald a Berkowitz, and Khaled Masmoudi. 2005. "Cloning and Characterization of a Wheat Vacuolar Cation/proton Antiporter and Pyrophosphatase Proton Pump." *Plant physiology and biochemistry : PPB / Société française de physiologie végétale* 43(4):347–54. Retrieved December 29, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/15907686).
- Budak, Hikmet, Bala Ani Akpinar, Turgay Unver, and Mine Turktas. 2013. "Proteome Changes in Wild and Modern Wheat Leaves upon Drought Stress by Two-Dimensional Electrophoresis and nanoLC-ESI-MS/MS." *Plant molecular biology* 83(1-2):89–103. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/23443681).
- Budak, Hikmet, Melda Kantar, and Kuaybe Yucebilgili Kurtoglu. 2013. "Drought Tolerance in Modern and Wild Wheat." *TheScientificWorldJournal* 2013:548246. Retrieved (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3671283&tool=pmcen trez&rendertype=abstract).
- Budak, Hikmet, Zaeema Khan, and Melda Kantar. 2014. "History and Current Status of Wheat miRNAs Using next-Generation Sequencing and Their Roles in Development and Stress." *Briefings in functional genomics*. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/24962995).

- Camacho, Christiam et al. 2009. "BLAST+: Architecture and Applications." *BMC bioinformatics* 10:421. Retrieved July 9, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2803857&tool=pmcen trez&rendertype=abstract).
- Chauhan, Harsh, and Paramjit Khurana. 2011. "Use of Doubled Haploid Technology for Development of Stable Drought Tolerant Bread Wheat (Triticum Aestivum L.) Transgenics." *Plant Biotechnology Journal* 9:408–17.
- Chen, Hao, Shan Jiang, Jie Zheng, and Yongjun Lin. 2013. "Improving Panicle Exsertion of Rice Cytoplasmic Male Sterile Line by Combination of Artificial microRNA and Artificial Target Mimic." *Plant Biotechnology Journal* 11:336–43.
- Chen, Ho-Ming et al. 2010. "22-Nucleotide RNAs Trigger Secondary siRNA Biogenesis in Plants." Proceedings of the National Academy of Sciences of the United States of America 107:15269–74.
- Choulet, Frédéric et al. 2014. "Structural and Functional Partitioning of Bread Wheat Chromosome 3B." *Science (New York, N.Y.)* 345(6194):1249721. Retrieved December 5, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/25035497).
- Collins, Nicholas C., François Tardieu, and Roberto Tuberosa. 2008. "Quantitative Trait Loci and Crop Performance under Abiotic Stress: Where Do We Stand?" *Plant physiology* 147:469–86.
- Dai, Xinbin, Zhaohong Zhuang, and Patrick Xuechun Zhao. 2011. "Computational Analysis of miRNA Targets in Plants: Current Status and Challenges." *Briefings in Bioinformatics* 12:115–21.
- Dong, Pan et al. 2009. "EST-SSR Diversity Correlated with Ecological and Genetic Factors of Wild Emmer Wheat in Israel." *Hereditas* 146:1–10.
- Dryanova, Ani, Arseny Zakharov, and Patrick J. Gulick. 2008. "Data Mining for miRNAs and Their Targets in the Triticeae." *Genome / National Research Council Canada = Genome / Conseil national de recherches Canada* 51:433–43.
- Dubcovsky, Jorge, and Jan Dvorak. 2007. "Genome Plasticity a Key Factor in the Success of Polyploid Wheat under Domestication." *Science (New York, N.Y.)* 316:1862–66.
- Eisen, Michael B., Paul T. Spellman, Patrick O. Brown, and David Botstein. 1998. "Cluster Analysis and Display of Genome-Wide Expression Patterns." *Proceedings of the National Academy of Sciences of the United States of America* 95:14863–68.
- Ergen, Neslihan Z., and Hikmet Budak. 2009. "Sequencing over 13 000 Expressed Sequence Tags from Six Subtractive cDNA Libraries of Wild and Modern Wheats Following Slow Drought Stress." *Plant, Cell and Environment* 32:220–36.

- Ergen, Neslihan Z., Jyothi Thimmapuram, Hans J. Bohnert, and Hikmet Budak. 2009. "Transcriptome Pathways Unique to Dehydration Tolerant Relatives of Modern Wheat." *Functional and Integrative Genomics* 9:377–96.
- Fahima, T. et al. 1999. "RAPD Polymorphism of Wild Emmer Wheat Populations, Triticum Dicoccoides, in Israel." *Theor Appl Genet* 434–47.
- Fahima, T., M. S. Röder, K. Wendehake, V. M. Kirzhner, and E. Nevo. 2002. "Microsatellite Polymorphism in Natural Populations of Wild Emmer Wheat, Triticum Dicoccoides, in Israel." *Theoretical and Applied Genetics* 104:17–29.
- Feldman, Moshe. 2001. "Origin of Cultivated Wheat." Pp. 3–56 in *The World Wheat Book: A History of Wheat Breeding, Volume 1*, edited by AP Bonjean and WJ Angus. Paris: Lavoisier Publishing. Retrieved (http://books.google.com.tr/books/about/The_World_Wheat_Book.html?id=9P11Q gAACAAJ&redir_esc=y).
- Feldman, Moshe, and Ernest R. Sears. 1981. "The Wild Gene Resources of Wheat." *Scientific American* 244:102–12.
- Fleury, Delphine, Stephen Jefferies, Haydn Kuchel, and Peter Langridge. 2010. "Genetic and Genomic Tools to Improve Drought Tolerance in Wheat." 61(12):3211-22.
- Griffiths-Jones, Sam. 2004. "The microRNA Registry." Nucleic acids research 32:D109–D111.
- Griffiths-Jones, Sam, Harpreet Kaur Saini, Stijn Van Dongen, and Anton J. Enright. 2008. "miRBase: Tools for microRNA Genomics." *Nucleic Acids Research* 36.
- Guo, Peiguo et al. 2009. "Differentially Expressed Genes between Drought-Tolerant and Drought-Sensitive Barley Genotypes in Response to Drought Stress during the Reproductive Stage." *Journal of Experimental Botany* 60:3531–44.
- Gupta, Om Prakash, Nand Lal Meena, Indu Sharma, and Pradeep Sharma. 2014. "Differential Regulation of microRNAs in Response to Osmotic, Salt and Cold Stresses in Wheat." *Molecular Biology Reports* 41:4623–29.
- Habash, D. Z., Z. Kehel, and M. Nachit. 2009. "Genomic Approaches for Designing Durum Wheat Ready for Climate Change with a Focus on Drought." *Journal of experimental botany* 60(10):2805–15. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/19584119).
- Hackenberg, Michael, Perry Gustafson, Peter Langridge, and Bu Jun Shi. 2014. "Differential Expression of microRNAs and Other Small RNAs in Barley between Water and Drought Conditions." *Plant Biotechnology Journal*.
- Hackenberg, Michael, Bu-Jun Shi, Perry Gustafson, and Peter Langridge. 2013. "Characterization of Phosphorus-Regulated miR399 and miR827 and Their Isomirs in Barley under Phosphorus-Sufficient and Phosphorus-Deficient

Conditions." *BMC plant biology* 13:214. Retrieved (http://www.biomedcentral.com/1471-2229/13/214).

- Hernandez, Pilar et al. 2012. "Next-Generation Sequencing and Syntenic Integration of Flow-Sorted Arms of Wheat Chromosome 4A Exposes the Chromosome Structure and Gene Content." *Plant Journal* 69:377–86.
- Hoisington, David, and Rodomiro Ortiz. 2008. "Research and Field Monitoring on Transgenic Crops by the Centro Internacional de Mejoramiento de Maíz Y Trigo (CIMMYT)." *Euphytica* 164:893–902.
- Houston, Kelly et al. 2013. "Variation in the Interaction between Alleles of HvAPETALA2 and microRNA172 Determines the Density of Grains on the Barley Inflorescence." *Proceedings of the National Academy of Sciences of the United States of America* 110:16675–80. Retrieved (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3799380&tool=pmcen trez&rendertype=abstract).
- Izanloo, Ali, Anthony G. Condon, Peter Langridge, Mark Tester, and Thorsten Schnurbusch. 2008. "Different Mechanisms of Adaptation to Cyclic Water Stress in Two South Australian Bread Wheat Cultivars." *Journal of experimental botany* 59(12):3327–46. Retrieved December 23, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2529232&tool=pmcen trez&rendertype=abstract).
- James, Richard A., Romola J. Davenport, and Rana Munns. 2006. "Physiological Characterization of Two Genes for Na+ Exclusion in Durum Wheat, Nax1 and Nax2." *Plant physiology* 142:1537–47.
- Kantar, Melda et al. 2012. "Subgenomic Analysis of microRNAs in Polyploid Wheat." *Functional & integrative genomics* 12(3):465–79. Retrieved September 4, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/22592659).
- Kantar, Melda, Stuart J. Lucas, and Hikmet Budak. 2011. "Drought Stress : Molecular Genetics and Genomics Approaches." Pp. 445–93 in Advances in Botanical Research, vol. 57, edited by Jean-Claude Kader and Michel Delseny. Burlington: Elsevier. Retrieved (http://dx.doi.org/10.1016/B978-0-12-387692-8.00013-8).
- Kantar, Melda, Stuart J. Lucas, and Hikmet Budak. 2011. "miRNA Expression Patterns of Triticum Dicoccoides in Response to Shock Drought Stress." *Planta* 233:471–84.
- Kantar, Melda, Turgay Unver, and Hikmet Budak. 2010. "Regulation of Barley miRNAs upon Dehydration Stress Correlated with Target Gene Expression." *Functional & integrative genomics* 10(4):493–507. Retrieved September 15, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/20676715).
- Kapazoglou, Aliki, Vicky Drosou, Anagnostis Argiriou, and Athanasios S. Tsaftaris. 2013. "The Study of a Barley Epigenetic Regulator, HvDME, in Seed

Development and under Drought." *BMC plant biology* 13:172. Retrieved (http://www.ncbi.nlm.nih.gov/pubmed/24175960).

- Kenan-Eichler, Michal et al. 2011. "Wheat Hybridization and Polyploidization Results in Deregulation of Small RNAs." *Genetics* 188(2):263–72.
- Kozomara, Ana, and Sam Griffiths-Jones. 2011. "MiRBase: Integrating microRNA Annotation and Deep-Sequencing Data." *Nucleic Acids Research* 39.
- Kozomara, Ana, and Sam Griffiths-Jones. 2014. "MiRBase: Annotating High Confidence microRNAs Using Deep Sequencing Data." *Nucleic Acids Research* 42.
- Krugman, Tamar et al. 2010. "Multilevel Regulation and Signalling Processes Associated with Adaptation to Terminal Drought in Wild Emmer Wheat." *Functional and Integrative Genomics* 10:167–86.
- Krugman, Tamar et al. 2011. "Alteration in Expression of Hormone-Related Genes in Wild Emmer Wheat Roots Associated with Drought Adaptation Mechanisms." *Functional and Integrative Genomics* 11:565–83.
- Kruszka, Katarzyna et al. 2014. "Transcriptionally and Post-Transcriptionally Regulated microRNAs in Heat Stress Response in Barley." *Journal of experimental botany*. Retrieved September 11, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/25183744).
- Kumar, Rajesh. 2014. "Role of microRNAs in Biotic and Abiotic Stress Responses in Crop Plants." *Applied biochemistry and biotechnology* 174(1):93–115. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/24869742).
- Kurtoglu, Kuaybe Yucebilgili, Melda Kantar, and Hikmet Budak. 2014. "New Wheat microRNA Using Whole-Genome Sequence." *Functional and Integrative Genomics* 14:363–79.
- Kurtoglu, Kuaybe Yucebilgili, Melda Kantar, Stuart J. Lucas, and Hikmet Budak. 2013. "Unique and Conserved microRNAs in Wheat Chromosome 5D Revealed by next-Generation Sequencing." *PloS one* 8(7):e69801. Retrieved September 15, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3720673&tool=pmcen trez&rendertype=abstract).
- Kuzuoglu-Ozturk, Duygu et al. 2012. "Autophagy-Related Gene, TdAtg8, in Wild Emmer Wheat Plays a Role in Drought and Osmotic Stress Response." *Planta* 236:1081–92.
- Lee, R. C., R. L. Feinbaum, and V. Ambros. 1993. "The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14." Cell 75:843–54.
- Lee, Y. et al. 2005. "The TIGR Gene Indices: Clustering and Assembling EST and Know Genes and Integration with Eukaryotic Genomes." *Nucleic Acids Research* 33.

- Lee, Yoontae et al. 2004. "MicroRNA Genes Are Transcribed by RNA Polymerase II." *The EMBO journal* 23:4051–60.
- Li, Aili et al. 2014. "mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat." *The Plant cell* 26(5):1878–1900.
- Li, Wanlong, Peng Zhang, John P. Fellers, Bernd Friebe, and Bikram S. Gill. 2004. "Sequence Composition, Organization, and Evolution of the Core Triticeae Genome." *Plant Journal* 40:500–511.
- Li, Yang, Chaoqun Li, Jie Xia, and Youxin Jin. 2011. "Domestication of Transposable Elements into Microrna Genes in Plants." *PLoS ONE* 6.
- Liu, Jie et al. 2014. "The miR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling" edited by John M. McDowell. *PLoS Genetics* 10(12):e1004755. Retrieved December 15, 2014 (http://dx.plos.org/10.1371/journal.pgen.1004755).
- Llave, Cesar, Kristin D. Kasschau, Maggie A. Rector, and James C. Carrington. 2002. "Endogenous and Silencing-Associated Small RNAs in Plants." *The Plant cell* 14:1605–19.
- Llave, Cesar, Zhixin Xie, Kristin D. Kasschau, and James C. Carrington. 2002. "Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA." *Science (New York, N.Y.)* 297:2053–56.
- Lucas, Stuart, Esen Dogan, and Hikmet Budak. 2011. "TMPIT1 from Wild Emmer Wheat: First Characterisation of a Stress-Inducible Integral Membrane Protein." *Gene* 483:22–28.
- Lucas, Stuart, Emel Durmaz, Bala An Akpnar, and Hikmet Budak. 2011. "The Drought Response Displayed by a DRE-Binding Protein from Triticum Dicoccoides." *Plant Physiology and Biochemistry* 49:346–51.
- Lucas, Stuart J. et al. 2012. "Functional Features of a Single Chromosome Arm in Wheat (1AL) Determined from Its Structure." *Functional and Integrative Genomics* 12:173–82.
- Lucas, Stuart J. et al. 2013. "Physical Mapping Integrated with Syntenic Analysis to Characterize the Gene Space of the Long Arm of Wheat Chromosome 1A." *PLoS ONE* 8.
- Lucas, Stuart J., and Hikmet Budak. 2012. "Sorting the Wheat from the Chaff: Identifying miRNAs in Genomic Survey Sequences of Triticum Aestivum Chromosome 1 AL." *PLoS ONE* 7.
- Mahajan, Shilpi, and Narendra Tuteja. 2005. "Cold, Salinity and Drought Stresses: An Overview." *Archives of biochemistry and biophysics* 444:139–58. Retrieved (http://www.ncbi.nlm.nih.gov/pubmed/16309626).

- Mallory, Allison C., Brenda J. Reinhart, David Bartel, Vicki B. Vance, and Lewis H. Bowman. 2002. "A Viral Suppressor of RNA Silencing Differentially Regulates the Accumulation of Short Interfering RNAs and Micro-RNAs in Tobacco." *Proceedings of the National Academy of Sciences of the United States of America* 99:15228–33.
- Manavella, P. A., D. Koenig, and D. Weigel. 2012. "Plant Secondary siRNA Production Determined by microRNA-Duplex Structure." *Proceedings of the National Academy of Sciences* 109:2461–66.
- Marker, Claudia et al. 2002. "Experimental RNomics: Identification of 140 Candidates for Small Non-Messenger RNAs in the Plant Arabidopsis Thaliana." *Current Biology* 12:2002–13.
- Markham, Nicholas R., and Michael Zuker. 2008. "UNAFold: Software for Nucleic Acid Folding and Hybridization." *Methods in Molecular Biology* 453:3–31.
- Mathews, D. H., J. Sabina, M. Zuker, and D. H. Turner. 1999. "Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure." *Journal of molecular biology* 288:911–40.
- Mayer, Klaus F. X. et al. 2011. "Unlocking the Barley Genome by Chromosomal and Comparative Genomics." *The Plant cell* 23:1249–63.
- Mayer, Klaus F. X. et al. 2012. "A Physical, Genetic and Functional Sequence Assembly of the Barley Genome." *Nature* 491(7426):711–16. Retrieved July 12, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/23075845).
- Mhuantong, Wuttichai, and Duangdao Wichadakul. 2009. "MicroPC (microPC): A Comprehensive Resource for Predicting and Comparing Plant microRNAs." *BMC genomics* 10:366.
- Middleton, Christopher P. et al. 2014. "Sequencing of Chloroplast Genomes from Wheat, Barley, Rye and Their Relatives Provides a Detailed Insight into the Evolution of the Triticeae Tribe." *PloS one* 9(3):e85761. Retrieved December 28, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3948623&tool=pmcen trez&rendertype=abstract).
- Mrízová, Katarína et al. 2014. "Transgenic Barley: A Prospective Tool for Biotechnology and Agriculture." *Biotechnology advances* 32(1):137–57. Retrieved October 26, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/24084493).
- Munns, Rana, Richard a James, Xavier R. R. Sirault, Robert T. Furbank, and Hamlyn G. Jones. 2010. "New Phenotyping Methods for Screening Wheat and Barley for Beneficial Responses to Water Deficit." *Journal of experimental botany* 61(13):3499–3507. Retrieved November 21, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/20605897).

- Nevo, E. 2004. "Genomic Diversity in Nature and Domestication." Pp. 287–316 in *Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants*, edited by R. Henry. Wallingford, UK: CAB Publ CAB International.
- Nevo, E., and A. Beiles. 1989. "Genetic Diversity of Wild Emmer Wheat in Israel and Turkey - Structure, Evolution, and Application in Breeding." *Theoretical and Applied Genetics* 77:421–55.
- Nevo, E., A. Beiles, Y. Gutterman, N. Storch, and D. Kaplan. 1984. "Genetic Resources of Wild Cereals in Israel and Vicinity. I. Phenotypic Variation within and between Populations of Wild Wheat, Triticum Dicoccoides." Pp. 717–35 in *Euphytica*. Haifa.
- Nevo, E., E. Golenberg, A. Beiles, A. H. D. Brown, and D. Zohary. 1982. "Genetic Diversity and Environmental Associations of Wild Wheat, Triticum Dicoccoides, in Israel." *Theoretical and Applied Genetics* 62:241–54.
- Nevo, Eviatar, and Guoxiong Chen. 2010. "Drought and Salt Tolerances in Wild Relatives for Wheat and Barley Improvement." *Plant, cell & environment* 33(4):670–85. Retrieved November 25, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/20040064).
- Ozhuner, Esma et al. 2013. "Boron Stress Responsive microRNAs and Their Targets in Barley." *PloS one* 8(3):e59543. Retrieved September 16, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3608689&tool=pmcen trez&rendertype=abstract).
- Park, Wonkeun, Junjie Li, Rentao Song, Joachim Messing, and Xuemei Chen. 2002. "CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis Thaliana." *Current Biology* 12:1484–95.
- Paux, Etienne et al. 2006. "Characterizing the Composition and Evolution of Homoeologous Genomes in Hexaploid Wheat through BAC-End Sequencing on Chromosome 3B." *Plant Journal* 48:463–74.
- Paux, Etienne et al. 2008. "A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B." Science (New York, N.Y.) 322:101–4.
- Peleg, Z. et al. 2005. "Genetic Diversity for Drought Resistance in Wild Emmer Wheat and Its Ecogeographical Associations." *Plant, Cell and Environment* 28:176–91.
- Peleg, Zvi et al. 2008. "Allelic Diversity Associated with Aridity Gradient in Wild Emmer Wheat Populations." *Plant, Cell and Environment* 31:39–49.
- Pellegrineschi, Alessandro et al. 2004. "Stress-Induced Expression in Wheat of the Arabidopsis Thaliana DREB1A Gene Delays Water Stress Symptoms under Greenhouse Conditions." *Genome / National Research Council Canada = Genome / Conseil national de recherches Canada* 47:493–500.

- Peng, Junhua H., Dongfa Sun, and Eviatar Nevo. 2011. "Domestication Evolution, Genetics and Genomics in Wheat." *Molecular Breeding* 28:281–301.
- Peng, Junhua, Dongfa Sun, and Eviatar Nevo. 2011. "Invited Review Article Wild Emmer Wheat, Triticum Dicoccoides, Occupies a Pivotal Position in Wheat Domestication Process." 5(9):1127–43.
- Philippe, Romain et al. 2013. "A High Density Physical Map of Chromosome 1BL Supports Evolutionary Studies, Map-Based Cloning and Sequencing in Wheat." *Genome biology* 14:R64. Retrieved (http://www.ncbi.nlm.nih.gov/pubmed/23800011).
- Placido, Dante F. et al. 2013. "Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat." *Plant physiology* 161(4):1806– 19. Retrieved December 22, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3613457&tool=pmcen trez&rendertype=abstract).
- Poursarebani, Naser et al. 2014. "Whole-Genome Profiling and Shotgun Sequencing Delivers an Anchored, Gene-Decorated, Physical Map Assembly of Bread Wheat Chromosome 6A." *Plant Journal* 79:334–47.
- Qin, Feng, Kazuo Shinozaki, and Kazuko Yamaguchi-Shinozaki. 2011. "Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance." *Plant & cell physiology* 52(9):1569–82. Retrieved December 4, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/21828105).
- Raats, Dina et al. 2013. "The Physical Map of Wheat Chromosome 1BS Provides Insights into Its Gene Space Organization and Evolution." *Genome biology* 14:R138. Retrieved (http://www.ncbi.nlm.nih.gov/pubmed/24359668).
- Randhawa, Harpinder S. et al. 2009. "Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection." *PloS one* 4(6):e5752. Retrieved December 28, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2684585&tool=pmcen trez&rendertype=abstract).
- Reinhart, Brenda J., Earl G. Weinstein, Matthew W. Rhoades, Bonnie Bartel, and David P. Bartel. 2002. "MicroRNAs in Plants." *Genes and Development* 16:1616–26.
- Reynolds, Matthew P., and Anthony G. Condon. 2007. "Quantifying Potential Genetic Gains in Wheat Yield Using Conceptual Model of Drought Adaptation." Pp. 331–40 in Wheat production in stressed environments, edited by H. T. Buck, J. E. Nisi, and N. Salomon. Dordrecht.
- Rhoades, Matthew W. et al. 2002. "Prediction of Plant microRNA Targets." *Cell* 110:513–20.

- Richards, Richard A. et al. 2010. "Breeding for Improved Water Productivity in Temperate Cereals: Phenotyping, Quantitative Trait Loci, Markers and the Selection Environment." *Functional Plant Biology* 37:85–97.
- Rogers, K., and X. Chen. 2012. "MicroRNA Biogenesis and Turnover in Plants." Cold Spring Harbor Symposia on Quantitative Biology 77:183–94.
- Rogers, Kestrel, and Xuemei Chen. 2013. "Biogenesis, Turnover, and Mode of Action of Plant microRNAs." *The Plant cell* 25(7):2383–99. Retrieved July 9, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3753372&tool=pmcen trez&rendertype=abstract).
- Ruijter, J. M. et al. 2009. "Amplification Efficiency: Linking Baseline and Bias in the Analysis of Quantitative PCR Data." *Nucleic Acids Research* 37.
- Sabot, François et al. 2005. "Updating of Transposable Element Annotations from Large Wheat Genomic Sequences Reveals Diverse Activities and Gene Associations." *Molecular Genetics and Genomics* 274:119–30.
- Salekdeh, Ghasem Hosseini, Matthew Reynolds, John Bennett, and John Boyer. 2009. "Conceptual Framework for Drought Phenotyping during Molecular Breeding." *Trends in Plant Science* 14:488–96.
- Schwab, Rebecca et al. 2005. "Specific Effects of microRNAs on the Plant Transcriptome." *Developmental Cell* 8:517–27.
- Shinozaki, Kazuo, and Kazuko Yamaguchi-Shinozaki. 2007. "Gene Networks Involved in Drought Stress Response and Tolerance." Pp. 221–27 in *Journal of Experimental Botany*, vol. 58.
- Somers, Daryl J., Peter Isaac, and Keith Edwards. 2004. "A High-Density Microsatellite Consensus Map for Bread Wheat (Triticum Aestivum L.)." TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 109(6):1105–14. Retrieved December 12, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/15490101).
- Tanaka, Tsuyoshi et al. 2014. "Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B." *DNA Research* 21:103–14.
- Tang, Haibao, Uzay Sezen, and Andrew H. Paterson. 2010. "Domestication and Plant Genomes." *Current Opinion in Plant Biology* 13:160–66.
- Tang, Zhonghui et al. 2012. "Uncovering Small RNA-Mediated Responses to Cold Stress in a Wheat Thermosensitive Genic Male-Sterile Line by Deep Sequencing." *Plant physiology* 159(2):721–38. Retrieved July 12, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3375937&tool=pmcen trez&rendertype=abstract).
- Tester, Mark, and Peter Langridge. 2010. "Breeding Technologies to Increase Crop Production in a Changing World." *Science (New York, N.Y.)* 327:818–22.

- Thomson, Daniel W., Cameron P. Bracken, and Gregory J. Goodall. 2011. "Experimental Strategies for microRNA Target Identification." *Nucleic Acids Research* 39:6845–53.
- Tilman, David, Kenneth G. Cassman, Pamela A. Matson, Rosamond Naylor, and Stephen Polasky. 2002. "Agricultural Sustainability and Intensive Production Practices." *Nature* 418:671–77.
- Turner, N. C. 1979. "Drought Resistance and Adaptation to Water Deficits in Crop Plants." Pp. 343–72 in *Stress physiology in crop plants*, edited by H. Mussel and C. R. Staples. New York: John Wiley & Sons.
- Unver, Turgay, and Hikmet Budak. 2009. "Conserved microRNAs and Their Targets in Model Grass Species Brachypodium Distachyon." *Planta* 230(4):659–69. Retrieved September 15, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/19585143).
- Unver, Turgay, Deana M. Namuth-Covert, and Hikmet Budak. 2009. "Review of Current Methodological Approaches for Characterizing microRNAs in Plants." *International journal of plant genomics* 2009:262463. Retrieved December 26, 2014 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2760397&tool=pmcen trez&rendertype=abstract).
- Valliyodan, Babu, and Henry T. Nguyen. 2006. "Understanding Regulatory Networks and Engineering for Enhanced Drought Tolerance in Plants." *Current Opinion in Plant Biology* 9:189–95.
- Varkonyi-Gasic, Erika, Rongmei Wu, Marion Wood, Eric F. Walton, and Roger P. Hellens. 2007. "Protocol: A Highly Sensitive RT-PCR Method for Detection and Quantification of microRNAs." *Plant methods* 3:12.
- Vitulo, Nicola et al. 2011. 'First Survey of the Wheat Chromosome 5A Composition through a next Generation Sequencing Approach.'' *PLoS ONE* 6.
- Wang, Jirui et al. 2010. "Molecular Characterization and Functional Analysis of Elite Genes in Wheat and Its Related Species." 89(4):539–54.
- Wang, Ji-Rui et al. 2008. "Molecular Evolution of Dimeric Alpha-Amylase Inhibitor Genes in Wild Emmer Wheat and Its Ecological Association." BMC evolutionary biology 8:91.
- Wang, Richard R. C., and Baorong Lu. 2014. "Biosystematics and Evolutionary Relationships of Perennial Triticeae Species Revealed by Genomic Analyses." *Journal of Systematics and Evolution* 52(6):697–705. Retrieved December 28, 2014 (http://doi.wiley.com/10.1111/jse.12084).
- Wang, Wangxia, Basia Vinocur, and Arie Altman. 2003. "Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance." *Planta* 218:1–14.

- Wei, Bo et al. 2008. "Dreb1 Genes in Wheat (Triticum Aestivum L.): Development of Functional Markers and Gene Mapping Based on SNPs." *Molecular Breeding* 23(1):13–22. Retrieved December 29, 2014 (http://link.springer.com/10.1007/s11032-008-9209-z).
- Wei, Bo et al. 2009. "Novel microRNAs Uncovered by Deep Sequencing of Small RNA Transcriptomes in Bread Wheat (Triticum Aestivum L.) and Brachypodium Distachyon (L.) Beauv." *Functional & integrative genomics* 9(4):499–511.
- Wicker, Thomas et al. 2011. "Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives." *The Plant cell* 23:1706–18.
- Witcombe, J. R., P. A. Hollington, C. J. Howarth, S. Reader, and K. A. Steele. 2008. "Breeding for Abiotic Stresses for Sustainable Agriculture." *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* 363:703–16.
- Xie, Weilong, and Eviatar Nevo. 2008. "Wild Emmer: Genetic Resources, Gene Mapping and Potential for Wheat Improvement." *Euphytica* 164:603–14.
- Xin, Mingming et al. 2010. "Diverse Set of microRNAs Are Responsive to Powdery Mildew Infection and Heat Stress in Wheat (Triticum Aestivum L.)." *BMC plant biology* 10:123. Retrieved (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3095282&tool=pmcen trez&rendertype=abstract).
- Yi, Xin, Zhenhai Zhang, Yi Ling, Wenying Xu, and Zhen Su. 2014. "PNRD: A Plant Non-Coding RNA Database." *Nucleic acids research* 1–8. Retrieved December 28, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/25398903).
- Yin, Zujun, Chunhe Li, Xiulan Han, and Fafu Shen. 2008. "Identification of Conserved microRNAs and Their Target Genes in Tomato (Lycopersicon Esculentum)." *Gene* 414:60–66.
- Zhang, Bao Hong, Xiao Ping Pan, Qing Lian Wang, George P. Cobb, and Todd A. Anderson. 2005. "Identification and Characterization of New Plant microRNAs Using EST Analysis." *Cell research* 15:336–60.
- Zhang, Baohong, Qinglian Wang, Kunbo Wang, et al. 2007. 'Identification of Cotton microRNAs and Their Targets.'' *Gene* 397:26–37.
- Zhang, Baohong, Xiaoping Pan, and Todd A. Anderson. 2006. "Identification of 188 Conserved Maize microRNAs and Their Targets." *FEBS Letters* 580:3753–62.
- Zhang, Baohong, Xiaoping Pan, George P. Cobb, and Todd A. Anderson. 2006. "Plant microRNA: A Small Regulatory Molecule with Big Impact." *Developmental Biology* 289:3–16.

- Zhang, Baohong, Xiaoping Pan, and Edmund J. Stellwag. 2008. "Identification of Soybean microRNAs and Their Targets." *Planta* 229:161–82.
- Zhang, Baohong, and Qinglian Wang. 2015. "MicroRNA-Based Biotechnology for Plant Improvement." *Journal of cellular physiology* 230(1):1–15. Retrieved December 15, 2014 (http://www.ncbi.nlm.nih.gov/pubmed/24909308).
- Zhang, Baohong, Qinglian Wang, and Xiaoping Pan. 2007. "MicroRNAs and Their Regulatory Roles in Animals and Plants." 289(August 2006):279–89.
- Zuker, Michael. 2003. "Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction." *Nucleic Acids Research* 31:3406–15.