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ABSTRACT

SECURE KEY AGREEMENT

USING CANCELABLE AND NONINVERTIBLE BIOMETRICS

BASED ON PERIODIC TRANSFORMATION

Laleh Eskandarian

Master Thesis, July 2017

Supervisor: Prof. Albert Levi

Keywords: Biometrics, Bio-cryptography, Cancelable Biometrics, Noninvertible

Biometrics, Periodic Transformation, Fingerprints, Key Agreement, Security Analysis.

Nowadays, many of the security-providing applications use biometric-based authentica-

tion, such as electronic banking, health and social services, commercial applications and

law enforcement. However, since each person’s biometrics is unique and not replaceable,

once it is compromised, it will be compromised forever. Therefore, it is indeed hard for

the users to trust biometrics.

To overcome this problem, in this thesis, we propose a novel protocol SKA-CaNPT: Se-

cure Key Agreement Protocol using Cancelable and Noninvertible Biometrics based on

Periodic Transformation. In this research, we use a periodic transformation function to

make our biometrics cancelable and noninvertible. At the very end of our SKA-CaNPT

protocol, the user and the server make an agreement on a symmetric shared key that is
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based on the feature points of the biometrics of the user. As a proof of concept, we apply

our SKA-CaNPT protocol on fingerprints. In our protocol, after extracting minutiae from

the fingerprints, we first employ a periodic transformation function and then we categorize

our minutiae points in a predefined neighborhood by using a threshold-based quantization

mechanism. Our SKA-CaNPT protocol runs in a round-manner and in each round, the

server decides about the acceptance or rejection of the user according to the similarity

score of the common minutiae. In addition, if the transformed data is compromised, it

can be renewed just by changing one of the inputs of our transformation function.

Besides, we apply different security analyses on our protocol. First of all, we use

Shannon’s entropy to analyze the randomness of the agreed keys, and it shows that the

generated keys have enough randomness. Secondly, to analyze the distinctiveness of the

agreed keys, we use the Hamming distance metric, results of which show that the keys

of different people are distinguishable from each other. Moreover, according to the low

IKGR (Incorrect Key Generation Rate), high CKGR (Correct Key Generation Rate) and

high attack complexity possessed by our SKA-CaNPT protocol, we can conclude that our

scheme is secure against brute-force, replay and impersonation attacks.

v



ÖZET

PERİYODİK DÖNÜŞÜM İLE OLUŞTURULAN İPTAL EDİLEBİLİR

VE GERİ DÖNÜŞTÜRÜLEMEZ BİYOMETRİK VERİLERİN

KULLANILDIĞI GÜVENLİ ANAHTAR ANLAŞMASI

Laleh Eskandarian

Yüksek Lisans Tezi, Temmuz 2017

Danışman: Prof. Dr. Albert Levi

Anahtar Sözcükler: Biyometrik, Biyo-kriptografi, İptal Edilebilir Biyometrik, Geri

Dönüştürülemez Biyometrik, Periyodik Dönüşüm, Parmak İzi, Anahtar Anlaşması,

Güvenlik Analizi.

Günümüzde, elektronik bankacılık, sağlık ve sosyal hizmetler, ticari uygulamalar ve hu-

kuki uygulamalar gibi güvenlik sağlayan birçok uygulama biyometrik tabanlı kimlik doğ-

rulama kullanmaktadır. Fakat, her bir kişinin biyometrik verisi benzersiz ve değiştirilemez

olduğundan, söz konusu biyometrik verinin gizliliği bir kez ifşa edildiğinde, aslında bu

biyometrik veri sonsuza dek kullanılamaz hale gelecektir. Bu nedenle, kullanıcıların biy-

ometrik verilere güvenmesi aslında zordur.

Bu tez ile, yukarıda bahsi geçen sorunun üstesinden gelmek adına, yeni bir protokol olan

SKA-CaNPT protokolünü öneriyoruz: Periyodik Dönüşüm ile Oluşturulan İptal Edilebilir

ve Geri Dönüştürülemez Biyometrik Verilerin Kullanıldığı Güvenli Anahtar Anlaşması.
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Bu çalışmada, biyometrik verileri iptal edilebilir ve geri dönüştürülemez kılmak için

periyodik bir dönüşüm fonksiyonu kullanmaktayız. SKA-CANPT protokolünün sonunda,

kullanıcı ve sunucu, kullanıcının biyometrik verisinin özellik noktalarına dayanan bir

simetrik paylaşılan anahtar üzerinde anlaşırlar. SKA-CANPT protokolünün kavram kanıtı

için parmak izlerini kullandık. Protokolde, parmak izlerinin özellik noktaları çıkarıldıktan

sonra, öncelikle periyodik dönüşüm fonksiyonu kullanıyoruz ve sonrasında ise eşik ta-

banlı bir niceleme yöntemiyle daha önceden belirlenmiş komşuluk ilişkilerine göre bu

özellik noktalarını kategorize ediyoruz. SKA-CANPT protokolü turlu bir düzende çalışır

ve her turda sunucu, parmak izlerinden çıkarılan özellik noktalarının benzerlik puanına

bakarak kullanıcının kabul veya reddine karar verir. Buna ek olarak, dönüştürülmüş ver-

iler bir şekilde ifşa edilirse, dönüşüm fonksiyonunun girdilerinden biri değiştirerek yeni

bir iptal edilebilir ve geri dönüştürülemez biyometrik veri oluşturulabilir.

Ayrıca, protokolümüze farklı güvenlik analizleri uyguladık. İlk olarak, üzerinde anlaşılan

anahtarların rasgeleliğini analiz etmek için Shannonun entropi analizini kullandık ve so-

nuçlar ilgili anahtarların yeterli ölçüde rasgele olduklarını gösterdi. İkinci olarak, üzerinde

anlaşılan anahtarların değişkenliğini analiz etmek için Hamming uzaklığı analizini kul-

landık ve sonuçlar farklı insanların biyometrik verilerinin kullanımı ile oluşturulan anahtar-

ların birbirlerinden farklı olduklarını gösterdi. Dahası, düşük IKGR (Yanlış Anahtar

Üretimi Oranı), yüksek CKGR (Doğru Anahtar Oluşturma Oranı) ve SKA-CANPT pro-

tokolünün sahip olduğu yüksek saldırı karmaşıklığına bakarak söyleyebiliriz ki önerdiği-

miz protokol kaba kuvvet, yeniden oynatma ve kimliğe bürünme saldırılarına karşı

güvenlidir.
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1 Introduction

In everyday life, people use traditional authentication schemes to verify their identity, in

which the secret key is either something they have (e.g. smart card, SIM card in mobile

phone), or something they know (e.g. password, PIN code). Despite the wide use of

these techniques, there are a lot of limitations. For instance, a personal device like a

mobile phone or smart card could be stolen, lost or borrowed, or a password could be

guessed. The problem of the above-mentioned methods is that the difference between

the authorized person and the imposter is indistinguishable. One way of solving such a

problem is to choose a complex password; however, because of being hard to be kept in

mind, people tend to write their passwords down, which causes a security threat. In order

to overcome these limitations, authentication using something we are (e.g. biometrics:

fingerprint, iris, face, etc) could be useful [3]. There are a lot of advantages of using

biometric-based authentication, such as, users don’t need to keep their passwords in a

secure place or remember them, or from another point of veiw, users cannot forget their

passwords or loose them. In addition, it is very difficult to forge someone’s biometrics in

comparison to forging documents.

We have to protect templates in order to avoid some problematic consequences. First

of all, if biometrics is stolen, it is lost forever; it means that in the case that someone’s bio-

metrics stolen or lost, (s)he could not replace it for his/her whole life. Secondly, because

of the fact that the users can apply their biometric traits in many different applications,

each one of these applications will be confronted with a risk when the corresponding

biometrics is compromised once. This is known as the cross matching problem of bio-

metrics. It means that if the users apply the same biometrics in different applications, they
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could be potentially tracked. Finally, biometrics are not renewable. Users can renew their

passwords or PINs by resetting them, but not their biometric traits.

The technique that can overcome the aforementioned problems is called cancelable

biometrics [4] [5]. The main idea of cancelable biometrics is mapping original biometric

templates into a new data prior to the matching procces, and storing new biometric tem-

plate in the database [3]. Though, if the transformed biometric data is compromised, by

only changing the matching characteristics, the biometric template could be renewed. The

noninvertibility property can be introduced by applying a one-way transformation func-

tion while generating the cancelable biometrics. In that case, the template’s protection

strength relies on the transformation function.

The combination of biometrics and cryptography, which provides higher security and

privacy, is referred to as crypto− biometry or bio− cryptography. In bio-cryptographic

applications, the common encryption and decryption is applied over the data, but the se-

cret keys are driven from the biometric data. These secret keys should be (i) long enough

to avoid them being guessed by an attacker, (ii) random enough to contain sufficient en-

tropy, and (iii) distinctive enough to avoid them being forged. By this means, the security

of the system can be maintained. Though, satisfying the secure key requirements due to

the invariant characteristic of biometrics is really hard and complex. Moreover, the main

obstacle of the above-mentioned combination is that biometrics are noisy. It means that

we can only expect an approximate match of the stored template. On the other hand, cryp-

tography needs the exactly right key to pass, because otherwise the protocol will fail [6].

Thus, when designing bio-cryptographic systems, this variation should be well analysed.

For instance, error correction codes or fuzzy key binding methods, like fuzzy commitment

or fuzzy vault, can be used to handle the above-mentioned problem.
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1.1 Our Contribution

In this thesis, we present a novel secure key agreement protocol, SKA-CaNPT: Secure

Key Agreement Protocol using Cancelable Noninvertible Biometrics based on Periodic

Transformation. Our proposed approach is based on the SKA-PB protocol, introduced

by Akdoğan et al. [7], and the idea of using a periodic transformation function to pro-

vide cancelability and noninvertibility properties, suggested by Dang et al. [8], which are

described in detail in Section 3.1. SKA-CaNPT uses cancelable and noninvertible biomet-

rics while generating the cryptographic keys that will be agreed upon. The reason behind

this is to keep the original biometrics safe and secure so that the shared symmetric key can

be extracted directly from the stored biometric template. The properties of cancelability

and noninvertibility are fulfilled through a periodic transformation function that is applied

on the captured biometrics. As a proof of fact, we apply our SKA-CaNPT protocol on

fingerprints, which are known to be unordered set of biometrics. In other words, we apply

our protocol on unordered set of minutiae points. In order to hide the genuine minutiae

points, and thus to decrease the risk of information leakage to the attacker, a number of

fake minutiae points are generated randomly. It is important to note here that, in order

for the fake minutiae points to be indistinguishable from the genuine minutiae points, the

same periodic transformation function is also applied on the fake minutiae points as well.

Our SKA-CaNPT protocol works in round manner and in each round, the server and

the user try to agree on a symmetric shared key. First of all, they try to find a set of

common minutiae points, and then, depending on the defined threshold value and the

calculated similarity score, the user will either be accepted or (s)he will be rejected and a

new round will start. In addition, the keys generated using our SKA-CaNPT protocol can

be renewed and/or revoked if a transformed data is compromised, only by changing the

input of the transformation algorithm and applying it on the original biometric data.

The security performance of our SKA-CaNPT protocol is analyzed from different

aspects. From biometrics aspect, our method presents a high verification performance
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proved by the achieved low IKGR (Incorrect Key Generation Rate) values and high

CKGR (Correct Key Generation Rate) values. Additionally, we show that our SKA-

CaNPT protocol is resistant against brute-force, replay and impersonation attacks. On

the top of it, the quality of the agreed symmetric shared keys are high, demonstrated

through randomness and distinctiveness evaluations. Therfore, we can use the generated

keys as cryptographic keys since each key is different from the other keys, and they have

enough randomness. In addition, our protocol is resistant to any attack that compromises

the original biometrics since we use a one-way periodic transformation function to make

our protocol cancelable and noninvertible. Furthermore, we analyze the communication,

computation and storage requirements, along with the complexity of our protocol. Fi-

nally, we compare our protocol with SKA-PB protocol, which is introduced by Akdoğan

et al. [7], and cancelable fuzzy vault approach that is presented by Dang et al. [8].

1.2 Outline

The thesis is organized into six sections. Section 2 gives background information and

Section 3 reviews the related works. In Section 4, we introduce our proposed SKA-

CaNPT protocol (Secure Key Agreement Protocol using Cancelable AND Noninvertible

Biometrics based on Periodic Transformation). In Section 5, we discuss about the perfor-

mance and the security of our SKA-CaNPT protocol, along with analyzing its complexity

and memory requirements, and we compare it with the existing other works. Finally,

Section 6 concludes our work and discusses about other possible future works.
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2 Background Information

In this section, we describe the definitions and the notations that are utilized in this thesis.

First of all, we discuss briefly about biometrics, and then we continue with cryptography.

Thereafter, we explain about biometric cryptosystems, and finally, we present cancelable

and noninvertible biometrics.

2.1 Biometrics

If we look back to many many years ago, we can find the images of handprints and

footprints in prehistoric caves all around the world. Later, in Babylonia, researchers found

fingerprints over the clay tablets. They also found that Chinese used thumbprints on their

clay seals and in the 14th century in Persia, on official documents, fingerprints were used.

Starting from the late 1960s, in which fingerprints were very popular, the idea of using

biometrics for user identification and user authentication has been formed [9] [10].

Authenticating people by checking their personal characteristics is known as biometric

authentication. The considered biometrics can either be a behavioral characteristic, such

as typing rhythm, keyboard tapping, voice, signature or the way a person walks, or a

physical characteristics, such as fingerprint, hand geometry, iris, face or DNA. Therefore,

we can divide the biometrics into two main categories: (i) something we are (physical

biometric traits) and (ii) something we do (behavioral biometric traits).

Health problems or stress could have a direct impact on behavioral characteristics of

a user; thus, they are less stable in comparison with physical characteristics. Therefore,
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physical characteristics are supposed to be more useful and more popular for biometric

authentication.

On the other hand, biometric authentication systems have two phases: (i) enrollment

phase and (ii) verification phase. In the enrollment phase, users register their biometric

traits to the system, using which the biometric template is constructed through feature

extraction. In the verification phase, another feature vector is extracted from the newly

captured biometric trait of the same user, and it is compared with the pre-registered one.

Because of the fact that the biometrics are not exactly the same of each other in differ-

ent acquisitions, which is known as intra-person distinction, the correlation between the

newly constructed biometric template and the one from the database that has been cap-

tured in the enrolment phase is of interest. Depending on the correlation among these two

templates, a decision is made about the acceptance or rejection of the user. In this com-

parison process, some authorized people may get rejected erroneously (false rejection)

and some unauthorized people may get accepted by mistake (false accept). In this regard,

biometric systems are mostly analyzed according to their false rejection rates (FRR) and

false acceptance rates (FAR). Also, error equal rate (EER) is another way for analyzing

a biometric security system. When the FRR becomes equal to FAR, the common value

indicates EER. The biometric system becomes more secure as the EER decreases.

As mentioned above, physical characteristics of biometrics are more stable than that

of the behavioral ones. Herewith, below, we discuss briefly about fingerprint, palm, iris

and face. For fingerprint recognition, first the image of the fingertip is captured and then

the minutiae are extracted using the valleys and/or the ridges, as shown in 2.1 [1]. In

the authentication/verification phase, the images or templates that are collected at that

moment are compared with that of the ones from the enrollment phase. Identification

based on fingerprints is the oldest method among the other biometrics. It has been used

in different applications for more than a century. It is more popular due to the facts

that (i) its acquisition is easy, (ii) it includes 10 different resources that is more than the

other biometrics, and (iii) the government uses it for law enforcement and immigration

purposes.
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Besides, hand geometry recognition is a method in which the shapes of the users’hands

identify them. Hand geometry readers measure and record different dimensions of hands,

such as length, width and thickness. They record both top surface image and side image

of a hand, as given in Figure 2.2 [1]. Only 9 bytes of data is stored as a template, which in

comparison to the other biometric templates is extremely low [11]. The main shortcoming

of hand geometry is that it is not completely unique.

Figure 2.1: Fingerprint Recognition [1]

Figure 2.2: Hand Geometry Recognition [1]

Moreover, face recognition is based on recording the image of the users’whole face

so that the key features could be extracted from it. These key features consist of relative

distances between eyes, nose, mouth, jaw and cheekbones, as shown in Figure 2.3 [2].

A unique template is created according to the mentioned information just after dimension

reduction like the PCA technique, which is applied to eliminate the unnecessary compo-

nents that won’t be used during image reconstruction [12]. In face recognition systems,

features are extracted from the lines and the segmented regions based on region segmen-

tation and line of interest, as shown in Figure 2.3 [2]. After that, the ordered set of face

features are constructed according to the classification of these feature vectors. Indeed,

people recognize each other by using this method.

On the other hand, there are two different categories in eye-based authentication:

(i) iris recognition, and (ii) retina recognition, among which iris recognition is approved
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to be more accurate than retina recognition. In iris recognition, data are extracted from

the external colorful ring around the pupil, as shown in Figure 2.4 [13]. As the biometric

template of the iris, the iris-code, which is the binary string extracted from the eye image,

along with a bit mask are stored in the database. Iris-based authentication could easily be

done with checking the matching/mismatching score of two iris-codes.

Figure 2.3: Face Recognition [2]

Figure 2.4: iris Recognition

As discussed above, biometrics have physical and behavioral characteristic. Record-

ing the behavioral characteristics is much more easier than capturing the physical char-

acteristics. For instance, signatures are being collected in many different applications for

authentication and identification purposes. Also, voice could be recorded easily with a

cheap and simple device. The only problem with these methods is that they are not as

stable as physical characteristics-based methods. For instance, a user’s signature may not

be consistent, meaning that it could change over time, and thus, it could cause problems

for the corresponding signature verification system. As another example, in a voice ver-

ification system, if there exists a little noise in the background, then the spoken phrase

could not be recorded accurately, which becomes problematic for the voice verification

system. In brief, physical characteristics are utmost persistent during the users’ lifetime,

unless an injury happens.
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In this thesis, biometrics is used for key generation purposes, indeed fingerprints are

utilized in our protocol evaluations. Since, our protocol is not a pure biometric authenti-

cation/verification protocol, but rather it is a key generation/agreement protocol, we use

correct key generation rates (CKGR) and incorrect key generation rates (IKGR). The key

agreement protocol becomes more secure as the IKGR decreases and CKGR increases.

2.2 Cryptography

Cryptography is a Greek word, within which crypto means hidden or secret, and graphein

means writing. It is called to a study that makes the communication between two parties

secure in the presence of adversaries. Cryptography is not just a new knowledge, we

can see it in prehistoric Egyptian hieroglyphs: specific communication tools are used

by the high-casts to protect their community. Also, in ancient Greece, the main reason

of winning/loosing a battle was secret communication. These types of cryptography is

called conventional cryptography. The modern cryptography started from the middle of

the last century. Mr. Horst Feistel, who worked at IBM in 1977, designed Data Encryption

Standard (DES), which was the starting point of cryptography in information technology.

Nowadays, most of the communication systems, such as banking networks, internet, cell

phones and etc., are using this kind of cryptography.

Cryptography is used to provide a number of goals: confidentiality, integrity, authen-

tication and identification. In every cryptographic model, the following terms are uti-

lized [14] [15]:

(i) Plaintext is the original message,

(ii) Ciphertext is the output of the encryption algorithm,

(iii) Secret Key is the key that is used through the encryption process (it is selected

independently),
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(iv) Encryption is the process or algorithm that encodes the plaintext by using the secret

key, output of which is called the ciphertext, and

(v) Decryption is the process or algorithm that decodes the ciphertext into the plaintext

using the secret key.

The process of secure communication among two parties is shown in Figure 2.5. Addi-

tionally, it is important to note here that encrypting a plaintext with two different keys will

yield to two different ciphertexts, and likewise, encrpyting two different ciphertexts with

the same key will yield to two different ciphertexts.

In the below subsections, we describe the cryptographic primitives that we use in our

constructions.

Figure 2.5: General methodology of cryptographic secure communication

2.2.1 Symmetric Key

Cryptographic systems are divided into two different categories depending on the key dis-

tribution process: (i) symmetric key cryptography, and (ii) asymmetric key cryptography.

In the former, which is visualized in Figure 2.6, the same secret key is used for all com-

munications between the two parties, while in the latter, public keys (which are known

to everyone) and private keys (which are known only for the owner) are required for en-

cryption and decryption operations, respectively. Since our protocol uses symmetric key,

cryptography, only it will be described in detail in the following paragraphs.
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Figure 2.6: Secret Key Cryptography

In the symmetric key cryptography, in all cryptographic operations, like encryption

and decryption, the same key is utilized, and that’s why sometimes it is called as secret

key cryptography [16]. As defined in Kerckhoff’s Principle [17], the secrecy of a crypto-

graphic system depends on the strength of its secret key, since every other detail should be

public. Therefore, in symmetric key cryptography, the only thing that is important for its

secrecy is the strength of its secret encryption key. It means that an attacker should not be

able to figure out what the secret key is using a number of ciphertexts and/or plaintexts.

The most important advantage of symmetric key cryptography is its efficiency when

implementing the primitive operations [18], while the disadvantages of symmetric key

cryptography include the key exchange problem and proliferation of the secret keys. To

communicate privately, each pair of the users need unique and specific secret keys for

their communication sessions, so this may lead to proliferation of the keys. Therefore,

to establish a secure communication, a key agreement protocol should run between each

pair of the users to exchange the secret key: it is the process that should be done before

sending a message. Thus, key exchange is neither easy nor trivial, and it makes the key

management process difficult.

Key management establishes methods for generating, exchanging, using and storing

the secret keys. Key establishment could only be key distribution or key agreement be-

tween two or more parties [19] [14]. There are lots of different key distribution schemes,

but in general, it is known to be a process in which one of the users creates a secret key and

sends it to the other user through a secure channel, because otherwise, an adversary could

generate the key and send it to both of the communicating entities. On the other hand,

in key agreement process, a shared secret key is derived by two or more communicating
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parties. Different from key distribution, in key agreement, none of the communicating

parties has any information about the secret key prior to the process. It is important to

note here that the key agreement protocol should not leak any information about the secret

key to be agreed upon to the adversary.

In this thesis, we propose a novel secure key agreement protocol, in which the server

and the user agree on a secure key that is generated using the fingerprint features, as

mentioned in Section 2.1.

2.2.2 Hash Functions

Hash function is a mathematical function which converts a numerical value of an arbitrary

length to a numerical value of a fixed length, as shown in Figure 2.7. The output value of

a hash function is called a message digest or a hash value. There are two strict require-

ments that a hash function should satisfy: (i) it should provide enough randomness for the

outputs, and (ii) the output should change completely even if a bit changes in the input.

Moreover, a cryptographic hash function should contain the following properties as well:

(i) it should has pre-image resistance, which means that reversing a hash function should

be computationally hard, and (ii) it should has collision resistance, which means that for

a particular hash function output, we should not be able to find two different inputs, even

with different lengths. There are two common applications for hash function utilization,

regarding the aforementioned properties. The first one is password storage, in which in-

stead of storing the password in clear, the hash value of it is stored in the system. The

second one is data integrity check, through which users can make sure about data cor-

rectness. In addition, hash functions can also be used in digital signatures and message

authentication [20].

In the following paragraphs, SHA and HMAC are explained as they are utilized in this

thesis.
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Figure 2.7: Hash Function

Secure Hash Algorithm (SHA)

NIST (National Institute of Standards and Technology) and NSA (National Security

Agency) have developed a set of algorithms in 1993, which are a family of crypto-

graphic hash functions that referred as Secure Hash Algorithm (SHA). The most com-

monly known versions of SHA are SHA-1, SHA-256, SHA-384 and SHA-512, the details

of which are as given in Table 2.1. SHA-1 was proposed in 1995 to overcome the weak-

nesses of SHA-0, which is the oldest in the family [21]. On the other hand, the others,

i.e., SHA-256, SHA-384 and SHA-512, are known to be the subsets of SHA-2, which

was proposed in [22]. Since 2005, NIST have decided to use SHA-2 as the standard hash

algorithm.

In our key agreement protocol that we propose in Section 4, we use SHA-256, which

has a message digest of size 256, as given in Table 2.1.

Table 2.1: Various SHA versions

Parameter SHA-1 SHA-256 SHA-384 SHA-512
Message digest size (in bits) 160 256 384 512

Parameter < 264 264 2128 2128

Message size (in bits) 512 512 1024 1024
Block size (in bits) 32 32 64 64
Word size (in bits) 80 64 80 80
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Keyed-Hash Message Authentication Code (HMAC)

A keyed-hash message authentication code (HMAC) is a particular kind of MAC (Mes-

sage Authentication Code) that consists of a secret key and a hash function [23]. The most

important advantages of HMAC are that it is not only much more faster but also much

more efficient than symmetric encryption [14]. As mentioned in Section 2.2.2, although

the length of a hash function’s input can be an arbitrary value, its output is a fixed length

message. Herewith, the efficiency of the cryptosystem can be maximized by decreasing

the length of a long message with the use of HMAC. In other words, HMAC is a MAC

that is used to authenticate data by applying a hash function like SHA-256 over the data

with a secret key. It is mostly analogous to using digital signatures, but just HMAC uses

symmetric key cryptography, while digital signature uses asymmetric key cryptography.

In our key agreement protocol that we propose in Section 4, we use SHA-256 in our

HMAC algorithm, as also mentioned above.

2.3 Biometric Cryptosystems

We need cryptography in order to carry out a trustful communication. In traditional cryp-

tosystems, users are authenticated based on secret keys, in which if the key cannot be

kept secret, the authentication fails. Indeed, using the biometric characteristics of a user

could solve such problems. Therefore, researchers proposed a combination of cryptogra-

phy and biometrics to provide an effective solution for data security, and they named this

combination bio-cryptography or crypto-biometry.

Bio-cryptographic systems are analogous to password-based key generation systems,

just instead of traditional passwords, biometric features are used to generate a crypto-

graphic key, or to secure the cryptographic key [24]. Thus, the main purpose of devel-

oping biometric cryptosystems is either to generate a symmetric key by using biometric

features or to secure a cryptographic key with the help of biometric features [25]. We
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can categorize biometric cryptosystems to (i) key binding, and (ii) key generation. Key

binding is referred to a system in which a secure sketch is obtained by combining the bio-

metric template with a cryptographic key. On the other hand, key generation is a method

using which a secure sketch is derived directly from the biometric template, and it is used

as the cryptographic key itself.

Since cryptographic systems require the exact same key to accept a user, in key bind-

ing and key generation based biometric cryptosystems, the intra-user diferences of bio-

metric templates are problematic. To solve this type of problems, fuzzy key binding meth-

ods such as fuzzy commitment [26] and fuzzy vault [27] are presented. Among the above

techniques, the fuzzy vault scheme became popular for biometric template protection,

which has been implemented for iris [28], face [29] and fingerprint [30–34].

The most interesting context in biometric cryptosystems is key management; but, gen-

erating the key from biometric features is difficult due to the biometrics being noisy and

including intra-user variations. Chang et al. [35] and Veilhauer et al. [36] propose a user

specific quantization scheme, for generating secret keys from biometric data, in which

helper data is the intra-user variations. Besides, fuzzy extractor and secure sketch are pro-

posed by Dodies et al. [37] in the field of biometric key generation. The fuzzy extractor

generates the cryptographic keys based on the biometric features, and the secure sketch

is a helper data, which has less information leakage. The two famous methods of fuzzy

extractors are fuzzy commitment and fuzzy vault, which are described in detail in the below

paragraphs.

Fuzzy Commitment

Fuzzy commitment [26] is used to secure the biometric features of the individuals, which

are in the form of binary vectors such as the iris code. The method is composed of two

phases: (i) enrollment phase, and (ii) authentication phase, details of which are visualized

in Figure 2.8. In the enrollment phase, first a key k that is in the form of a codeword is

selected and a hash function is applied on it, H(k). Then, XOR of the biometric template
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and H(k) is calculated, which actually is the encrypted message of the fuzzy commitment

scheme. In the authentication phase, XOR of the biometric query template’s feature vector

and the encrypted message is calculated, and then the hash function is applied on the result

to check its correctness. It has been shown that, with the fuzzy commitment scheme, not

only the key but also the biometrics of the user could be reconstructed by the attacker,

with the use of error correction codes and statistical attacks [26].

Fuzzy Vault

The fuzzy vault scheme [27] is one of most popular biometric template protection schemes

that in contrast with fuzzy commitment, is applicable on unordered set of biometric data

such as fingerprints. The method is also composed of two phases: (i) enrollment phase,

and (ii) authentication phase. In the enrollment phase, first, a secret key k is selected.

After that, a polynomial P(x) is indexed with the selected secret key k. For each point of

the biometric template’s feature, the polynomial is evaluated, (x,p(x)). In order to increase

the security of these calculated values, a large number of fake points are generated, which

should not lie on the polynomial P(x). At the end, the collection of genuine and fake

points are named as the vault. In the authentication phase, assuming that the query of

unordered biometrics is x’, with the use of Lagrange interpolation, P(x) is reconstructed

using the genuine points are that determined from the query template x’. If P(x) could be

reconstructed, its coefficient, forming the secret key k’, is corrected with the help of error

correction codes, which will yield to the secret key k.

There are many researches in the literature about the fuzzy vault scheme that are based

on fingerprint [31] [33] [38], iris [28] [39] [40] and face [29] [41]. Nevertheless, various

attacks against the fuzzy vault scheme are discovered, such as brute-force attack [42],

blended substitution attack [43], stolen key inversion attack [43] and correlation based

attacks [44]. For instance, in [45], despite the fact that the authors have developed a

fingerprint based fuzzy vault scheme, the proposed method includes information leakage.

The problem happens when the authors add chaff points to the vault. These chaff points
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Figure 2.8: Fuzzy Commitment Scheme
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are close to each other and far from the genuine points. Therefore, when the attacker finds

two points that are close to each other and one of them is a chaff point, (s)he could make

sure that the other one is a chaff point as well.

2.4 Cancelable and Noninvertible Biometrics

Nowadays, using the PINs, ID cards and passwords are no longer safe and adequate for

identity verification since they could be easily stolen or shared, as discussed in Section 2.

One of the solutions to this problem is using biometric characteristics in the authentication

process. As mentioned in Section 2.1, physical characteristics are unique for each person,

such as, fingerprint, iris and face; thus using them could be a reliable solution for the

aforementioned problem. Nevertheless, biometrics based models could also cause some

serious concerns [3]: (i) biometrics are not secret, (ii) if an attacker captures a biometric

trait, it cannot be replaced easily and it will be lost forever, (iii) biometrics renewal is

impossible, and (iv) the possibility of cross matching in biometrics database is high. To

overcome these problems, cancelable biometrics [5] have been presented.

Cancelable biometrics is a concept in which the biometric template is protected through

the combination of biometric feature replacement and security. Transforming or chang-

ing the biometric features or the biometric images prior to the matching process is the

main idea of the cancelable biometric systems. The only thing that should be taken into

account is that, during the cancelability process, the natural characteristics of biometrics

should be preserved. Additionally, there are 3 important standards that a cancelable bio-

metric system should include: (i) being specific and reusable, (ii) using a unidirectional

transformation function, and (iii) possessing comparable performance [46].

In cancelable biometrics, instead of storing the original biometric template, first a

transformation function is applied on the captured biometrics and then the result is stored

in the database [3]. If this transformed version of the biometric template is compromised,

then a new transformation function can be applied on the original biometrics. Therefore,
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with this mentioned solution, the first three concerns about biometrics will be resolved.

Moreover, for solving the cross matching problem, different transformation functions can

be applied for different applications.

Cancelable biometrics can be classified into being (i) invertible and (ii) noninvertible.

In invertible cancelable biometrics, if the transformed template is compromised, then the

attacker can find the original biometric template of the user [25]. In noninvertible can-

celable biometrics, a one way transformation function is used, which means that even

if either of the transformation function and its parameters or the transformed template

is compromised, obtaining the original biomterics is computationally infeasible. There-

fore, we can make sure that the original biometrics could not be captured when we used

noninvertible cancelable biometrics.

Cancelable noninvertible biometrics presents a solution to provide privacy for the user,

in a way that, in the authentication phase, the user would not identify at all. The data that

is produced by using noninvertible transformation guarantees that the original biometrics

template will be protected [47]. As mentioned above, renewing someone’s biometric is

difficult and it is not like renewing PINs or passwords. However, cancelable biometrics

allow a user to re-issue her/his biometrics. First of all, prior to the matching process, the

original biometrics is mixed up and the new data is stored in the database. Secondly, if

the data is compromised, then the mixing parameters can be changed and a new data can

be produced instead of the compromised one. Figure 2.9 demonstrates the re-issuing of

the original biometric data on cancelable biometric systems [48].
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Figure 2.9: Re-issuing in Cancelable Biometrics Systems
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3 Related Work and Problem Statement

In this section, we discuss the literature of the related works and we mention about the

problem statement of this thesis.

3.1 Related Work

In a biometric system, biometric template protection is of great importance. Once a bio-

metric template of a user is compromised, it could not be replaced. To overcome the

above-mentioned problem, Jein et al. propose two approaches: (i) biometric cryptosys-

tems, and (ii) feature transformation [49]. In biometric cryptosystems, the cryptographic

key of the security protocol could be generated from the biometrics itself, or it could be

binded to the biometrics. In both cases, only the helper data is stored in the database,

while the key and the biometrics template are discarded. Therefore, the attacker can not

find any information about the key and the biometrics from the stored helper data; so to

reproduce a key from another biometric, it is really useful. Besides, Dodis et al. [37]

present fuzzy extractor and secure sketch, which are two well-known approaches in bio-

metric cryptosystem. Fuzzy commitment [26] and fuzzy vault [27] are examples of fuzzy

extractor and key binding method, as mentioned in Section 2.3. On the other hand, in

feature transformation, the data is transformed prior to the matching process and then it is

stored in the database. The transformation function is a one-way function that makes re-

covering the original template from the transformed one hard.Thus, the original template

stays safe.
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Ratha et al. [3] recommend 3 types of noninvertible cancelable biometric transforma-

tion methods for fingerprint templates: (i) Cartesian transformation, (ii) polar transfor-

mation, and (iii) functional transformation, as shown in Figure 3.1. In Cartesian trans-

formation, firstly, minutiae positions are normalized according to the singular point and

then each fingerprint is partitioned into fixed sized rectangular cells. Finally, the positions

of these generated rectangular cells are rearranged based on a mapping matrix, which is

public information. In polar transformation, the polar coordinates of the minutiae are

calculated based on the position of the core point, and then these calculated polar coor-

dinates are divided into sectors. Finally, based on the translation key, and according to

the changes of sector positions, positions of the minutiae are changed. At the same time,

the minutiae angles are changed based on the variation of the sector positions before and

after the transformation. As a last method, in the functional transformation, the authors

propose to apply a local value smoothing function on the captured biometric template us-

ing a random key. Although the authors mentioned that their functional transformation is

noninvertible, it can be shown that if an attacker uses a correlation attack, (s)he can find

the original biometric templates.

Figure 3.1: Cancelable Noninvertible Transformation Functions [3]

Several research have showed that the proposed noninvertible cancelable methods in

[3] are not resistant against correlation and brute-force attacks [50] [51]. Alternatively,

Jin et al. [52] propose BioHash, which is a cancelable and noninvertible biometrics ap-

proach. In this method, first, the authors extract the most specific characteristics of the
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biometric features, and then, based on a user specific random matrix, these characteris-

tics are placed on a set of randomly generated orthogonal directions. Besides, Farooq et

al. [53] propose an approach which could be useful for implementing BioHash. In their

model, the authors convert fingerprint minutiae into a binary string area. After that, these

binary number representations are transformed to anonymous representations according

to a unique personal key. The authors claim that the proposed transformation method is

noninvertible, and also the template is cancelable. They mention that the template could

be canceled just by entering a various new key. Notwithstanding, Nandakumar et al. [49]

discuss that BioHash is indeed invertible. On the other hand, Chikkerur et al. [54] pro-

pose another method to generate cancelable fingerprint templates. In this method, from

the fingerprint image, small pieces of minutiae are extracted and then without changing

the distance between each of these small pieces of minutiae, the authors transform them to

projection matrices. Unfortunately, the accuracy of this method is shown to be poor [48].

In the below paragraphs, we describe the two valuable related works that our proposed

key agreement protocol is based upon,a biometric cryptosystem and a feature transforma-

tion method.

Secure key agreement using pure biometrics (SKA-PB)

Akdoğan et al. [7] propose SKA-PB, secure key agreement protocol using pure biomet-

rics, in which the keys are generated using fingerprint’s minutiae points that are directly

extracted from the fingerprint images, without any other helper data. SKA-PB has two

phases: (i) enrollment phase, and (ii) verification phase.

In the enrollment phase of the SKA-PB protocol, first of all, the user provides three

fingerprint images of the same finger. Minutiae values, (x,y,type), are extracted from these

fingerprint images. The authors produce the fingerprint template based on the minutiae

set, according to the following method. Firstly, a distance threshold, Tdist is set up and

some representative minutiae points are found according to that value. The representative

is a minutia point which is utmost Tdist-away of any other minutiae that has the smallest
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y- coordinate value. To generate the final minutiae template, the server puts these three

minutiae templates on top of each other and if a minutia point shows up at least in two out

of three templates, it is added to the final minutiae template. There is also a neighborhood

relation defined in the SKA-PB protocol, which is for the coordinates xi and yi of a partic-

ular minutia, all the points that are in the range of [xi-Tdist,xi+Tdist] and [yi-Tdist,yi+Tdist]

are considered as a neighborhood minutiae. After each points’ neighborhoods are found,

the minutia values xi, yi and type of each particular point and its neighbors are concate-

nated separately, and hashed as follows, H1(xi||yi||type). Then, the authors store these

hashed values as each user’s template in the server side.

In the verification phase of the SKA-PB protocol, three different fingerprints of the

same finger are captured and fingerprint’s minutiae are extracted like in the enrollment

phase. As mentioned above, according to the predefined distance threshold Tdist, some

representative minutiae are selected and the other minutiae are mapped to their repre-

sentatives. Likewise, the most reliable minutiae, are calculated as in the enrollment

phase. In the following, to keep the genuine points safe and secure, the authors add some

chaff points according to a predefined strategy: fake points should also preserve Tdist-

neighborhood relation; in other words they should be Tdist-away from all other points,

both genuine and fake points. They developed this method to decrease the risk of infor-

mation leakage to the attacker. Therefore, like in the enrollment phase, the concatenation

of the minutiae values xi, yi and type, for both genuine and fake points, are computed.

Then, the authors calculate the single and double hash values of these minutiae values,

(xi||yi||type). In the following, they transmit the double hashes and the ID’s of each user

to the server. At this point, the server and the user try to find a common set of minu-

tiae points. Then, a similarity score is calculated and if the number of common minutiae

points is above the predefined similarity score, then the user will be accepted; otherwise,

the server will just reject the user. Since the SKA-PB protocol runs in a round manner, if

in any round the user gets rejected, the protocol will start a new round.

24



Cancelable fuzzy vault with periodic transformation

Dang et al. [8] present a cancelable and noninvertible fuzzy vault model that uses a pe-

riodic transformation function on the face features of the users. The proposed scheme

includes enrollment and authentication phases. In the enrollment phase, first the feature

vector X is extracted from the user’s face images. After that, the periods P of the feature

vector X are calculated. Then, after these periods are concatenated, they are hashed to be

kept safe and stored in the database. In addition, for the proper recovery of the periods

P, in the authentication part, the authors calculate Reed-Solomon error correction code

for those P values. Then, a periodic transformation function, which is a sine transforma-

tion, is applied on the extracted face feature vectors, which is called Y. In the following,

the authors construct the fuzzy vault polynomial using a randomly generated key as the

coefficient of the mentioned polynomial. The hash value of this randomly generated key

is stored in the database to be used during the matching process later in the authentica-

tion phase. Next, to produce the genuine points for the fuzzy vault, the authors apply

the above-mentioned polynomial on the transformed feature vector Y. In addition, they

introduce a set of fake points to the fuzzy vault. All of these points, i.e., both the genuine

and the fake points, are stored in the fuzzy vault database.

In the authentication phase, the user’s face image is first recorded. Then, the face

related feature vector X’ and the corresponding period vector P’ are extracted. There-

fore, using the Read-Solomon error correction code, the calculated period vector P’ is

corrected. Then, the hash of the period vector P’ is compared to the hash of the period

vector P, and if they match, a periodic transformation function, the sine transformation,

is applied on the feature vector X’ to find the feature vector Y’. Otherwise, authentication

fails. If the transformed feature vectors Y’ and Y have enough overlap with each other

when the fuzzy vault’s decoding step is performed, then the key will be recovered cor-

rectly. After that, the hashed value of the recovered key is compared with the randomly

generated key. If they match, the user is verified; otherwise, the authentication fails.
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3.2 Problem Statement

In most of the key binding or key generation based existing methods proposed for key

agreement, helper data is utilized along with pure biometrics, which complicates the over-

all system. Although Akdoğan et al. [7] proposed a method that generates the key directly

from the captured biometrics without the use of a helper data, it suffers from being lack of

cancellability and noninvertibility properties. On the other hand, Dang et al. [8] proposed

a method to overcome this shortage, which makes the fuzzy vault scheme cancelable and

noninvertible. The authors apply a periodic transformation function on the face features,

which is a one dimensional vector, and they use the Reed-Solomon error correction code

in their proposed method. As discussed by Akdoğan et al. [7], the SKA-PB key agree-

ment protocol has larger attack complexity in comparison with the fuzzy vault scheme.

Also, the SKA-PB protocol is really stronger against brute-force attacks than the fuzzy

vault approach. Therefore, to overcome the above-mentioned problems and to provide

a more secure environment, in this thesis, we combine the idea of cancelable noninvert-

ible transformation with the proposed SKA-PB protocol, and we present SKA-CaNPT, a

secure key agreement protocol that uses cancelable and noninvertible biometrics.
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4 Secure Key Agreement Protocol using
Cancelable and Noninvertible Biomet-
rics based on Periodic Transformation

In this section, we provide a detailed explanation of our proposed protocol SKA-

CaNPT: Secure Key Agreement Protocol using Cancelable and Noninvertible Biometrics

based on Periodic Transformation, which is given in Algorithm 1 and visualized in Figure

4.1. As a proof of fact, we apply our SKA-CaNPT protocol on fingerprints. Our proposed

approach is composed of two phases: (i) enrollment phase, and (ii) verification phase,

each of which is explained in the below subsections one by one as it is shown in Figure

4.2. In the enrollment phase, minutiae are extracted from the captured biometric data and

they are transformed with our periodic transformation algorithm. After that, the biometric

template of the user is calculated through the process of finding the most reliable minutiae

and the constructed templates are stored in the server database so that it can be used in the

matching process later. Moreover, in the verification phase, the most reliable minutiae is

calculated with the user’s newly registered fingerprints, after feature extraction and peri-

odic transformation operations are performed. In this phase, the template is composed of

genuine minutiae and the generated chaff points. In the following, the user and the server

try to find a common set of minutiae and a similarity score is calculated according to the

number of the found common minutiae. Depending on this the calculated similarity score,

our SKA-CaNPT protocol decides whether to reject or to accept the corresponding user.

If the user is accepted, then the server and the user make an agreement on a symmetric

key. Otherwise, the user is rejected and the protocol will srart from beginning.
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Algorithm 1 Template Generation Algorithm
INPUT: FP1, FP2, FP3, r
OUTPUT: GT

s

1: Ginit
s = ExtractMinutiae(FP1, FP2, FP3)

2: for i = 1 : |Ginit
s | − 1 do

3: m1 = Ginit
s (i) = (xi, yi)

4: mx = xi ÷ 2π
5: my = yi ÷ 2π
6: αi = xi −mx2π
7: βi = yi −my2π
8: x′i = arcsin(r)− αi

9: y′i = arcsin(r)− βi

10: m1 = (x′i, y
′
i)

11: for j = i+ 1 : |Ginit
s | do

12: m2 = Ginit
s (j)

13: if m1.x
′ ≥ m2.x− (2 ∗ Tdist)&

14: m1.x
′ ≤ m2.x+ (2 ∗ Tdist)&

15: m1.y ≥ m2.y − (2 ∗ Tdist)&
16: m1.y

′ ≤ m2.y + (2 ∗ Tdist)&
17: m1.type == m2.type then
18: m1.visited++
19: end if
20: end for
21: end for
22: for i = 1 : |Ginit

s | do
23: if Ginit

s (i).visited < 2 then
24: Remove ith minutia from Ginit

s

25: end if
26: end for
27: ind← 1
28: for i = 1 : |Ginit

s | do
29: m1 = Ginit

s (i)
30: for j = (−1) ∗ Tdist : Tdist do
31: for k = (−1) ∗ Tdist : Tdist do
32: Gs(ind) = H1(m1.x+ j||m1.y + k||m1.type)
33: ind← ind+ 1
34: end for
35: end for
36: end for
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USER SERVER

gTu = CT (gu) ∀gu ∈ Gu

cT = CT (c) ∀c ∈ C
H2(gTu ) ∀gu ∈ Gu

H2(cT ) ∀c ∈ C

Qu = mix(H2(gTu ) ∪H2(cT ))

FOREACH G
′
u ⊂ Gu : |G′

u| = |G
′
s|

Kus = H1(
|G′

s|
k=1H

1(g
′
u,k)) ∀g

′
u ∈ G

′
u

IF HMACKsu(msg) == HMACKus(msg) → ACCEPT
and BREAK
IF NOT ACCEPTED→ RETRY

FOREACH G
′′
u,1 ⊂ G

′
u : |G′′

u,1| = |G
′
s| − 1

Kus = H1(
|G′

s|−1
k=1 H1(g

′′
u,k)) ∀g

′′
u ∈ G

′′
u,1

IF HMACKi
su
(msg) == HMACKus(msg) → ACCEPT

and BREAK
IF NOT ACCEPTED→ RETRY

FOREACH G
′′
u,j ⊂ G

′
u : |G′′

u,j | = |G
′
s| − j

Kus = H1(
|G′

s|−j
k=1 H1(g

′′
u,k)) ∀g

′′
u ∈ G

′′
u,j

IF HMACKi
su
(msg) == HMACKus(msg) → ACCEPT

and BREAK
IF NOT ACCEPTED→ RETRY

GT
s = CT (gs)

G
′
s = Qu ∩GT

s

S = |G′
s|2/(nu × ns)

IF S < Tsim → REJECT
ELSE

Ksu = H1(
|G′

s|
k=1H

1(g
′
s,k)) ∀g

′
s ∈ G

′
s

S = (|G′
s| − 1)2/(nu × ns)

IF S < Tsim → REJECT
ELSE

FOREACH G
′′
s,1 ⊂ G

′
s : |G

′′
s,1| = |G

′
s| − 1

Ki
su = H1(

|G′
s|−1

k=1 H1(g
′′
s,k)) ∀g

′′
s ∈ G

′′
s,1

S = (|G′
s| − j)2/(nu × ns)

IF S < Tsim → REJECT
ELSE

FOREACH G
′′
s,j ⊂ G

′
s : |G

′′
s,j | = |G

′
s| − j

Ki
su = H1(

|G′
s|−j

k=1 H1(g
′′
s,k)) ∀g

′′
s ∈ G

′′
s,j

qqq

userID ||Qu

REJECT

|G′
s| ||HMACKsu(msg)

ACCEPT

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

Figure 4.1: Our proposed cancelable and noninvertible secure key agreement protocol
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Figure 4.2: Our proposed cancelable and noninvertible secure key agreement protocol

Our approach basically combines the SKA-PB protocol that is proposed by Akdoğan

et al. [7] and the idea of using a transformation function that is proposed by Dang et.

al [8]. The periodic transformation function that we utilize has two important proper-

ties. The first one is similarity reservation, which means that the similarity of distances

between the original templates and the transformed templates should be preserved. This

property ensures that the two transformed fingerprint feature vectors will be similar to

those of the two original fingerprint feature vectors. The second important property is the

noninvertibility, which means that the original fingerprint templates should be protected

against compromise forever. Table 4.1 gives the definition of symbols that are used in our

SKA-CaNPT protocol.
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Table 4.1: Symbols used in SKA-CaNPT Protocol Definition

Symbol Description
FP Fingerprint
x Location of minutia on x-coordinate
y Location of minutia on y-coordinate

type Type of a minutia
x′ Location of minutia after transformation on x-coordinate
y′ Location of minutia after transformation on y-coordinate
r A random number between [−1, 1]
mx Modulus number of x-coordinate
my Modulus number of y-coordinate
CT () Cancelable and noninvertible transformation function
nu Total number of genuine minutiae on the user side
ns Total number of genuine minutiae on the server side
ncom Number of common minutiae found by the server
nkey

com Number of minutiae used in the final key agreement
H i(·) Hash function applied i times (i ≥ 0)
Gs Set of genuine minutiae on the server side
GT

s Transformed set of genuine minutiae on the server side
Gu Set of genuine minutiae on the user side
gTu Transformed set of genuine minutiae on the user side
C Set of fake minutiae on the user side
CT Transformed set of fake minutiae on the user side

Qu
Set of shuffled

(
H2(gTu ) ∪H2(cT )

)
s.t. gTu ∈ GT

u & cT ∈ CT

S Similarity score
Tsim Acceptance similarity score threshold
Tdist Distance threshold used in neighborhood definition

Ki
(us,su)

Ki ith key generated (i ≥ 0)
us by the user to communicate with the server
su by the server to communicate with the user

HMAC(·) Keyed-Hashing for Message Authentication
HMACKus(·) HMAC generated using Kus

HMACKsu(·) HMAC generated using Ksu

HMACKi
su
(·) HMAC generated using Ki

su

attc Attack complexity
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4.1 Enrolment Phase

In the enrolment phase, the user is asked to provide 3 fingerprint images of her/his same

finger, FP1, FP2, FP3, using which the minutia are extracted, as it is performed in SKA-

PB [7]. The stored information per minutiae are composed of 3 attributes: locations of

the x-coordinate and the y-coordinate, and the type of the minutia. Each minutia could

categorize to two different types: end and bifurcation. If the ridge in a point splits into

two ridges, then it is called bifurcation, and if it terminates, then it is called end. In other

respects, for adding the cancelability and noninvertibility properties, we are following the

below defined steps [8]

(i) Modulus Extraction: We use the sine function as our transformation function. Due

to the fact that the sine function is a periodic function with a period of 2π, we find

the modules of each minutia coordinate separately, i.e. we calculate the modulus for

the x-coordinate and the y-coordinate of each minutiae. Therefore, for each minu-

tiae coordinate xi and yi, we have a definition as given in Equation 4.1, in which m

is the modulus number of x and y. Hence, the modules of these coordinates mxi

and my
i

are calculated as in Equation 4.2.

xi = αi +mxi2π

yi = βi +myi2π
(4.1)

mxi = [xi ÷ 2π]

myi = [yi ÷ 2π]
(4.2)

In the following you can find modulus extraction example:
xi = 272

yi = 87

mxi = [272÷ 2π] = 43

myi = [87÷ 2π] = 14
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(ii) Sine Transformation: After the pmodulus extraction operations are completed, we

transform the minutiae coordinates xi and yi as defined in Equation 4.4, using the

analogy behind Equation 4.3. We are using the sine periodic transformation func-

tion as our cancelable noninvertible transformation function, which is a many-to-

one function. It means that each one of the xi and yi coordinate values are trans-

formed to some particular x′i and y′i coordinate values in the transformed domain,

while for each specified x′i and y′i coordinate values in the original space, we could

find a lot of xi and yi coordinate values. Having many different correspondent val-

ues with the particular x′i and y′i coordinates, the above-mentioned discourse can

be accepted as a proof for the noninvertibility property of the sine transformation

function.

sin(xi + x′i) = ri

sin(yi + y′i) = ri

(4.3)

x′i = arcsin(ri)− αi

y′i = arcsin(ri)− βi
(4.4)

After the modulus extraction and sine transformation operations are completed, each

fingerprint’s template is produced according to its list of minutiae. For template gener-

ation, the groups of minutiae are categorized with respect to a given distance threshold,

Tdist, and a representative minutia is selected for each group of minutiae, as described

by Akdoğan et al. [7]. Then, the minutiae are quantized according to the selected rep-

resentative: the minutiae having the same minutiae type and being utmost Tdist-away to

any other minutiae are mapped to the one minutia having the smallest y-coordinate value.

Thereafter in order to find the most reliable minutia, the server puts these fingerprint tem-

plates on top of each other. If a minutia shows up in at least two out of three fingerprint’s

templates, then as described in SKA-PB [7], it is counted as a reliable minutia, and it will

be added to the final fingerprint’s template. Finally, the concatenation of (xi||yi||type)

are calculated for each representative minutiae and its Tdist-neighborhood, as defined by
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Akdoğan et al. [7], and their hashed values, H1(xi||yi||type), are stored in the server side,

separately for each user. This process is performed only in the server side.

4.2 Verification Phase

In the verification phase, like in the enrollment phase, 3 different fingerprints of the same

finger are acquired from the user, as discussed by Akdoğan et al. [7]. The minutiae are ex-

tracted from these fingerprint images and for adding the cancelability and noninvertibility

properties to the extracted minutiae, we apply our periodic transformation function, i.e.

the sine function, on these minutiae, as it is done in the enrollment phase. After that, the

quantization operation is performed to designate the representative minutiae, and the most

reliable minutiae are found, again, as in the enrolment phase.

Differently, in the verification phase, in order to mask the genuine minutiae, we gen-

erate 10*Gu fake minutiae randomly and we transform those randomly generated fake

minutiae with our cancelable noninvertible transformation algorithm. The fake minutiae

points should preserve the Tdist-neighbourhood relation as well. In other words, since our

genuine minutiae points are Tdist-away from other genuine minutiae points, the fake minu-

tiae points should be Tdist-away from all the other minutiae points, in order to decrease the

possibility of information leakage to the attacker and in order not to be distinguishable

from the genuine minutiae points. Afterwards, as explained in SKA-PB [7], the features

of these minutiae points, x-coordinate, y-coordinate and type, are concatenated and two

different hash values are calculated as follows: H1(xi||yi||type) and H2(xi||yi||type).

The single hashes are utilized for generating the key and the double hashes are utilized

for verification purposes, as described below.

As discussed by Akdoğan et al. [7], for finding the common genuine minutiae, the

following steps are carried out. First of all, in the user side, double hashes of the minutiae

points are concatenated with each user’s ID, and then they are transmitted to the server.

Secondly, the server compares each of these double hashed values with the double hashes

of its correspondent user’s minutiae points. In addition, if the user’s genuine minutiae are
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in the Tdist-neighbourhood of the server’s minutiae, then they will be counted as common

genuine minutiae as well. For distinguishing the fake minutia from the genuine minutia, a

comparison is performed between the minutiae of the user and the minutiae of the server,

and a similarity score is computed as given in Equation 4.5, where ncom is the number of

common minutiae, ns is the number of genuine minutiae on the server side, and nu is the

number of genuine minutiae on the user side.

S =
n2
com

nu + ns

× 100 (4.5)

The key agreement process starts if the calculated similarity score is above a prede-

fined acceptance threshold, Tsim, as defined in SKA-PB [7]. When this is the case, firstly,

the server calculates the single hash of all common minutiae, H1(Gs), and then it calcu-

lates the double hash of them to generate the key, which the server and the user will use to

secure their communication, Ksu. In order to make sure that both the server and the user

are using the same key, HMAC of a predefined message, msg, is calculated with Ksu and

it is transmitted to the user together with the number of common minutiae that the server

has found, |G′s|.

After that, according to the number of common found minutiae, the user tries each of

the possible subsets of genuine minutiae with the equal number to generate the key. The

user sends a positive acknowledgement if (s)he can verify the HMAC. Otherwise, s(he)

tries to generate another key with another subset, until (s)he could verify the HMAC or all

the other subsets are tested. The user will send a RETRY message if (s)he cannot verify

the HMAC even all the subsets are tried.

As discussed in the SKA-PB protocol [7], if the user transmits a RETRY message

to the server, a new similarity score is calculated in the server side using |G′s| − 1 as the

common minutiae count, and if it is above Tsim, the server generates all possible keys of all

subsets of the common minutiae that the server found, which has the size equal to |G′s|−1,

and then it computes all HMACs of the predefined message with respect to these keys and

transmits them to the user. Therefore, the user sends a positive acknowledgement if (s)he

can verify any of the transmitted HMAC values with any of the keys which is generated
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based on any subsets of the genuine minutiae with the same size of |G′s| − 1. Along with

the positive acknowledgement, the user also transmits the index of the verified HMAC, i,

to the server. Otherwise, another RETRY message will be transmitted to the server. In this

case, the aforementioned process will repeat with |G′s| − 2. The overall process stops at

the j th iteration if any of the HMAC values cannot be verified by the user or the protocol

finds out that the similarity score of |G′s|−j is under the acceptance threshold, Tsim. At the

very end of the protocol, the server and the user can agree on a symmetric cryptographic

key if the user could verify any of the HMAC values. On the other hand, upon a request,

the server and the user could start from the scratch, if the protocol stops without any key

agreement.

In our SKA-CaNPT protocol, we utilize a cancelable and noninvertible transformation

function, i.e. the sine function, to transform the user’s original biometric feature vector to

a secure transformed template. By this means, if the key is compromised by an attacker,

cancelling the stored biometric template and generating a new one would be easy. To

construct a new fingerprint template, a newly generated random vector r′ will be replaced

with the previous random vector r in the cancelable and noninvertible transformation

algorithm, and then the key agreement protocol can be run with this newly transformed

biometric template from scratch.
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5 Performance Evaluation

For performance evaluation purposes, we have tested our SKA-CaNPT protocol with two

datasets consisting of 30 and 292 different subjects. The first one retrieved from Verifinger

sample database [55], each of which contains 8 images per finger. These fingerprints

are captured by using Cross Match Verifier 300 at 500 ppi [56]. The second dataset

fingerprint images collected using Papilon DS22N at 500 ppi [57] by TÜBITAK 114E557

project team from volunteers in Sabanci University. In this dataset we collect 10 different

image from a finger. In addition, since we expect users to provide fingerprints with good

quality, our dataset is small because large datasets include bad quality fingerprints as well.

We use pre-aligned fingerprint images to test our protocol. As explained by Akdoğan et

al. [7], the fingerprint images are aligned with Matlab R2015a, using their intensity values,

and each fingerprint’s minutiae are extracted using the Neurotechnology Biometric SDK

5.0 Verifinger [55]. In the first dataset, we use the first 3 images to produce fingerprint

templates of the server side and the other 5 are used to generate the user side’s fingerprint

templates. Hence, each subject is tested
(
5
3

)
=10 times. In the second dataset, we use 3

first image to generate a template for the server side and we use the next 7 fingerprint

images to generate fingerprint template in the user side. It means that each subject tested(
7
3

)
=35 times. As we did not utilize registration on the system and we just used alignment

for our fingerprint images, it could be a reason for some of our fails in our key agreement

protocol. Moreover, we have also carried out impostor tests, in which we check each

subject’s template against all other subject’s templates. In our SKA-CaNPT protocol,

we have used SHA-256 hash function [22], as mentioned in Section 2.2.2, so all of the

generated keys are 256 bits long.
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5.1 Performance Metrics and Parameters

The most important performance measure of a biometric cryptosystem is the Error Rate,

which is computed through Incorrect Key Generation Rate (IKGR) and Correct Key Gen-

eration Rate (CKGR). IKGR is the rate of falsely acceptance of impostor users, it means

that the percentage of the impostor users which make an agreement with server about a

key like they are genuine users and CKGR is the rate of truly accept of the genuine users,

it means that the percentage of the server correctly make a agreement on a key with the

genuine users.

On the other hand, randomness of the generated cryptographic keys is one of the

most important concerns for key agreement/generation protocols. Here, Shannon’s en-

tropy [58], which is introduced by Claude E. Shannon, is used to measure the randomness,

as given in Equation 5.1, where Ki represents the key’s ith bit and P (.) is the probability

function. According to this evaluation, the entropy value can be within the range of [0, 1],

in which 1 means maximum randomness.

H = −
∑
i

P (Ki) log2 P (Ki) (5.1)

Besides, distinctiveness of the generated cryptographic keys is another important con-

cern for key agreement/generation protocols. The reason behind this is that, after each

round of the protocol, a different key is required to be generated. Here, the distinctive-

ness of the generated keys are measured by the Hamming distance metric [59], which is

presented by the Rihard Hamming. The Hamming distance defines the difference of the

element positions in two strings of equal length, as shown in Figure 5.1.
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Figure 5.1: Hamming Distance Example

5.2 Verification Results

A similarity score is calculated for each test using Equation 4.5, which is defined in Sec-

tion 4.2. For each subject, the maximum, minimum and average scores of the system

are calculated. Each of these scores are computed using a different acceptance thresh-

old value; thus the IKGR and CKGR of the system are calculated according to different

thresholds. The results show that when the acceptance threshold is set to the maximum

score of the system, the best result is obtained. We find the average number of attempts

to make an agreement on the key which in the first dataset that is 3.068 and in the second

dataset it is 12.44. In addition, in 16 over 30 subjects the correct key is generating in the

first attempt which means in 67.46% and in 197 of 292 subjects of the second dataset in

the first attempt the correct key generated which means in 53.3%. Moreover, in the first

dataset in one subject from 30 subject the server and the user could not make an agree-

ment on a key. Therefore, the success rate according to the maximum score threshold is

96.67% for the first dataset. In the second dataset any key agreement could not occure in

1 subject out of 292 sunjects. Thus, the second dataset’ success rate is 99.65%

Figure 5.2 illustrates the percentages of IKGR and CKGR of the first dataset when

the threshold value is set to the maximum score of the system. As shown in this figure,

the optimum error rate of our SKA-CaNPT protocol achieves when the threshold set to

24.762 with IKGR 0.67% and CKGR 96.67%. The IKGR and CKGR percentages of the

second database is shown in the Figure 5.3. IKGR is 0.95% and CKGR is 90.41% when

the acceptance threshold set to 22.22. For the biocryptographic authentication system

mentioned values are absolutely sufficient.
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Figure 5.2: IKGR and CKGR of the first dataset when threshold is maximum score

Figure 5.3: IKGR and CKGR of the second dataset when threshold is maximum score

5.3 Security Analysis

In this section, we first specify our threat model. Then, we analyze the resistance of our

protocol against brute-force, impersonation and replay attacks. Finally, the qualification

of the keys generated through our SKA-CaNPT protocol is evaluated according to the

Hamming distance and entropy metrics.
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Threat Model

The attacker’s main purpose is as follows: (i) eavesdropping to find the key exchanged

between the server the and users, (ii) impersonating a genuine user, and (iii) trying to find

the original biometric template of a user. Since we are not assuming any secure channel,

the attacker can access to all of the protocol messages, including the hash values and the

HMACs which are transmitted between the user and the server. So, it is possible that the

attacker can learn the number of minutiae which are used to generate the key. Therefore,

using this value, the attacker can try the passive mode brute-force attack to guess the key.

Also, in the active mode, the attacker can apply a replay attack to impersonate a genuine

user. However, in the following paragraphs, we discuss how our protocol is resistant

against these types of attacks.

Resistance Against Brute-force Attacks

A brute-force attack is always an option for an adversary; (s)he can try all possible com-

binations of the keys. In fact, this attack is infeasible against our SKA-CaNPT protocol

since we are using 256 bits long keys in our protocol. Hence, below, we define a more

intelligent brute-force attack by using protocol messages.

All possible minutiae locations and their types are generated by this attack. Although

in our SKA-CaNPT protocol, we first transform the minutiae points prior to message

exchange, Due to the similarity distance preservation property of our cancelable nonin-

vertible transformation function, distances among the two minutiae points remains the

same. Therefore, since the maximum distance between two minutiae points is 512 for the

first dataset and 850 for the second dataset and there are 2 types of minutia, end or bifur-

cation, the attacker should generate 512× 512× 2 = 219 points and 850× 850× 2 = 221

respectively for the first and second database for a brute-force attack and apply the hash

function on them once and twice. However, as mentioned before, we do not assume a

secure channel and thus the attacker have access to Qu,which is the list of transformed
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fake and genuine minutiae. For this reason, the search space of the attacker reduces to

|Qu|. Nevertheless, as shown below, our SKA-CaNPT protocol is still secure against

brute-force attack.

As mentioned above, Qu and nkey
com, the number of minutia for generating the key, are

the information that the attacker has. The attacker should try all the subsets ofQu with the

size of nkey
com for finding all the generated keys. So, the attack complexity can be calculated

with Equation 5.2.

attc =

(|Qu|
nkey
com

)
=

|Qu|!
nkey
com!(|Qu| − nkey

com)!
(5.2)

If we find the attack complexity after each key agreement by using Equation 5.2 and

we compute the average of the attack complexity, we will have the overall attack com-

plexity of the system. With this calculation, the attack complexity of our SKA-CaNPT

protocol is 94 bits for the first dataset, which means that 294 hash and HMAC verifications

are required. Moreover, for the second database the attack complexity is 118 bits which

HMAC verification and hash which is required is 2118. Juliato et al. [60] discuss that one

block of HMAC’s computation takes 0.8977 microseconds even with a particular hard-

ware implementation. Hence, according to the aforementioned complexity, it will take

about 5.6× 1014 years in the first dataset and 9.46× 1021 years in the second dataset for

an attacker to attack our SKA-CaNPT protocol. Therefore, we can claim that our protocol

is sufficiently secure against intelligent brute-force attacks.

Resistance Against Replay and Impersonation Attacks

Impersonating a genuine user to find the correct key is referred to as replay attack. In re-

play attacks, the attacker replays the previously transmitted messages between the server

and the victim user. In order to find the generated key effectively, the attacker needs

to know the genuine minutiae; otherwise, (s)he must check all the combinations of Qu,
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which is the set of the mixed and hashed genuine and fake minutiae points. Since the

transformed version of both genuine and fake minutiae points are listed in Qu, genuine

minutiae points are indistinguishable for the attacker, so (s)he should try all the possible

combinations of Qu using Equation 5.2. Therefore, the complexity of the replay attack is

the same as that of the brute-force attack’s complexity.

In addition, if the attacker tries to generate the key with applying his/her own figer-

print, (s)he will be successful in 0.77% of the cases in the first dataset and ... of the cases

in the second dataset since it is the IKGR performance of our protocol. It is important to

note here that it is a general problem in all biometrics systems and it is not just specific to

our method.

Randomness of the Agreed Keys

Our SKA-CaNPT protocol generates 300 keys from 30 different subjects in the first

dataset. Figure 5.4 illustrates the entropy values for these keys. In this figure, each point

indicates the entropy of each individual key value, which is referred with a different key

ID. Randomness of a key has a direct relation with the entropy value. As much as the

entropy value becomes close to 1, the key gets more random. This figure shows that the

entropy of at least 84% of the keys are greater than 0.994 and the entropy of all of the keys

are greater than 0.9745, which indicates a really good randomness. These keys are gen-

erated with the help of hash functions which are applied to the common minutiae. Since

hash functions introduce some randomness to the input string, we were already expecting

a high randomness value for these results. Hence, we also calculated the entropy of the

concatenated common minutiae (x||y||type), which is shown in Figure5.5. In this figure,

the entropy of the 90.66% of the keys are above 0.98, which is a bit less than the entropy

of the generated keys; but still they provide enough randomness.

The second dataset includes 292 subjects which we generate 35 keys per subject, it

means SKA-CaNPT generate 10220 keys. The entropy values of the keys shown in Fig-

ure5.6.In this dataset approximately 99.3% of the keys have entropy values more than 0.98
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and 100% of the keys have entropy which is grater than 0.95, which shows a sufficient

randomness. As we mentioned before, we are applying the hash function on the concate-

nated common minutiae (x||y||type) for generating the keys which hash functions add a

high randomness to these keys. Therefore, in Figure5.7 the entropy of the concatenated

common minutiae is shown. The entropy value is 0.96 for 92.25% of the concatenated

common minutiae. Since we have a big dataset, having a value around 0.65 is normal.

Therefore, concatenated common minutiae have a really good randomness.

Figure 5.4: Entropy values of the generated keys for the first datasat

Figure 5.5: Entropy values of the concatenated of the transformed minutiae in the first datasat
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Figure 5.6: Entropy values of the generated keys for the second datasat

Figure 5.7: Entropy values of the concatenated of the transformed minutiae in the second datasat

Distinctiveness

Due to the intra-person distinction discussed in Section 2.3, we cannot expect to gen-

erate the same key after each key agreement run. Actually, generating the same key is

unpleasant for us. The reason behind this is that if we generate the same key and if the

key is compromised in one of the sessions, it will increase the risk of compromising mes-

sages from the other sessions as well, which is a concern for the confidentiality of the

system. Indeed, generating different keys in each key agreement run is important for us.

As discussed by Akdoğan et al. [7], according to the quality of the fingerprint scanner,
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the finger’s pressure on the scanner, acquisition enviornment and etc., the order of the

minutiae and their quality can change. The above-mentioned situation can have either a

positive or a negative impact on the key agreement process, depending on the application.

The Hamming distances are calculated to find the differences between the keys of the

same user which are generated from the transformed minutiae, in different key agreement

protocol runs. In the first dataset, 256 bit keys possess an average Hamming distance of

approximately 120-130 bits for each different user. Moreover, as we can see in Figure 5.8,

the minimum distance is equal to 103. Additionally, in the second dataset, the average

Hamming distance of 256 bit keys for each different user possess approximately 120-130

bits, as shown in Figure 5.10, in which the minimum distance is 96 bits.

In addition to the above-mentioned calculations, we have also computed the average

Hamming distance between the keys which are generated from the transformed minutiae

of different users in order to show that different users’ keys are also different from each

other. Figure 5.9 illustrates that in the first dataset, the average Hamming distance changes

between 120-135 bits. Besides, in the second dataset, the average Hamming distance

changes from 120 to 135 bits, as shown in Figure 5.11. Hence, we can conclude that the

average Hamming distance among different users’ keys is close to the average Hamming

distance among the same user’s keys, which means that it is indistinguishable that which

of the two keys belong to different users and which ones belong to the same user.

While generating the keys, we apply a hash function on the concatenation of the minu-

tiae points. Due to the hash function’s property, small change in the minutiae concatention

causes a really huge difference on the hash values. Therefore, we need to calculate the

Hamming distance of the minutiae concatenation to find out the level of unpredictability

of our protocol. However, we compute the attack complexity of the fingerprint similar-

ity attack over the minutiae cancatenations. The length of the minutiae concatenations

vary since in each run of the protocol, the number of found common miutiae is differ-

ent. In this attack, the imposter tries to guess the concatenation of a geniune minutia’s

length, before the hash function is applied on it, according to his/her fingerprint minutiae,

by changing the bits of the minutiae concatenations. If we assume that the Hamming
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distance of the vitims’s minutiae concatenation and the imposter minutiae concatenation

is clear for the imposter and (s)he knows the length of the minutiae concatenation, we

have three different cases: (i) the imposter’s minutiae concatenation is the same as the

victim’s minutiae concatenation, (ii) the imposter’s minutiae concatenation is longer than

the victim’s minutiae concatenation, and (iii) the imposter’s minutiae concatenation is

shorter than the victim’s minutiae concatenation. In each on these cases, the bit strings

are considered equal-length. The quantity of the combination of the locations which are

different shows the attack complexity. In addition, in the third case, the imposters’s minu-

tiae concatenation bits and the victims minutiae concatenations bits are important in the

attack complexity, since the imposter should find them as well. The attack complexity is

calculated for each protocol run. In addition, we find the median of each person’s attack

complexities to learn about the average case behaviour. As a consequence, the overall

complexity of fingerprint similarity attack becomes 2251 for the first dataset, and 2252 for

the second dataset. This amount of complexity is completely sufficient for preserving the

SKA-CaNPT protocol from fingerprint similarity attack.

Figure 5.8: Average Hamming distances of the same user’s keys of the 1st Dataset
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Figure 5.9: Average Hamming distances of the different user’s keys of the 1st Dataset

Figure 5.10: Average Hamming distances of the same user’s keys of the 2nd Dataset

Cancelability and Noninvertibility of Fingerprints’ Template

In order to check the cancelability property of our protocol, we checked the Hamming

distance between the keys which are generated from the transformed minutiae with dif-

ferent random numbers. As we can see in the Figure 5.12 and Figure 5.13, the average

Hamming distance of the first and second datasets are varied between 120-135 bits. As
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Figure 5.11: Average Hamming distances of the different user’s keys of the 2nd Dataset

it is observable, the Hamming distance among the keys of the same user that are trans-

formed with different random keys are similar to the Hamming distance among the keys

of the same user that are transformed with the same random keys. This shows a really

good distinctiveness between these sets of keys. It means that whenever we need to can-

cel the fingerprints’ template, we will obtain a new template which is totally different

from the previous one and it is preserving the original template to be compromised. In

addition, similar to the analysis described in Section 5.3, the fingerprint similarity attack

complexity can be calculated by the Hamming distance among minutiae concatenations

before applying the hash function on the same user’s minutiae points that are transformed

with different random numbers, whose result yields to 2252 in both of the utilized datasets.

This amount of complexity shows that when we cancel the original fingerprints’ template,

the attacker can not substitute the original minutiae with his/her own minutiae. Therefore,

whenever we need to cancel the fingerprints’ template it will be easy and safe.

In order to justify the noninvertibility property, if we assume that an attacker finds

(X ′, Y ′) which X ′ is the location of minutia after transformation on X-coordinate and

Y ′ is the location of minutia after transformation on Y -coordinate, (s)he will try her/his

best to find (X, Y ) (X is the location of minutia on X-coordinate and Y is the location of

minutia on Y -coordinate) using the knowledge of the transformation function and other
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Figure 5.12: Average Hamming distances of the same user’s keys generated with different random
numbers for the 1st Dataset

Figure 5.13: Average Hamming distances of the same user’s keys generated with different random
numbers for the 2nd Dataset

public data. First of all, we should mention that our periodic transformation function has

the many-to-one mapping property. It means that, based on Equation 4.3 and Equation

4.4 X can only be transformed into one X ′, and similarly Y can only be transformed into

one Y ′, while X ′ and Y ′ can be transformed into many Xs and many Y s. Besides, if
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the adversary has X ′, Y ′ and ri, (s)he could find αi and βi, but since the module mi is

unknown, the adversary cannot infer either X or Y .

5.4 Computational Complexity Analysis

The computational complexity of our SKA-CaNPT protocol is computed for the server

and the user separately by calculating the complexity of the transformation function and

calculating the number of key generation attempts.

As we mention in Section 4, our cancelable and noninvertible transformation function

is the sine periodic function. As discussed in [61, 62], the computational complexity of

sin(x) for fixed-point rational inputs are computable in polynomial space. Therefore,

both in the server side and the user side, the transforming functions’ computational com-

plexity is O(n), as n is the total number of the minutiae points. As discussed exclusively

in Section 4 and as can be analyzed from Figure 4.1, the computational complexity of the

server for key generation, can be calculated by Equation 5.3, where ncom is the number of

common found minutiae. Therefore, we can calculate the server’s average computational

complexity based on the average of all key generation attempts against all subjects. It

means that the average complexity of the server in the key generation step is 217 in the

first dataset and 29 in the second dataset. By this means, the total computational complex-

ity of the server in our SKA-CaNPT protocol is equal to 217 in the first dataset and 29 in

the second dataset, since O(n) < O(2n)

servercomplexity =

nkey
com∑

i=ncom

(
ncom

i

)
(5.3)

In the user side, as we discuss in Section 4.2, after extracting the minutiae, we trans-

form the original points by the sine transformation function. As we discussed before, the

computational complexity of this operation is O(n). Afterwards, in the key generation

step, the number of key generation attempts can be calculated according to Equation 5.4,
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in which nu is the number of genuine minutiae in the user side. Therefore, after calcu-

lating all the tests’ computational complexity of the key generation step, we can find the

average of it, which is equal to 239 for the first dataset and 241 for the second dataset.

Indeed, the total computational complexity of the user is equal to 239 for the first dataset

and 241 for the second dataset, since O(n) < O(2n).

usercomplexity =

nkey
com∑

i=ncom

(
nu

i

)
(5.4)

5.5 Communication Complexity Analysis

The communication complexity of our SKA-CaNPT protocol can be computed according

to the bits transmitted between the server and the user. First of all, the user sends a

message to the server which is the starting point of our protocol. This message includes

Qu (set of genuine and fake minutiae) and the user’s ID. Since we are using SHA-256,

Qu has 256 bits and the user ID is a 32 bit integer. In the dataset that we utilize, there are

440 and 550 minutiae points respectively for the first dataset and second dataset, in the

average. Therefore, the communication cost of the first message is equal to (440×256)+

32 = 112672 bits which is equal to 13.75 KB in the first dataset and (550× 256) + 32 =

140832 which is equal to 17.2 KB in the second dataset.

In the following, the second message transmitted from the server to the user can be

either a rejection acknowledgment or ncom and HMAC values. Actually, rejection ac-

knowledgement is just 1 bit, but if the user is accepted then the message will contain

HMAC’s value, which is 256 bits, and the number of common minutia (ncom), which is a

32 bit integer. So, the communication cost of this message is equal to 256 + 32 = 288

bits, in the worst case.

In the next step of our SKA-CaNPT protocol, the user responds to the server’s message

with RETRY or ACCEPT, both of which requires only 1 bit. If the user sends a RETRY
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message, the server can transmit a negative acknowledgement or the list of the HMAC

values. HMAC list contains
(

ncom

ncom−1

)
number of minutiae points. The average of ncom

is equal to 25 for the both datasets. Thus, the average communication cost of this kind

of a message is equal to 256 ×
(
22
21

)
= 5632 bits. If the user can not verify any of the

HMAC values, it will send another RETRY message, which is again 1 bit. On the other

hand, if the SKA-CaNPT protocol continues with an ACCEPT message of the user, then

the positive acknowledgement is 1 bit, and the index of HMAC is a 32 bits integer. So,

the total communication cost is equal to 33 bits.

In the following steps, the server’s communication cost will change according to the

following combinatorial value:
(
ncom

x

)
, where x = ncom−2, ncom−3, ncom−4,...., nkey

com is

the number minutiae which is used in the key generation process. Therefore, until the time

that the key is generated, the communication cost of our SKA-CaNPT protocol changes

in each round. However, the key is generated with an average number of 16 minutiae

in the first dataset and 20 in the second dataset. Thereupon, the average communication

cost in the server side is equal to 256 ×
(
25
16

)
= 523001600 bits = 65.37 MB for the first

dataset and 256 ×
(
25
20

)
= 13601280 bits = 1.70016 MB for the second dataset. On the

other hand, in the first dataset, the total size of the messages transmitted by the server is

65.37 MB and it is 13.75 KB for the user, while in the second dataset, the total size of the

messages transmitted by the server is 1.70016 MB and it is 17.2 KB for the user. Hence,

with today’s Internet quality, the above-mentioned amounts are reasonable.

5.6 Memory Requirement Analysis

In our SKA-CaNPT protocol, the average number of transmitted minutiae is 42.4, which

it is approximately 42 for the first dataset and it is 51 for the second dataset, in the server

side. Moreover, in the server side, we are also storing each minutiae’s neighborhood

points. As we mentioned before, we have a neighborhood relation strategy, by which ac-

cording to a predefined threshold value, we are storing representative minutiae’s neighbor

points in the server. The value of Tdist here is 10. Therefore, each representative minutiae
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is represented with 21 × 21 = 441 points. It means that for each subject, the average

number of minutiae that is stored in the server side is equal to 42 × 441 = 18522 for the

first dataset, and 51 × 441 = 22491 for the second dataset. In addition, before storing

these points on the server, first SHA-256 hash function is applied on them, which means

that each point is 256 bits. The first dataset that we utilize consists of 30 subjects and the

second dataset includes 292 subjects, as mentioned before. Therefore, the total storage

size required by the server is equal to 30 × 18522 × 30 = 142, 248, 960 bits for the first

dataset, and for the second dataset it is 292× 22491× 292 = 1, 917, 672, 624 bits; in the

other meaning, for the first dataset it is 16.9 MB and for the second dataset it is 239.7 MB.

In the case that the server needs to store double hashes of the minutiae points and their

neighbors, the storage amount will become 16.9 × 2 = 33.8 MB and 239.7 × 2 = 479.4

MB for each dataset respectively.

On the other hand, the average number of transmitted minutiae is 39.65, which is

approximately equal to 40, in the first dataset, and it is 50 in the second dataset, in the

user side. Here, the neighboring points are not stored, but 10 × |Gu| chaff points are

added to the original minutiae points. It means that, on the average, in the first dataset,

we are adding 10 × 40 = 400, and in the second dataset 10 × 50 = 500 chaff points

to the original minutiae points. Therefore, in the user side, the total number of minutiae

points for the first dataset is equal to 440 points, and for the second dataset, it is 550

points. In the user side, first we calculate the single hashes of the minutiae points and then

we calculate the double hash values. Hence, in total, our SKA-CaNPT protocol requires

440×256×2 = 28.16 KB of storage for a user in the first dataset, and 550×256×2 = 35.2

KB for the second dataset.

5.7 Comparative Analysis with the Related Work

In this section, we compare our SKA-CaNPT protocol with the SKA-PB protocol that is

presented by Akdoğan et al. [7] and the cancelable fuzzy vault approach that is presented

by Dang et al. [8]. These two protocols are compared with that of ours according to IKGR
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and CKGR percentages and their brute-force attack complexities, as provided in Table 5.1,

where NA means not applicable. We also compared our SKA-CaNPT protocol with the

SKA-PB protocol with respect to replay and impersonation attack complexities together

with the randomness and the distinctiveness of the agreed symmetric keys. The reason

behind not being able to compare our protocol with the cancelable fuzzy vault approach

against these performance metrics is that the authors do not include such analysis in their

corresponding proposal.

The IKGR and CKGR of our SKA-CaNPT protocol is 0.67% and 96.67% for the

first dataset, and 0.95% and 90.41% for the second dataset. These values are 0.57% and

99.43% in the SKA-PB protocol; nevertheless, our results are still reasonable and accept-

able for bio-cryptographic authentication systems. On the other hand, the complexity of

the brute-force, replay and impersonation attacks are the same of each other in both our

SKA-CaNPT protocol and the base SKA-PB protocol, which is 294 for the 1first dataset,

and 2118 for the second dataset. In addition, the randomness of the agreed keys is 0.9745

and 0.95 in our SKA-CaNPT protocol, which is 0.98 and 0.94 in the SKA-PB protocol,

respectively for the first and second datasets; hence, they are approximately similar, as

well. Besides, the distinctiveness of the agreed keys in both of these protocols are be-

tween 120-130 bits, which are the same. As it is shown in Table 5.1 and our SKA-CaNPT

protocol successfully improves the SKA-PB protocol by means of adding the cancelabil-

ity and noninvertibility properties; despite degrading the IKGR and CKGR performance

a little. Our SKA-CaNPT protocol preserves the attack complexity, randomness and dis-

tinctiveness of the SKA-PB protocol.

In [8], Dang et al. apply their proposed scheme on face features with 40 genuine minu-

tiae points and on a polynomial of order 9 fuzzy vault. We applied this proposed method

to both of our datasets. We can represent each of the x and y coordinates of the fingerprint

values with 14 bits in both of the datasets; thus, when we concatenate them together we

have 28 bits. According to our SKA-CaNPT protocol, the agreed cryptographic keys are

256 bits. So, [256/28] is equal to 9, which means that we should compare our protocol

with the Deng et al. proposed protocol with fuzzy vault of order 9. The comparison of
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our SKA-CaNPT protocol with the cancelable fuzzy vault scheme shows that the IKGR

and CKGR of our SKA-CaNPT protocol outperforms the IKGR and CKGR of the cance-

lable fuzzy vault scheme which are 1.8% and 54.4% for the first dataset, and 2.98% and

65.95% for the second dataset. The authors of this approach computed resistance against

the brute-force attack for their approach when they used order 9 polynomial as 257. Our

SKA-CaNPT protocol’s brute-force attack complexity is 294 for the first dataset and 2118

for the second one, which in comparison with the cancelable fuzzy vault scheme’s attack

complexity is really better. In conclusion, our SKA-CaNPT protocol is stronger against

brute-force attack in comparison to cancelable fuzzy vault scheme. Since the cancelable

fuzzy vault scheme is different from our protocol in the manner that the cryptographic

keys are generated, comparing these two protocols in terms of randomness and distinc-

tiveness of the agreed keys is not applicable.
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6 Conclusions

In this thesis, we present a secure key agreement protocol called SKA-CaNPT: Secure

Key Agreement Protocol using Cancelable and Noninvertible Biometrics based on Peri-

odic Transformation. As the name of our protocol implies, we use cancelable and non-

invertible biometric features while generating the keys to be agreed, and we satisfy these

properties through the use of periodic transformation. As a proof of concept, we apply

our protocol on fingerprint images and we generate the secretly shared keys using minu-

tiae points, which means that we are not using any random data while generating the key.

Both the cryptographic keys that are agreed upon and the stored biometric templates that

are generated using our SKA-CaNPT protocol are cancelable since, if we need to renew

the biometric template, we can easily change one of the inputs of our sine transformation

function to compute a brand new symmetric shared key. Besides, the stored biometric

templates that are generated using our SKA-CaNPT protocol are noninvertible because

of the utilized periodic transformation function. In the other words, the sine function is

periodic with a period of a 2π, because of which we cannot infer the original biometric

feature due to the sine function being many-to-one.

In our SKA-CaNPT protocol, we use chaff points in order to hide the genuine minu-

tiae. We generate these chaff points according to a predefined strategy and then we apply

our cancelable noninvertible transformation function on them to make them completely

indistinguishable from the genuine minutiae. Since adding chaff points decreases the

probability of information leakage to the attacker, it results in a higher verification perfor-
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mance. I should mention that during the key generation process, our system uses the hash

functions and threshold mechanisms as well.

We analyze the security of our proposed SKA-CaNPT protocol according to a number

of different metrics. The IKGR values are 0.67% and 0.95%, while the CKGR values

are 96.67% and 90.45%, respectively for the first and second datasets that we utilize,

which shows the verification performance of our protocol. In addition, we analyze the

strength of our protocol against brute-force, replay and impersonation attacks. The attack

complexity of our protocol is 294 in the first dataset, which means that the attacker needs

293 trials to attack our system, while it is 2118 in the second dataset, which means that the

attacker needs 2117 trials to attack our system, each of which implies a good complexity.

We also analyze the randomness of our generated keys, which shows that the entropy

of 84% of the generated keys are higher than 0.994 and the entropy of all the keys are

greater than 0.9745 in the first dataset. Moreover, in the second dataset, the entropy of

the 99.3% of the generated keys are higher than 0.98 and the entropy of all the keys

are greater than 0.95. Hence, it can be concluded that the keys are random enough to

be used as cryptographic keys. On the other hand, according to the Hamming distance

metric, we evaluate the distinctiveness of the agreed keys, which shows that there is a quite

large difference between the same person’s keys and different persons’ keys, making them

completely indistinguishable from each other.
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