

HIGH PERFORMANCE HEVC AND FVC VIDEO COMPRESSION HARDWARE

DESIGNS

by

Ahmet Can Mert

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Sciences

Sabancı University

August 2017

© Ahmet Can Mert 2017

All Rights Reserved

To my Family and my Love

V

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Dr. İlker Hamzaoğlu for all his

guidance, support, and patience throughout my studies. I appreciate very much for his

suggestions, detailed reviews and invaluable advices. It has been a great honor for me to

work under his guidance. I feel myself privileged as his student.

I want to thank all members of “System-on-Chip Design and Test Lab”; Ercan

Kalalı, Hasan Azgın and Firas Abdul Ghani for their great friendship and their

collaboration during my studies. I want to especially thank Ercan Kalalı for sharing his

experiences and his support for my studies.

I want to thank my friends; Ozan Özdenizci, Abdurrahman Burak, Onur Biricik

and many others for their valuable friendship.

Deepest gratitude to my family and my love Gülizar. This thesis is dedicated with

love to them for their constant support and encouragement for going through my tough

periods with me.

Finally, I would like to acknowledge Sabanci University and Scientific and

Technological Research Council of Turkey (TÜBİTAK) for supporting me with

scholarships throughout my studies. This thesis was supported by TÜBİTAK under the

contract 115E290.

VI

HIGH PERFORMANCE HEVC AND FVC VIDEO COMPRESSION

HARDWARE DESIGNS

Ahmet Can Mert
Electronics, MS Thesis, 2017

Thesis Supervisor: Assoc. Prof. İlker HAMZAOĞLU

Keywords: HEVC, Sub-Pixel Motion Estimation, Fractional Interpolation, FVC, 2D

Transform

1 ABSTRACT

High Efficiency Video Coding (HEVC) is the current state-of-the-art video

compression standard developed by Joint collaborative team on video coding (JCT-

VC). HEVC has 50% better compression efficiency than H.264 which is the previous

video compression standard. HEVC achieves this video compression efficiency by

significantly increasing the computational complexity. Therefore, in this thesis, we

proposed a low complexity HEVC sub-pixel motion estimation (SPME) technique for

SPME in HEVC encoder. We designed and implemented a high performance HEVC

SPME hardware implementing the proposed technique. We also designed and

implemented an HEVC fractional interpolation hardware using memory based constant

multiplication technique for both HEVC encoder and decoder.

Future Video Coding (FVC) is a new international video compression standard

which is currently being developed by JCT-VC. FVC offers much better compression

efficiency than the state-of-the-art HEVC video compression standard at the expense of

much higher computational complexity. In this thesis, we designed and implemented

three different high performance FVC 2D transform hardware. The proposed hardware

is verified to work correctly on an FPGA board.

VII

YÜKSEK PERFORMANSLI HEVC VE FVC VİDEO SIKIŞTIRMA

DONANIM TASARIMLARI

Ahmet Can Mert
Elektronik Müh., Yüksek Lisans Tezi, 2017

Tez Danışmanı: Doç. Dr. İlker HAMZAOĞLU

Anahtar Kelimeler: HEVC, Ara Piksel Hassaslığında Hareket Tahmini, Ara Piksel

Hesaplama, FVC, 2B Dönüşüm

2 ÖZET

Yüksek verimli video kodlama (HEVC) Joint Colloborative Team on Video

Coding (JCT-VC) tarafından geliştirilen günümüzde kullanılan video sıkıştırma

standardıdır. HEVC bir önceki H.264 standardına göre 50% daha iyi performans

sağlamaktadır. HEVC bu video sıkıştırma verimini hesaplama karmaşıklığını önemli

ölçüde artırarak başarmaktadır. Bu nedenle, bu tezde HEVC video kodlayıcısı için

kullanılan ara piksel hassaslığında hareket tahmini (SPME) için düşük karmaşıklıklı

HEVC SPME tekniği önerildi. Önerilen tekniği uygulayan yüksek performanslı HEVC

SPME donanımı tasarlandı ve gerçeklendi. Ayrıca, HEVC video kodlayıcı ve kod

çözücü için bellek bazlı sabit çarpma tekniği kullanan HEVC ara pikselleri oluşturma

donanımı tasarlandı ve gerçeklendi.

Gelecek video kodlama (FVC) JCT-VC tarafından halihazırda geliştirilen yeni bir

video sıkıştırma standardıdır. FVC daha fazla hesaplama karmaşıklığı pahasına

günümüzde kullanılan HEVC video sıkıştırma standardından daha iyi sıkıştırma

verimliliği sunmaktadır. Bu tezde, üç farklı yüksek performanslı FVC 2B dönüşüm

donanımı tasarlandı ve gerçeklendi. Önerilen donanımın gerektiği şekilde çalıştığı

FPGA’de doğrulandı.

VIII

3 TABLE OF CONTENTS

ACKNOWLEDGEMENT .. V

1 ABSTRACT ... VI

2 ÖZET .. VII

3 TABLE OF CONTENTS ... VIII

LIST OF FIGURES .. X

LIST OF TABLES .. XI

LIST OF ABBREVIATIONS .. XII

1 CHAPTER I INTRODUCTION ... 1

1.1 HEVC Video Compression Standard .. 1

1.2 FVC Video Compression Standard ... 3

1.3 Thesis Contributions ... 4

1.4 Thesis Organization .. 6

2 CHAPTER II LOW COMPLEXITY HEVC SUB-PIXEL MOTION

ESTIMATION TECHNIQUE AND ITS HARDWARE IMPLEMENTATION 7

2.1 HEVC Sub-Pixel Motion Estimation Algorithm .. 8

2.2 Proposed HEVC Sub-Pixel Motion Estimation Technique .. 9

2.3 Proposed HEVC Sub-Pixel Motion Estimation Hardware ... 10

3 CHAPTER III AN HEVC FRACTIONAL INTERPOLATION HARDWARE

USING MEMORY BASED CONSTANT MULTIPLICATION 15

3.1 HEVC Fractional Interpolation Algorithm ... 16

3.2 Proposed HEVC Fractional Interpolation Hardware .. 18

IX

3.3 Implementation Results... 22

4 CHAPTER IV HIGH PERFORMANCE 2D TRANSFORM HARDWARE FOR

FUTURE VIDEO CODING ... 25

4.1 FVC Transform Algorithms .. 27

4.2 Proposed FVC Baseline 2D Transform Hardware .. 29

4.3 Proposed FVC Reconfigurable 2D Transform Hardware ... 35

4.4 Proposed FVC Reconfigurable_DSP 2D Transform Hardware 38

4.5 Implementation Results... 39

4.6 Implementation on FPGA Board .. 45

5 CHAPTER V CONCLUSIONS AND FUTURE WORK .. 48

6 BIBLIOGRAPHY ... 49

4

X

LIST OF FIGURES

Figure 1.1 HEVC Encoder Block Diagram .. 2

Figure 1.2 HEVC Decoder Block Diagram ... 2

Figure 2.1 Sub-pixel Search Locations .. 8

Figure 2.2 9x9 Integer Pixels ... 9

Figure 2.3 Proposed HEVC Sub-Pixel Motion Estimation Hardware 11

Figure 2.4 Type A, Type B and Type C FIR Filters .. 11

Figure 3.1 Integer, Half and Quarter Pixels ... 17

Figure 3.2 Type A, Type B and Type C FIR Filters .. 17

Figure 3.3 Proposed HEVC Fractional Interpolation Hardware .. 18

Figure 3.4 Multiplication Operations: (a) 5xA; (b) 17xA; (c) -11xA; (d) 29xA. 20

Figure 3.5 MEM1 and MEM2.. 21

Figure 3.6 Energy Consumptions of FIHW_ORG, FIHW_MCM, FIHW_DSP and

FIHW_MEM ... 23

Figure 4.1 Proposed FVC Baseline 2D Transform Hardware .. 30

Figure 4.2 1D DCT-II/DST-I Column Datapath .. 31

Figure 4.3 1D DCT-V/DCT-VIII/DST-VII Column Datapath .. 32

Figure 4.4 A Multiplier Block .. 33

Figure 4.5 Transpose Memory ... 34

Figure 4.6 Proposed FVC Reconfigurable 2D Transform Hardware 35

Figure 4.7 Reconfigurable 1D Column Datapath of the Proposed FVC Reconfigurable 2D

Transform Hardware ... 36

Figure 4.8 Reconfigurable Multiplier Block .. 37

Figure 4.9 Reconfigurable 1D Column Datapath of the Proposed FVC Reconfigurable_DSP

2D Transform Hardware.. 38

Figure 4.10 Energy Consumption Results.. 43

Figure 4.11 Proposed FVC Reconfigurable 2D Transform Hardware Implementation on

FPGA Board .. 47

XI

LIST OF TABLES

Table 2.1 Computation Amount for Square-Shaped PU Sizes ... 10

Table 2.2 PSNR and SSIM Results ... 10

Table 2.3 Constant Coefficients .. 12

Table 2.4 Power Consumption Results ... 13

Table 2.5 Hardware Comparison .. 14

Table 3.1 Constant Coefficients .. 19

Table 3.2 Implementation Results ... 23

Table 3.3 Hardware Comparison .. 24

Table 4.1 DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII Basis Functions 27

Table 4.2 Addition and Shift Amounts ... 29

Table 4.3 Transform Sets .. 29

Table 4.4 Adder and Shifter Amounts in 1D Datapaths .. 40

Table 4.5 Multiplier, Adder and Multiplexer Amounts in 1D Datapaths 41

Table 4.6 FPGA Implementation Results ... 41

Table 4.7 ASIC Implementation Results ... 42

Table 4.8 Comparison of FPGA Implementations .. 44

Table 4.9 Comparison of ASIC Implementations ... 45

XII

LIST OF ABBREVIATIONS

AD Absolute Difference

ALF Adaptive Loop Filter

AMT Adaptive Multiple Transform

ASIC Application Specific Integrated Circuits

BRAM Block Ram

CABAC Context Adaptive Binary Arithmetic Coding

CU Coding Unit

DBF Deblocking Filter

DSP Digital Signal Processor

DCT Discrete Cosine Transform

DST Discrete Sine Transform

DDR RAM Double Data Rate Ram

FPGA Field Programmable Gate Array

FIR Finite Impulse Response

FPS Frame Per Second

FVC Future Video Coding

HD High Definition

HEVC High Efficiency Video Coding

HM HEVC Test Model

IDCT Inverse Discrete Cosine Transform

IDST Inverse Discrete Sine Transform

JEM Joint Exploration Test Model

JCT-VC Joint Collaborative Team on Video Coding

MV Motion Vector

MCM Multiple Constant Multiplication

PSNR Peak Signal to Noise Ratio

PU Prediction Unit

SAD Sum of Absolute Differences

XIII

SPME Sub-Pixel Motion Estimation

QP Quantization Parameter

SAO Sample Adaptive Offset

SSIM Structural Similarity Index

TU Transform Unit

UART Universal Asynchronous Receiver/Transmitter

VCD Value Change Dump

1

1 CHAPTER I

INTRODUCTION

1.1 HEVC Video Compression Standard

High Efficiency Video Coding (HEVC) is the current state-of-the-art video

compression standard developed by Collaborative Team on Video Coding (JCT-VC) [1,

2, 3, 4]. HEVC provides 50% better coding efficiency than H.264 which is the previous

video compression standard. HEVC also provides 23% bit rate reduction for the intra

prediction only case [5, 6, 7]. HEVC standard achieves its video compression efficiency

by combining a number of encoding tools such as intra prediction, inter prediction,

transform, deblocking filter (DBF), sample adaptive offset (SAO) and entropy coder.

The top-level block diagrams of an HEVC encoder and decoder are shown in

Figure 1.1 and Figure 1.2, respectively. An HEVC encoder has a forward path and a

reconstruction path. The forward path is used to encode a video frame by using intra

and inter predictions and to create the bit stream after the transform and quantization

processes. Reconstruction path in the encoder ensures that both encoder and decoder

use identical reference frames for intra and inter predictions. Since a decoder never gets

original images, this avoids mismatch between encoder and decoder.

2

Figure 1.1 HEVC Encoder Block Diagram

Figure 1.2 HEVC Decoder Block Diagram

In the forward path, frame is divided into coding units (CU) that can be an 8x8,

16x16, 32x32 or 64x64 pixel block. Depending on the mode decision, each CU is

encoded in either intra or inter mode. Intra and inter prediction operations are performed

on prediction unit (PU) level inside the CUs. PU sizes can be from 4x4 up to 64x64.

Mode decision determines whether a PU will be coded using intra or inter prediction

based on video quality and bit-rate. After mode decision determines the prediction

mode, predicted block is subtracted from original block, and residual data is generated.

Then, residual data is transformed by discrete cosine transform (DCT) / discrete sine

transform (DST) and it is quantized. Transform unit (TU) sizes can be square-shaped

sizes from 4x4 up to 32x32. Finally, entropy coder generates the encoded bit stream.

3

Reconstruction path begins with inverse quantization and inverse transform

operations. The quantized transform coefficients are inverse quantized and inverse

transformed to generate the reconstructed residual data. Since quantization is a lossy

process, inverse quantized and inverse transformed coefficients are not identical to the

original residual data. The reconstructed residual data are added to the predicted pixels

in order to create the reconstructed frame. DBF is, then, applied to reduce the effects of

blocking artifacts in the reconstructed frame.

 HEVC intra prediction algorithm predicts the pixels of a block from the pixels

of its already coded and reconstructed neighboring blocks. In HEVC standard, for the

luminance component of a frame, intra PU sizes can be from 4x4 up to 32x32 and

number of intra prediction modes for intra PU can be up to 35 [1, 8].

 HEVC inter prediction algorithm predicts the pixels of a block in the current

frame from the pixels of already coded and reconstructed blocks in the previous frames.

In HEVC standard, inter PU sizes can be from 4x8/8x4 up to 64x64. HEVC inter

prediction algorithm uses integer pixel motion estimation and sub-pixel (half and

quarter) motion estimation operations. First, integer pixel motion estimation is

performed for an inter PU. Then, sub-pixel (half and quarter) motion estimation is

performed for the same inter PU. In HEVC, three different 8-tap FIR filters are used for

both half-pixel and quarter-pixel interpolations [1, 2, 3, 4].

Integer based DCT is used in HEVC. TU sizes can be square-shaped sizes from

4x4 up to 32x32. In addition to DCT, HEVC uses DST for the 4x4 intra prediction case.

Inverse discrete cosine transform (IDCT) and inverse discrete sine transform (IDST) are

used in the reconstruction path of encoder and decoder [1, 2, 3, 7].

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar

to H.264 with several improvements [2].

Deblocking filter algorithm reduces the blocking artifacts on the edges of

prediction units. SAO and ALF are added to deblocking filter process in HEVC which

are not used in previous video compression standards [1, 2, 3].

1.2 FVC Video Compression Standard

Since better coding efficiency is required for high resolution videos, JCT-VC is

currently developing a new video compression standard called Future Video Coding

(FVC) [9, 10]. FVC will offer much better compression efficiency than HEVC which is

the current state-of-the-art video compression standard. FVC will have a similar top-

4

level block diagram with HEVC. But, algorithms used in each block will be improved

for better compression efficiency at the expense of much more computational

complexity.

FVC intra prediction algorithm performs the same operation as HEVC intra

prediction algorithm. In FVC, number of directional intra prediction modes for an intra

PU is increased from 33 to 65. Planar and DC intra prediction modes are the same as

HEVC. In HEVC, 2-tap linear interpolation filter is used for directional intra prediction

modes. 4-tap cubic and gaussian interpolation filters are used for directional intra

prediction modes in FVC [8,10].

FVC inter prediction algorithm performs the same two-stage operation as HEVC.

In HEVC 1/4, one-quarter, motion vector accuracy is used. In FVC, 1/16 motion vector

accuracy is added for merge/skip modes. In FVC, motion vector prediction process used

in HEVC is improved for better compression efficiency [1, 2, 10].

Integer based DCT is used in FVC same as HEVC. HEVC transform algorithm

uses DCT-II. It also uses DST-VII for the 4x4 intra prediction case. In HEVC, TU sizes

can be from 4x4 up to 32x32. [1, 2]. In FVC transform algorithm, an Adaptive Multiple

Transform (AMT) scheme is used. AMT scheme uses DCT-II, DCT-V, DCT-VIII,

DST-I and DST-VII based on prediction (intra or inter) type. In FVC, TU sizes can be

from 4x4 up to 64x64. Mode dependent non-separable secondary transform and signal

dependent transform are also added to FVC [9, 10, 11, 12].

Entropy coder uses CABAC similar to HEVC with several enhancements.

Deblocking filter algorithm in FVC is the same as HEVC [1, 2, 10].

1.3 Thesis Contributions

We propose a low complexity sub-pixel motion estimation (SPME) technique

[13]. In HEVC, SPME is performed to obtain sub-pixel accurate motion vector (MV)

after integer pixel motion estimation. SPME first interpolates necessary sub-pixels for

sub-pixel search locations. Then, it calculates the sum of absolute difference (SAD)

values for each sub-pixel search location and determines the best sub-pixel search

location with the minimum SAD. SPME has high computational complexity due to

these operations. Therefore, we propose interpolating SAD values of sub-pixel search

locations using the SAD values of neighboring integer pixel search locations instead of

interpolating necessary sub-pixels and calculating SAD values for sub-pixel search

5

locations. In this way, number of interpolation operation is significantly reduced and

absolute difference (AD) operation is not required with a slight decrease in PSNR.

We also implemented a high performance HEVC SPME hardware implementing

the proposed technique for all PU sizes using Verilog HDL [13]. We mapped the

Verilog RTL code to a Xilinx Virtex 6 FPGA. The proposed hardware, in the worst

case, can process 38 quad full HD (QFHD) (3840x2160) video frames per second.

We designed an HEVC fractional (half-pixel and quarter-pixel) interpolation

hardware using memory based constant multiplication for all PU sizes. The proposed

hardware uses memory based constant multiplication technique for implementing

multiplications with constant coefficients. The proposed memory based constant

multiplication hardware stores pre-computed products of an input pixel with multiple

constant coefficients in memory. Several optimizations are proposed to reduce memory

size. The proposed hardware is implemented using Verilog HDL. We mapped the

Verilog RTL code to a Xilinx Virtex 6 FPGA and estimated its energy consumption on

this FPGA using Xilinx XPower Analyzer tool. The proposed HEVC fractional

interpolation hardware using memory based constant multiplication has up to 31% less

energy consumption than original HEVC fractional interpolation hardware. The

proposed HEVC fractional interpolation hardware using memory based constant

multiplication has up to 12.3% and 4.4% less energy consumption than HEVC

fractional interpolation hardware implementing constant coefficient multiplications

using Hcub multiplierless constant multiplication (MCM) algorithm and DSP blocks in

Xilinx Virtex-6 FPGA, respectively. The proposed hardware, in the worst case, can

process 35 QFHD (3840x2160) video frames per second.

HEVC transform algorithm uses DCT-II and DST-VII. FVC transform algorithm

uses DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII in order to increase compression

efficiency at the expense of higher computational complexity. In this thesis, we

designed three different high performance FVC 2D transform hardware for 4x4 and 8x8

TU sizes [14], [15]. The proposed hardware are implemented using Verilog HDL. We

mapped the Verilog RTL codes to a Xilinx Virtex 6 FPGA and estimated their power

consumptions on this FPGA using Xilinx XPower Analyzer tool.

The first proposed hardware (baseline) uses separate datapaths for each 1D

transform and it uses Hcub MCM algorithm for implementing 1D transforms. It uses

data gating technique and the data gating technique reduced the energy consumption of

the proposed baseline hardware up to 71.7%. The second proposed hardware

6

(reconfigurable) uses one reconfigurable datapath for all 1D column transforms and one

reconfigurable datapath for all 1D row transforms. The proposed reconfigurability

reduced hardware area at the expense of energy consumption increase. Therefore, the

baseline hardware can be used in high performance and low energy FVC encoders. The

reconfigurable hardware can be used in high performance and low cost FVC encoders.

The third proposed hardware (reconfigurable_DSP) uses one reconfigurable

datapath for all 1D column transforms and one reconfigurable datapath for all 1D row

transforms. It uses built-in full-custom DSP blocks in Xilinx Virtex-6 FPGA for

implementing 1D transforms. Since it is more efficient to implement constant

multiplications using DSP blocks in an FPGA implementation, FPGA implementation

of the reconfigurable_DSP hardware has up to 29% and 59% less energy consumption

than FPGA implementations of the baseline and reconfigurable hardware, respectively.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II explains HEVC sub-pixel motion estimation algorithm. It presents the

proposed low complexity HEVC sub-pixel motion estimation technique. It describes the

proposed high performance HEVC sub-pixel motion estimation hardware implementing

the proposed technique and presents its implementation results.

Chapter III explains HEVC fractional interpolation algorithm. It describes the

proposed HEVC fractional interpolation hardware using memory based constant

multiplication and presents its implementation results.

Chapter IV presents FVC transform algorithm used in FVC encoder. It presents

three different proposed high performance FVC 2D transform hardware and their

implementation results.

Chapter V presents conclusions and future work.

7

2 CHAPTER II

LOW COMPLEXITY HEVC SUB-PIXEL MOTION ESTIMATION

TECHNIQUE AND ITS HARDWARE IMPLEMENTATION

 In order to increase the performance of integer pixel motion estimation, SPME,

which provides sub-pixel accurate MV refinement, is performed. HEVC uses SPME

same as H.264. However, HEVC SPME has higher computational complexity than

H.264 SPME. HEVC standard uses three different 8-tap FIR filters for sub-pixel

interpolation and up to 64x64 PU sizes [16, 17]. SPME is heavily used in an HEVC

encoder [5]. It accounts for up to 49% of total encoding time of HEVC video encoder.

In this thesis, a low complexity HEVC SPME technique for all PU sizes is

proposed. The proposed technique interpolates the SAD values of sub-pixel search

locations using the SAD values of neighboring integer pixel search locations. In this

thesis, an efficient HEVC SPME hardware implementing the proposed technique for all

PU sizes is also designed and implemented using Verilog HDL. In order to reduce

number and size of adders in this hardware, Hcub MCM algorithm is used [18]. The

proposed hardware finishes SPME for a PU in 6 clock cycles. It, in the worst case, can

process 38 QFHD (3840x2160) video frames per second.

Several HEVC SPME hardware are proposed in the literature [19, 20, 21]. In

[19], SPME hardware searches all possible 48 sub-pixel search locations. However, it

only supports square shaped PU sizes. In [20], SPME hardware supports all PU sizes

but 8x4, 4x8 and 8x8. It uses bilinear filter for quarter-pixel interpolation. Also, it

searches 12 sub-pixel search locations. In [21], SPME hardware supports all PU sizes

8

but it uses a scalable search pattern. HEVC SPME hardware proposed in this thesis is

compared with these HEVC SPME hardware.

2.1 HEVC Sub-Pixel Motion Estimation Algorithm

 After integer pixel motion estimation is performed for a PU, SPME is performed

for the same PU to obtain sub-pixel accurate MV. In HEVC Test Model (HM) reference

software video encoder [22], SPME is performed in two stages. As shown in Figure 2.1,

8 sub-pixel search locations around the best integer pixel search location are searched in

the first stage. 8 sub-pixel search locations around the best sub-pixel search location of

the first stage are searched in the second stage.

HEVC SPME first interpolates the necessary sub-pixels for sub-pixel search

locations using three different 8-tap FIR filters. In Figure 2.1, half-pixels a, b, c and d,

h, n are interpolated using the nearest integer pixels in horizontal and vertical directions,

respectively. Quarter-pixels e, i, p and f, j, q and g, k, r are interpolated using the nearest

a and b and c half-pixels in vertical directions, respectively. HEVC SPME then

calculates the SAD values for each sub-pixel search location, and determines the best

sub-pixel search location with the minimum SAD value.

Figure 2.1 Sub-pixel Search Locations

9

2.2 Proposed HEVC Sub-Pixel Motion Estimation Technique

 The proposed HEVC SPME technique interpolates SAD values of sub-pixel

search locations using the SAD values of neighboring integer pixel search locations. As

shown in Figure 2.2, the proposed technique uses SAD values of the best integer pixel

search location, A0,0, and its neighboring 80 integer pixel search locations, a 9x9 SAD

block, for directly interpolating SAD values of 48 sub-pixel search locations using

HEVC sub-pixel interpolation FIR filters. SAD values of half-pixel search locations are

interpolated using the SAD values of nearest integer pixel search locations. SAD values

of quarter-pixel search locations are interpolated using the SAD values of a, b, c half-

pixel search locations.

Figure 2.2 9x9 Integer Pixels

The proposed technique performs SPME in two stages, same as HM reference

software video encoder [22]. However, it performs SPME without interpolating a sub-

pixel and calculating an AD. Table 2.1 shows the number of interpolation and AD

operations required for performing HEVC SPME for one square-shaped PU. Since the

proposed technique only interpolates SAD values of sub-pixel search locations, number

of interpolation operations is significantly reduced and AD operation is not required.

10

Table 2.1 Computation Amount for Square-Shaped PU Sizes

 Original HEVC SPME Proposed

PU Sizes 8x8 16x16 32x32 64x64 All

Number of

Interpolations
1377 4641 16929 64545 100

Number of

Abs. Diff.
1024 4096 16384 65536 0

The proposed HEVC SPME technique is implemented in MATLAB. As shown

in Table 2.2, MATLAB simulation results show that it slightly decreases PSNR and

achieves good structural similarity index (SSIM) results.

Table 2.2 PSNR and SSIM Results

 Frame ΔPSNR (dB) SSIM

Class B

(1920x1080)

Tennis -0.847 0.975

Kimono -0.225 0.982

Basketball D. -0.015 0.970

Park Scene -0.313 0.974

2.3 Proposed HEVC Sub-Pixel Motion Estimation Hardware

The proposed HEVC SPME hardware for all PU sizes is shown in Figure 2.3. It

takes 9x9 20-bit SAD values of 9x9 integer pixel search locations as input into integer

SAD buffer. Three buffers are used to store the SAD values of sub-pixel search

locations. These on-chip buffers reduce the required off-chip memory bandwidth and

power consumption.

The proposed hardware has three interpolation units. Each interpolation unit

takes 9 SAD values as input and interpolates 20-bit SAD values of 3x2=6 sub-pixel

search locations in each clock cycle. It interpolates 2 SAD values using type A, 2 SAD

values using type B and 2 SAD values using type C FIR filter equations. As shown in

Figure 2.4, common expressions are calculated in type A, type B and type C FIR filter

equations and same integer pixel is multiplied with different constant coefficients in

type A, type B and type C FIR filter equations. Therefore, in an interpolation unit,

common expressions in different equations are calculated once, and the results are used

in all the equations [17].

11

Figure 2.3 Proposed HEVC Sub-Pixel Motion Estimation Hardware

Multiplications in FIR filter equations are performed using only adders and

shifters. In the proposed hardware, Hcub MCM algorithm is used to reduce number and

size of the adders, and to minimize adder tree depth [18]. Hcub algorithm tries to

minimize number of adders, their bit size and adder tree depth in a multiplier block,

which multiplies a single input with multiple constants. A multiplier block hardware has

only one input, and it outputs results of multiplications with all the constants. Hcub

algorithm determines necessary shift and addition operations in a multiplier block.

Figure 2.4 Type A, Type B and Type C FIR Filters

As shown in Table 2.3, since different constant coefficients are used in FIR filter

equations, three different multiplier blocks are used. Common 1 (C1) datapath

calculates the common sub-expressions in the equations shown in the blue boxes in

Figure 2.4. Multiplier 1 (M1), Multiplier 2 (M2), and Multiplier 3 (M3) datapaths

12

calculate the multiplications with multiple constant coefficients for different set of

coefficients. For example, M2 datapath calculates the multiplications for A1 written

with red color in Figure 2.4.

Table 2.3 Constant Coefficients

Input

SADs
Coefficients Datapath

A-4 -1
C1

A-3 -1, 4

A-2 4, -5, -10, -11 M1

A-1 -5, -10, -11, 17, 40, 58 M2

A0 17, 58, 40 M3

A1 -5, -10, -11, 17, 40, 58 M2

A2 4, -5, -10, -11 M1

A3 -1, 4
C1

A4 -1

Comparator unit compares the SAD values of sub-pixel search locations, and

determines the best sub-pixel search location with minimum SAD value. It uses three

20-bit comparators and performs comparison in 6 clock cycles.

SAD values of 48 sub-pixel search locations should be interpolated. First, 9x2

SAD values of a, b, c half-pixel search locations necessary for interpolating SAD values

of quarter-pixel search locations are interpolated using SAD values of integer pixel

search locations in 3 clock cycles. Then, 2x1 SAD values of d, h, n half-pixel search

locations are interpolated using SAD values of integer pixel search locations in 1 clock

cycle. Finally, 2x2 SAD values of quarter-pixel search locations are interpolated using

SAD values of a, b, c half-pixel search locations in 2 clock cycles.

 Because of the input data loading and pipelining, the proposed hardware starts

producing outputs after 12 clock cycles. It then continues producing outputs at every 6

clock cycles without any stall. Therefore, it finishes SPME for a PU in 6 clock cycles.

The proposed HEVC SPME hardware for all PU sizes including the proposed

technique is implemented using Verilog HDL. The Verilog RTL implementation is

verified with RTL simulations. RTL simulation results matched the results of

MATLAB implementation of HEVC SPME including the proposed technique.

The Verilog RTL code is synthesized and mapped to a XC6VLX365T Xilinx

Virtex 6 FPGA with speed grade 3. The FPGA implementation is verified with post

13

place & route simulations. The FPGA implementation uses 5200 LUTs, 1814 Slices and

3794 DFFs. The FPGA implementation works at 142 MHz. It can process 19 QFHD

(3840x2160) video frames per second.

Power consumption of the FPGA implementation is estimated using Xilinx

XPower Analyzer tool. Post place & route timing simulations are performed for Tennis,

Kimono, BQ Terrace and Basketball Drive class B videos (one frame from each video)

at 100 MHz [23] and signal activities are stored in VCD files. These VCD files are used

for estimating power consumption of the FPGA implementation. These power

consumption results are shown in Table 2.4.

Table 2.4 Power Consumption Results

 Tennis Kimono BQ Terr. B. Drive

Clock (mW) 33 33 33 33

Logic (mW) 68 79 78 67

Signal (mW) 143 168 163 139

Total Power (mW) 244 280 274 239

In order to compare the proposed HEVC SPME hardware with the HEVC SPME

hardware in the literature, Verilog RTL code is also synthesized to a 90 nm standard

cell library and resulting netlist is placed and routed. The resulting ASIC

implementation works at 280 MHz. It can process 38 QFHD (3840x2160) video frames

per second. Gate count of the ASIC implementation is calculated as 26K according to

NAND (2x1) gate area excluding on-chip memory.

The comparison of the proposed HEVC SPME hardware with the HEVC SPME

hardware in the literature is shown in Table 2.5. The proposed hardware implements

HEVC SPME for all PU sizes and it is the only hardware that implements the two

stages SPME performed in HM reference software video encoder [22]. It has higher

throughput, and it has smaller area and lower power consumption than the other HEVC

SPME hardware. HEVC SPME hardware proposed in [21] has higher throughput than

FPGA implementation of the proposed hardware. However, it has 70 times larger area

than FPGA implementation of the proposed hardware.

14

Table 2.5 Hardware Comparison

 [19] [20] [21] Proposed

Technology 65 nm 65 nm
Xilinx

Virtex6
90 nm

Xilinx

Virtex6

Gate/Slices 249.1 K 1183 K 130306 26 K 1814

Max Freq.

(MHz)
396.8 188 200 280 142

Power Dissip.

(mW)
48.67 198.6 --- 28 280

Supported

PU sizes

Square

Shaped

All but 8x8,

8x4 and 4x8
All All All

Fps 60 QFHD 30 QFHD 32 QFHD 38 QFHD 19 QFHD

Fps *

(Normalized)
6 QFHD 15 QFHD 32 QFHD 38 QFHD 19 QFHD

*: Frames per second when hardware processes all PU sizes

15

3 CHAPTER III

AN HEVC FRACTIONAL INTERPOLATION HARDWARE USING

MEMORY BASED CONSTANT MULTIPLICATION

Fractional (half-pixel and quarter-pixel) interpolation is one of the most

computationally intensive parts of HEVC video encoder and decoder. Fractional

interpolation operation accounts for 25% and 50% of the HEVC encoder and decoder

complexity, respectively [5].

In H.264 standard, a 6-tap FIR filter is used for half-pixel interpolation and

bilinear filter is used for quarter-pixel interpolation [1, 7]. In HEVC standard, three

different 8-tap FIR filters are used for half-pixel and quarter-pixel interpolations. Block

sizes from 4x4 to 16x16 are used in H.264 standard. However, in HEVC standard, PU

sizes can be from 4x8/8x4 to 64x64. Therefore, HEVC fractional interpolation is more

complex than H.264 fractional interpolation.

Memory based constant multiplication is an efficient computation technique [24,

25]. A memory based constant multiplication hardware stores pre-computed product

values for an input word into memory and necessary product value is read from the

memory using input word as the address.

In this thesis, an HEVC fractional interpolation hardware using memory based

constant multiplication for all PU sizes is designed and implemented using Verilog

HDL. The proposed hardware uses memory based constant multiplication technique for

implementing multiplication with constant coefficients. The proposed memory based

constant multiplication hardware stores pre-computed products of an input pixel with

16

multiple constant coefficients in memory. Several optimizations are proposed to reduce

memory size.

Several HEVC fractional interpolation hardware are proposed in the literature [16,

17, 26, 27, 28]. In Section 3.3, they are compared with HEVC fractional interpolation

hardware proposed in this thesis. They do not use memory based constant multiplication

technique.

In [16], three different 8-tap FIR filters are implemented using a reconfigurable

datapath. It can calculate one FIR filter output at a time. Therefore, it can only be used

for motion compensation. The proposed hardware in [17] uses Hcub MCM algorithm

for multiplication with constant coefficients. In [26, 27, 28], the proposed hardware use

adders and shifters for FIR filter implementation.

3.1 HEVC Fractional Interpolation Algorithm

 In HEVC, three different 8-tap FIR filters are used for both half-pixel and

quarter-pixel interpolations. These three FIR filters type A, type B and type C are

shown in (3.1), (3.2), and (3.3), respectively. The shift1 value is determined based on bit

depth of the pixel [1, 4].

a0,0 = (−A−3,0 + 4 * A−2,0 − 10 * A−1,0 + 58 * A0,0 +

17 * A1,0 − 5 * A2,0 + A3,0) >> shift1 (3.1)

b0,0 = (−A−3,0 + 4 * A−2,0 − 11 * A−1,0 + 40 * A0,0 +

40 * A1,0 − 11 * A2,0 + 4 * A3,0 − A4,0) >> shift1
(3.2)

c0,0 = (A−2,0 − 5 * A−1,0 + 17 * A0,0 + 58 * A1,0 −

10 * A2,0 + 4 * A3,0 − A4,0) >> shift1 (3.3)

Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 3.1. The type A,

type B and type C FIR filter equations for 8 half-pixels are shown in Figure 3.2.

The half pixels a, b, c are interpolated from nearest integer pixels in horizontal

direction, and the half-pixels d, h, n are interpolated from nearest integer pixels in

vertical direction. The quarter pixels e, f, g are interpolated from the nearest half pixels

a, b, c, respectively, in vertical direction using type A filter. The quarter pixels i, j, k are

interpolated similarly using type B filter, and the quarter pixels p, q, r are interpolated

similarly using type C filter.

17

Figure 3.1 Integer, Half and Quarter Pixels

 HEVC fractional interpolation algorithm used in HEVC encoder calculates all

the fractional pixels necessary for the fractional motion estimation operation.

Figure 3.2 Type A, Type B and Type C FIR Filters

18

3.2 Proposed HEVC Fractional Interpolation Hardware

 The proposed HEVC fractional interpolation hardware for all PU sizes is shown

in Figure 3.2. The proposed hardware interpolates all the fractional pixels (half-pixels

and quarter-pixels) for the luma component of a PU using integer or half-pixels. The

proposed hardware is designed for 8x8 PU size and it produces necessary fractional

pixels for an 8x8 PU. For other PU sizes, the PU is divided into 8x8 blocks, and the

blocks are interpolated separately. For example, a 16x16 PU is divided into four 8x8

blocks and each 8x8 block is interpolated separately.

In the proposed hardware, 8x3 fractional pixels are interpolated in parallel using

type A, type B and type C FIR filters. In the proposed hardware, common sub-

expression calculation method proposed in [17] is used. As shown in Figure 3.3, there

are common sub-expressions in different filter type equations. Common sub-

expressions in type A and type B filters are shown in blue boxes. Common sub-

expressions in type B and type C filters are shown in green boxes. In the proposed

hardware, common sub-expressions in different equations are calculated once, and the

results are used in all the equations. The common sub-expressions are calculated in CSE

datapath using adders and shifters.

Figure 3.3 Proposed HEVC Fractional Interpolation Hardware

19

Three on-chip transpose memories are used to store half-pixels necessary for

interpolating quarter-pixels. The half-pixels are interpolated using integer pixels and the

interpolated a, b and c half-pixels are stored in the transpose memories A, B and C,

respectively. These on-chip buffers reduce the required off-chip memory bandwidth and

power consumption.

Each input pixel should be multiplied with multiple constant coefficients shown

as red boxes in Figure 3.2. Table 3.1 shows constant coefficient multiplications

necessary for each input pixel. In the proposed hardware, constant coefficient

multiplications are implemented using memory based constant multiplication technique.

As shown in Table 3.1, since constant coefficients of input pixels (A-4,A6) and (A-3 …

A5) are different, two different memories, MEM1 and MEM2, are used to store pre-

computed products of an input pixel with multiple constant coefficients.

Input pixels (A-4,A6) need to be multiplied with constant coefficients 1, -5, -10

and -11. In the proposed hardware, MEM1 stores two product values 5xA and -11xA for

input pixel A. The product value 10xA is obtained from 5xA using shift operation. Input

pixels (A-3 … A5) need to be multiplied with constant coefficients 1, -5, -10, -11, 17, 40

and 58. In the proposed hardware, MEM2 stores four product values 5xA, -11xA, 17xA

and 29xA for input pixel A. Product values 10xA and 40xA are obtained from 5xA using

shift operation. After constant coefficient multiplications are performed by memory

based constant multiplication technique, fractional pixels are calculated using adder

trees.

Table 3.1 Constant Coefficients

Input

Pixel

Necessary

Coefficients
Hardware

Stored

Products

A-5 1 --- ---

A-4 1,-5,-10,-11 MEM1 5,-11

A-3 1,-5,-10,-11,17,40,58

MEM2

5,-11,17,29

A-2 1,-5,-10,-11,17,40,58 5,-11,17,29

A-1 1,-5,-10,-11,17,40,58 5,-11,17,29

A0 1,-5,-10,-11,17,40,58 5,-11,17,29

A1 1,-5,-10,-11,17,40,58 5,-11,17,29

A2 1,-5,-10,-11,17,40,58 5,-11,17,29

A3 1,-5,-10,-11,17,40,58 5,-11,17,29

A4 1,-5,-10,-11,17,40,58 5,-11,17,29

A5 1,-5,-10,-11,17,40,58 5,-11,17,29

A6 1,-5,-10,-11 MEM1 5,-11

A7 1 --- ---

20

 8 bit unsigned input pixel A is used as the address of MEM1 and MEM2

memories. MEM1 stores 2 product values, 5xA and -11xA, in each address. MEM2

stores 4 product values, 5xA, -11xA, 17xA and 29xA, in each address. Since address

ports of MEM1 and MEM2 are 8-bits, MEM1 and MEM2 store 28x2 and 28x4 product

values, respectively.

Multiplications of an input pixel A with constant coefficients 5, -11, 17 and 29

using additions and shifts are shown in (3.4-3.7) and Figure 3.4. Products of an 8-bit

unsigned input pixel with constant coefficients 5, -11, 17 and 29 are 11-bits, 13-bits, 13-

bits and 13-bits, respectively. Therefore, MEM1 and MEM2 should store 11+13=24 and

11+13+13+13=50 bits in each address, respectively.

5xA = (A << 2) + A (3.4)

-11xA = 5xA + ((A' + 1) << 4) (3.5)

17xA = (A << 4) + A (3.6)

29xA = (A << 4) + (A << 3) + 5xA (3.7)

Figure 3.4 Multiplication Operations: (a) 5xA; (b) 17xA; (c) -11xA; (d) 29xA.

21

As shown in Figure 3.4, least significant 2-bits of 5xA, -11xA and 29xA, and

least significant 4-bits of 17xA are equal to the bits of input pixel A. Therefore, these

bits of the products do not need to be stored in memories. This optimization saves

2+2=4 bits and 2+2+2+4=10 bits in each address of MEM1 and MEM2, respectively.

Also, least significant third bit of Ax5 is equal to the least significant third bit of -11xA

and 29xA, and the least significant fourth bit of 5xA is equal to the least significant

fourth bit of -11xA. Therefore, only least significant third and fourth bits of 5xA need to

be stored in memories and they should be used for 5xA, -11xA and 29xA. This

optimization saves 2 bits and 2+1=3 bits in each address of MEM1 and MEM2,

respectively.

Using these optimizations, number of bits in each address of MEM1 is reduced

from 24 to 18 and number of bits in each address of MEM2 is reduced from 50 to 37.

The proposed memories, MEM1 and MEM2, are shown in Figure 3.5.

Since 15 fractional pixels should be interpolated for each integer pixel, 64x15

fractional pixels should be interpolated for an 8x8 PU. 8x7 extra a, b, c half-pixels are

necessary for the interpolation of quarter-pixels.

First, 8x15 a, b and c half-pixels necessary for interpolating quarter-pixels are

interpolated in 15 clock cycles, and stored in the transpose memories A, B and C,

respectively. Then, 8x8 d, h, n half-pixels are interpolated in 8 clock cycles. Finally,

9x8x8 quarter-pixels are interpolated in 8x3 clock cycles using a, b and c half-pixels.

There are three pipeline stages in the proposed hardware. Therefore, the proposed

hardware, in the worst case, interpolates the fractional pixels for an 8x8 PU in 50 clock

cycles.

Figure 3.5 MEM1 and MEM2

22

3.3 Implementation Results

The proposed HEVC fractional interpolation hardware using memory based

constant multiplication (FIHW_MEM) for all PU sizes is implemented using Verilog

HDL. The Verilog RTL code is verified with RTL simulations. RTL simulation results

matched the results of a software implementation of HEVC fractional interpolation

algorithm.

The Verilog RTL code is synthesized and mapped to a Xilinx XC6VLX130T

FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. FIHW_MEM FPGA

implementation is verified to work at 233 MHz by post place and route simulations.

Therefore, it can process 35 QFHD (3840x2160) video frames per second. It uses 3806

LUTs, 3815 DFFs and 1498 Slices.

In this thesis, three different HEVC fractional interpolation hardware

implementations are used for energy consumption comparison. The first one

(FIHW_ORG) is the original hardware proposed in [16]. It computes type A, B and C

filters separately. The second one (FIHW_MCM) is the MCM hardware proposed in

[17]. It computes multiplications with constant coefficients using Hcub MCM

algorithm. The third one (FIHW_DSP) uses DSP blocks in FPGA for implementing

multiplications with constant coefficients.

Verilog RTL codes of these three HEVC fractional interpolation hardware are

synthesized and mapped to a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3

using Xilinx ISE 14.7. FPGA implementation of FIHW_ORG uses 3752 LUTs, 3207

DFFs and 1848 Slices. FPGA implementation of FIHW_MCM uses 3370 LUTs, 3833

DFFs and 1543 Slices. FPGA implementation of FIHW_DSP uses 2747 LUTs, 3477

DFFs, 1406 Slices and 40 DSP48E1.

FPGA implementations of FIHW_ORG, FIHW_MCM and FIHW_DSP are

verified to work at 154, 200 and 217 MHz, respectively, by post place and route

simulations. Therefore, FPGA implementation of FIHW_ORG, FIHW_MCM and

FIHW_DSP can process 23, 30 and 32 QFHD (3840x2160) video frames per second,

respectively. The implementation results are shown in Table 3.2.

23

Table 3.2 Implementation Results

 FIHW_ORG FIHW_MCM FIHW_DSP FIHW_MEM

FPGA
Xilinx

Virtex6

Xilinx

Virtex6

Xilinx

Virtex6

Xilinx

Virtex6

DFFs 3207 3833 3477 3815

LUTs 3752 3370 2747 3806

Slices 1848 1208 1406 1498

DSP48E1s --- --- 40 ---

Max. Freq.

(MHz)
154 200 217 233

Fps 23 QFHD 30 QFHD 32 QFHD 35 QFHD

Power consumptions of all FPGA implementations are estimated using Xilinx

XPower Analyzer tool. Post place & route timing simulations are performed for Tennis,

Kimono, Park Scene (1920x1080) video frames at 100 MHz [23] and signal activities

are stored in VCD files. These VCD files are used for estimating power consumptions

of the FPGA implementations. As shown in Figure 3.6, the proposed FIHW_MEM has

up to 31%, 12.3% and 4.7% less energy consumption than FIHW_ORG, FIHW_MCM

and FIHW_DSP, respectively.

Comparison of the proposed HEVC fractional interpolation hardware with the

HEVC fractional interpolation hardware in the literature is shown in Table 3.3. The

proposed HEVC fractional interpolation hardware has higher throughput than [16, 17,

26, 27]. Only hardware in [28] has higher throughput than the proposed hardware at the

expense of more area. The hardware in [16] has less area than the proposed hardware.

However, it can only be used for motion compensation.

Figure 3.6 Energy Consumptions of FIHW_ORG, FIHW_MCM, FIHW_DSP

and FIHW_MEM

24

Table 3.3 Hardware Comparison

[16] [17] [26] [27] [28] FIHW_MEM

FPGA
Xilinx

Virtex 6

Xilinx

Virtex 6

Arria II

GX

Xilinx

Virtex 5
Stratix III

Xilinx

Virtex 6

Slices --- --- --- 2181 --- 1498

LUTs 3005 3929 18831 5017 7701 3806

Block RAMs 2 6 --- 2 --- ---

Max. Freq.

(MHz)
100 200 200 283 278 233

Fps
64

2560x1600

30

3840x2160

60

1920x1080

30

2560x1600

60

3840x2160

35

3840x2160

25

4 CHAPTER IV

HIGH PERFORMANCE 2D TRANSFORM HARDWARE FOR

FUTURE VIDEO CODING

HEVC uses DCT/IDCT. In addition, it uses DST/IDST for 4x4 intra prediction

in certain cases. DCT and DST have high computational complexity, and they are

heavily used in an HEVC encoder [10]. DCT and DST operations account for 11% of

the computational complexity of an HEVC video encoder. They account for 25% of the

computational complexity of an all intra HEVC video encoder [3, 29].

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes. In

order to improve the compression efficiency, FVC uses DCT-II, DCT-V, DCT-VIII,

DST-I, DST-VII, and it uses 4x4, 8x8, 16x16, 32x32, 64x64 TU sizes [11, 12].

Therefore, FVC transform operations have much higher computational complexity than

HEVC transform operations.

In this thesis, three different high performance FVC 2D transform hardware are

designed and implemented using Verilog HDL. They perform 2D DCT-II, DCT-V,

DCT-VIII, DST-I, and DST-VII operations for 4x4 and 8x8 TU sizes by applying 1D

transforms in vertical and horizontal directions. They process two 4x4 TUs in parallel or

one 8x8 TU. Therefore, they can calculate 8 DCT/DST coefficients per clock cycle.

The first (baseline) hardware uses separate datapaths for each 1D transform. In

this hardware, data gating is used to reduce energy consumption. In addition, Hcub

MCM algorithm [18] is used to perform constant multiplications. Hcub MCM algorithm

26

reduces the number and size of adders. The second (reconfigurable) hardware uses one

reconfigurable datapath for all 1D column transforms and one reconfigurable datapath

for all 1D row transforms. Therefore, it has smaller area than the baseline hardware.

However, the baseline hardware with data gating technique has less energy

consumption than the reconfigurable hardware. This is because reconfigurable 1D

datapath has larger area and more energy consumption than one baseline 1D datapath.

The third (reconfigurable_DSP) hardware uses one reconfigurable datapath for

all 1D column transforms and one reconfigurable datapath for all 1D row transforms.

Xilinx FPGAs have built-in full-custom DSP blocks which can perform constant

multiplications faster and with less energy than adders and shifters. A DSP block can be

used to perform different constant multiplications by providing proper constant values

to its inputs. Therefore, it is more efficient to implement constant multiplications using

DSP blocks instead of using adders and shifters in an FPGA implementation. The

reconfigurable_DSP hardware implements multiplications with constants using DSP

blocks in FPGA instead of using adders and shifters. It uses data gating to reduce

energy consumption.

Since it is more efficient to implement constant multiplications using adders and

shifters instead of using multipliers in an ASIC implementation, the FVC baseline and

reconfigurable hardware implement multiplications with constants using adders and

shifters. Therefore, the FPGA implementation of reconfigurable_DSP hardware has up

to 29% and 59% less energy consumption than FPGA implementations of baseline and

reconfigurable hardware, respectively.

Several HEVC 2D DCT/IDCT hardware are proposed in the literature [29, 30, 31,

32, 33, 34]. The hardware proposed in [29, 30, 31, 32] implement HEVC DCT-II for

TU sizes up to 32x32. In [30], DCT calculations are performed using multipliers. In

[31], FPGA implementation of HEVC DCT-II is implemented using DSP blocks and

ASIC implementation of HEVC DCT-II is implemented using multipliers. In [29] and

[32], DCT calculations are done using adders and shifters. In [33], HEVC IDCT-II and

IDST-VII are implemented using adders and shifters for TU sizes up to 32x32. In [34],

FPGA implementation of HEVC DCT-II is proposed. This hardware uses DSP blocks

for HEVC DCT-II operation. FVC 2D transform hardware proposed in this thesis are

compared with the HEVC 2D DCT/IDCT hardware proposed in [29, 30, 31, 32, 33, 34].

Since FVC uses DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII, FVC baseline,

27

reconfigurable and reconfigurable_DSP 2D transform hardware proposed in this thesis

have larger area than the HEVC 2D transform hardware.

4.1 FVC Transform Algorithms

 Basis functions for 1D DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII for an

NxN block are shown in Table 4.1, where i, j = 0, 1, … , N-1 [10].

Table 4.1 DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII Basis Functions

Transform Type Basis Function

DCT-II Tij = ω0 ∙ √
2

N
∙ cos (

π∙i∙(2j+1)

2N
), ω0 = {√

2

N
i = 0

1 i ≠ 0

DCT-V Tij = ω0 ∙ ω1 ∙ √
2

2N−1
∙ cos (

2π∙i∙j

2N−1
), ω0 = {√

2

N
i = 0

1 i ≠ 0

, ω1 = {
√

2

N
j = 0

1 j ≠ 0

DCT-VIII Tij = √
4

2N + 1
∙ cos (

π ∙ (2i + 1) ∙ (2j + 1)

4N + 2
)

DST-I Tij = √
2

𝑁 + 1
∙ sin (

𝜋 ∙ (𝑖 + 1) ∙ (𝑗 + 1)

𝑁 + 1
)

DST-VII Tij = √
4

2𝑁 + 1
∙ sin (

𝜋 ∙ (2𝑖 + 1) ∙ (𝑗 + 1)

2𝑁 + 1
)

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes for

DCT. It also uses DST for 4x4 intra prediction in certain cases. HEVC performs 2D

transform operation by applying 1D transforms in the vertical and horizontal directions.

The coefficients in the HEVC 1D transform matrices are derived from the DCT-II and

DST-VII basis functions. However, integer coefficients are used for simplicity. HEVC

DCT-II and DST-VII matrices for 4x4 TU size are shown in (4.1) and (4.2).

In order to improve the compression efficiency, FVC uses DCT-II, DCT-V,

DCT-VIII, DST-I, DST-VII, and it uses 4x4, 8x8, 16x16, 32x32, 64x64 TU sizes. FVC

also performs 2D transform operation by applying 1D transforms in the vertical and

horizontal directions. The coefficients in the FVC 1D transform matrices are derived

28

from DCT and DST basis functions. However, integer coefficients are used for

simplicity. FVC transform matrices for 4x4 TU size are shown in (4.3)-(4.7).

𝐷𝐶𝑇 − 𝐼𝐼4𝑥4 = [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

] (4.1)

𝐷𝑆𝑇 − 𝑉𝐼𝐼4𝑥4 = [

29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

] (4.2)

𝐷𝐶𝑇 − 𝐼𝐼4𝑥4 = [

256 256 256 256
334 139 −139 −334
256 −256 −256 256
139 −334 334 −139

] (4.3)

𝐷𝐶𝑇 − 𝑉4𝑥4 = [

194 274 274 274
274 241 −86 −349
274 −86 −349 241
274 −349 241 −86

] (4.4)

𝐷𝐶𝑇 − 𝑉𝐼𝐼𝐼4𝑥4 = [

336 296 219 117
296 0 −296 −296
219 −296 −117 336
117 −296 336 −219

] (4.5)

𝐷𝑆𝑇 − 𝐼4𝑥4 = [

190 308 308 190
308 190 −190 −308
308 −190 −190 308
190 −308 308 −190

] (4.6)

𝐷𝑆𝑇 − 𝑉𝐼𝐼4𝑥4 = [

117 219 296 336
296 296 0 −296
336 −117 −296 219
219 −336 296 −117

] (4.7)

Table 4.2 shows the numbers of addition and shift operations required for

calculating 1D DCT-II and DST-VII used in HEVC, and 1D DCT-II, DCT-V, DCT-

VIII, DST-I and DST-VII used in FVC for 4x4 and 8x8 TU sizes. FVC transform

operations have much higher computational complexity than HEVC transform

operations.

29

Table 4.2 Addition and Shift Amounts

 Future Video Coding HEVC

TU Size DCT-II DCT-V DCT-VIII DST-I DST-VII DCT-II DST-VII

4x4
Addition 88 248 224 160 224 64 200

Shift 80 240 216 160 216 64 192

8x8
Addition 784 2232 2368 1008 2368 576 ---

Shift 608 2056 2176 912 2176 480 ---

HEVC uses the same transform type for vertical and horizontal 1D transforms for

performing a 2D transform. However, FVC may use different transform types for

vertical and horizontal 1D transforms. It uses an AMT scheme to determine 1D

transform types. AMT is enabled or disabled for each CU. When AMT is disabled for a

CU, only DCT-II is used for this CU. When AMT is enabled for a CU, 1D transform

types for vertical and horizontal directions are selected based on prediction type, intra or

inter prediction, for this CU.

Table 4.3 Transform Sets

Transform Set Transform Types

0 DST-VII, DCT-VIII

1 DST-VII, DST-I

2 DST-VII, DCT-V

In FVC, as shown in Table 4.3, three different 1D transform sets are defined [10].

Each transform set consists of two transform types. In intra prediction mode, transform

set is selected based on intra prediction mode. In inter prediction mode, transform set 2

is used for all inter prediction modes.

4.2 Proposed FVC Baseline 2D Transform Hardware

The proposed FVC baseline 2D transform hardware for 4x4 and 8x8 TU sizes

including Hcub MCM algorithm is shown in Figure 4.1. The proposed hardware

performs 2D DCT/DST by first performing 1D DCT/DST on the columns of a TU, and

then performing 1D DCT/DST on the rows of the TU. After 1D column DCT/DST, the

resulting transformed coefficients are stored in a transpose memory, and they are used

as input for 1D row DCT/DST. 1D column datapaths and 1D row datapaths are used to

perform 1D column DCT/DST and 1D row DCT/DST operations, respectively.

30

Figure 4.1 Proposed FVC Baseline 2D Transform Hardware

The proposed baseline hardware uses separate datapaths for implementing each

1D column and 1D row DCT/DST type. It processes two 4x4 TUs in parallel or one 8x8

TU. It calculates eight transformed coefficients per clock cycle for both 4x4 and 8x8

TU sizes. Proper inputs and outputs are selected based on the transform type selected

for the current TU and its size. When the proposed hardware processes 8x8 TU size,

eight inputs are eight residuals in one column of an 8x8 TU. When it processes 4x4 TU

size, eight inputs are four residuals in one column of a 4x4 TU and four residuals in one

column of another 4x4 TU.

An N-point 1D transform can be performed by performing two N/2-point 1D

transforms with some preprocessing for FVC DCT-II and DST-I. FVC DCT-V, DCT-

VIII and DST-VII do not have this property. In the proposed baseline hardware, N-point

1D DCT-II and 1D DST-I are performed by performing two N/2-point 1D DCT-II and

1D DST-I, respectively, with an efficient butterfly structure. N-point 1D DCT-V, 1D

DCT-VIII and 1D DST-VII are performed by performing one N-point 1D DCT-V, 1D

DCT-VIII and 1D DST-VII, respectively. The butterfly structure used for 1D DCT-II

and 1D DST-I is shown in Figure 4.2. For 4x4 TUs, only 4x4 butterfly operation is

used. For 8x8 TUs, 8x8 and 4x4 butterfly operations are used.

31

Figure 4.2 1D DCT-II/DST-I Column Datapath

In the proposed baseline hardware, there are eight 4x4 datapaths. As shown in

Figure 4.2, there are two 4x4 datapaths in the 1D Column DCT-II, 1D Row DCT-II, 1D

Column DST-I, 1D Row DST-I datapaths. Column and row datapaths have the same

hardware architecture. Two 4x4 datapaths are used for two 4x4 TUs or for one 8x8 TU.

In the proposed baseline hardware, there are six 8x8 datapaths. As shown in Figure 4.3,

there is one 8x8 datapath in the 1D Column DCT-V, 1D Row DCT-V, 1D Column

DCT-VIII, 1D Row DCT-VIII, 1D Column DST-VII, 1D Row DST-VII datapaths.

There are 8 adder trees in an 8x8 datapath. In the figure, only one of them is shown for

simplicity. Column and row datapaths have the same hardware architecture. One 8x8

datapath is used for two 4x4 TUs or for one 8x8 TU.

32

Figure 4.3 1D DCT-V/DCT-VIII/DST-VII Column Datapath

In order to reduce energy consumption of the proposed baseline hardware, data

gating is used for the inputs of all 1D column datapaths and all 1D row datapaths. The

input registers of the column and row datapaths for the transform types not selected for

the current TU are not updated. This prevents unnecessary switching activities in these

datapaths and therefore reduces energy consumption.

In the proposed baseline hardware, multiplications with constants are performed

using adders and shifters. In order to reduce number and size of the adders, Hcub MCM

algorithm is used [18]. Hcub MCM algorithm tries to minimize number and size of the

adders in a multiplier block which multiplies a single input with multiple constants

using addition and shift operations.

There are 4 multiplier blocks in a 4x4 datapath. Each multiplier block performs

the multiplications between 1 input and 4 transform coefficients. One of the multiplier

blocks in first 4x4 datapath for 1D Column DCT-II is shown in Figure 4.4. In order to

calculate each output of 1D DCT-II and 1D DST-I for a 4x4 TU, an output from each

multiplier block in a 4x4 datapath is selected, and these outputs are added or subtracted.

In order to calculate each output of 1D DCT-II and 1D DST-I for an 8x8 TU, an output

from each multiplier block in two 4x4 datapaths is selected, and these outputs are added

or subtracted.

33

Figure 4.4 A Multiplier Block

There are 8 multiplier blocks in an 8x8 datapath. Each multiplier block performs

the multiplications between 1 input and 8 transform coefficients. In order to calculate

each output of 1D DCT-V, 1D DCT-VIII and 1D DST-VII for a 4x4 TU, an output

from four multiplier blocks in an 8x8 datapath is selected, and these outputs are added

or subtracted. In order to calculate each output of 1D DCT-V, 1D DCT-VIII and 1D

DST-VII for an 8x8 TU, an output from each multiplier block in an 8x8 datapath is

selected, and these outputs are added or subtracted.

As shown in Figure 4.5, the transpose memory is implemented using 8 Block

RAMs (BRAM). 4 and 8 BRAMs are used for 4x4 and 8x8 TU sizes, respectively.

Since a BRAM address can store 32-bits and one transformed coefficient of 1D column

DCT/DST is 16-bits, each BRAM address can store two transformed coefficients. When

the proposed hardware processes 4x4 and 8x8 TU size, each BRAM address stores two

and one transformed coefficients, respectively.

34

Figure 4.5 Transpose Memory

In the figure, the numbers in the each box show the BRAM that coefficient is

stored. The results of 1D column DCT/DST are generated column by column. For 8x8

TU size, first, the coefficients in column 0 (C0) are generated in a clock cycle and

stored in 8 different BRAMs. Then, the coefficients in column 1 (C1) are generated in

the next clock cycle and stored in 8 different BRAMs using a rotating addressing

scheme. This continuous until the coefficients in column 7 (C7) are generated and

stored in 8 different BRAMs using the rotating addressing scheme. This ensures that the

8 coefficients necessary for 1D row DCT/DST in a clock cycle can always be read in

one clock cycle from 8 different BRAMs.

Column clip and row clip hardware are used to scale the outputs of 1D column

DCT/DST and 1D row DCT/DST to 16 bits, respectively. Column clip hardware shifts

1D column DCT/DST outputs right by 3 and 4 bits for 4x4 and 8x8 TU sizes,

respectively. Row clip hardware shifts 1D row DCT/DST outputs right by 10 and 11

bits for 4x4 and 8x8 TU sizes, respectively.

The proposed baseline hardware performs 1D DCT/DST for 4x4 and 8x8 TU

sizes in 4 and 8 clock cycles, respectively. 1D column DCT/DST and 1D row

DCT/DST operations are pipelined. While 1D row DCT/DST for current TU is

performed, 1D column DCT/DST for next TU is also performed. Because of the input

data loading and pipeline stages, the proposed baseline hardware starts generating the

results of 1D row DCT/DST in 14 clock cycles. It then continues generating the results

row by row in every clock cycle until the end of the last TU in the video frame without

any stalls.

35

4.3 Proposed FVC Reconfigurable 2D Transform Hardware

The proposed FVC reconfigurable 2D transform hardware for 4x4 and 8x8 TU

sizes is shown in Figure 4.6. Same as the proposed baseline hardware, it performs 2D

DCT/DST by first performing 1D DCT/DST on the columns of a TU, and then

performing 1D DCT/DST on the rows of the TU. The column clip hardware, row clip

hardware, and transpose memory in the proposed reconfigurable hardware are the same

as the ones in the proposed baseline hardware. Same as the proposed baseline hardware,

it processes two 4x4 TUs in parallel or one 8x8 TU. It calculates eight transformed

coefficients per clock cycle for both 4x4 and 8x8 TU sizes.

The proposed baseline hardware uses separate datapaths for implementing each

1D column and 1D row DCT/DST type. However, as shown in Figure 4.6, the proposed

reconfigurable hardware uses one reconfigurable datapath for implementing all 1D

column DCT/DST types and one reconfigurable datapath for implementing all 1D row

DCT/DST types. Therefore, N-point DCT-II and DST-I are also performed by

performing one N-point DCT-II and DST-I same as DCT-V, DCT-VIII, DST-VII.

Since, in FVC, one 1D DCT/DST at a time is performed, one reconfigurable

datapath can be used for all 1D DCT/DST. 1D column datapath used in the proposed

reconfigurable hardware is shown in Figure 4.7. Column and row datapaths have the

same hardware architecture. There are 8 reconfigurable multiplier blocks in 1D column

datapath. They perform the necessary constant multiplications for the selected 1D

transform type (TR_ Type_ Vertical). In order to calculate each output of 1D DCT/DST

for an 8x8 TU, an output from each reconfigurable multiplier block is selected, and

these outputs are added or subtracted. There are 8 adder trees in the datapath. In the

figure, only one of them is shown for simplicity.

Figure 4.6 Proposed FVC Reconfigurable 2D Transform Hardware

36

Figure 4.7 Reconfigurable 1D Column Datapath of the Proposed FVC Reconfigurable

2D Transform Hardware

The reconfigurable multiplier block is shown in Figure 4.8. Multiple constant

multiplications necessary for calculating transformed coefficients for all 1D transform

types and TU sizes have several common parts. First, multiplications with these

common parts are performed in the common part of the reconfigurable multiplier block.

Then, multiple constant multiplications necessary for calculating transformed

coefficients for the selected 1D transform type and TU size are performed in the

reconfigurable part of the reconfigurable multiplier block using the multiplication

results of the common part.

The proposed reconfigurable hardware performs 1D DCT/DST for 4x4 and 8x8

TU sizes in 4 and 8 clock cycles, respectively. 1D column DCT/DST and 1D row

DCT/DST operations are pipelined. While 1D row DCT/DST for current TU is

performed, 1D column DCT/DST for next TU is also performed. Because of the input

data loading and pipeline stages, the proposed reconfigurable hardware starts generating

the results of 1D row DCT/DST in 14 clock cycles. It then continues generating the

results row by row in every clock cycle until the end of the last TU in the video frame

without any stalls.

37

Figure 4.8 Reconfigurable Multiplier Block

38

4.4 Proposed FVC Reconfigurable_DSP 2D Transform Hardware

The proposed FVC reconfigurable_DSP 2D transform hardware for 4x4 and 8x8

TU sizes is shown in Figure 4.6. Same as the proposed baseline and reconfigurable

hardware, it performs 2D DCT/DST by first performing 1D DCT/DST on the columns

of a TU, and then performing 1D DCT/DST on the rows of the TU. The column clip

hardware, row clip hardware, and transpose memory in the proposed

reconfigurable_DSP hardware are the same as the ones in the proposed baseline and

reconfigurable hardware. Same as the proposed baseline and reconfigurable hardware, it

processes two 4x4 TUs in parallel or one 8x8 TU. It calculates eight transformed

coefficients per clock cycle for both 4x4 and 8x8 TU sizes.

The proposed reconfigurable 1D column datapath used in the proposed

reconfigurable_DSP hardware is shown in Figure 4.9. Column and row datapath have

the same hardware architecture. Since each 1D DCT/DST uses different transform

coefficients, different constant multiplication operations should be performed for each

1D DCT/DST. Xilinx FPGAs have built-in full-custom DSP blocks which can perform

constant multiplications faster and with less energy than adders and shifters. A DSP

block can be used to perform different constant multiplications by providing proper

constant value to its input. Therefore, the proposed hardware implements constant

multiplications using DSP blocks in FPGA instead of using adders and shifters.

Figure 4.9 Reconfigurable 1D Column Datapath of the Proposed FVC

Reconfigurable_DSP 2D Transform Hardware

39

For implementing constant multiplications, 8x8=64 DSP blocks are used in 1D

column datapath and 8x8=64 DSP blocks are used in 1D row datapath. In the column

datapath, each transform input sent to 8 DSP blocks in the same column. Each DSP

block takes one transform input and one transform coefficient as input, and it performs

constant multiplication. 64 and 32 DSP blocks are used for one 8x8 TU and two 4x4

TUs, respectively. Since the proposed hardware can perform 5 different DCT/DST

operations for 2 different TU sizes, a multiplexer is used at the input of each DSP block

to select proper transform coefficient. 1D transform type (TR_Type_ Vertical) and TU

size (TU_size) are used as select signals for the multiplexers.

In order to calculate each output of 1D DCT/DST for an 8x8 TU, outputs of DSP

blocks in the same row are added. 8 DSP blocks in the same row and their adder tree

structure is shown in Figure 4.9. 8 DSP blocks in the other rows have the same

structure. In the figure, only one of them is shown for simplicity.

In order to calculate each output of 1D DCT/DST for a 4x4 TU, outputs of DSP

blocks in the same row are added. Since two 4x4 TUs are processed in parallel, outputs

of first 4 DSP blocks in the same row are added for the first 4x4 TU. Outputs of last 4

DSP blocks in the same row are added for the second 4x4 TU.

In order to reduce energy consumption of the proposed hardware, data gating is

used for the inputs of DSP blocks in 1D column datapath and 1D row datapath. 1D

DCT/DST operation for an 8x8 TU uses 64 DSP blocks. 1D DCT/DST operation for a

4x4 TU uses 16 DSP blocks. Therefore, when two 4x4 TUs are processed in parallel,

the input registers of 32 DSP blocks are not updated. This prevents unnecessary

switching activities in the DSP blocks and therefore reduces energy consumption.

The proposed reconfigurable_DSP hardware performs 1D DCT/DST for 4x4 and

8x8 TU sizes in 4 and 8 clock cycles, respectively. 1D column DCT/DST and 1D row

DCT/DST operations are pipelined. While 1D row DCT/DST for current TU is

performed, 1D column DCT/DST for next TU is also performed. Because of input data

loading and pipeline stages, the proposed hardware starts generating the results of 1D

row DCT/DST in 16 clock cycles. It then continues generating the results row by row in

every clock cycle until the end of the last TU in the video frame without any stalls.

4.5 Implementation Results

The proposed FVC baseline, FVC reconfigurable and FVC reconfigurable_DSP

hardware are implemented using Verilog HDL. The Verilog RTL codes are verified

40

with RTL simulations. RTL simulation results matched the results of FVC 2D transform

implementation in Joint Exploration Test Model (JEM) 4.0 reference software encoder

[10]. The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX550T

FF1759 FPGA with speed grade 2 using Xilinx ISE 14.7. The FPGA implementations

are verified with post place and route simulations. Post place and route simulation

results matched results of FVC 2D transform implementation in JEM 4.0 reference

software encoder.

An HEVC 2D DCT hardware for all TU sizes is proposed in [29]. In this thesis,

two different versions of this hardware are implemented for 4x4 and 8x8 TU sizes, for

fair comparison, using Verilog HDL. The first hardware (HEVC) uses Hcub MCM

algorithm for multiplications with constants. The second hardware (HEVC_DSP) uses

DSP blocks in FPGA for multiplications with constants.

Number of adders and shifters used in 1D (column or row) datapaths of FVC

baseline, FVC reconfigurable and HEVC hardware are shown in Table 4.4. Hcub MCM

algorithm considerably reduced number of adders and shifters in 1D datapaths of FVC

baseline and HEVC hardware. The proposed FVC reconfigurable 1D column/row

datapath uses significantly less adders and shifters than the proposed FVC baseline 1D

column/row datapaths.

Number of multipliers, adders and multiplexers used in 1D (column or row)

datapath of the proposed FVC reconfigurable_DSP hardware and the HEVC_DSP

hardware are shown in Table 4.5. Since FVC 2D transform operations have much

higher computational complexity than HEVC 2D DCT operations, reconfigurable 1D

column/row datapath of the proposed FVC reconfigurable_DSP hardware uses more

multipliers, adders and multiplexers than the column/row datapath in the HEVC_DSP

hardware.

Table 4.4 Adder and Shifter Amounts in 1D Datapaths

HEVC

FVC

Baseline

FVC

Reconfig.

W
it

h
o

u
t

M
C

M
 Multiplier

Blocks

Adder 60 817 112

Shifter 80 996 248

Adder Tree Adder 28 224 56

W
it

h

M
C

M
 Multiplier

Blocks

Adder 30 428 ---

Shifter 50 593 ---

Adder Tree Adder 28 224 ---

41

Table 4.5 Multiplier, Adder and Multiplexer Amounts in 1D Datapaths

HEVC_DSP

FVC Reconfig._DSP

Hardware

Multiplier 22 64

Adder 28 56

10-bit 2-to-1

MUX
--- 342

The FPGA implementation results are shown in Table 4.6. Since the FPGA

implementation of proposed FVC reconfigurable_DSP hardware uses DSP blocks for

multiplications with constants, it uses less LUT and Slice than the FPGA

implementation of proposed FVC baseline and reconfigurable hardware. Since FVC 2D

transform operations have much higher computational complexity than HEVC 2D DCT

operations, the proposed FVC reconfigurable_DSP hardware uses more resources than

HEVC_DSP hardware.

The Verilog RTL codes of FVC baseline, FVC reconfigurable and HEVC

hardware are also synthesized to a 90 nm standard cell library and the resulting netlists

are placed and routed. Their gate counts are calculated according to NAND (3x1) gate

area excluding on-chip memory. The ASIC implementation results are shown in Table

4.7.

Table 4.6 FPGA Implementation Results

HEVC Hardware

HEVC_DSP

Hardware

FVC Baseline Hardware

FVC Reconfig.

Hardware

FVC

Reconfig._DSP

Hardware

Without

MCM

With

MCM

Without

MCM

With

MCM

FPGA
Xilinx
Virtex6

Xilinx
Virtex6

Xilinx
Virtex6

Xilinx
Virtex6

Xilinx
Virtex6

Xilinx
Virtex6

Xilinx
Virtex6

Slices 1111 939 810 10215 7930 5292 1223

LUTs 3613 3119 2069 32586 27144 17173 3332

DFFs 1412 1065 665 15243 12309 4571 2082

Block

RAMs
8 8 8 8 8 8 8

DSP48E1s --- --- 44 --- --- --- 128

Max Freq.

(MHz)
167 167 222 143 167 143 222

Fps
40 8K

Ultra HD

40 8K

Ultra HD

54 8K

Ultra HD

35 8K

Ultra HD

40 8K

Ultra HD

35 8K

Ultra HD

54 8K

Ultra HD

TU Size 4, 8 4, 8 4, 8 4, 8 4, 8 4, 8 4, 8

Transform 2D 2D 2D 2D 2D 2D 2D

42

Table 4.7 ASIC Implementation Results

HEVC Hardware FVC Baseline Hardware

FVC Reconfig.

Hardware

Without

MCM

With

MCM

Without

MCM

With

MCM

Technology 90 nm 90 nm 90 nm 90 nm 90 nm

Gate Count 29.3 K 28.5 K 153.4 K 136.4 K 60.1 K

Max Freq.

(MHz)
200 200 333 345 245

Fps
48 8K

Ultra HD

48 8K

Ultra HD

82 8K

Ultra HD

84 8K

Ultra HD

60 8K

Ultra HD

TU Size 4, 8 4, 8 4, 8 4, 8 4, 8

Transform 2D 2D 2D 2D 2D

Both ASIC and FPGA implementations of the proposed FVC reconfigurable

hardware use less resources than the proposed FVC baseline hardware. Since FVC 2D

transform operations have much higher computational complexity than HEVC 2D DCT

operations, the proposed FVC baseline and reconfigurable hardware use more resources

than HEVC hardware.

Power consumptions of the FPGA implementations are estimated using Xilinx

XPower Analyzer tool. Post place & route timing simulations are performed for Tennis,

Kimono and ParkScene full HD (1920x1080) videos at 100 MHz [35] and signal

activities are stored in VCD files. These VCD files are used for estimating power

consumptions of the FPGA implementations.

Energy consumptions of FVC baseline, FVC reconfigurable, FVC

reconfigurable_DSP, HEVC and HEVC_DSP hardware for one frame of each video are

shown in Figure 4.10. Data gating technique reduced the energy consumption of FVC

baseline hardware up to 71.7%. Data gating technique and Hcub MCM algorithm

together reduced the energy consumption of FVC baseline hardware up to 73.3%.

Although the proposed FVC reconfigurable hardware has smaller area than the

proposed FVC baseline hardware, it has more energy consumption than the proposed

FVC baseline hardware when data gating technique is used. This is because

reconfigurable 1D column/row datapath has larger area and more energy consumption

than one baseline 1D column/row datapath. Since FVC 2D transform operations have

much higher computational complexity than HEVC 2D DCT operations, the proposed

FVC baseline and reconfigurable hardware consume more energy than HEVC

hardware.

43

Figure 4.10 Energy Consumption Results

Since the proposed FVC reconfigurable_DSP hardware implements

multiplications with constants using DSP blocks in FPGA instead of using adders and

shifters, the proposed FVC reconfigurable_DSP hardware has up to 29% and 59% less

energy consumption than the proposed FVC baseline and reconfigurable hardware,

44

respectively. Since FVC 2D transform operations have much higher computational

complexity than HEVC 2D DCT operations, the proposed FVC reconfigurable_DSP

hardware consumes more energy than HEVC_DSP hardware.

 The comparison of FPGA implementations is shown in Table 4.8. Since FVC

2D transform operations have much higher computational complexity than HEVC 2D

DCT operations, the FPGA implementations of FVC baseline, reconfigurable and

reconfigurable_DSP hardware use more FPGA resources than the FPGA

implementations of HEVC 2D DCT hardware proposed in [29, 31, 34]. Since HEVC

2D DCT hardware proposed in [31] performs DCT-II for TU sizes up to 32x32, its

FPGA implementation uses more FPGA resources than the FPGA implementation of

FVC reconfigurable_DSP hardware.

Table 4.8 Comparison of FPGA Implementations

 [31] [34]

[29]
FVC

Baseline

FVC

Reconfig.

FVC

Reconfig._DSP HEVC HEVC_DSP

FPGA Arria II GX
Xilinx
Virtex7

Xilinx
Virtex 6

Xilinx
Virtex 6

Xilinx
Virtex 6

Xilinx
Virtex 6

Xilinx
Virtex 6

Slices --- --- 939 810 7930 5292 1223

LUTs 7300 2478 3119 2069 27144 17173 3332

DFFs --- --- 1065 665 12309 4571 2082

DSP48E1s 128 64 --- 44 --- --- 128

Max. Freq.

(MHz)
200 289 167 222 167 143 222

Fps ---
70

3840x2160
40

7680x4320
54

7680x4320
40

7680x4320
35

3840x2160
54

7680x4320

Throughput

(pixels/cycle)
--- --- 8 8 8 8 8

Max Bit

Length
25 25 25 25 27 27 27

TU Size 4, 8, 16, 32 4, 8 4, 8 4, 8 4, 8 4, 8 4, 8

Transform

Type
DCT-II DCT-II DCT-II DCT-II

DCT-II, DCT-

V, DCT-VIII,

DST-I, DST-
VII

DCT-II, DCT-

V, DCT-VIII,

DST-I, DST-
VII

DCT-II, DCT-

V, DCT-VIII,

DST-I, DST-
VII

Transform 2D 2D 2D 2D 2D 2D 2D

The ASIC implementation results of the proposed FVC reconfigurable hardware

are scaled up for all TU sizes in order to compare it with the HEVC 2D DCT/IDCT

hardware in the literature. The comparison of ASIC implementations is shown in Table

4.9. Since FVC 2D transform operations have much higher computational complexity

than HEVC 2D transform operations, the proposed FVC reconfigurable hardware has

larger area than HEVC hardware in the literature. HEVC 2D transform hardware

proposed in [32] has higher performance than the proposed FVC reconfigurable

45

hardware. However, although it only performs HEVC DCT-II transform, it has similar

area with the proposed FVC reconfigurable hardware. The proposed FVC

reconfigurable hardware has higher performance than the other HEVC 2D transform

hardware.

Table 4.9 Comparison of ASIC Implementations

[29] [30] [31] [32] [33]

FVC Reconfigurable

Hardware

Technology 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm

Gate Count 175 K 343.5 K 328.2 K 347 K 142 K 416 K

Max Freq.

(MHz)
140 311 400 187 150 160

Fps
60

3840x2160

30

4096x2048

30

3840x2160

60

7680x4320

48

3840x2160

39

7680x4320

Throughput

(pixels/cycle)
4/8/16/32 4/8/16/32 8/16/32/32 32 4/8/16/32 ---

Max Bit

Length
25 25 25 25 25 27

TU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32
4, 8, 16, 32

(Scaled)

Transform

Type
DCT-II DCT-II DCT-II DCT-II

IDCT-II,

IDST-VII

DCT-II, DCT-V,
DCT-VIII, DST-I,

DST-VII

Transform 2D 2D 2D 2D 2D 2D

4.6 Implementation on FPGA Board

In this thesis, the proposed FVC reconfigurable 2D transform hardware is

implemented on a ML605 FPGA board which includes a Virtex 6 XC6VLX240T FPGA

with speed grade 1, 512 MB DDR RAM and 32 MB Flash memory and interfaces such

as UART.

Xilinx Platform Studio, Xilinx Software Development Kit and MicroBlaze

processor are used for implementing the proposed FVC reconfigurable 2D transform

hardware on the FPGA board. A software running on MicroBlaze processor is

developed to send the inputs of the proposed FVC reconfigurable 2D transform

hardware from a host to the hardware and to read the outputs of the hardware for

sending them back to the host computer. The proposed FVC reconfigurable 2D

transform hardware is added as a peripheral to a bus where the MicroBlaze processor is

the master. For this purpose, the proposed FVC reconfigurable 2D transform hardware

is modified to be a slave peripheral for this data bus and software accessible registers

are added to the proposed hardware. These registers are used by the software running on

46

MicroBlaze for writing data inputs and communication signals to the hardware. They

are also used for reading the outputs and the status information from the hardware.

 The software reads residual data of one frame from the host computer using the

UART interface and writes it to a DDR RAM. Then, it loads residual data for one TU to

the input registers of the hardware with TU size information. The proposed FVC

reconfigurable 2D transform hardware produces transform coefficients and writes them

to the output registers. After the hardware sends done signal to the software, the

software reads transform coefficients from the output registers and writes them to the

DDR RAM. This process is repeated for all TUs in one frame. Since the produced

transform coefficients are not pixel values, they are not displayed on monitor. The

produced transform coefficients are read from DDR RAM and it is verified that they

matched the results of FVC 2D transform implementation in JEM 4.0 reference

software encoder. The FPGA implementation is shown in Figure 4.11.

47

Figure 4.11 Proposed FVC Reconfigurable 2D Transform Hardware Implementation on

FPGA Board

48

5 CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed a low complexity HEVC SPME technique for SPME

in HEVC encoder. The proposed technique reduced the amount of computations

significantly with slight decrease in PSNR. We designed and implemented a high

performance HEVC SPME hardware implementing the proposed low complexity

HEVC SPME technique. We also designed and implemented an HEVC fractional

interpolation hardware using memory based constant multiplication for all PU sizes for

both HEVC encoder and decoder. The proposed hardware uses memory based constant

multiplication technique for implementing multiplications with constant coefficients.

We proposed three different high performance FVC 2D transform hardware for 4x4 and

8x8 TU sizes. The first two hardware use adders and shifters for implementing FVC

transform algorithm. The third hardware uses DSP blocks in Xilinx Virtex 6 FPGA for

implementing FVC transform algorithm. The proposed hardware is verified to work

correctly on an FPGA board.

As future work, rate-distortion performance of the proposed low complexity

HEVC SPME technique can be determined using HM reference software encoder.

Memory based constant multiplication hardware used in the proposed HEVC fractional

interpolation hardware can be implemented more efficiently to further reduce energy

consumption. The proposed FVC 2D transform hardware can be extended to implement

all TU sizes, 16x16, 32x32 and 64x64.

49

6 BIBLIOGRAPHY

[1] B. Bross, W.J. Han, J.R. Ohm, G.J. Sullivan, Y.K. Wang, and T. Wiegand, “High

Efficiency Video Coding (HEVC) Text Specification Draft 10”, JCTVC-L1003, Feb.

2013.

[2] G.J.Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, " Overview of the High Efficiency Video

Coding (HEVC) Standard,"IEEE Trans. on Circuits and Systems for Video Technology,

vol.22, no.12, pp.1649-1668, Dec. 2012.

[3] ITU-T and ISO/IEC, High Efficiency Video Coding, ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), April 2003.

[4] F. Bossen, B. Bross, K. Suhring and D. Flynn, "HEVC Complexity and Implementation

Analysis ", IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.12,

pp.1685-1696, Dec. 2012.

[5] J. Vanne, M. Viitanen, T.D. Hämäläinen and A. Hallapuro, “Comparative Rate-

Distortion-Complexity Analysis of HEVC and AVC Video Codecs”, IEEE Trans. on

Circuits and Systems for Video Technology, vol.22, no.12, pp.1885-1898, Dec. 2012.

[6] C.K. Huang, L.C. Wu, H.T. Huang, T.H. Sheng, L.L. Youn, “A Low-Power High-

Performance H.264/AVC Intra-Frame Encoder for 1080p HD Video”, IEEE Trans. on

Very Large Scale Integration Systems, vol.19, no.6, pp.925-938, June 2011.

[7] G. J. Sullivan, G. Bjøntegaard, and A. Luthra T. Wiegand, "Overview of the H.264/AVC

Video Coding Standard," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[8] J. Lainema, F. Bossen, W.J. Han, J. Min and K. Ugur, “Intra Coding of the HEVC

Standard”, IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.12,

pp.1792-1801, Dec. 2012.

50

[9] J. Chen, Y. Chen, M. Karczewicz, X. Li, H. Lu, L. Zhang, X. Zhao, “Coding tools

investigation for next generation video coding”, ITU-T SG16 COM16-C806, Feb. 2015.

[10] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, J. Boyce, “Algorithm Description of Joint

Exploration Model 4”, JVET-D1001, Oct. 2016.

[11] X. Zhao, J. Chen, M. Karczewicz, L. Zhang, X. Li, W. Chien, “Enhanced Multiple

Transform for Video Coding”, Proc. Data Compression Conference, April 2016.

[12] T. Biatek, V. Lorcy, P. Castel, P. Philippe, “Low-Complexity Adaptive Multiple

Transform for Video Coding”, Proc. Data Compression Conference, April 2016.

[13] A. C. Mert, E. Kalali, I. Hamzaoglu, “Low complexity HEVC sub-pixel motion

estimation technique and its hardware implementation”, IEEE Int. Conference on

Consumer Electronics – Berlin, Sept. 2016.

[14] A. C. Mert, E. Kalali, I. Hamzaoglu, “High Performance 2D Transform Hardware for

Future Video Coding”, IEEE Trans. on Consumer Electronics, vol. 62, no. 2, May 2017.

[15] A. C. Mert, E. Kalali, I. Hamzaoglu, “An FPGA Implementation of Future Video Coding

2D Transform”, IEEE Int. Conference on Consumer Electronics – Berlin, Sept. 2017.

[16] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Reconfigurable HEVC Sub-Pixel Interpolation

Hardware”, IEEE Int. Conference on Consumer Electronics - Berlin, Sept. 2013.

[17] E. Kalali, I. Hamzaoglu, “A low energy HEVC sub-pixel interpolation hardware,” IEEE

Int. Conference on Image Processing, pp. 1218-1222, Oct. 2014.

[18] Y. Voronenko, M. Püschel, “Multiplierless Constant Multiple Multiplication”, ACM

Trans. on Algorithms, vol. 3, no. 2, May 2007.

[19] V. Afonso, H. Maich, L. Audibert, B. Zatt, M. Porto, L. Agostini, “Memory-Aware and

High-Throughput Hardware Design for the HEVC Fractional Motion Estimation”,

Symposium on Integrated Circuits and System Design, 2013.

[20] G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang, S. Goto, “High-Throughput Power-Efficient

VLSI Architecture of Fractional Motion Estimation for Ultra-HD HEVC Video

Encoding”, IEEE Trans. on VLSI Systems, vol.23, no.12, pp.3138-3142, March 2015.

[21] D. Ding, X. Ye, S. Wang, “1/2 and 1/4 Pixel Paralleled FME with A Scalable Search

Pattern for HEVC Ultra-HD Encoding”, IEEE Int. Conf. on Communication Technology,

pp.278-281, Oct. 2015.

[22] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan, “High

Efficiency Video Coding (HEVC) Test Model (HM) 15 Encoder Description”, JCTVC-

Q1002, June 2014.

51

[23] F. Bossen, “Common test conditions and software reference configurations”, JCTVC-

I1100, May 2012.

[24] P. K. Meher, “LUT Optimization for Memory-Based Computation”, IEEE Transactions

on Circuits and Systems-II: Express Briefs, vol. 57, no. 4, Apr. 2010.

[25] P. K. Meher, “New Approach to Look-Up-Table Design and Memory-Based Realization

of FIR Digital Filter”, IEEE Transactions on Circuits and Systems-I: Regular Papers,

vol. 57, no. 3, Mar. 2010.

[26] G. Pastuszak, M. Trochimiuk, “Architecture Design and Efficiency Evaluation for the

High-Throughput Interpolation in the HEVC Encoder”, 16th Euromicro Conference on

Digital System Design, Sept. 2013.

[27] C. M. Diniz, M. Shafique, S. Bampi, J. Henkel, “A Reconfigurable Hardware

Architecture for Fractional Pixel Interpolation in High Efficiency Video Coding,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp.

238-251, Feb. 2015.

[28] H. Maich, C. Afonso, D. Franco, B. Zatt, M. Porto, L. Agostini, “High throughput

hardware design for the HEVC Fractional Motion Estmation Interpolation Unit”, IEEE

20th International Conference on Electronics, Circuits, and Systems, May 2014.

[29] E. Kalali, A. C. Mert, I Hamzaoglu, “A Computation and Energy Reduction Technique

for HEVC Discrete Cosine Transform”, IEEE Trans. on Consumer Electronics, vol. 62,

no. 2, pp. 166-174, May 2016.

[30] J. Zhu, Z. Liu, D. Wang, “Fully Pipelined DCT/IDCT/Hadamard Unified Transform

Architecture for HEVC Codecs”, in Proc. IEEE Int. Symp. on Circuits and Systems, May

2013.

[31] G. Pastuszak, “Hardware Architecture for the H.265/HEVC Discrete Cosine Transform”,

IET Image Processing, vol. 9, no. 6, pp. 468-477, June 2015.

[32] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, C. Yeo, “Efficient Integer DCT

Architectures for HEVC”, IEEE Trans. on Circuits and Systems for Video Technology,

vol. 24, no. 1, pp. 168-178, Jan. 2014.

[33] E. Kalali, E. Ozcan, O. M. Yalcinkaya, I. Hamzaoglu,“A Low Energy HEVC Inverse

Transform Hardware”, IEEE Trans. on Consumer Electronics, vol. 60, no. 4, pp. 754-

761, Nov. 2014.

[34] M. Chen, Y. Zhang, C. Lu, “Efficient architecture of variable size HEVC 2D-DCT for

FPGA platforms”, AEU-International Journal of Electronics and Communications, vol.

73, pp. 1-8, March 2017.

52

[35] K. Suehring, X. Li, “JVET Common Test Conditions and Software Reference

Configurations”, JVET-B1010, Feb. 2016.

