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1 ABSTRACT 

 

High Efficiency Video Coding (HEVC) is the current state-of-the-art video 

compression standard developed by Joint collaborative team on video coding (JCT-

VC). HEVC has 50% better compression efficiency than H.264 which is the previous 

video compression standard. HEVC achieves this video compression efficiency by 

significantly increasing the computational complexity. Therefore, in this thesis, we 

proposed a low complexity HEVC sub-pixel motion estimation (SPME) technique for 

SPME in HEVC encoder. We designed and implemented a high performance HEVC 

SPME hardware implementing the proposed technique. We also designed and 

implemented an HEVC fractional interpolation hardware using memory based constant 

multiplication technique for both HEVC encoder and decoder.  

Future Video Coding (FVC) is a new international video compression standard 

which is currently being developed by JCT-VC. FVC offers much better compression 

efficiency than the state-of-the-art HEVC video compression standard at the expense of 

much higher computational complexity. In this thesis, we designed and implemented 

three different high performance FVC 2D transform hardware. The proposed hardware 

is verified to work correctly on an FPGA board. 
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2 ÖZET 

 

Yüksek verimli video kodlama (HEVC) Joint Colloborative Team on Video 

Coding (JCT-VC) tarafından geliştirilen günümüzde kullanılan video sıkıştırma 

standardıdır. HEVC bir önceki H.264 standardına göre 50% daha iyi performans 

sağlamaktadır. HEVC bu video sıkıştırma verimini hesaplama karmaşıklığını önemli 

ölçüde artırarak başarmaktadır. Bu nedenle, bu tezde HEVC video kodlayıcısı için 

kullanılan ara piksel hassaslığında hareket tahmini (SPME) için düşük karmaşıklıklı 

HEVC SPME tekniği önerildi. Önerilen tekniği uygulayan yüksek performanslı HEVC 

SPME donanımı tasarlandı ve gerçeklendi. Ayrıca, HEVC video kodlayıcı ve kod 

çözücü için bellek bazlı sabit çarpma tekniği kullanan HEVC ara pikselleri oluşturma 

donanımı tasarlandı ve gerçeklendi.  

Gelecek video kodlama (FVC) JCT-VC tarafından halihazırda geliştirilen yeni bir 

video sıkıştırma standardıdır. FVC daha fazla hesaplama karmaşıklığı pahasına 

günümüzde kullanılan HEVC video sıkıştırma standardından daha iyi sıkıştırma 

verimliliği sunmaktadır. Bu tezde, üç farklı yüksek performanslı FVC 2B dönüşüm 

donanımı tasarlandı ve gerçeklendi. Önerilen donanımın gerektiği şekilde çalıştığı 

FPGA’de doğrulandı. 
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1 CHAPTER I      

 

INTRODUCTION 

 

 

1.1 HEVC Video Compression Standard 

High Efficiency Video Coding (HEVC) is the current state-of-the-art video 

compression standard developed by Collaborative Team on Video Coding (JCT-VC) [1, 

2, 3, 4]. HEVC provides 50% better coding efficiency than H.264 which is the previous 

video compression standard. HEVC also provides 23% bit rate reduction for the intra 

prediction only case [5, 6, 7]. HEVC standard achieves its video compression efficiency 

by combining a number of encoding tools such as intra prediction, inter prediction, 

transform, deblocking filter (DBF), sample adaptive offset (SAO) and entropy coder.  

The top-level block diagrams of an HEVC encoder and decoder are shown in 

Figure 1.1 and Figure 1.2, respectively. An HEVC encoder has a forward path and a 

reconstruction path. The forward path is used to encode a video frame by using intra 

and inter predictions and to create the bit stream after the transform and quantization 

processes. Reconstruction path in the encoder ensures that both encoder and decoder 

use identical reference frames for intra and inter predictions. Since a decoder never gets 

original images, this avoids mismatch between encoder and decoder. 
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Figure 1.1 HEVC Encoder Block Diagram 

 

 

Figure 1.2 HEVC Decoder Block Diagram 

 

In the forward path, frame is divided into coding units (CU) that can be an 8x8, 

16x16, 32x32 or 64x64 pixel block. Depending on the mode decision, each CU is 

encoded in either intra or inter mode. Intra and inter prediction operations are performed 

on prediction unit (PU) level inside the CUs. PU sizes can be from 4x4 up to 64x64. 

Mode decision determines whether a PU will be coded using intra or inter prediction 

based on video quality and bit-rate. After mode decision determines the prediction 

mode, predicted block is subtracted from original block, and residual data is generated. 

Then, residual data is transformed by discrete cosine transform (DCT) / discrete sine 

transform (DST) and it is quantized. Transform unit (TU) sizes can be square-shaped 

sizes from 4x4 up to 32x32. Finally, entropy coder generates the encoded bit stream. 
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Reconstruction path begins with inverse quantization and inverse transform 

operations. The quantized transform coefficients are inverse quantized and inverse 

transformed to generate the reconstructed residual data. Since quantization is a lossy 

process, inverse quantized and inverse transformed coefficients are not identical to the 

original residual data. The reconstructed residual data are added to the predicted pixels 

in order to create the reconstructed frame. DBF is, then, applied to reduce the effects of 

blocking artifacts in the reconstructed frame. 

 HEVC intra prediction algorithm predicts the pixels of a block from the pixels 

of its already coded and reconstructed neighboring blocks. In HEVC standard, for the 

luminance component of a frame, intra PU sizes can be from 4x4 up to 32x32 and 

number of intra prediction modes for intra PU can be up to 35 [1, 8]. 

 HEVC inter prediction algorithm predicts the pixels of a block in the current 

frame from the pixels of already coded and reconstructed blocks in the previous frames. 

In HEVC standard, inter PU sizes can be from 4x8/8x4 up to 64x64. HEVC inter 

prediction algorithm uses integer pixel motion estimation and sub-pixel (half and 

quarter) motion estimation operations. First, integer pixel motion estimation is 

performed for an inter PU. Then, sub-pixel (half and quarter) motion estimation is 

performed for the same inter PU. In HEVC, three different 8-tap FIR filters are used for 

both half-pixel and quarter-pixel interpolations [1, 2, 3, 4]. 

Integer based DCT is used in HEVC. TU sizes can be square-shaped sizes from 

4x4 up to 32x32. In addition to DCT, HEVC uses DST for the 4x4 intra prediction case. 

Inverse discrete cosine transform (IDCT) and inverse discrete sine transform (IDST) are 

used in the reconstruction path of encoder and decoder [1, 2, 3, 7]. 

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar 

to H.264 with several improvements [2].  

Deblocking filter algorithm reduces the blocking artifacts on the edges of 

prediction units. SAO and ALF are added to deblocking filter process in HEVC which 

are not used in previous video compression standards [1, 2, 3]. 

1.2 FVC Video Compression Standard 

Since better coding efficiency is required for high resolution videos, JCT-VC is 

currently developing a new video compression standard called Future Video Coding 

(FVC) [9, 10]. FVC  will offer much better compression efficiency than HEVC which is 

the current state-of-the-art video compression standard. FVC will have a similar top-
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level block diagram with HEVC. But, algorithms used in each block will be improved 

for better compression efficiency at the expense of much more computational 

complexity.  

FVC intra prediction algorithm performs the same operation as HEVC intra 

prediction algorithm. In FVC, number of directional intra prediction modes for an intra 

PU is increased from 33 to 65. Planar and DC intra prediction modes are the same as 

HEVC.  In HEVC, 2-tap linear interpolation filter is used for directional intra prediction 

modes. 4-tap cubic and gaussian interpolation filters are used for directional intra 

prediction modes in FVC [8,10]. 

FVC inter prediction algorithm performs the same two-stage operation as HEVC. 

In HEVC 1/4, one-quarter, motion vector accuracy is used. In FVC, 1/16 motion vector 

accuracy is added for merge/skip modes. In FVC, motion vector prediction process used 

in HEVC is improved for better compression efficiency [1, 2, 10].   

Integer based DCT is used in FVC same as HEVC. HEVC transform algorithm 

uses DCT-II. It also uses DST-VII for the 4x4 intra prediction case. In HEVC, TU sizes 

can be from 4x4 up to 32x32. [1, 2]. In FVC transform algorithm, an Adaptive Multiple 

Transform (AMT) scheme is used. AMT scheme uses DCT-II, DCT-V, DCT-VIII, 

DST-I and DST-VII based on prediction (intra or inter) type. In FVC, TU sizes can be 

from 4x4 up to 64x64. Mode dependent non-separable secondary transform and signal 

dependent transform are also added to FVC [9, 10, 11, 12]. 

Entropy coder uses CABAC similar to HEVC with several enhancements. 

Deblocking filter algorithm in FVC is the same as HEVC [1, 2, 10]. 

1.3 Thesis Contributions 

We propose a low complexity sub-pixel motion estimation (SPME) technique 

[13]. In HEVC, SPME is performed to obtain sub-pixel accurate motion vector (MV) 

after integer pixel motion estimation. SPME first interpolates necessary sub-pixels for 

sub-pixel search locations. Then, it calculates the sum of absolute difference (SAD) 

values for each sub-pixel search location and determines the best sub-pixel search 

location with the minimum SAD. SPME has high computational complexity due to 

these operations. Therefore, we propose interpolating SAD values of sub-pixel search 

locations using the SAD values of neighboring integer pixel search locations instead of 

interpolating necessary sub-pixels and calculating SAD values for sub-pixel search 
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locations. In this way, number of interpolation operation is significantly reduced and 

absolute difference (AD) operation is not required with a slight decrease in PSNR. 

We also implemented a high performance HEVC SPME hardware implementing 

the proposed technique for all PU sizes using Verilog HDL [13]. We mapped the 

Verilog RTL code to a Xilinx Virtex 6 FPGA. The proposed hardware, in the worst 

case, can process 38 quad full HD (QFHD) (3840x2160) video frames per second.  

We designed an HEVC fractional (half-pixel and quarter-pixel) interpolation 

hardware using memory based constant multiplication for all PU sizes. The proposed 

hardware uses memory based constant multiplication technique for implementing 

multiplications with constant coefficients. The proposed memory based constant 

multiplication hardware stores pre-computed products of an input pixel with multiple 

constant coefficients in memory. Several optimizations are proposed to reduce memory 

size. The proposed hardware is implemented using Verilog HDL. We mapped the 

Verilog RTL code to a Xilinx Virtex 6 FPGA and estimated its energy consumption on 

this FPGA using Xilinx XPower Analyzer tool. The proposed HEVC fractional 

interpolation hardware using memory based constant multiplication has up to 31% less 

energy consumption than original HEVC fractional interpolation hardware. The 

proposed HEVC fractional interpolation hardware using memory based constant 

multiplication has up to 12.3% and 4.4% less energy consumption than HEVC 

fractional interpolation hardware implementing constant coefficient multiplications 

using Hcub multiplierless constant multiplication (MCM) algorithm and DSP blocks in 

Xilinx Virtex-6 FPGA, respectively. The proposed hardware, in the worst case, can 

process 35 QFHD (3840x2160) video frames per second.  

HEVC transform algorithm uses DCT-II and DST-VII. FVC transform algorithm 

uses DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII in order to increase compression 

efficiency at the expense of higher computational complexity. In this thesis, we 

designed three different high performance FVC 2D transform hardware for 4x4 and 8x8 

TU sizes [14], [15]. The proposed hardware are implemented using Verilog HDL. We 

mapped the Verilog RTL codes to a Xilinx Virtex 6 FPGA and estimated their power 

consumptions on this FPGA using Xilinx XPower Analyzer tool. 

The first proposed hardware (baseline) uses separate datapaths for each 1D 

transform and it uses Hcub MCM algorithm for implementing 1D transforms. It uses 

data gating technique and the data gating technique reduced the energy consumption of 

the proposed baseline hardware up to 71.7%. The second proposed hardware 
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(reconfigurable) uses one reconfigurable datapath for all 1D column transforms and one 

reconfigurable datapath for all 1D row transforms. The proposed reconfigurability 

reduced hardware area at the expense of energy consumption increase. Therefore, the 

baseline hardware can be used in high performance and low energy FVC encoders. The 

reconfigurable hardware can be used in high performance and low cost FVC encoders.  

The third proposed hardware (reconfigurable_DSP) uses one reconfigurable 

datapath for all 1D column transforms and one reconfigurable datapath for all 1D row 

transforms. It uses built-in full-custom DSP blocks in Xilinx Virtex-6 FPGA for 

implementing 1D transforms. Since it is more efficient to implement constant 

multiplications using DSP blocks in an FPGA implementation, FPGA implementation 

of the reconfigurable_DSP hardware has up to 29% and 59% less energy consumption 

than FPGA implementations of the baseline and reconfigurable hardware, respectively.  

1.4 Thesis Organization 

The rest of the thesis is organized as follows.  

Chapter II explains HEVC sub-pixel motion estimation algorithm. It presents the 

proposed low complexity HEVC sub-pixel motion estimation technique. It describes the 

proposed high performance HEVC sub-pixel motion estimation hardware implementing 

the proposed technique and presents its implementation results. 

Chapter III explains HEVC fractional interpolation algorithm. It describes the 

proposed HEVC fractional interpolation hardware using memory based constant 

multiplication and presents its implementation results. 

Chapter IV presents FVC transform algorithm used in FVC encoder. It presents 

three different proposed high performance FVC 2D transform hardware and their 

implementation results.  

Chapter V presents conclusions and future work. 
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2 CHAPTER II    

 

LOW COMPLEXITY HEVC SUB-PIXEL MOTION ESTIMATION 

TECHNIQUE AND ITS HARDWARE IMPLEMENTATION 

 In order to increase the performance of integer pixel motion estimation, SPME, 

which provides sub-pixel accurate MV refinement, is performed. HEVC uses SPME 

same as H.264. However, HEVC SPME has higher computational complexity than 

H.264 SPME. HEVC standard uses three different 8-tap FIR filters for sub-pixel 

interpolation and up to 64x64 PU sizes [16, 17]. SPME is heavily used in an HEVC 

encoder [5]. It accounts for up to 49% of total encoding time of HEVC video encoder. 

In this thesis, a low complexity HEVC SPME technique for all PU sizes is 

proposed. The proposed technique interpolates the SAD values of sub-pixel search 

locations using the SAD values of neighboring integer pixel search locations. In this 

thesis, an efficient HEVC SPME hardware implementing the proposed technique for all 

PU sizes is also designed and implemented using Verilog HDL. In order to reduce 

number and size of adders in this hardware, Hcub MCM algorithm is used [18]. The 

proposed hardware finishes SPME for a PU in 6 clock cycles. It, in the worst case, can 

process 38 QFHD (3840x2160) video frames per second. 

Several HEVC SPME hardware are proposed in the literature [19, 20, 21]. In 

[19], SPME hardware searches all possible 48 sub-pixel search locations. However, it 

only supports square shaped PU sizes. In [20], SPME hardware supports all PU sizes 

but 8x4, 4x8 and 8x8. It uses bilinear filter for quarter-pixel interpolation. Also, it 

searches 12 sub-pixel search locations. In [21], SPME hardware supports all PU sizes 
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but it uses a scalable search pattern. HEVC SPME hardware proposed in this thesis is 

compared with these HEVC SPME hardware.   

2.1 HEVC Sub-Pixel Motion Estimation Algorithm 

 After integer pixel motion estimation is performed for a PU, SPME is performed 

for the same PU to obtain sub-pixel accurate MV. In HEVC Test Model (HM) reference 

software video encoder [22], SPME is performed in two stages. As shown in Figure 2.1, 

8 sub-pixel search locations around the best integer pixel search location are searched in 

the first stage. 8 sub-pixel search locations around the best sub-pixel search location of 

the first stage are searched in the second stage.  

HEVC SPME first interpolates the necessary sub-pixels for sub-pixel search 

locations using three different 8-tap FIR filters. In Figure 2.1, half-pixels a, b, c and d, 

h, n are interpolated using the nearest integer pixels in horizontal and vertical directions, 

respectively. Quarter-pixels e, i, p and f, j, q and g, k, r are interpolated using the nearest 

a and b and c half-pixels in vertical directions, respectively. HEVC SPME then 

calculates the SAD values for each sub-pixel search location, and determines the best 

sub-pixel search location with the minimum SAD value. 

 

 

Figure 2.1 Sub-pixel Search Locations 
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2.2 Proposed HEVC Sub-Pixel Motion Estimation Technique 

 The proposed HEVC SPME technique interpolates SAD values of sub-pixel 

search locations using the SAD values of neighboring integer pixel search locations. As 

shown in Figure 2.2, the proposed technique uses SAD values of the best integer pixel 

search location, A0,0, and its neighboring 80 integer pixel search locations, a 9x9 SAD 

block, for directly interpolating SAD values of 48 sub-pixel search locations using 

HEVC sub-pixel interpolation FIR filters. SAD values of half-pixel search locations are 

interpolated using the SAD values of nearest integer pixel search locations. SAD values 

of quarter-pixel search locations are interpolated using the SAD values of a, b, c half-

pixel search locations. 

 

 

Figure 2.2 9x9 Integer Pixels 

 

The proposed technique performs SPME in two stages, same as HM reference 

software video encoder [22]. However, it performs SPME without interpolating a sub-

pixel and calculating an AD. Table 2.1 shows the number of interpolation and AD 

operations required for performing HEVC SPME for one square-shaped PU. Since the 

proposed technique only interpolates SAD values of sub-pixel search locations, number 

of interpolation operations is significantly reduced and AD operation is not required. 
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Table 2.1  Computation Amount for Square-Shaped PU Sizes  

 Original HEVC SPME Proposed 

PU Sizes 8x8 16x16 32x32 64x64 All 

Number of 

Interpolations 
1377 4641 16929 64545 100 

Number of  

Abs. Diff. 
1024 4096 16384 65536 0 

 

The proposed HEVC SPME technique is implemented in MATLAB. As shown 

in Table 2.2, MATLAB simulation results show that it slightly decreases PSNR and 

achieves good structural similarity index (SSIM) results. 

Table 2.2  PSNR and SSIM Results  

 Frame ΔPSNR (dB) SSIM 

Class B 

(1920x1080) 

Tennis -0.847 0.975 

Kimono -0.225 0.982 

Basketball D. -0.015 0.970 

Park Scene -0.313 0.974 

  

2.3 Proposed HEVC Sub-Pixel Motion Estimation Hardware 

The proposed HEVC SPME hardware for all PU sizes is shown in Figure 2.3. It 

takes 9x9 20-bit SAD values of 9x9 integer pixel search locations as input into integer 

SAD buffer. Three buffers are used to store the SAD values of sub-pixel search 

locations. These on-chip buffers reduce the required off-chip memory bandwidth and 

power consumption. 

The proposed hardware has three interpolation units. Each interpolation unit 

takes 9 SAD values as input and interpolates 20-bit SAD values of 3x2=6 sub-pixel 

search locations in each clock cycle. It interpolates 2 SAD values using type A, 2 SAD 

values using type B and 2 SAD values using type C FIR filter equations. As shown in 

Figure 2.4, common expressions are calculated in type A, type B and type C FIR filter 

equations and same integer pixel is multiplied with different constant coefficients in 

type A, type B and type C FIR filter equations. Therefore, in an interpolation unit, 

common expressions in different equations are calculated once, and the results are used 

in all the equations [17].  
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Figure 2.3 Proposed HEVC Sub-Pixel Motion Estimation Hardware 

 

Multiplications in FIR filter equations are performed using only adders and 

shifters. In the proposed hardware, Hcub MCM algorithm is used to reduce number and 

size of the adders, and to minimize adder tree depth [18]. Hcub algorithm tries to 

minimize number of adders, their bit size and adder tree depth in a multiplier block, 

which multiplies a single input with multiple constants. A multiplier block hardware has 

only one input, and it outputs results of multiplications with all the constants. Hcub 

algorithm determines necessary shift and addition operations in a multiplier block. 

 

 

Figure 2.4 Type A, Type B and Type C FIR Filters 

As shown in Table 2.3, since different constant coefficients are used in FIR filter 

equations, three different multiplier blocks are used. Common 1 (C1) datapath 

calculates the common sub-expressions in the equations shown in the blue boxes in 

Figure 2.4. Multiplier 1 (M1), Multiplier 2 (M2), and Multiplier 3 (M3) datapaths 



12 

 

calculate the multiplications with multiple constant coefficients for different set of 

coefficients. For example, M2 datapath calculates the multiplications for A1 written 

with red color in Figure 2.4.  

Table 2.3  Constant Coefficients  

Input  

SADs 
Coefficients Datapath 

A-4 -1 
C1 

A-3 -1, 4 

A-2 4, -5, -10, -11 M1 

 

 

 

 

A-1 -5, -10, -11, 17, 40, 58 M2 

 

 

 

 

 

A0 17, 58, 40 M3 

 

 

 

 

 

A1 -5, -10, -11, 17, 40, 58 M2 

 

 

 

 

 

A2 4, -5, -10, -11 M1 

 

 

 

 

 

A3 -1, 4 
C1 

A4 -1 

 

Comparator unit compares the SAD values of sub-pixel search locations, and 

determines the best sub-pixel search location with minimum SAD value. It uses three 

20-bit comparators and performs comparison in 6 clock cycles. 

SAD values of 48 sub-pixel search locations should be interpolated. First, 9x2 

SAD values of a, b, c half-pixel search locations necessary for interpolating SAD values 

of quarter-pixel search locations are interpolated using SAD values of integer pixel 

search locations in 3 clock cycles. Then, 2x1 SAD values of d, h, n half-pixel search 

locations are interpolated using SAD values of integer pixel search locations in 1 clock 

cycle. Finally, 2x2 SAD values of quarter-pixel search locations are interpolated using 

SAD values of a, b, c half-pixel search locations in 2 clock cycles. 

 Because of the input data loading and pipelining, the proposed hardware starts 

producing outputs after 12 clock cycles. It then continues producing outputs at every 6 

clock cycles without any stall. Therefore, it finishes SPME for a PU in 6 clock cycles. 

The proposed HEVC SPME hardware for all PU sizes including the proposed 

technique is implemented using Verilog HDL. The Verilog RTL implementation is 

verified with RTL simulations.  RTL simulation results matched the results of 

MATLAB implementation of HEVC SPME including the proposed technique. 

The Verilog RTL code is synthesized and mapped to a XC6VLX365T Xilinx 

Virtex 6 FPGA with speed grade 3. The FPGA implementation is verified with post 
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place & route simulations. The FPGA implementation uses 5200 LUTs, 1814 Slices and 

3794 DFFs. The FPGA implementation works at 142 MHz. It can process 19 QFHD 

(3840x2160) video frames per second. 

Power consumption of the FPGA implementation is estimated using Xilinx 

XPower Analyzer tool. Post place & route timing simulations are performed for Tennis, 

Kimono, BQ Terrace and Basketball Drive class B videos (one frame from each video) 

at 100 MHz [23] and signal activities are stored in VCD files. These VCD files are used 

for estimating power consumption of the FPGA implementation. These power 

consumption results are shown in Table 2.4. 

Table 2.4  Power Consumption Results  

 Tennis Kimono BQ Terr. B. Drive 

Clock (mW) 33 33 33 33 

Logic (mW) 68 79 78 67 

Signal (mW) 143 168 163 139 

Total Power (mW) 244 280 274 239 

 

In order to compare the proposed HEVC SPME hardware with the HEVC SPME 

hardware in the literature, Verilog RTL code is also synthesized to a 90 nm standard 

cell library and resulting netlist is placed and routed. The resulting ASIC 

implementation works at 280 MHz. It can process 38 QFHD (3840x2160) video frames 

per second. Gate count of the ASIC implementation is calculated as 26K according to 

NAND (2x1) gate area excluding on-chip memory. 

The comparison of the proposed HEVC SPME hardware with the HEVC SPME 

hardware in the literature is shown in Table 2.5. The proposed hardware implements 

HEVC SPME for all PU sizes and it is the only hardware that implements the two 

stages SPME performed in HM reference software video encoder [22]. It has higher 

throughput, and it has smaller area and lower power consumption than the other HEVC 

SPME hardware. HEVC SPME hardware proposed in [21] has higher throughput than 

FPGA implementation of the proposed hardware. However, it has 70 times larger area 

than FPGA implementation of the proposed hardware. 
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Table 2.5  Hardware Comparison  

 [19] [20] [21] Proposed 

Technology 65 nm 65 nm 
Xilinx  

Virtex6 
90 nm 

Xilinx 

Virtex6 

Gate/Slices  249.1 K 1183 K 130306 26 K 1814 

Max Freq. 

(MHz) 
396.8 188 200 280 142 

Power Dissip. 

(mW) 
48.67 198.6 --- 28 280 

Supported  

PU sizes 

Square  

Shaped 

All but 8x8, 

8x4 and 4x8 
All All All 

Fps 60 QFHD 30 QFHD 32 QFHD 38 QFHD 19 QFHD 

Fps * 

(Normalized) 
6 QFHD 15 QFHD 32 QFHD 38 QFHD 19 QFHD 

*: Frames per second when hardware processes all PU sizes 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

3 CHAPTER III   

AN HEVC FRACTIONAL INTERPOLATION HARDWARE USING 

MEMORY BASED CONSTANT MULTIPLICATION 

Fractional (half-pixel and quarter-pixel) interpolation is one of the most 

computationally intensive parts of HEVC video encoder and decoder. Fractional 

interpolation operation accounts for 25% and 50% of the HEVC encoder and decoder 

complexity, respectively [5]. 

In H.264 standard, a 6-tap FIR filter is used for half-pixel interpolation and 

bilinear filter is used for quarter-pixel interpolation [1, 7]. In HEVC standard, three 

different 8-tap FIR filters are used for half-pixel and quarter-pixel interpolations. Block 

sizes from 4x4 to 16x16 are used in H.264 standard. However, in HEVC standard, PU 

sizes can be from 4x8/8x4 to 64x64. Therefore, HEVC fractional interpolation is more 

complex than H.264 fractional interpolation. 

Memory based constant multiplication is an efficient computation technique [24, 

25]. A memory based constant multiplication hardware stores pre-computed product 

values for an input word into memory and necessary product value is read from the 

memory using input word as the address. 

In this thesis, an HEVC fractional interpolation hardware using memory based 

constant multiplication for all PU sizes is designed and implemented using Verilog 

HDL. The proposed hardware uses memory based constant multiplication technique for 

implementing multiplication with constant coefficients. The proposed memory based 

constant multiplication hardware stores pre-computed products of an input pixel with 
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multiple constant coefficients in memory. Several optimizations are proposed to reduce 

memory size. 

Several HEVC fractional interpolation hardware are proposed in the literature [16, 

17, 26, 27, 28]. In Section 3.3, they are compared with HEVC fractional interpolation 

hardware proposed in this thesis. They do not use memory based constant multiplication 

technique.  

In [16], three different 8-tap FIR filters are implemented using a reconfigurable 

datapath. It can calculate one FIR filter output at a time. Therefore, it can only be used 

for motion compensation. The proposed hardware in [17] uses Hcub MCM algorithm 

for multiplication with constant coefficients. In [26, 27, 28], the proposed hardware use 

adders and shifters for FIR filter implementation.  

3.1 HEVC Fractional Interpolation Algorithm 

 In HEVC, three different 8-tap FIR filters are used for both half-pixel and 

quarter-pixel interpolations. These three FIR filters type A, type B and type C are 

shown in (3.1), (3.2), and (3.3), respectively. The shift1 value is determined based on bit 

depth of the pixel [1, 4].  

a0,0 =  (−A−3,0 + 4 * A−2,0 − 10 * A−1,0 + 58 * A0,0 +   

17 * A1,0 − 5 * A2,0 + A3,0 )  >>  shift1 (3.1) 

b0,0 =  (−A−3,0 + 4 * A−2,0 − 11 * A−1,0 + 40 * A0,0 +   

40 * A1,0 − 11 * A2,0 + 4 * A3,0 − A4,0 )  >>  shift1 
(3.2) 

c0,0 = ( A−2,0 − 5 * A−1,0 + 17 * A0,0 + 58 * A1,0 −  

10 * A2,0 + 4 * A3,0 − A4,0 )  >>  shift1 (3.3) 

 

Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels 

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 3.1. The type A, 

type B and type C FIR filter equations for 8 half-pixels are shown in Figure 3.2. 

The half pixels a, b, c are interpolated from nearest integer pixels in horizontal 

direction, and the half-pixels d, h, n are interpolated from nearest integer pixels in 

vertical direction. The quarter pixels e, f, g are interpolated from the nearest half pixels 

a, b, c, respectively, in vertical direction using type A filter. The quarter pixels i, j, k are 

interpolated similarly using type B filter, and the quarter pixels p, q, r are interpolated 

similarly using type C filter.  
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Figure 3.1 Integer, Half and Quarter Pixels 

 

 HEVC fractional interpolation algorithm used in HEVC encoder calculates all 

the fractional pixels necessary for the fractional motion estimation operation. 

 

 

Figure 3.2 Type A, Type B and Type C FIR Filters 
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3.2 Proposed HEVC Fractional Interpolation Hardware 

 The proposed HEVC fractional interpolation hardware for all PU sizes is shown 

in Figure 3.2. The proposed hardware interpolates all the fractional pixels (half-pixels 

and quarter-pixels) for the luma component of a PU using integer or half-pixels. The 

proposed hardware is designed for 8x8 PU size and it produces necessary fractional 

pixels for an 8x8 PU. For other PU sizes, the PU is divided into 8x8 blocks, and the 

blocks are interpolated separately. For example, a 16x16 PU is divided into four 8x8 

blocks and each 8x8 block is interpolated separately. 

In the proposed hardware, 8x3 fractional pixels are interpolated in parallel using 

type A, type B and type C FIR filters. In the proposed hardware, common sub-

expression calculation method proposed in [17] is used. As shown in Figure 3.3, there 

are common sub-expressions in different filter type equations. Common sub-

expressions in type A and type B filters are shown in blue boxes. Common sub-

expressions in type B and type C filters are shown in green boxes. In the proposed 

hardware, common sub-expressions in different equations are calculated once, and the 

results are used in all the equations. The common sub-expressions are calculated in CSE 

datapath using adders and shifters. 

 

 

Figure 3.3 Proposed HEVC Fractional Interpolation Hardware 
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Three on-chip transpose memories are used to store half-pixels necessary for 

interpolating quarter-pixels. The half-pixels are interpolated using integer pixels and the 

interpolated a, b and c half-pixels are stored in the transpose memories A, B and C, 

respectively. These on-chip buffers reduce the required off-chip memory bandwidth and 

power consumption. 

Each input pixel should be multiplied with multiple constant coefficients shown 

as red boxes in Figure 3.2. Table 3.1 shows constant coefficient multiplications 

necessary for each input pixel. In the proposed hardware, constant coefficient 

multiplications are implemented using memory based constant multiplication technique. 

As shown in Table 3.1, since constant coefficients of input pixels (A-4,A6) and (A-3 … 

A5) are different, two different memories, MEM1 and MEM2, are used to store pre-

computed products of an input pixel with multiple constant coefficients.  

Input pixels (A-4,A6) need to be multiplied with constant coefficients 1, -5, -10 

and -11. In the proposed hardware, MEM1 stores two product values 5xA and -11xA for 

input pixel A. The product value 10xA is obtained from 5xA using shift operation. Input 

pixels (A-3 … A5) need to be multiplied with constant coefficients 1, -5, -10, -11, 17, 40 

and 58. In the proposed hardware, MEM2 stores four product values 5xA, -11xA, 17xA 

and 29xA for input pixel A. Product values 10xA and 40xA are obtained from 5xA using 

shift operation. After constant coefficient multiplications are performed by memory 

based constant multiplication technique, fractional pixels are calculated using adder 

trees. 

Table 3.1  Constant Coefficients  

Input  

Pixel 

Necessary 

Coefficients 
Hardware 

Stored 

Products 

A-5 1 --- --- 

A-4 1,-5,-10,-11 MEM1 5,-11 

A-3 1,-5,-10,-11,17,40,58 

MEM2 

5,-11,17,29 

A-2 1,-5,-10,-11,17,40,58 5,-11,17,29 

A-1 1,-5,-10,-11,17,40,58 5,-11,17,29 

A0 1,-5,-10,-11,17,40,58 5,-11,17,29 

A1 1,-5,-10,-11,17,40,58 5,-11,17,29 

A2 1,-5,-10,-11,17,40,58 5,-11,17,29 

A3 1,-5,-10,-11,17,40,58 5,-11,17,29 

A4 1,-5,-10,-11,17,40,58 5,-11,17,29 

A5 1,-5,-10,-11,17,40,58 5,-11,17,29 

A6 1,-5,-10,-11 MEM1 5,-11 

A7 1 --- --- 
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 8 bit unsigned input pixel A is used as the address of MEM1 and MEM2 

memories. MEM1 stores 2 product values, 5xA and -11xA, in each address. MEM2 

stores 4 product values, 5xA, -11xA, 17xA and 29xA, in each address. Since address 

ports of MEM1 and MEM2 are 8-bits, MEM1 and MEM2 store 28x2 and 28x4 product 

values, respectively.  

Multiplications of an input pixel A with constant coefficients 5, -11, 17 and 29 

using additions and shifts are shown in (3.4-3.7) and Figure 3.4. Products of an 8-bit 

unsigned input pixel with constant coefficients 5, -11, 17 and 29 are 11-bits, 13-bits, 13-

bits and 13-bits, respectively. Therefore, MEM1 and MEM2 should store 11+13=24 and 

11+13+13+13=50 bits in each address, respectively. 

5xA = (A << 2) + A (3.4) 

-11xA = 5xA + ((A' + 1) << 4) (3.5) 

17xA = (A << 4) + A (3.6) 

29xA = (A << 4) + (A << 3) + 5xA (3.7) 

 

 

 

Figure 3.4 Multiplication Operations: (a) 5xA; (b) 17xA; (c) -11xA; (d) 29xA. 
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As shown in Figure 3.4, least significant 2-bits of 5xA, -11xA and 29xA, and 

least significant 4-bits of 17xA are equal to the bits of input pixel A. Therefore, these 

bits of the products do not need to be stored in memories. This optimization saves 

2+2=4 bits and 2+2+2+4=10 bits in each address of MEM1 and MEM2, respectively. 

Also, least significant third bit of Ax5 is equal to the least significant third bit of -11xA 

and 29xA, and the least significant fourth bit of 5xA is equal to the least significant 

fourth bit of -11xA. Therefore, only least significant third and fourth bits of 5xA need to 

be stored in memories and they should be used for 5xA, -11xA and 29xA. This 

optimization saves 2 bits and 2+1=3 bits in each address of MEM1 and MEM2, 

respectively.  

Using these optimizations, number of bits in each address of MEM1 is reduced 

from 24 to 18 and number of bits in each address of MEM2 is reduced from 50 to 37. 

The proposed memories, MEM1 and MEM2, are shown in Figure 3.5. 

Since 15 fractional pixels should be interpolated for each integer pixel, 64x15 

fractional pixels should be interpolated for an 8x8 PU. 8x7 extra a, b, c half-pixels are 

necessary for the interpolation of quarter-pixels.  

First, 8x15 a, b and c half-pixels necessary for interpolating quarter-pixels are 

interpolated in 15 clock cycles, and stored in the transpose memories A, B and C, 

respectively. Then, 8x8 d, h, n half-pixels are interpolated in 8 clock cycles. Finally, 

9x8x8 quarter-pixels are interpolated in 8x3 clock cycles using a, b and c half-pixels. 

There are three pipeline stages in the proposed hardware. Therefore, the proposed 

hardware, in the worst case, interpolates the fractional pixels for an 8x8 PU in 50 clock 

cycles. 

 

 

Figure 3.5 MEM1 and MEM2 
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3.3 Implementation Results 

The proposed HEVC fractional interpolation hardware using memory based 

constant multiplication (FIHW_MEM) for all PU sizes is implemented using Verilog 

HDL. The Verilog RTL code is verified with RTL simulations.  RTL simulation results 

matched the results of a software implementation of HEVC fractional interpolation 

algorithm.  

The Verilog RTL code is synthesized and mapped to a Xilinx XC6VLX130T 

FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. FIHW_MEM FPGA 

implementation is verified to work at 233 MHz by post place and route simulations. 

Therefore, it can process 35 QFHD (3840x2160) video frames per second. It uses 3806 

LUTs, 3815 DFFs and 1498 Slices.  

In this thesis, three different HEVC fractional interpolation hardware 

implementations are used for energy consumption comparison. The first one 

(FIHW_ORG) is the original hardware proposed in [16]. It computes type A, B and C 

filters separately. The second one (FIHW_MCM) is the MCM hardware proposed in 

[17]. It computes multiplications with constant coefficients using Hcub MCM 

algorithm. The third one (FIHW_DSP) uses DSP blocks in FPGA for implementing 

multiplications with constant coefficients. 

Verilog RTL codes of these three HEVC fractional interpolation hardware are 

synthesized and mapped to a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3 

using Xilinx ISE 14.7. FPGA implementation of FIHW_ORG uses 3752 LUTs, 3207 

DFFs and 1848 Slices. FPGA implementation of FIHW_MCM uses 3370 LUTs, 3833 

DFFs and 1543 Slices. FPGA implementation of FIHW_DSP uses 2747 LUTs, 3477 

DFFs, 1406 Slices and 40 DSP48E1.  

FPGA implementations of FIHW_ORG, FIHW_MCM and FIHW_DSP are 

verified to work at 154, 200 and 217 MHz, respectively, by post place and route 

simulations. Therefore, FPGA implementation of FIHW_ORG, FIHW_MCM and 

FIHW_DSP can process 23, 30 and 32 QFHD (3840x2160) video frames per second, 

respectively. The implementation results are shown in Table 3.2. 
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Table 3.2  Implementation Results  

 FIHW_ORG FIHW_MCM FIHW_DSP FIHW_MEM 

FPGA 
Xilinx 

Virtex6 

Xilinx 

Virtex6 

Xilinx 

Virtex6 

Xilinx 

Virtex6 

DFFs 3207 3833 3477 3815 

LUTs 3752 3370 2747 3806 

Slices 1848 1208 1406 1498 

DSP48E1s --- --- 40 --- 

Max. Freq. 

(MHz) 
154 200 217 233 

Fps  23 QFHD 30 QFHD 32 QFHD 35 QFHD 

 

Power consumptions of all FPGA implementations are estimated using Xilinx 

XPower Analyzer tool. Post place & route timing simulations are performed for Tennis, 

Kimono, Park Scene (1920x1080) video frames at 100 MHz [23] and signal activities 

are stored in VCD files. These VCD files are used for estimating power consumptions 

of the FPGA implementations. As shown in Figure 3.6, the proposed FIHW_MEM has 

up to 31%, 12.3% and 4.7% less energy consumption than FIHW_ORG, FIHW_MCM 

and FIHW_DSP, respectively. 

Comparison of the proposed HEVC fractional interpolation hardware with the 

HEVC fractional interpolation hardware in the literature is shown in Table 3.3. The 

proposed HEVC fractional interpolation hardware has higher throughput than [16, 17, 

26, 27]. Only hardware in [28] has higher throughput than the proposed hardware at the 

expense of more area. The hardware in [16] has less area than the proposed hardware. 

However, it can only be used for motion compensation. 

 

 

Figure 3.6 Energy Consumptions of FIHW_ORG, FIHW_MCM, FIHW_DSP 

and FIHW_MEM 
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Table 3.3  Hardware Comparison  

 
[16] [17] [26] [27] [28] FIHW_MEM 

FPGA 
Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Arria II 

GX 

Xilinx 

Virtex 5 
Stratix III 

Xilinx  

Virtex 6 

Slices --- --- --- 2181 --- 1498 

LUTs 3005 3929 18831 5017 7701 3806 

Block RAMs 2 6 --- 2 --- --- 

Max. Freq. 

(MHz) 
100 200 200 283 278 233 

Fps 
64 

2560x1600 

30 

3840x2160 

60 

1920x1080 

30 

2560x1600 

60 

3840x2160 

35  

3840x2160 
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4 CHAPTER IV 

 

HIGH PERFORMANCE 2D TRANSFORM HARDWARE FOR 

FUTURE VIDEO CODING 

HEVC uses DCT/IDCT. In addition, it uses DST/IDST for 4x4 intra prediction 

in certain cases. DCT and DST have high computational complexity, and they are 

heavily used in an HEVC encoder [10]. DCT and DST operations account for 11% of 

the computational complexity of an HEVC video encoder. They account for 25% of the 

computational complexity of an all intra HEVC video encoder [3, 29]. 

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes. In 

order to improve the compression efficiency, FVC uses DCT-II, DCT-V, DCT-VIII, 

DST-I, DST-VII, and it uses 4x4, 8x8, 16x16, 32x32, 64x64 TU sizes [11, 12]. 

Therefore, FVC transform operations have much higher computational complexity than 

HEVC transform operations. 

In this thesis, three different high performance FVC 2D transform hardware are 

designed and implemented using Verilog HDL. They perform 2D DCT-II, DCT-V, 

DCT-VIII, DST-I, and DST-VII operations for 4x4 and 8x8 TU sizes by applying 1D 

transforms in vertical and horizontal directions. They process two 4x4 TUs in parallel or 

one 8x8 TU. Therefore, they can calculate 8 DCT/DST coefficients per clock cycle. 

The first (baseline) hardware uses separate datapaths for each 1D transform. In 

this hardware, data gating is used to reduce energy consumption. In addition, Hcub 

MCM algorithm [18] is used to perform constant multiplications. Hcub MCM algorithm 
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reduces the number and size of adders. The second (reconfigurable) hardware uses one 

reconfigurable datapath for all 1D column transforms and one reconfigurable datapath 

for all 1D row transforms. Therefore, it has smaller area than the baseline hardware. 

However, the baseline hardware with data gating technique has less energy 

consumption than the reconfigurable hardware. This is because reconfigurable 1D 

datapath has larger area and more energy consumption than one baseline 1D datapath. 

The third (reconfigurable_DSP) hardware uses one reconfigurable datapath for 

all 1D column transforms and one reconfigurable datapath for all 1D row transforms. 

Xilinx FPGAs have built-in full-custom DSP blocks which can perform constant 

multiplications faster and with less energy than adders and shifters. A DSP block can be 

used to perform different constant multiplications by providing proper constant values 

to its inputs. Therefore, it is more efficient to implement constant multiplications using 

DSP blocks instead of using adders and shifters in an FPGA implementation. The 

reconfigurable_DSP hardware implements multiplications with constants using DSP 

blocks in FPGA instead of using adders and shifters. It uses data gating to reduce 

energy consumption. 

Since it is more efficient to implement constant multiplications using adders and 

shifters instead of using multipliers in an ASIC implementation, the FVC baseline and 

reconfigurable hardware implement multiplications with constants using adders and 

shifters. Therefore, the FPGA implementation of reconfigurable_DSP hardware has up 

to 29% and 59% less energy consumption than FPGA implementations of baseline and 

reconfigurable hardware, respectively. 

Several HEVC 2D DCT/IDCT hardware are proposed in the literature [29, 30, 31, 

32, 33, 34]. The hardware proposed in [29, 30, 31, 32] implement HEVC DCT-II for 

TU sizes up to 32x32. In [30], DCT calculations are performed using multipliers. In 

[31], FPGA implementation of HEVC DCT-II is implemented using DSP blocks and 

ASIC implementation of HEVC DCT-II is implemented using multipliers. In [29] and 

[32], DCT calculations are done using adders and shifters. In [33], HEVC IDCT-II and 

IDST-VII are implemented using adders and shifters for TU sizes up to 32x32. In [34], 

FPGA implementation of HEVC DCT-II is proposed. This hardware uses DSP blocks 

for HEVC DCT-II operation. FVC 2D transform hardware proposed in this thesis are 

compared with the HEVC 2D DCT/IDCT hardware proposed in [29, 30, 31, 32, 33, 34]. 

Since FVC uses DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII, FVC baseline, 
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reconfigurable and reconfigurable_DSP 2D transform hardware proposed in this thesis 

have larger area than the HEVC 2D transform hardware. 

4.1 FVC Transform Algorithms 

 Basis functions for 1D DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII for an 

NxN block are shown in Table 4.1, where i, j = 0, 1, … , N-1 [10]. 

 

Table 4.1  DCT-II, DCT-V, DCT-VIII, DST-I, DST-VII Basis Functions  

Transform Type Basis Function 

DCT-II Tij = ω0 ∙ √
2

N
∙ cos (

π∙i∙(2j+1)

2N
), ω0 = {√

2

N
i = 0

1 i ≠ 0

 

DCT-V Tij = ω0 ∙ ω1 ∙ √
2

2N−1
∙ cos (

2π∙i∙j

2N−1
), ω0 = {√

2

N
i = 0

1 i ≠ 0

, ω1 = {
√

2

N
j = 0

1 j ≠ 0

 

DCT-VIII Tij = √
4

2N + 1
∙ cos (

π ∙ (2i + 1) ∙ (2j + 1)

4N + 2
) 

DST-I Tij = √
2

𝑁 + 1
∙ sin (

𝜋 ∙ (𝑖 + 1) ∙ (𝑗 + 1)

𝑁 + 1
) 

DST-VII Tij = √
4

2𝑁 + 1
∙ sin (

𝜋 ∙ (2𝑖 + 1) ∙ (𝑗 + 1)

2𝑁 + 1
) 

  

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes for 

DCT. It also uses DST for 4x4 intra prediction in certain cases. HEVC performs 2D 

transform operation by applying 1D transforms in the vertical and horizontal directions. 

The coefficients in the HEVC 1D transform matrices are derived from the DCT-II and 

DST-VII basis functions. However, integer coefficients are used for simplicity. HEVC 

DCT-II and DST-VII matrices for 4x4 TU size are shown in (4.1) and (4.2). 

In order to improve the compression efficiency, FVC uses DCT-II, DCT-V, 

DCT-VIII, DST-I, DST-VII, and it uses 4x4, 8x8, 16x16, 32x32, 64x64 TU sizes. FVC 

also performs 2D transform operation by applying 1D transforms in the vertical and 

horizontal directions. The coefficients in the FVC 1D transform matrices are derived 
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from DCT and DST basis functions. However, integer coefficients are used for 

simplicity. FVC transform matrices for 4x4 TU size are shown in (4.3)-(4.7). 

𝐷𝐶𝑇 − 𝐼𝐼4𝑥4 =  [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

]                                        (4.1) 

𝐷𝑆𝑇 − 𝑉𝐼𝐼4𝑥4 =  [

29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

]                                        (4.2) 

𝐷𝐶𝑇 − 𝐼𝐼4𝑥4 =  [

256 256 256 256
334 139 −139 −334
256 −256 −256 256
139 −334 334 −139

]                                        (4.3) 

𝐷𝐶𝑇 − 𝑉4𝑥4 =  [

194 274 274 274
274 241 −86 −349
274 −86 −349 241
274 −349 241 −86

]                                        (4.4) 

𝐷𝐶𝑇 − 𝑉𝐼𝐼𝐼4𝑥4 =  [

336 296 219 117
296 0 −296 −296
219 −296 −117 336
117 −296 336 −219

]                                        (4.5) 

𝐷𝑆𝑇 − 𝐼4𝑥4 =  [

190 308 308 190
308 190 −190 −308
308 −190 −190 308
190 −308 308 −190

]                                        (4.6) 

𝐷𝑆𝑇 − 𝑉𝐼𝐼4𝑥4 =  [

117 219 296 336
296 296 0 −296
336 −117 −296 219
219 −336 296 −117

]                                        (4.7) 

 

Table 4.2 shows the numbers of addition and shift operations required for 

calculating 1D DCT-II and DST-VII used in HEVC, and 1D DCT-II, DCT-V, DCT-

VIII, DST-I and DST-VII used in FVC for 4x4 and 8x8 TU sizes. FVC transform 

operations have much higher computational complexity than HEVC transform 

operations. 
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Table 4.2  Addition and Shift Amounts  

 Future Video Coding HEVC 

TU Size DCT-II DCT-V DCT-VIII DST-I DST-VII DCT-II DST-VII 

4x4 
Addition 88 248 224 160 224 64 200 

Shift 80 240 216 160 216 64 192 

8x8 
Addition 784 2232 2368 1008 2368 576 --- 

Shift 608 2056 2176 912 2176 480 --- 

  

HEVC uses the same transform type for vertical and horizontal 1D transforms for 

performing a 2D transform. However, FVC may use different transform types for 

vertical and horizontal 1D transforms. It uses an AMT scheme to determine 1D 

transform types. AMT is enabled or disabled for each CU. When AMT is disabled for a 

CU, only DCT-II is used for this CU. When AMT is enabled for a CU, 1D transform 

types for vertical and horizontal directions are selected based on prediction type, intra or 

inter prediction, for this CU. 

Table 4.3  Transform Sets  

Transform Set Transform Types 

0 DST-VII, DCT-VIII 

1 DST-VII, DST-I 

2 DST-VII, DCT-V 

 

In FVC, as shown in Table 4.3, three different 1D transform sets are defined [10]. 

Each transform set consists of two transform types. In intra prediction mode, transform 

set is selected based on intra prediction mode. In inter prediction mode, transform set 2 

is used for all inter prediction modes. 

4.2 Proposed FVC Baseline 2D Transform Hardware 

The proposed FVC baseline 2D transform hardware for 4x4 and 8x8 TU sizes 

including Hcub MCM algorithm is shown in Figure 4.1. The proposed hardware 

performs 2D DCT/DST by first performing 1D DCT/DST on the columns of a TU, and 

then performing 1D DCT/DST on the rows of the TU. After 1D column DCT/DST, the 

resulting transformed coefficients are stored in a transpose memory, and they are used 

as input for 1D row DCT/DST. 1D column datapaths and 1D row datapaths are used to 

perform 1D column DCT/DST and 1D row DCT/DST operations, respectively. 
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Figure 4.1 Proposed FVC Baseline 2D Transform Hardware   

 

The proposed baseline hardware uses separate datapaths for implementing each 

1D column and 1D row DCT/DST type. It processes two 4x4 TUs in parallel or one 8x8 

TU. It calculates eight transformed coefficients per clock cycle for both 4x4 and 8x8 

TU sizes. Proper inputs and outputs are selected based on the transform type selected 

for the current TU and its size. When the proposed hardware processes 8x8 TU size, 

eight inputs are eight residuals in one column of an 8x8 TU. When it processes 4x4 TU 

size, eight inputs are four residuals in one column of a 4x4 TU and four residuals in one 

column of another 4x4 TU. 

An N-point 1D transform can be performed by performing two N/2-point 1D 

transforms with some preprocessing for FVC DCT-II and DST-I. FVC DCT-V, DCT-

VIII and DST-VII do not have this property. In the proposed baseline hardware, N-point 

1D DCT-II and 1D DST-I are performed by performing two N/2-point 1D DCT-II and 

1D DST-I, respectively, with an efficient butterfly structure. N-point 1D DCT-V, 1D 

DCT-VIII and 1D DST-VII are performed by performing one N-point 1D DCT-V, 1D 

DCT-VIII and 1D DST-VII, respectively. The butterfly structure used for 1D DCT-II 

and 1D DST-I is shown in Figure 4.2. For 4x4 TUs, only 4x4 butterfly operation is 

used. For 8x8 TUs, 8x8 and 4x4 butterfly operations are used. 
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Figure 4.2 1D DCT-II/DST-I Column Datapath   

 

In the proposed baseline hardware, there are eight 4x4 datapaths. As shown in 

Figure 4.2, there are two 4x4 datapaths in the 1D Column DCT-II, 1D Row DCT-II, 1D 

Column DST-I, 1D Row DST-I datapaths. Column and row datapaths have the same 

hardware architecture. Two 4x4 datapaths are used for two 4x4 TUs or for one 8x8 TU. 

In the proposed baseline hardware, there are six 8x8 datapaths. As shown in Figure 4.3, 

there is one 8x8 datapath in the 1D Column DCT-V, 1D Row DCT-V, 1D Column 

DCT-VIII, 1D Row DCT-VIII, 1D Column DST-VII, 1D Row DST-VII datapaths. 

There are 8 adder trees in an 8x8 datapath. In the figure, only one of them is shown for 

simplicity. Column and row datapaths have the same hardware architecture. One 8x8 

datapath is used for two 4x4 TUs or for one 8x8 TU. 
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Figure 4.3 1D DCT-V/DCT-VIII/DST-VII Column Datapath  

 

In order to reduce energy consumption of the proposed baseline hardware, data 

gating is used for the inputs of all 1D column datapaths and all 1D row datapaths. The 

input registers of the column and row datapaths for the transform types not selected for 

the current TU are not updated. This prevents unnecessary switching activities in these 

datapaths and therefore reduces energy consumption. 

In the proposed baseline hardware, multiplications with constants are performed 

using adders and shifters. In order to reduce number and size of the adders, Hcub MCM 

algorithm is used [18]. Hcub MCM algorithm tries to minimize number and size of the 

adders in a multiplier block which multiplies a single input with multiple constants 

using addition and shift operations.  

There are 4 multiplier blocks in a 4x4 datapath. Each multiplier block performs 

the multiplications between 1 input and 4 transform coefficients. One of the multiplier 

blocks in first 4x4 datapath for 1D Column DCT-II is shown in Figure 4.4. In order to 

calculate each output of 1D DCT-II and 1D DST-I for a 4x4 TU, an output from each 

multiplier block in a 4x4 datapath is selected, and these outputs are added or subtracted. 

In order to calculate each output of 1D DCT-II and 1D DST-I for an 8x8 TU, an output 

from each multiplier block in two 4x4 datapaths is selected, and these outputs are added 

or subtracted. 
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Figure 4.4 A Multiplier Block 

  

There are 8 multiplier blocks in an 8x8 datapath. Each multiplier block performs 

the multiplications between 1 input and 8 transform coefficients. In order to calculate 

each output of 1D DCT-V, 1D DCT-VIII and 1D DST-VII for a 4x4 TU, an output 

from four multiplier blocks in an 8x8 datapath is selected, and these outputs are added 

or subtracted. In order to calculate each output of 1D DCT-V, 1D DCT-VIII and 1D 

DST-VII for an 8x8 TU, an output from each multiplier block in an 8x8 datapath is 

selected, and these outputs are added or subtracted. 

As shown in Figure 4.5, the transpose memory is implemented using 8 Block 

RAMs (BRAM). 4 and 8 BRAMs are used for 4x4 and 8x8 TU sizes, respectively. 

Since a BRAM address can store 32-bits and one transformed coefficient of 1D column 

DCT/DST is 16-bits, each BRAM address can store two transformed coefficients. When 

the proposed hardware processes 4x4 and 8x8 TU size, each BRAM address stores two 

and one transformed coefficients, respectively. 
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Figure 4.5 Transpose Memory 

 

In the figure, the numbers in the each box show the BRAM that coefficient is 

stored. The results of 1D column DCT/DST are generated column by column. For 8x8 

TU size, first, the coefficients in column 0 (C0) are generated in a clock cycle and 

stored in 8 different BRAMs. Then, the coefficients in column 1 (C1) are generated in 

the next clock cycle and stored in 8 different BRAMs using a rotating addressing 

scheme. This continuous until the coefficients in column 7 (C7) are generated and 

stored in 8 different BRAMs using the rotating addressing scheme. This ensures that the 

8 coefficients necessary for 1D row DCT/DST in a clock cycle can always be read in 

one clock cycle from 8 different BRAMs.  

Column clip and row clip hardware are used to scale the outputs of 1D column 

DCT/DST and 1D row DCT/DST to 16 bits, respectively. Column clip hardware shifts 

1D column DCT/DST outputs right by 3 and 4 bits for 4x4 and 8x8 TU sizes, 

respectively. Row clip hardware shifts 1D row DCT/DST outputs right by 10 and 11 

bits for 4x4 and 8x8 TU sizes, respectively. 

The proposed baseline hardware performs 1D DCT/DST for 4x4 and 8x8 TU 

sizes in 4 and 8 clock cycles, respectively. 1D column DCT/DST and 1D row 

DCT/DST operations are pipelined. While 1D row DCT/DST for current TU is 

performed, 1D column DCT/DST for next TU is also performed. Because of the input 

data loading and pipeline stages, the proposed baseline hardware starts generating the 

results of 1D row DCT/DST in 14 clock cycles. It then continues generating the results 

row by row in every clock cycle until the end of the last TU in the video frame without 

any stalls. 
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4.3 Proposed FVC Reconfigurable 2D Transform Hardware 

The proposed FVC reconfigurable 2D transform hardware for 4x4 and 8x8 TU 

sizes is shown in Figure 4.6. Same as the proposed baseline hardware, it performs 2D 

DCT/DST by first performing 1D DCT/DST on the columns of a TU, and then 

performing 1D DCT/DST on the rows of the TU. The column clip hardware, row clip 

hardware, and transpose memory in the proposed reconfigurable hardware are the same 

as the ones in the proposed baseline hardware. Same as the proposed baseline hardware, 

it processes two 4x4 TUs in parallel or one 8x8 TU. It calculates eight transformed 

coefficients per clock cycle for both 4x4 and 8x8 TU sizes. 

The proposed baseline hardware uses separate datapaths for implementing each 

1D column and 1D row DCT/DST type. However, as shown in Figure 4.6, the proposed 

reconfigurable hardware uses one reconfigurable datapath for implementing all 1D 

column DCT/DST types and one reconfigurable datapath for implementing all 1D row 

DCT/DST types. Therefore, N-point DCT-II and DST-I are also performed by 

performing one N-point DCT-II and DST-I same as DCT-V, DCT-VIII, DST-VII.   

Since, in FVC, one 1D DCT/DST at a time is performed, one reconfigurable 

datapath can be used for all 1D DCT/DST. 1D column datapath used in the proposed 

reconfigurable hardware is shown in Figure 4.7. Column and row datapaths have the 

same hardware architecture. There are 8 reconfigurable multiplier blocks in 1D column 

datapath. They perform the necessary constant multiplications for the selected 1D 

transform type (TR_ Type_ Vertical). In order to calculate each output of 1D DCT/DST 

for an 8x8 TU, an output from each reconfigurable multiplier block is selected, and 

these outputs are added or subtracted. There are 8 adder trees in the datapath. In the 

figure, only one of them is shown for simplicity. 

 

 

Figure 4.6 Proposed FVC Reconfigurable 2D Transform Hardware 
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Figure 4.7 Reconfigurable 1D Column Datapath of the Proposed FVC Reconfigurable 

2D Transform Hardware 

 

The reconfigurable multiplier block is shown in Figure 4.8. Multiple constant 

multiplications necessary for calculating transformed coefficients for all 1D transform 

types and TU sizes have several common parts. First, multiplications with these 

common parts are performed in the common part of the reconfigurable multiplier block. 

Then, multiple constant multiplications necessary for calculating transformed 

coefficients for the selected 1D transform type and TU size are performed in the 

reconfigurable part of the reconfigurable multiplier block using the multiplication 

results of the common part. 

The proposed reconfigurable hardware performs 1D DCT/DST for 4x4 and 8x8 

TU sizes in 4 and 8 clock cycles, respectively. 1D column DCT/DST and 1D row 

DCT/DST operations are pipelined. While 1D row DCT/DST for current TU is 

performed, 1D column DCT/DST for next TU is also performed. Because of the input 

data loading and pipeline stages, the proposed reconfigurable hardware starts generating 

the results of 1D row DCT/DST in 14 clock cycles. It then continues generating the 

results row by row in every clock cycle until the end of the last TU in the video frame 

without any stalls. 
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Figure 4.8 Reconfigurable Multiplier Block 
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4.4 Proposed FVC Reconfigurable_DSP 2D Transform Hardware 

The proposed FVC reconfigurable_DSP 2D transform hardware for 4x4 and 8x8 

TU sizes is shown in Figure 4.6. Same as the proposed baseline and reconfigurable 

hardware, it performs 2D DCT/DST by first performing 1D DCT/DST on the columns 

of a TU, and then performing 1D DCT/DST on the rows of the TU. The column clip 

hardware, row clip hardware, and transpose memory in the proposed 

reconfigurable_DSP hardware are the same as the ones in the proposed baseline and 

reconfigurable hardware. Same as the proposed baseline and reconfigurable hardware, it 

processes two 4x4 TUs in parallel or one 8x8 TU. It calculates eight transformed 

coefficients per clock cycle for both 4x4 and 8x8 TU sizes. 

The proposed reconfigurable 1D column datapath used in the proposed 

reconfigurable_DSP hardware is shown in Figure 4.9. Column and row datapath have 

the same hardware architecture. Since each 1D DCT/DST uses different transform 

coefficients, different constant multiplication operations should be performed for each 

1D DCT/DST. Xilinx FPGAs have built-in full-custom DSP blocks which can perform 

constant multiplications faster and with less energy than adders and shifters. A DSP 

block can be used to perform different constant multiplications by providing proper 

constant value to its input. Therefore, the proposed hardware implements constant 

multiplications using DSP blocks in FPGA instead of using adders and shifters. 

 

 

Figure 4.9 Reconfigurable 1D Column Datapath of the Proposed FVC 

Reconfigurable_DSP 2D Transform Hardware 
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For implementing constant multiplications, 8x8=64 DSP blocks are used in 1D 

column datapath and 8x8=64 DSP blocks are used in 1D row datapath. In the column 

datapath, each transform input sent to 8 DSP blocks in the same column. Each DSP 

block takes one transform input and one transform coefficient as input, and it performs 

constant multiplication. 64 and 32 DSP blocks are used for one 8x8 TU and two 4x4 

TUs, respectively. Since the proposed hardware can perform 5 different DCT/DST 

operations for 2 different TU sizes, a multiplexer is used at the input of each DSP block 

to select proper transform coefficient. 1D transform type (TR_Type_ Vertical) and TU 

size (TU_size) are used as select signals for the multiplexers. 

In order to calculate each output of 1D DCT/DST for an 8x8 TU, outputs of DSP 

blocks in the same row are added. 8 DSP blocks in the same row and their adder tree 

structure is shown in Figure 4.9. 8 DSP blocks in the other rows have the same 

structure. In the figure, only one of them is shown for simplicity. 

In order to calculate each output of 1D DCT/DST for a 4x4 TU, outputs of DSP 

blocks in the same row are added. Since two 4x4 TUs are processed in parallel, outputs 

of first 4 DSP blocks in the same row are added for the first 4x4 TU. Outputs of last 4 

DSP blocks in the same row are added for the second 4x4 TU. 

In order to reduce energy consumption of the proposed hardware, data gating is 

used for the inputs of DSP blocks in 1D column datapath and 1D row datapath. 1D 

DCT/DST operation for an 8x8 TU uses 64 DSP blocks. 1D DCT/DST operation for a 

4x4 TU uses 16 DSP blocks. Therefore, when two 4x4 TUs are processed in parallel, 

the input registers of 32 DSP blocks are not updated. This prevents unnecessary 

switching activities in the DSP blocks and therefore reduces energy consumption. 

The proposed reconfigurable_DSP hardware performs 1D DCT/DST for 4x4 and 

8x8 TU sizes in 4 and 8 clock cycles, respectively. 1D column DCT/DST and 1D row 

DCT/DST operations are pipelined. While 1D row DCT/DST for current TU is 

performed, 1D column DCT/DST for next TU is also performed. Because of input data 

loading and pipeline stages, the proposed hardware starts generating the results of 1D 

row DCT/DST in 16 clock cycles. It then continues generating the results row by row in 

every clock cycle until the end of the last TU in the video frame without any stalls. 

4.5 Implementation Results 

The proposed FVC baseline, FVC reconfigurable and FVC reconfigurable_DSP 

hardware are implemented using Verilog HDL. The Verilog RTL codes are verified 
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with RTL simulations. RTL simulation results matched the results of FVC 2D transform 

implementation in Joint Exploration Test Model (JEM) 4.0 reference software encoder 

[10]. The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX550T 

FF1759 FPGA with speed grade 2 using Xilinx ISE 14.7. The FPGA implementations 

are verified with post place and route simulations. Post place and route simulation 

results matched results of FVC 2D transform implementation in JEM 4.0 reference 

software encoder. 

An HEVC 2D DCT hardware for all TU sizes is proposed in [29]. In this thesis, 

two different versions of this hardware are implemented for 4x4 and 8x8 TU sizes, for 

fair comparison, using Verilog HDL. The first hardware (HEVC) uses Hcub MCM 

algorithm for multiplications with constants. The second hardware (HEVC_DSP) uses 

DSP blocks in FPGA for multiplications with constants.  

Number of adders and shifters used in 1D (column or row) datapaths of FVC 

baseline, FVC reconfigurable and HEVC hardware are shown in Table 4.4. Hcub MCM 

algorithm considerably reduced number of adders and shifters in 1D datapaths of FVC 

baseline and HEVC hardware. The proposed FVC reconfigurable 1D column/row 

datapath uses significantly less adders and shifters than the proposed FVC baseline 1D 

column/row datapaths. 

Number of multipliers, adders and multiplexers used in 1D (column or row) 

datapath of the proposed FVC reconfigurable_DSP hardware and the HEVC_DSP 

hardware are shown in Table 4.5. Since FVC 2D transform operations have much 

higher computational complexity than HEVC 2D DCT operations, reconfigurable 1D 

column/row datapath of the proposed FVC reconfigurable_DSP hardware uses more 

multipliers, adders and multiplexers than the column/row datapath in the HEVC_DSP 

hardware. 

Table 4.4  Adder and Shifter Amounts in 1D Datapaths  

 
HEVC 

FVC 

Baseline 

FVC 

Reconfig. 

W
it

h
o

u
t 

M
C

M
 Multiplier 

Blocks 

Adder 60 817 112 

Shifter 80 996 248 

Adder Tree Adder 28 224 56 

W
it

h
  

M
C

M
 Multiplier 

Blocks 

Adder 30 428 --- 

Shifter 50 593 --- 

Adder Tree Adder 28 224 --- 
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Table 4.5  Multiplier, Adder and Multiplexer Amounts in 1D Datapaths  

 
HEVC_DSP 

FVC Reconfig._DSP 

Hardware 

Multiplier 22 64 

Adder 28 56 

10-bit 2-to-1 

MUX 
--- 342 

 

The FPGA implementation results are shown in Table 4.6. Since the FPGA 

implementation of proposed FVC reconfigurable_DSP hardware uses DSP blocks for 

multiplications with constants, it uses less LUT and Slice than the FPGA 

implementation of proposed FVC baseline and reconfigurable hardware. Since FVC 2D 

transform operations have much higher computational complexity than HEVC 2D DCT 

operations, the proposed FVC reconfigurable_DSP hardware uses more resources than 

HEVC_DSP hardware. 

The Verilog RTL codes of FVC baseline, FVC reconfigurable and HEVC 

hardware are also synthesized to a 90 nm standard cell library and the resulting netlists 

are placed and routed. Their gate counts are calculated according to NAND (3x1) gate 

area excluding on-chip memory. The ASIC implementation results are shown in Table 

4.7.  

Table 4.6  FPGA Implementation Results  

 
HEVC Hardware 

HEVC_DSP 

Hardware 

FVC Baseline Hardware 

FVC Reconfig. 

Hardware 

FVC  

Reconfig._DSP 

Hardware 
 

Without 

MCM 

With 

MCM 

Without 

MCM 

With 

MCM 

FPGA 
Xilinx 
Virtex6 

Xilinx 
Virtex6 

Xilinx  
Virtex6 

Xilinx 
Virtex6 

Xilinx 
Virtex6 

Xilinx  
Virtex6 

Xilinx  
Virtex6 

Slices  1111 939 810 10215 7930 5292 1223 

LUTs 3613 3119 2069 32586 27144 17173 3332 

DFFs 1412 1065 665 15243 12309 4571 2082 

Block 

RAMs 
8 8 8 8 8 8 8 

DSP48E1s --- --- 44 --- --- --- 128 

Max Freq. 

(MHz) 
167 167 222 143 167 143 222 

Fps  
40 8K 

Ultra HD 

40 8K 

Ultra HD 

54 8K 

Ultra HD 

35 8K 

Ultra HD 

40 8K 

Ultra HD 

35 8K 

Ultra HD 

54 8K 

Ultra HD 

TU Size 4, 8 4, 8 4, 8 4, 8 4, 8 4, 8 4, 8 

Transform 2D 2D 2D 2D 2D 2D 2D 
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Table 4.7  ASIC Implementation Results  

 
HEVC Hardware FVC Baseline Hardware 

FVC Reconfig. 

Hardware 
 

Without 

MCM 

With 

MCM 

Without 

MCM 

With 

MCM 

Technology 90 nm 90 nm 90 nm 90 nm 90 nm 

Gate Count 29.3 K 28.5 K 153.4 K 136.4 K 60.1 K 

Max Freq. 

(MHz) 
200 200 333 345 245 

Fps  
48 8K 

Ultra HD 

48 8K 

Ultra HD 

82 8K 

Ultra HD 

84 8K 

Ultra HD 

60 8K 

Ultra HD 

TU Size 4, 8 4, 8 4, 8 4, 8 4, 8 

Transform 2D 2D 2D 2D 2D 

 

Both ASIC and FPGA implementations of the proposed FVC reconfigurable 

hardware use less resources than the proposed FVC baseline hardware. Since FVC 2D 

transform operations have much higher computational complexity than HEVC 2D DCT 

operations, the proposed FVC baseline and reconfigurable hardware use more resources 

than HEVC hardware. 

Power consumptions of the FPGA implementations are estimated using Xilinx 

XPower Analyzer tool. Post place & route timing simulations are performed for Tennis, 

Kimono and ParkScene full HD (1920x1080) videos at 100 MHz [35] and signal 

activities are stored in VCD files. These VCD files are used for estimating power 

consumptions of the FPGA implementations. 

Energy consumptions of FVC baseline, FVC reconfigurable, FVC 

reconfigurable_DSP, HEVC and HEVC_DSP hardware for one frame of each video are 

shown in Figure 4.10. Data gating technique reduced the energy consumption of FVC 

baseline hardware up to 71.7%. Data gating technique and Hcub MCM algorithm 

together reduced the energy consumption of FVC baseline hardware up to 73.3%. 

Although the proposed FVC reconfigurable hardware has smaller area than the 

proposed FVC baseline hardware, it has more energy consumption than the proposed 

FVC baseline hardware when data gating technique is used. This is because 

reconfigurable 1D column/row datapath has larger area and more energy consumption 

than one baseline 1D column/row datapath. Since FVC 2D transform operations have 

much higher computational complexity than HEVC 2D DCT operations, the proposed 

FVC baseline and reconfigurable hardware consume more energy than HEVC 

hardware. 
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Figure 4.10 Energy Consumption Results 

Since the proposed FVC reconfigurable_DSP hardware implements 

multiplications with constants using DSP blocks in FPGA instead of using adders and 

shifters, the proposed FVC reconfigurable_DSP hardware has up to 29% and 59% less 

energy consumption than the proposed FVC baseline and reconfigurable hardware, 
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respectively. Since FVC 2D transform operations have much higher computational 

complexity than HEVC 2D DCT operations, the proposed FVC reconfigurable_DSP 

hardware consumes more energy than HEVC_DSP hardware. 

 The comparison of FPGA implementations is shown in Table 4.8. Since FVC 

2D transform operations have much higher computational complexity than HEVC 2D 

DCT operations, the FPGA implementations of FVC baseline, reconfigurable and 

reconfigurable_DSP hardware use more FPGA resources than the FPGA 

implementations of HEVC 2D DCT hardware proposed in [29, 31, 34]. Since HEVC 

2D DCT hardware proposed in [31] performs DCT-II for TU sizes up to 32x32, its 

FPGA implementation uses more FPGA resources than the FPGA implementation of 

FVC reconfigurable_DSP hardware. 

Table 4.8  Comparison of FPGA Implementations  

 
 [31]  [34] 

[29] 
FVC 

Baseline 

FVC 

Reconfig. 

FVC 

Reconfig._DSP HEVC HEVC_DSP 

FPGA Arria II GX 
Xilinx  
Virtex7 

Xilinx  
Virtex 6 

Xilinx  
Virtex 6 

Xilinx  
Virtex 6 

Xilinx  
Virtex 6 

Xilinx  
Virtex 6 

Slices --- --- 939 810 7930 5292 1223 

LUTs 7300 2478 3119 2069 27144 17173 3332 

DFFs --- --- 1065 665 12309 4571 2082 

DSP48E1s 128 64 --- 44 --- --- 128 

Max. Freq. 

(MHz) 
200 289 167 222 167 143 222 

Fps --- 
70 

3840x2160 
40 

7680x4320 
54 

7680x4320 
40 

7680x4320 
35 

3840x2160 
54 

7680x4320 

Throughput 

(pixels/cycle) 
--- --- 8 8 8 8 8 

Max Bit 

Length 
25 25 25 25 27 27 27 

TU Size 4, 8, 16, 32 4, 8 4, 8 4, 8 4, 8 4, 8 4, 8 

Transform 

Type 
DCT-II DCT-II DCT-II DCT-II 

DCT-II, DCT-

V, DCT-VIII, 

DST-I, DST-
VII 

DCT-II, DCT-

V, DCT-VIII, 

DST-I, DST-
VII 

DCT-II, DCT-

V, DCT-VIII, 

DST-I, DST-
VII 

Transform 2D 2D 2D 2D 2D 2D 2D 

 

The ASIC implementation results of the proposed FVC reconfigurable hardware 

are scaled up for all TU sizes in order to compare it with the HEVC 2D DCT/IDCT 

hardware in the literature. The comparison of ASIC implementations is shown in Table 

4.9. Since FVC 2D transform operations have much higher computational complexity 

than HEVC 2D transform operations, the proposed FVC reconfigurable hardware has 

larger area than HEVC hardware in the literature. HEVC 2D transform hardware 

proposed in [32] has higher performance than the proposed FVC reconfigurable 
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hardware. However, although it only performs HEVC DCT-II transform, it has similar 

area with the proposed FVC reconfigurable hardware. The proposed FVC 

reconfigurable hardware has higher performance than the other HEVC 2D transform 

hardware. 

Table 4.9  Comparison of ASIC Implementations  

 
[29] [30] [31] [32] [33] 

FVC Reconfigurable 

Hardware 

Technology 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm 

Gate Count 175 K 343.5 K 328.2 K 347 K 142 K 416 K 

Max Freq. 

(MHz) 
140 311 400 187 150 160 

Fps 
60 

3840x2160 

30 

4096x2048 

30 

3840x2160 

60 

7680x4320 

48 

3840x2160 

39 

7680x4320 

Throughput 

(pixels/cycle) 
4/8/16/32 4/8/16/32 8/16/32/32 32 4/8/16/32 --- 

Max Bit 

Length 
25 25 25 25 25 27 

TU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 
4, 8, 16, 32 

(Scaled) 

Transform 

Type 
DCT-II DCT-II DCT-II DCT-II 

IDCT-II, 

IDST-VII 

DCT-II, DCT-V, 
DCT-VIII, DST-I, 

DST-VII 

Transform 2D 2D 2D 2D 2D 2D 

 

4.6 Implementation on FPGA Board 

In this thesis, the proposed FVC reconfigurable 2D transform hardware is 

implemented on a ML605 FPGA board which includes a Virtex 6 XC6VLX240T FPGA 

with speed grade 1, 512 MB DDR RAM and 32 MB Flash memory and interfaces such 

as UART. 

Xilinx Platform Studio, Xilinx Software Development Kit and MicroBlaze 

processor are used for implementing the proposed FVC reconfigurable 2D transform 

hardware on the FPGA board. A software running on MicroBlaze processor is 

developed to send the inputs of the proposed FVC reconfigurable 2D transform 

hardware from a host to the hardware and to read the outputs of the hardware for 

sending them back to the host computer. The proposed FVC reconfigurable 2D 

transform hardware is added as a peripheral to a bus where the MicroBlaze processor is 

the master. For this purpose, the proposed FVC reconfigurable 2D transform hardware 

is modified to be a slave peripheral for this data bus and software accessible registers 

are added to the proposed hardware. These registers are used by the software running on 
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MicroBlaze for writing data inputs and communication signals to the hardware. They 

are also used for reading the outputs and the status information from the hardware.  

 The software reads residual data of one frame from the host computer using the 

UART interface and writes it to a DDR RAM. Then, it loads residual data for one TU to 

the input registers of the hardware with TU size information. The proposed FVC 

reconfigurable 2D transform hardware produces transform coefficients and writes them 

to the output registers. After the hardware sends done signal to the software, the 

software reads transform coefficients from the output registers and writes them to the 

DDR RAM. This process is repeated for all TUs in one frame. Since the produced 

transform coefficients are not pixel values, they are not displayed on monitor. The 

produced transform coefficients are read from DDR RAM and it is verified that they 

matched the results of FVC 2D transform implementation in JEM 4.0 reference 

software encoder. The FPGA implementation is shown in Figure 4.11. 
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Figure 4.11 Proposed FVC Reconfigurable 2D Transform Hardware Implementation on 

FPGA Board 
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5 CHAPTER V  

 

CONCLUSIONS AND FUTURE WORK 

In this thesis, we proposed a low complexity HEVC SPME technique for SPME 

in HEVC encoder. The proposed technique reduced the amount of computations 

significantly with slight decrease in PSNR. We designed and implemented a high 

performance HEVC SPME hardware implementing the proposed low complexity 

HEVC SPME technique. We also designed and implemented an HEVC fractional 

interpolation hardware using memory based constant multiplication for all PU sizes for 

both HEVC encoder and decoder. The proposed hardware uses memory based constant 

multiplication technique for implementing multiplications with constant coefficients. 

We proposed three different high performance FVC 2D transform hardware for 4x4 and 

8x8 TU sizes. The first two hardware use adders and shifters for implementing FVC 

transform algorithm. The third hardware uses DSP blocks in Xilinx Virtex 6 FPGA for 

implementing FVC transform algorithm. The proposed hardware is verified to work 

correctly on an FPGA board. 

As future work, rate-distortion performance of the proposed low complexity 

HEVC SPME technique can be determined using HM reference software encoder. 

Memory based constant multiplication hardware used in the proposed HEVC fractional 

interpolation hardware can be implemented more efficiently to further reduce energy 

consumption. The proposed FVC 2D transform hardware can be extended to implement 

all TU sizes, 16x16, 32x32 and 64x64.   
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