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1 ABSTRACT 

Joint collaborative team on video coding (JCT-VC) recently developed a new 

international video compression standard called High Efficiency Video Coding 

(HEVC). HEVC has 50% better compression efficiency than previous H.264 video 

compression standard. HEVC achieves this video compression efficiency by 

significantly increasing the computational complexity. Motion estimation is the most 

computationally complex part of video encoders. Integer motion estimation and 

fractional motion estimation account for 70% of the computational complexity of an 

HEVC video encoder. High-level synthesis (HLS) tools are started to be successfully 

used for FPGA implementations of digital signal processing algorithms. They 

significantly decrease design and verification time. Therefore, in this thesis, we 

proposed the first FPGA implementation of HEVC full search motion estimation using 

Vivado HLS. Then, we proposed the first FPGA implementations of two fast search 

(diamond search and TZ search) algorithms using Vivado HLS. Finally, we proposed 

the first FPGA implementations of HEVC fractional interpolation and motion 

estimation using Vivado HLS. We used several HLS optimization directives to increase 

performance and decrease area of these FPGA implementations.  
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2 ÖZET 

Joint Collaborative Team on Video Coding (JCT-VC) yüksek verimli video 

kodlama (HEVC) isminde yeni bir video sıkıştırma standardı geliştirdi. HEVC 

günümüzde kullanılan H.264 standardına göre 50% daha iyi performans sağlıyor. 

HEVC bu video sıkıştırma verimini hesaplama karmaşıklığını önemli ölçüde artırarak 

başarıyor. Hareket tahmini video kodlayıcıların hesaplama karmaşıklığı en fazla olan 

parçasıdır. Tam sayı hareket tahmini ve kesirli hareket tahmini, HEVC video 

kodlayıcının hesaplama karmaşıklığının %70’ni oluşturmaktadır. Yüksek seviye 

sentezleme araçları sayısal işaret işleme algoritmalarının FPGA gerçeklemelerinde 

başarılı bir şekilde kullanılmaya başladı. Tasarım ve doğrulama zamanını önemli ölçüde 

azalttılar. Bu nedenle, bu tezde, Vivado HLS kullanarak HEVC tam arama tam sayı 

hareket tahmininin ilk FPGA gerçeklemesini önerdik. Ardından, Vivado HLS 

kullanarak, iki hızlı arama algoritmasının (elmas arama ve TZ arama) ilk FPGA 

gerçeklemelerini önerdik. Son olarak, Vivado HLS kullanarak, HEVC kesirli 

aradeğerleme ve hareket tahmininin ilk FPGA gerçeklemelerini önerdik. Performansı 

artırmak ve FPGA gerçeklemelerinin donanım alanını azaltmak için birkaç HLS 

eniyileme direktifini kullandık. 
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1 CHAPTER I      

 

INTRODUCTION 

1.1 HEVC Video Compression Standard 

Since better coding effiency is required for high resolution videos, Joint 

Collaborative Team on Video Coding (JCT-VC) recently developed a new video 

compression standard called High Efficiency Video Coding (HEVC) [1, 2, 3]. HEVC 

provides 50% better coding efficiency than previous H.264 video compression standard. 

HEVC also provides 23% bit rate reduction for the intra prediction only case [4]. The 

video compression efficiency achieved in HEVC standard is not a result of any single 

feature but rather a combination of a number of encoding tools such as intra prediction, 

motion estimation, deblocking filter and entropy coder. Motion estimation is the most 

computationally complex part of video encoders. Integer motion estimation and 

fractional motion estimation account for 70% of the computational complexity of an 

HEVC video encoder. 

The top-level block diagram of an HEVC encoder and decoder are shown in 

Figure 1.1 and Figure 1.2, respectively. An HEVC encoder has a forward path and a 

reconstruction path. The forward path is used to encode a video frame by using intra 

and inter predictions and to create the bit stream after the transform and quantization 

process. Reconstruction path in the encoder ensures that both encoder and decoder use 

identical reference frames for intra and inter prediction because a decoder never gets 

original images. 
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Figure 1.1 HEVC Encoder Block Diagram 

 

 

Figure 1.2 HEVC Decoder Block Diagram 

 

In the forward path, frame is divided into coding units (CU) that can be an 8x8, 

16x16, 32x32 or 64x64 pixel block. Each CU is encoded in intra or inter mode 

depending on the mode decision. Intra and inter prediction processes use prediction unit 

(PU) partitioning inside the CUs. Prediction unit (PU) sizes can be from 4x4 up to 

64x64. Mode decision determines whether a PU will be coded intra or inter mode based 

on video quality and bit-rate. After mode decision determines the prediction mode, 

predicted block is subtracted from original block, and residual data is generated. Then, 

residual data transformed by discrete cosine transform (DCT) and quantized. Transform 

unit (TU) sizes can be from 4x4 up to 32x32. Finally, entropy coder generates the 

encoded bitstream. 
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Reconstruction path begins with inverse quantization and inverse transform 

operations. The quantized transform coefficients are inverse quantized and inverse 

transformed to generate the reconstructed residual data. Since quantization is a lossy 

process, inverse quantized and inverse transformed coefficients are not identical to the 

original residual data. The reconstructed residual data are added to the predicted pixels 

in order to create the reconstructed frame. DBF is, then, applied to reduce the effects of 

blocking artifacts in the reconstructed frame.   

1.2 High-Level Synthesis  

Recently, high-level synthesis (HLS) tools started to generate production quality 

register transfer level (RTL) implementations from high-level specifications. HLS tools 

improve productivity of hardware designers by reducing both design and verification 

time.  

In this thesis, Xilinx Vivado HLS tool is used. It is one of the successful 

commercial HLS tools. It takes C, C++ or SystemC codes as input, and generates 

Verilog or VHDL codes. Design flow used in this thesis for the FPGA implementations 

of motion estimation algorithms using Xilinx Vivado HLS is shown in Figure 1.3. First, 

software models of HEVC video compression algorithms are developed using HEVC 

reference software video encoder (HM) 15.0 [5]. After the software models are verified 

with HEVC test sequences, C codes for HLS are developed. Then, the C codes are 

synthesized to Verilog RTL using Xilinx Vivado HLS tool. Several optimizations 

offered by Xilinx Vivado HLS tool are also used to increase performance and decrease 

area of the proposed FPGA implementations. The Verilog RTL codes are synthesized 

and mapped to a Xilinx Virtex 6 FPGA using Xilinx ISE 14.7. Finally, the FPGA 

implementations are verified with post place and route simulations. 

Xilinx Vivado HLS tool provides C specification testbench to verify the code. 

This C testbench is used by the tool to verify that the functionality of the synthesized 

RTL is same as the functionality of the original C code. After verifying the functionality 

with C testbench, Vivado HLS tool generates hardware (Verilog or VHDL) testbench to 

verify the hardware. Then, HLS tool compares the output of C testbench and hardware 

testbench. If they are same, it indicates that the hardware is verified. 
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Figure 1.3 Xilinx Vivado HLS design flow 

Table 1.1 Xilinx Vivado HLS Optimizations 
 

 
Optimizations (Pragmas) 

Loop 

Optimizations 

Loop Pipelining 

Loop Unrolling 

Loop Merge 

Memory Control 

Array Map 

Array Partition 

Resource 

Resources 
Allocation 

Resource 

 

Xilinx Vivado HLS tool performs scheduling of operations, allocation of 

registers, and binding of operations to functional units. Xilinx Vivado HLS tool 

provides many optimizations (pragmas) for scheduling, allocation and binding. It also 

provides bit-accurate or cycle-accurate implementations. It allows adding specific RAM 

blocks, FIFOs, ROMs or specific DSP blocks. In addition it generates I/O interfaces to 

connect hardware modules with memories or other peripherals. Xilinx Vivado HLS tool 

offers these optimizations to increase performance and decrease area of HLS 

implementations. These optimizations can be grouped as shown in Table 1.1. 
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Loop Unrolling (LU) directive is used to increase performance using more 

resources. It creates multiple copies of loop body, and compute them in parallel. In this 

way, it decreases the loop iterations and increases the performance. However, loop 

unrolling may cause memory access problems in HLS designs. 

Allocation (ALC) directive is used to specify the maximum number of resources 

that can be used in hardware. It forces the HLS tool to perform resource sharing. It 

therefore decreases the hardware area. Allocation can be used for addition, subtraction, 

multiplication, division, shift and comparison operations. 

Pipeline (PIPE) directive performs pipelining to increase the performance. Xilinx 

Vivado HLS tool performs pipelining automatically. However, number of pipeline 

stages can also be defined for further performance increase. 

Resource (RES) directive is used to specify which resource will be used to 

implement a variable such as an array, arithmetic operation or function argument. DSP 

elements, specific RAM blocks, FIFOs or ROMs can be used with resource directive. 

Array map (AMAP) directive is used to map multiple small arrays into a single 

large array. The large array can be targeted to a single large memory (RAM or FIFO) 

resource. It is also used to control how (horizontal or vertical) data is stored in BRAMs.  

Array partition (APAR) directive partitions the large arrays into multiple smaller 

arrays or individual registers for parallel data accesses.  

Xilinx Vivado HLS tool also provides a specific library for designing bit-accurate 

(BIT) models in C codes.  

A few HLS implementations for HEVC video compression standard are proposed 

in the literature [6]-[8]. A few HLS implementations for H.264 video compression 

standard are proposed in the literature [9]-[12]. There are a few HLS implementations 

based on MPEG reconfigurable video coding [13]-[14]. There are several HLS 

implementations for image and video processing algorithms such as sorting in the 

median filter [15]-[18].  

1.3 Thesis Contributions 

In this thesis, we proposed the first FPGA implementation of HEVC full search 

motion algorithm using HLS in the literature. The C codes given as input to Xilinx 

Vivado HLS tool are developed based on the HEVC reference software video encoder 

(HM) version 15 [5]. We used several optimizations offered by Vivado HLS to achieve 

real-time performance. The proposed FPGA implementation of HEVC full search 
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motion estimation algorithm using HLS can process 30 full HD video frames per 

second for all PU sizes and for fixed search range (64x64). It can process 29 full HD 

frames per second for variable search ranges. 

Fast search motion estimation algorithms are used to reduce computational 

complexity of motion estimation. Diamond Search (DS) and TZ Search (TZS) are very 

successful fast search motion estimation algorithms. Therefore, in this thesis, first 

FPGA implementations of DS and TZS algorithms using HLS in the literature are 

proposed. The proposed DS and TZS motion estimation FPGA implementations can 

process 127 full HD (1920x1080) and 46 full HD video frames per second, respectively. 

We also proposed the first FPGA implementation of HEVC fractional 

interpolation and motion estimation using HLS in the literature. We used several 

optimizations offered by Vivado HLS to achieve real-time performance. The proposed 

HEVC fractional interpolation and HEVC fractional motion estimation FPGA 

implementations can process 45 quad full HD (3840x2160) and 46 full HD video 

frames per second, respectively. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows. 

Chapter II first explains FPGA implementations of HEVC full search motion 

estimation algorithm using Vivado HLS and presents the experimental results. It, then, 

explains FPGA implementations of two fast search (Diamon Search and TZ Search) 

motion estimation algorithms using Vivado HLS and presents the experimental results. 

Chapter III explains FPGA implementations of HEVC fractional interpolation and 

fractional motion estimation algorithms using Vivado HLS and presents the 

experimental results.  

Chapter IV presents conclusions and future work. 
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2 CHAPTER II    

 

FPGA IMPLEMENTATIONS OF INTEGER MOTION 

ESTIMATION ALGORITHMS USING VIVADO HIGH-LEVEL 

SYNTHESIS 

 

Motion estimation (ME) is used to remove temporal redundancy between current 

frame and reference frame that has been encoded previously. As shown in Figure 2.1, 

integer motion estimation (IME) divides the current frame into blocks and finds the 

motion vector (MV) for each block by determining the reference block in the reference 

frame that gives the smallest sum of absolute difference (SAD) for this block. Then, it 

calculates the difference between the current block and the best matching reference 

block, and encodes this residual and the motion vector. 

HEVC standard divides the current frame into blocks called Prediction Units 

(PUs) for IME. In HEVC standard, 24 different PU sizes are defined. These PU sizes 

range from 4x8 or 8x4 to 64x64. This allows HEVC standard to do better compression 

than previous video compression standards. 
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Figure 2.1 Integer Motion Estimation 

 

2.1 FPGA Implementation of HEVC Full Search Motion Estimation Algorithm 

Using Vivado High-Level Synthesis 

2.1.1 Full Search Motion Estimation Algorithm 

Full Search (FS) algorithm exhaustively searches all search locations in the 

defined search window in the reference frame. Therefore, it finds the best MV in the 

search window. However, it is the most computationally complex motion estimation 

algorithm.  

FS algorithm calculates the SAD value for each search location as shown in 

Equation 2.1. 

                                 𝑆𝐴𝐷 =  ∑ ∑ |𝑅𝑖𝑗 − 𝐶𝑖𝑗|        𝑛
𝑗=0

𝑚
𝑖=0       (2.1) 

 

R is a pixel in the reference frame. C is a pixel in the current frame. It determines 

the search location with the minimum SAD value and the MV corresponding to this 

search location.  
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2.1.2 FPGA implementation 

We, first, designed a full search IME hardware for fixed current block size (8x8) 

and fixed search range (16x16). In this hardware, 8 parallel absolute difference 

hardware calculate absolute differences for one column of 8x8 PU. After 8 iterations, 

SAD value is calculated by adding absolute difference values. 16x16 array stores all 

SAD values for comparison. Then, comparison unit compares SAD values, and 

determines the minimum SAD value and the corresponding motion vector. 

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS 

implementation are verified with post place and route simulations. The implementation 

results are shown in Table 2.1.  

PIPE, LU, APAR and RES directives are used to increase the performance. 

Number of frames per second processed by this FPGA implementation is calculated as 

shown in Equation (2.2).  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝐻𝑧)∗1000000

(
𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒

𝑆𝑒𝑎𝑟𝑐ℎ 𝑅𝑎𝑛𝑔𝑒 𝑆𝑖𝑧𝑒
)∗𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

                                (2.2) 

 

Then, a full search IME hardware implementing the FS IME algorithm in HEVC 

reference software video encoder (HM) version 15 [5] is designed. It supports all 24 PU 

sizes defined in HEVC standard. It implements 64x64 fixed search range. The proposed 

hardware is shown in Fig. 2.2. 

In HEVC, 593 SADs and 593 MVs should be calculated for all PU sizes. 

Numbers of SADs and MVs that should be calculated for each PU size are as follows: 

4x8 (128 SADs and 128 MVs) , 8x4 (128 SADs and 128 MVs) , 8x8 (64 SADs and 64 

MVs) , 4x16 (64 SADs and 64 MVs) , 8x16 (32 SADs and 32 MVs) , 12x16 (20 SADs 

and 20 MVs) , 16x4 ( 64 SADs and 64 MVs) , 16x12 ( 20 SADs and 20 MVs) , 16x16 

(16 SADs and 16 MVs), 8x32 (16 SADs and 16 MVs) , 16x32 (8 SADs and 8 MVs) , 

24x32 (4 SADs and 4 MVs) , 32x8 (16 SADs and 16 MVs) , 32x16 (8 SADs and 8 

MVs) , 32x24 (4 SADs and 4 MVs) , 32x32 (4 SADs and 4 MVs) , 16x64 (4 SADs and 

4 MVs), 32x64 ( 2 SADs and 2 MVs) , 48x64 (1 SAD and 1 MV) , 64x16 (4 SADs and 

4 MVs ) , 64x32 (2 SADs and 2 MVs) , 64x48 (1 SAD and 1 MV) and 64x64 (1 SAD 

and 1 MV). 
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Table 2.1  Full Search Motion Estimation HLS implementation Results  

For 8x8 PU Size 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 

Clock Cycles 

(8x8 PU) 
Fps 

NOOPT 290 644 490 2 0 267 20301 

0.912 

2560*144

0 

APAR_RES(BRAM)_PIPE_LU 2132 6247 2346 49 0 200 256 
54  

2560*144

0 

 

 

 

Figure 2.2 HEVC Full Search Motion Estimation HLS Implementation 

 

First, reference and current pixels are stored into integer pixels buffer. 128x128 

reference pixels are stored in order to be able to search all search locations in the 64x64 

search range. Then, SAD values for 4x4 PUs in the 64x64 CU are calculated. Since 

there are 16x16 4x4 PUs in the 64x64 CU, a 16x16 array is used to store SAD values of 

4x4 PUs. Then, SAD values for the other PU sizes are calculated by adding the SAD 

values of 4x4 PUs. After that, comparison unit compares the SAD values, determines 

the 593 minimum SAD values for all PU sizes and their corresponding MVs, and stores 

them into two different arrays. 

APAR is used for the 16x16 array storing SADs for 4x4 PUs. In this way, latency 

of calculating SAD values of larger PUs is reduced by accessing the SAD values of 4x4 

PUs in parallel. Loop unrolling (LU) is used to perform absolute difference calculations 
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in parallel. PIPE is used to increase the performance. Bit-accurate model is used in 

order to decrease adder bit-width. 

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS 

implementation are verified with post place and route simulations. The implementation 

results are shown in Table 2.2. 

Finally, this HLS implementation is parametrized to support 4 different (8x8, 

16x16, 32x32 and 64x64) search ranges by only changing the boundaries of nested 

loops calculating SAD values according to the selected search range.  

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS 

implementation are verified with post place and route simulations. The implementation 

results are shown in Table 2.3. 

 

Table 2.2 HEVC Full Search Motion Estimation HLS Implementation Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 

Clock 

Cycles 

(64x64 PU) 

Fps 

NOOPT 6858 17632 18397 6 0 125 1056768 
0.23 

1920x1080 

APAR_RES(BRAM)_PIPE_ 

LU_ BIT 
29875 88286 76271 138 0 86 5705 

30 

1920x1080 

 

Table 2.3 HEVC Full Search Motion Estimation With Variable Search Range 

HLS Implementation Results  

Search 

Range 
Optimizations Slice LUT DFF BRAM DSP48 Freq. 

Clock 

Cycles  
Fps 

8x8 
APAR_RES(BRAM)_ 

PIPE_LU_ BIT 

34302 87259 76345 138 0 83 

441 372 FHD 

16x16 
APAR_RES(BRAM)_ 
PIPE_LU_ BIT 

809 202 FHD 

32x32 
APAR_RES(BRAM)_ 
PIPE_LU_ BIT 

1929 85  FHD 

64x64 
APAR_RES(BRAM)_ 

PIPE_LU_ BIT 
5705 29  FHD 

 

2.2 FPGA Implementation of Diamond Search Algorithm Using Vivado High-

Level Synthesis 

Fast search motion estimation algorithms are used to reduce computational 

complexity of FS algorithm at the expense of slight PSNR loss and bitrate increase. 
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2.2.1 Diamond Search Algorithm 

Diamond search (DS) motion estimation algorithm follows a diamond search 

pattern. DS algorithm has two steps; large diamond search (LDS) and small diamond 

search (SDS). LDS calculates SAD values for 9 search locations that form a large 

diamond shape as shown in Figure 2.3 (a), and determines the search location with 

minimum SAD. If the search location with minimum SAD is at the center of the 

diamond shape, SDS is performed. Otherwise, LDS is performed around the search 

location with minimum SAD as shown in Figure 2.3 (c). SDS calculates SAD values for 

4 search locations that form a small diamond shape as shown in Figure 2.3 (b), and 

determines the search location with minimum SAD and the corresponding motion 

vector.  

 

 

(a)                                          (b)                                              (c)                 

Figure 2.3 Diamond Search Algorithm 

2.2.2 FPGA Implementation  

The proposed DS HLS implementation for fixed current block size (64x64) and 

fixed search range size (64x64) is shown in Figure 2.4. First, pixels in the current block 

in the current frame and necessary pixels in the reference frame are stored into integer 

pixels buffers. In order to decrease memory area, only 68x68 reference pixels are 

stored. After the first LDS, if another LDS is performed, only new reference pixels are 

read and stored into integer pixels buffer. Other reference pixels are shifted. 
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Figure 2.4 Diamond Search HLS Implementation 

 

LDS may never find a search location with minimum SAD that is at the center of 

the diamond shape. Therefore, a maximum number of LDS allowed should be defined. 

In the proposed HLS implementation, this maximum number is defined as a parameter 

which can be between 1 and 10. 

In the proposed HLS implementation, 9 SAD values that should be calculated for 

LDS are calculated in parallel. 64 parallel absolute difference hardware are used for 

calculating each SAD value. Then, comparison unit determines the search location with 

minimum SAD. 

If the search location with minimum SAD is at the center of the diamond shape, 

SDS is performed. Otherwise, LDS is performed around the search location with 

minimum SAD. However, if the maximum number of LDSs allowed are performed, 

SDS is performed instead of LDS. If another LDS is performed, only new reference 

pixels are read and stored into integer pixels buffer. Other reference pixels are shifted. 

We used loop unrolling for shifting.  

In the proposed HLS implementation, 4 SAD values that should be calculated for 

SDS are calculated in parallel. Then, comparison unit determines the search location 

with minimum SAD. Finally, the minimum SAD values found in LDS and SDS are 
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compared, and the minimum SAD value and the corresponding MV for DS are 

determined. 

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS 

implementation are verified with post place and route simulations. The implementation 

results are shown in Table 2.4. 

APAR, RES, PIPE, LU optimization directives are used in order to increase the 

performance and decrease the hardware area. Bit-accurate model is also used to 

decrease hardware area. Number of clock cycles changes with number of steps. These 

results show that the proposed DS HLS implementation can process 127 full HD frames 

per second. 

 

Table 2.4 Diamond Search HLS Implementation Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 

Clock Cycles 

(64x64 PU) 

1 Step     10 Steps 

Fps 

NOOPT 10132 28322 16535 4 0 108 4754 46352 
5  

1920x1080 

APAR_RES(BRAM)_ 

PIPE_LU_ BIT 
12573 37457 20859 67 0 139 334 2152 

127 

1920x1080 

 

 

2.3 FPGA Implementation of TZ Search Algorithm Using Vivado High-Level 

Synthesis 

2.3.1 TZ Search Algorithm 

TZ search (TZS) is another fast search motion estimation algorithm. It finds better 

MVs than DS. But, it has higher computational complexity than DS. TZS uses two 

different search patterns; diamond search pattern and raster search pattern as shown in 

Figure 2.5 and Figure 2.6, respectively. Raster search is similar to full search, but it 

searches less number of search locations. It is used as a refinement after the diamond 

search pattern. 

Diamond search pattern starts searching at the (0,0) search location, and it 

proceeds according to the steps shown in Figure 2.5. It calculates the SAD values and 

determines the minimum SAD in each step. It has two termination conditions. The first 

one is reaching the search window boundaries. The second one is not finding minimum 

SAD in three consecutive steps. For example, if the SAD value of (0,0) search location 
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is smaller than all SAD values calculated in steps 1, 2, and 4, then it is terminated, and 

the SAD value of (0,0) search location is determined as the minimum SAD.  

 

 

Figure 2.5 TZS Diamond Search Pattern 

 

 

Figure 2.6 TZS Raster Search with Length 3 

2.3.2 FPGA implementation 

The proposed TZS HLS implementation for fixed current block size (64x64) and 

fixed search range size (64x64) is shown in Figure 2.7. First, 64x64 current pixels and 

128x128 reference pixels are stored into integer pixels buffers. Then, diamond search 

pattern is performed. Since the search range size is 64x64, maximum number of steps 

for the diamond search pattern is 6. In each step, SAD values for the search locations 

are calculated and the search location with minimum SAD is determined. 
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Figure 2.7 TZ Search HLS Implementation 

 

As shown in Figure 2.5, number of search locations for all the steps after step 1 is 

8. In order not to repeat the same operations for SAD calculations in steps 2, 3, 4, 5, and 

6, control variables are added to HLS code to update memory addresses after each step. 

After each step, control unit checks the termination conditions of diamond search 

pattern. If a termination condition occurs, diamond search pattern is terminated. In that 

case, if starting condition of raster search pattern occurs, raster search pattern is 

performed. 

As shown in Figure 2.6, raster search pattern is similar to full search. However, it 

skips some search locations based on raster search length. It searches only the search 

locations shown as black in the figure. SAD values of these search locations are 

calculated and the search location with minimum SAD is determined. 

Finally, comparison unit compares the minimum SAD found in diamond search 

pattern and the minimum SAD found in raster search pattern, and determines the 

minimum SAD and the corresponding MV. 

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS 

implementation are verified with post place and route simulations. The implementation 

results are shown in Table 2.5. 
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APAR, RES, PIPE, LU optimization directives are used in order to increase the 

performance and decrease the hardware area. Bit-accurate model is also used to 

decrease hardware area. These results show that the proposed TZS HLS implementation 

can process 46 full HD frames per second. 

 

Table 2.5 TZ Search HLS Implementation Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 

Clock Cycles 

(64x64 PU) 
Fps 

NOOPT 9744 25723 15821 10 0 128 66321 
4 

1920x1080 

APAR_RES(BRAM)_ 

PIPE_LU_ BIT 
39406 114412 15943 128 0 92 3980 

46 

1920x1080 
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3 CHAPTER III   

FPGA IMPLEMENTATION OF FRACTIONAL MOTION 

ESTIMATION USING VIVADO HIGH-LEVEL SYNTHESIS 

In order to increase the performance of integer pixel motion estimation, fractional 

motion estimation (FME), which provides half and quarter pixel accurate motion vector 

(MV) refinement, is performed. First, fractional interpolation is performed to generate 

fractional pixels. Then, fractional motion estimation is performed using fractional 

pixels. 

Fractional (half-pixel and quarter-pixel) interpolation is one of the most 

computationally intensive parts of HEVC video encoder and decoder. On average, one 

fourth of the HEVC encoder complexity and 50% of the HEVC decoder complexity are 

caused by fractional interpolation [19]. FME is heavily used in an HEVC encoder. It 

accounts for up to 49% of total encoding time of HEVC video encoder [20]. 

HEVC uses FME same as H.264. However, HEVC FME has higher 

computational complexity than H.264 FME. HEVC standard uses three different 8-tap 

FIR filters for fractional interpolation and up to 64×64 prediction unit (PU) sizes [21].  

3.1 FPGA Implementations of HEVC Fractional Interpolation Using Vivado 

High-Level Synthesis 

Since HEVC fractional interpolation algorithm uses FIR filters, it is suitable for 

HLS implementation. Therefore, in this thesis, the first FPGA implementation of HEVC 

fractional interpolation algorithm using Xilinx Vivado HLS tool in the literature is 
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proposed. The proposed HEVC fractional interpolation hardware is implemented on 

Xilinx FPGAs using Xilinx Vivado HLS tool. The C codes given as input to Xilinx 

Vivado HLS tool are developed based on the HEVC fractional interpolation software 

implementation in the HEVC reference software video encoder (HM) version 15 [5].  

Three HEVC fractional interpolation HLS implementations are done. In the first 

one (MM), in the C codes, multiplications with constants are implemented using 

multiplication operations. In the second one (MAS), multiplications with constants are 

implemented using addition and shift operations. In the last one (MMCM), addition and 

shift operations are implemented using Hcub multiplierless constant multiplication 

algorithm [22].   

Some of the optimization options of Xilinx Vivado HLS tool are used in order to 

increase performances of the FPGA implementations such as pipelining, allocation, 

resource optimizations, array mapping and array partitioning. Verilog RTL codes 

generated by Xilinx Vivado HLS tool for the three HEVC fractional interpolation HLS 

implementations are verified to work in a Xilinx Virtex 6 FPGA. 

Using HLS tool significantly reduced the FPGA development time. The 

implementation results show that the proposed HEVC fractional interpolation FPGA 

implementation, in the worst case, can process 45 quad full HD (3840x2160) video 

frames per second with acceptable hardware area.  

The HEVC fractional interpolation HLS implementation proposed in this thesis is 

the first HLS implementation for HEVC fractional interpolation algorithm in the 

literature. In Section 3.1.2, it is compared with the handwritten HEVC fractional 

interpolation hardware implementations proposed in the literature [23]-[27].  

3.1.1 HEVC Fractional Interpolation Algorithm 

In HEVC standard, 3 different 8-tap FIR filters are used for both half-pixel and 

quarter-pixel interpolations. These 3 FIR filters type A, type B and type C are shown in 

(3.1), (3.2), and (3.3), respectively. The shift1 value is determined based on bit depth of 

the pixel. 
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Figure 3.1 Integer, Half and Quarter Pixels 

 

 𝑎0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 10 ∗ 𝐴−1,0 + 58 ∗ 𝐴0,0 + 17 ∗ 𝐴1,,0 − 5 ∗ 𝐴2,0 +  𝐴3,0) ≫

𝑠ℎ𝑖𝑓𝑡1 

(

(3.1) 

𝑏0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 11 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 + 40 ∗ 𝐴1,,0 − 11 ∗ 𝐴2,0 +  4 ∗ 𝐴3,0 − 𝐴4,0)

≫ 𝑠ℎ𝑖𝑓𝑡1 

(

(3.2) 

𝑐0,0 = (−𝐴−2,0 − 5 ∗ 𝐴−1,0 + 17 ∗ 𝐴0,0 + 58 ∗ 𝐴1,0 − 10 ∗ 𝐴2,,0 + 4 ∗ 𝐴3,0 −  𝐴4,0) ≫ 𝑠ℎ𝑖𝑓𝑡1 
(

(3.3) 

 

Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels 

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 3.1. The half pixels 

a, b, c are interpolated from nearest integer pixels in horizontal direction using type A, 

type B and type C filters, respectively. The half-pixels d, h, n are interpolated from 

nearest integer pixels in vertical direction using type A, type B and type C filters, 

respectively. The quarter pixels e, f, g are interpolated from the nearest a, b, c half 

pixels respectively in vertical direction using type A filter. The quarter pixels i, j, k are 

interpolated similarly using type B filter. The quarter pixels p, q, r are interpolated 

similarly using type C filter. 

HEVC fractional interpolation algorithm used in HEVC encoder calculates all 

the fractional pixels necessary for the fractional motion estimation. 

3.1.2 FPGA Implementations 

The proposed HLS implementation of HEVC fractional interpolation is shown in 

Figure 3.2. The proposed HLS implementation is synthesized to Verilog RTL using 
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Xilinx Vivado HLS tool. The C codes given as input to Xilinx Vivado HLS tool are 

developed based on the HEVC fractional interpolation software implementation in the 

HEVC reference software video encoder (HM) version 15 [5].  

In the proposed HLS implementation, half pixels and quarter pixels for an 8x8 PU 

are calculated using 15x15 integer pixels. Half pixels and quarter pixels for larger PU 

sizes can be calculated by calculating the half pixels and quarter pixels for each 8x8 part 

of a PU separately. In the C codes, 15 integer pixels are taken as input in each clock 

cycle. 8 a, 8 b and 8 c half-pixels are interpolated in parallel in each clock cycle. 15x8 a, 

15x8 b, and 15x8 c half pixels are interpolated in 15 clock cycles, and they are stored 

into registers for quarter pixel interpolation. In the same 15 clock cycles, 15x8 integer 

pixels are also stored into registers for interpolating d, h, n half pixels. Then, 8x8 d, 8x8 

h, 8x8 n half pixels are interpolated using 15x8 integer pixels. Finally, all quarter pixels 

(e, f, g, i, j, k, p, q, r) are interpolated using 15x8 a, 15x8 b, and 15x8 c half pixels. 

Three HEVC fractional interpolation HLS implementations are done. In the first 

one (MM), in the C codes, multiplications with constants are implemented using 

multiplication operations. In the second one (MAS), multiplications with constants are 

implemented using addition and shift operations. In the last one (MMCM), addition and 

shift operations are implemented using Hcub multiplierless constant multiplication 

algorithm [22].   

 

 

Figure 3.2 HEVC Fractional Interpolation HLS Implementation 
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Verilog RTL codes generated by Xilinx Vivado HLS tool for these three HLS 

implementations are verified with RTL simulations. RTL simulation results matched the 

results of HEVC fractional interpolation software implementation in the HEVC 

reference software video encoder (HM) version 15 [5]. The Verilog RTL codes are 

synthesized and mapped to a Xilinx XC6VLX550T FF1760 FPGA with speed grade 2 

using Xilinx ISE 14.7. The FPGA implementations are verified with post place and 

route simulations. 

We used several optimizations offered by Xilinx Vivado HLS tool to increase the 

performance and decrease the area of the proposed HLS implementations [28]. We tried 

to use loop unrolling directive. However, loop unrolling directive did not work correctly 

for the proposed HLS implementations. In [29], it is mentioned that loop unrolling may 

cause memory access problems in HLS designs, and current generation of HLS tools 

may ignore these problems. As shown in Table 3.1, the performance of the HLS 

implementation, which implements multiplications with constants using multiplication 

operations, without loop unrolling is very low. Therefore, we performed manual loop 

unrolling in the proposed HLS implementations to increase their performances. 

In the proposed HLS implementations, ALC is used for subtraction, addition, 

multiplication, and shifting operations. PIPE directive is used in the proposed HLS 

implementations. In the proposed HLS implementations, RES directive is used to store 

input integer pixels into BRAMS. In the proposed HLS implementations, AMAP 

directive is used to control how data is stored in BRAMS so that the number of BRAMS 

used in the hardware is reduced as much as possible. In the proposed HLS 

implementations, APAR directive is used to partition the arrays that store a, b, and c 

half pixels to increase quarter pixel interpolation performance. In the proposed HLS 

implementations, bit accurate (BIT) model is used to decrease adder bit widths and 

therefore hardware area. 

The FPGA implementation results for the first HLS implementation (MM) are 

given in Table 3.2. In this HLS implementation, in the C codes, multiplications with 

constants are implemented using multiplication operations. These multiplication 

operations are mapped to DSP48 blocks in RTL synthesis. This decreased the number 

of LUTs and DFFs used in the hardware. Allocation (ALC), pipeline (PIPE), resource 

(RES) and array map (AMAP) directives are used in this HLS implementation. In the 

table, M shows the number of multipliers used in the ALC directive. 



23 

 

The FPGA implementation results for the second HLS implementation (MAS) are 

given in Table 3.3. In this HLS implementation, multiplications with constants are 

implemented using addition and shift operations. This HLS implementation does not 

use any DSP48 blocks, but it uses more LUTs and DFFs than MM. It also has higher 

performance than MM. Pipeline (PIPE), resource (RES) and array map (AMAP) 

directives are used in this HLS implementation. 

 

Table 3.1 HLS Implementation without Manual Loop Unrolling with Multipliers 

Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 
Clock Cycles 

(8x8 PU) 
Fps 

NOOPT 885 2565 1411 1 15 250 1921 
1 

3840x2160 

 

Table 3.2 HLS Implementation with Multipliers Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 
Clock Cycles  

(8x8 PU) 
Fps 

NOOPT 4623 14110 7526 0 113 200 156 
10 

3840x2160 

ALC(M128) 4769 14133 6226 0 135 168 148 
9 

3840x2160 

PIPE 4938 14086 8736 0 113 201 56 
28 

3840x2160 

RES(BRAM) 4723 13883 7395 4 113 201 156 
10 

3840x2160 

ALC(M128)_RES(BRAM)_PIPE 5197 14366 8000 4 147 167 56 
23 

3840x2160 

ALC(M128)_AMAP(4)_ 

RES(BRAM)_PIPE 
4299 12401 7964 2 147 167 56 

23 

3840x2160 

ALC(M20)_AMAP(4)_ 

RES(BRAM)_PIPE 
4299 13100 8037 2 59 168 56 

23 

3840x2160 

 

Table 3.3 HLS Implementation with Adders and Shifters Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 

Clock Cycles 

(8x8 PU) 
Fps 

NOOPT 4809 15629 9095 0 0 202 133 
12 

3840x2160 

AMAP(4)_RES(BRAM)_PIPE 4891 15716 9436 2 0 200 55 
28 

3840x2160 

 

The FPGA implementation results for the last HLS implementation (MMCM) 

are given in Table 3.4. In this HLS implementation, addition and shift operations are 

implemented using Hcub multiplierless constant multiplication algorithm [22].  The 

type A and type B FIR filter equations for 8 a half pixels and 8 b half pixels are shown 

in Figure 3.3. As shown in Figure 3.3, common sub-expressions are calculated in 
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different equations and same integer pixel is multiplied with different constant 

coefficients in different equations. Therefore, in this HLS implementation, common 

sub-expressions in different FIR filter equations are calculated once, and the result is 

used in all the equations. This HLS implementation also uses Hcub MCM algorithm in 

order to reduce number and size of the adders, and to minimize the adder tree depth 

[22]. Hcub algorithm tries to minimize number of adders, their bit size and adder tree 

depth in a multiplier block, which multiplies a single input with multiple constants. This 

HLS implementation has the best performance with acceptable hardware area. 

Allocation (ALC), pipeline (PIPE), array partition (APAR) directives and bit-accurate 

(BIT) model are used in this HLS implementation. In the table, A and S show the 

number of adders and subtractors used in the ALC directive, respectively. 

 

Table 3.4 HLS Implementation with MCM Results 

Optimizations Slice LUT DFF BRAM DSP48 
Freq. 

(MHz) 
Clock Cycles 

(8x8 PU) 
Fps 

NOOPT 4850 15632 6673 2 0 201 195 
8 

3840x2160 

ALC(A500_S500)_ 

APAR_PIPE 
5288 14619 10118 0 0 168 29 

45 

3840x2160 

ALC(A500_S500)_ 
APAR_PIPE_BIT 

4426 14225 9984 0 0 168 29 
45 

3840x2160 

 

 

b-3,0 = -A-6 + 4×A-5 – 11×A-4 + 40×A-3 + 40×A-2 – 11×A-1 + 4×A0  - A1
b-2,0 = -A-5 + 4×A-4 – 11×A-3 + 40×A-2 + 40×A-1 – 11×A0 + 4×A1 – A2
b-1,0 = -A-4 + 4×A-3 – 11×A-2 + 40×A-1 + 40×A0 – 11×A1 + 4×A2 – A3
b0,0 = -A-3 + 4×A-2 – 11×A-1 + 40×A0 + 40×A1 – 11×A2 + 4×A3 – A4
b1,0 = -A-2 + 4×A-1 – 11×A0 + 40×A1 + 40×A2 – 11×A3 + 4×A4 – A5
b2,0 = -A-1 + 4×A0 – 11×A1 + 40×A2 + 40×A3 – 11×A4 + 4×A5 – A6
b3,0 = -A0 + 4×A1 – 11×A2 + 40×A3 + 40×A4 – 11×A5 + 4×A6 – A7
b4,0 = -A1 + 4×A2 – 11×A3 + 40×A4 + 40×A5 – 11×A6 + 4×A7 – A8

a-3,0 = -A-6 + 4×A-5 – 10×A-4 + 58×A-3 + 17×A-2 – 5×A-1 + A0  
a-2,0 = -A-5 + 4×A-4 – 10×A-3 + 58×A-2 + 17×A-1 – 5×A0 + A1  
a-1,0 = -A-4 + 4×A-3 – 10×A-2 + 58×A-1 + 17×A0 – 5×A1 + A2  
a0,0 = -A-3 + 4×A-2 – 10×A-1 + 58×A0 + 17×A1 – 5×A2 + A3  
a1,0 = -A-2 + 4×A-1 – 10×A0 + 58×A1 + 17×A2 – 5×A3 + A4  
a2,0 = -A-1 + 4×A0 – 10×A1 + 58×A2 + 17×A3 – 5×A4 + A5  
a3,0 = -A0 + 4×A1 – 10×A2 + 58×A3 + 17×A4 – 5×A5 + A6  
a4,0 = -A1 + 4×A2 – 10×A3 + 58×A4 + 17×A5 – 5×A6 + A7  

A – C Type Filters B Type Filters

 

Figure 3.3 Type A and Type B FIR Filters 

 

The best HEVC fractional interpolation HLS implementation proposed in this 

thesis  (MMCM with ALC(A500_S500)_APAR_PIPE_BIT) is compared with the 

handwritten HEVC fractional interpolation hardware implementations proposed in the 

literature [23]-[27]. The comparison results are shown in Table 3.5. 

The proposed MMCM HLS implementation is similar to the handwritten HEVC 

fractional interpolation hardware implementation proposed in [23]. In [23], common 
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sub-expressions in different FIR filter equations are calculated once, and the result is 

used in all the equations. Also, addition and shift operations are implemented using 

Hcub multiplierless constant multiplication (MCM) algorithm.  

In [23], the handwritten Verilog RTL codes are synthesized and mapped to a 

Xilinx XC6VLX130T FF1156 FPGA with speed grade 3. In this thesis, the handwritten 

Verilog RTL codes proposed in [23] are synthesized and mapped to a Xilinx 

XC6VLX550T FF1760 FPGA with speed grade 2 for fair comparison with the proposed 

MMCM HLS implementation. The proposed MMCM HLS implementation has higher 

performance than the handwritten HEVC fractional interpolation hardware 

implementation proposed in [23] at the expense of larger area.  

 

Table 3.5 HEVC Fractional Interpolation Hardware Comparison 

 
[23] [24] [25] [26] [27] 

Proposed 

(MMCM) 

Technology 
Xilinx 

Virtex 6 
90 nm 90 nm 150 nm 90 nm 130 nm 

Xilinx 

Virtex 6 

Gate/Slice 

Count 
1597 28.5 K 32.5 K 30.2 K 224 K 126.8 K 4426 

Max Speed 

(MHz) 
200 200 171 312 333 208 168 

Frames per 

Second 

30 

3840x2160 

30 

3840x2160 

60 

3840x2160 

30 

3840x2160 

30 

1920x1080 

86 

3840x2160 

45 

3840x2160 

Design ME + MC ME + MC Only MC ME + MC ME + MC ME + MC ME + MC 

 

Since the handwritten HEVC fractional interpolation hardware implementation 

proposed in [24] is designed only for motion compensation (MC), it has higher 

performance and lower area than the proposed MMCM HLS implementation. 

The handwritten HEVC fractional interpolation hardware implementation 

proposed in [25] has lower performance and therefore lower area than the proposed 

MMCM HLS implementation. In addition, it requires higher clock frequency to achieve 

real time performance. The handwritten HEVC fractional interpolation hardware 

implementation proposed in [18] has both lower performance and larger area than the 

proposed MMCM HLS implementation. The handwritten HEVC fractional 

interpolation hardware implementation proposed in [27] has higher performance than 

the proposed MMCM HLS implementation at the expense of larger area. 
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3.2 FPGA Implementations of HEVC Fractional Motion Estimation Using High-

Level Synthesis 

3.2.1 HEVC Fractional Motion Estimation Algorithm 

After integer pixel motion estimation is performed for a PU, FME is performed 

for the same PU to obtain fractional-pixel accurate motion vector (MV). In HEVC 

reference software video encoder (HM) [5], FME is performed in two stages. As shown 

in Figure 3.4, 8 sub-pixel search locations around the best integer pixel search location 

are searched in the first stage. 8 sub-pixel search locations around the best sub-pixel 

search location of the first stage are searched in the second stage.  

HEVC FME first interpolates the necessary sub-pixels for sub-pixel search 

locations using three different 8-tap FIR filters. In Figure 3.4, half-pixels a, b, c and d, 

h, n are interpolated using the nearest integer pixels in horizontal and vertical directions, 

respectively. Quarter-pixels e, i, p and f, j, q and g, k, r are interpolated using the nearest 

a, b and c half-pixels, respectively. HEVC FME then calculates the SAD values, as 

shown in (3.4) for each sub-pixel search location, and determines the best sub-pixel 

search location with the minimum SAD value. 

 

𝑆𝐴𝐷 =  ∑ ∑|𝑅𝑖𝑗 − 𝐶𝑖𝑗|       (3.4)

𝑛

𝑗=0

𝑚

𝑖=0

 

𝑚 = 0 𝑡𝑜 (𝑃𝑈𝑤𝑖𝑑𝑡ℎ −  1), 𝑛 = 0 𝑡𝑜 (𝑃𝑈ℎ𝑒𝑖𝑔ℎ𝑡 −  1) 

 

 

Figure 3.4 Sub-pixel Search Locations 
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HEVC performs fractional motion estimation for 24 different PU sizes (4x8, 8x4, 

8x8, 4x16, 16x4, 8x16, 16x8, 12x16, 16x12, 16x16, 8x32, 32x8, 16x32, 32x16, 24x32, 

32x24, 32x32, 16x64, 64x16, 32x64, 64x32, 48x64, 64x48 and 64x64). There are 593 

different PUs for these 24 different PU sizes, and 593 different SAD values should be 

calculated for them. 

3.2.2 FPGA Implementations 

The proposed HEVC fractional motion estimation HLS implementation for 8x8 

PU size is shown in Figure 3.5. Three HEVC fractional motion estimation HLS 

implementations are done. In the first one (MM), in the C codes, multiplications with 

constants are implemented using multiplication operations. In the second one (MAS), 

multiplications with constants are implemented using addition and shift operations. In 

the last one (MMCM), addition and shift operations are implemented using Hcub 

multiplierless constant multiplication algorithm [22].  

Fractional interpolation is implemented as described in Section 3.1. However, in 

the proposed FME HLS implementation, 16 integer pixels are taken as input instead of 

15 integer pixels for all the necessary SAD calculations. There are 3 9x8 memories for 

d, h and n half pixels, 3 16x9 memories for a, b, and c half pixels, and 9 9x9 memories 

for quarter pixels. 

In the first stage, 8 fractional pixel search locations around the best integer pixel 

search location are searched. 8 parallel SAD calculation hardware are used to calculate 

SAD values of these 8 search locations in parallel. Appropriate current, half and quarter 

pixels are read from current, half and quarter pixel memories, respectively, for the SAD 

calculations. 8 parallel absolute difference (AD) hardware calculate AD values of an 

8x8 PU in 8 clock cycles. Then, SAD value of this 8x8 PU is calculated using these 

ADs. After the SAD values are calculated, comparison hardware determines the search 

location with minimum SAD value. 

In the second stage, 8 fractional pixel search locations around the best fractional 

pixel search location of the first stage are searched. The same hardware used in the first 

stage is used for SAD calculation. After the SAD values are calculated, comparison 

hardware determines the search location with minimum SAD value. 

Finally, the minimum SAD value found in the FME is compared with the SAD 

value of the best integer pixel search location, and the search location with minimum 

SAD value is determined. 
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Figure 3.5 HEVC fractional motion estimation HLS implementation 

 

The proposed MM and MAS FME HLS implementations for 8x8 PU size are 

extended to support almost all (22 out of 24) PU sizes (8x8, 16x8, 8x16, 16x16, 32x8, 

8x32, 32x16, 16x32, 32x24, 24x32, 32x32, 16x64, 64x16, 64x32, 32x64, 64x48, and 

64x64). For PU sizes larger than 8x8, PUs can be divided into 8x8 pixel blocks. 

Therefore, the proposed FME HLS implementation for 8x8 PU size is parameterized to 

support larger PU sizes. All loops are parameterized to satisfy the number of iterations 

necessary for specific PU size. Because of the asymmetric PU sizes, all loops are 

designed as nested loops. Also, memory sizes are arranged to support different PU 

sizes. 

ALC directive is used for subtraction, addition, multiplication, and shifting 

operations to decrease hardware area. Pipeline (PIPE) directive is used between 

functions, for loop iterations, and computations. PIPE decreases latency and increases 

frequency of proposed FME HLS implementations. Resource (RES) directive is only 

used for memories. Some arrays are forced to map to BRAM instead of registers using 
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RES directive to decrease hardware area. AMAP directive is used to store half pixels in 

the memory efficiently. APAR directive is used to use registers instead of BRAMs. This 

increases hardware area. Since APAR provides parallel data accesses, it increases the 

performance. In addition, bit accurate model is used to decrease adder bit widths and 

therefore hardware area. 

FPGA implementation results for the HLS implementations of HEVC fractional 

motion estimation algorithm are shown in Table  3.6. As shown in Table 3.6, the 

proposed FME HLS implementation results are divided into two groups; (i) for only 

8x8 PUs, and (ii) for all PU sizes. There are three different FME HLS implementations 

(MM, MAS and MMCM) for only 8x8 PUs. Allocation (ALC), pipeline (PIPE), 

resource (RES) and array partition (APAR) directives are used in these HLS 

implementations. There are two different FME HLS implementations (MM, MAS) for 

all PU sizes. The best results for these HLS implementations are shown in Table 3.6. 

As shown in Table 3.6, allocation and pipeline directives directly affect the 

performance of the proposed HLS implementations. Allocation limits number of 

resources used. Therefore, ALC directive decreases the number of DSP48 units for 

multiplication operations, and LUTs for the addition/subtraction operations. Pipeline 

directive decreases the number of clock cycles and increases the performance of the 

proposed HLS implementations.  

The effect of the allocation directive for MM HLS implementation is analyzed in 

Table 3.7. Number of DSP48 blocks, clock cycles and frequency are observed by 

changing the number of available multipliers. Increasing the number of multipliers after 

a threshold value do not affect the results because of the data dependencies. Decreasing 

the number of multipliers increases the complexity of control because of the complex 

resource sharing mechanism. This reduces the frequency. 
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Table 3.6 HEVC Fractional Motion Estimation HLS Implementation Results 
P

U
 

D
e
si

g
n

 

Optimizations Slice LUT DFF BRAM DSP48 Freq. 
Clock 

Cycles  
Fps 

8
x
8
 

M
M

 

NOOPT 8743 24722 10309 9 202 72 1304 
1.7  

FHD 

ALC(M500) 10088 29707 21741 9 38 125 1501 
2.6 

FHD 

ALC(M500)_APAR_ 

PIPE_RES(BRAM)_BIT 
12767 36761 26875 44 146 125 201 

19.2 

FHD 

M
A

S
 

NOOPT 11800 33805 24458 9 0 143 1501 
2.9 
FHD 

ALC(A20_S20)_PIPE 11077 32424 27486 10 0 143 1219 
3.6 
FHD 

ALC(A20_S20)_APAR 

_PIPE_BIT 
17155 52449 42093 41 0 125 241 

16 

FHD 

M
M

C
M

 

NOOPT 10226 29196 22889 6 0 167 713 
7.2 

FHD 

PIPE 9735 28458 21922 6 0 143 453 
9.7 

FHD 

 
ALC(A100_S100)_ 

APAR_PIPE_BIT 
16366 52521 41535 0 0 167 140 

36.8 

FHD 

A
ll

 S
iz

e
s 

M
M

 ALC(M20)_APAR_ 

PIPE_RES(BRAM)_BIT 
13027 41397 21864 69 57 111 9024 

24.3 

FHD 

M
A

S
 

ALC(A20_S20)_APAR 
_PIPE_BIT 

13632 41085 22545 69 10 143 9051 
31.2 
FHD 

  

Table 3.7 Allocation Analysis for MM HLS Implementations 

  M1 M10 M50 M100 M200 M500 

Fract. 

Interp. 

DSP48 32 58 104 135 135 --- 

C. Cyc. 1133 196 156 148 148 --- 

Freq.  165 167 170 170 170 --- 

FME 

(8x8) 

DSP48 0 2 38 38 38 38 

C. Cyc. 1901 1501 1501 1501 1501 1501 

Freq.  125 130 130 129 129 125 

 

The proposed HEVC FME HLS implementation is compared with the 

handwritten HEVC FME hardware implementations in the literature [30] - [33]. As 

shown in Table 3.8, [30] has smaller area and higher performance than the proposed 

hardware. However, it interpolates SADs instead of pixels. Therefore, it decreases 

PSNR and increases bit rate. In [31], FME hardware searches all possible 48 sub-pixel 

search locations. However, it only supports square shaped PU sizes. In [32], FME 
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hardware supports all PU sizes but 8x4, 4x8 and 8x8. It uses bilinear filter for quarter-

pixel interpolation. Also, it searches 12 sub-pixel search locations. In [33], FME 

hardware supports all PU sizes but it uses a scalable search pattern. 

 

Table 3.8 HEVC Fractional Motion Estimation Hardware Comparison 

 Tech. 
Gate/Slice 

Count 

Freq. 

(MHz) 
PU Sizes Fps 

[30] 
Xilinx 

Virtex 6 
1814 142 All 

19 

QFHD 

[31] 65 nm 249.1 K 396 
Square 

Shaped 

6 

QFHD 

[32] 65 nm 1183 K 188 

All but 

8x8, 

8x4, 4x8 

15 

QFHD 

[33] 
Xilinx 

Virtex 6 
130 K 200 All 

32 

QFHD 

Prop. 
Xilinx 

Virtex 6 
13632 143 

All but 

4x8, 8x4 

8 

QFHD 
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4 CHAPTER IV 

 

CONCLUSIONS AND FUTURE WORK 

In this thesis, we proposed the first FPGA implementation of HEVC full search 

motion estimation using Vivado HLS. Then, we proposed the first FPGA 

implementations of two fast search (diamond search and TZ search) algorithms using 

Vivado HLS. Finally, we proposed the first FPGA implementations of HEVC fractional 

interpolation and motion estimation using Vivado HLS. All FPGA implementations are 

verified to work correctly at real-time using post place and route simulations. 

As future work, FPGA implementations of fast search motion estimation 

algorithms can be extended for variable block sizes and variable search ranges. FPGA 

implementations of other fast search algorithms such as hexagon search can be done 

using Vivado HLS. 
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