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Abstract

Electricity day-ahead market is used for matching the electricity demand and supply of

participants according to the market clearing prices. Market clearing prices should be an-

nounced fast enough to inform the participants about their bids’ acceptance status before the

actual transaction. In this thesis, we provide a new method for finding the optimal market

clearing prices of the Turkish day-ahead electricity market clearing problem. This method

works in three stages: First, an approximation of the main model is solved; secondly, a feasi-

ble solution is found close to the solution of the approximation; thirdly, the optimal solution

for the problem is searched starting from the solution of the previous step. Each step of the

approach and additional enhancements are discussed. Then, we test our methodology with

two datasets: one is the generated data which is available to the public, and the other is real

data obtained from the Turkish day-ahead electricity market. Our method gives promising

results and also its simplicity and adaptability is an advantage for using it with other methods

in the literature.

Keywords: Turkish Day-Ahead Electricity Market, Energy Systems, Approximation Meth-

ods.
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Özet

Gün öncesi elektrik piyasası, katılımcıların elektrik arz ve taleplerini piyasa takas fiyatları

doğrultusunda eşleştirmekte kullanılır. Piyasa takas fiyatları, katılımcılara, tekliflerinin kabul

edilme durumunu teklif gerçekleşmeden öğrenebilmeleri için yeterince hızlı ilan edilme-

lidir. Bu tez çalışmasında, Türkiye gün öncesi elektrik piyasası eşleme probleminde en uy-

gun piyasa takas fiyatlarını bulmanın daha yeni bir yolunu sunuyoruz. Metot üç aşamada

çalışmaktadır: İlk olarak, ana modelin yakınsaması çözülür; daha sonra, yaklaşımdan gelen

çözüme yakın bir olurlu çözüm bulunur; ve son olarak, olurlu çözüm ana modele başlangıç

çözümü olarak verilerek problemin optimum çözümü aranır. Metodolojimizin her adımı ve

ek modifikasyonlar detaylı bir şekilde ele alınmaktadır. Yaklaşımımız iki veri kümesi ile test

edilmektedir. Bunlardan ilki üretilmiş veri ve kamuya açıktır, ikincisi ise Türkiye gün öncesi

elektrik piyasasından edinilmiş gerçek verilerdir. Önerilen yöntem umut verici sonuçlar ver-

mektedir ve aynı zamanda sadeliği ve uyarlanabilirliği literatürdeki diğer yöntemlerle birlikte

kullanılabilme avantajı sağlamaktadır.

Anahtar Kelimeler: Türkiye Gün Öncesi Elektrik Piyasası, Enerji Sistemleri, Yakınsama

Yöntemleri.
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1 Introduction

Recently, electricity exchange markets enjoy an increase in audience size worldwide.

Furthermore, with the additional customers in the market, satisfying everyone in the market

is of utmost importance. An electricity market is the system in which one side is bidding for

buying electricity and the other side is bidding for selling their produced electricity. Because

the electricity cannot be stored efficiently in today’s world, it should be utilized exactly when

it is produced. This storage problem increases the need for the day-ahead electricity market

(DAEM). In DAEM, prices for every hour are decided and then the market is cleared by

matching the demands and supplies one day ahead according to the decided prices. To find

this prices to satisfy the bidders in the market, market clearing problem is solved in Turkish

DAEM.

In Turkish DAEM, to prevent discrimination between the participants, uniform prices are

used for market clearing price (MCP) values. For every 24 hours of the day, participants are

informed about the MCP values which are the same for every participant and the resulting

acceptance or rejection status of their bids. Turkish DAEM uses uniform pricing while de-

ciding the MCP values. In uniformly priced markets, every participant’s bid is accepted or

rejected according to the MCP value for that hour, so everyone is paid or pays to the system

the MCP value of that hour for each electricity received or supplied. These MCP values are

calculated by matching the bids with each other, balancing the demand and supply quanti-

ties, and maximizing the daily market surplus of the participants in the process. Of course,

each market has its own unique requirements and regulations for deciding which bids to be

accepted and which bids to be rejected in that hour. The type of bids that participants can

enter may also change in each market.
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1.1 Bid Types

In Turkish DAEM, three types of bids can be provided: hourly, block and flexible. Price

interval for the bids is 0 to 2,000. The unit of measurement of price values is TL/MWh, and

quantities are represented in terms of lots where one lot corresponding 0.1 MWh, in Turkish

DAEM.

Hourly bids: Participants give discrete data points consisting of two values, quantity and

price for their bids for a single hour. Hourly bids can be in either direction, buy and sell,

and basically, the participants declare their preferred electricity quantity and its price value

in either direction. Furthermore, we assume that these bids are made by rational decision-

makers, for example, supply quantities should either increase or stay the same in case of

a price increase and vice versa. Hourly bids are the most common bid type in electricity

markets. In Turkish DAEM, linear interpolation is being used for determining the price and

quantity matchings that are not at breakpoint levels. The line between two breakpoints is

called segment. Table 1.1 illustrates a common single hourly bid. For example, suppose that

the MCP value for the corresponding hour is decided as 250 TL. That means the MCP value

is between the first data point (0, 2,000) and the second data point (500, 1,600). Then the first

segment would be partially covered with quantity of 1,800 because MCP is 250 TL and its in

between price values 0 and 500. The interpolation between 2,000 lot and 1,600 lot gives us

the quantity value of 1,800 lot.

Table 1.1: Single demand hourly bid

Price(TL/MWh) 0 500 2,000
Quantity(Lot) 2,000 1,600 1,200

Block bids: Participants give discrete data points consisting of quantity and price values

similar to hourly bids, in addition to that participants give the interval of consecutive hours of

which the block bid spans. Furthermore, block bids are either fully accepted for every hour it

spans or they are fully rejected. This kill-or-fill property, not allowing partial acceptance of

block bids, makes the mathematical formulation of the market non-convex.

In Turkish DAEM, linked bid type, a special type of block bid is also used. Linked bids

have two components, parent and child bids, which are connected to each other. The parent

2



block bid must be accepted in order to accept the child block bid. But the reverse does not

necessarily apply, the parent bid can be accepted when the child bid is rejected.

In Table 1.2, Block bid-A covers 5 hours and is linked to the block bid-B which covers 9

hours different than hours covered by block bid A. If A is accepted in this system B should

be accepted as well, because they are linked to each other.

Table 1.2: One demand and one supply block bids

Name Type Price(TL/MWh) Quantity(Lot) Range Link
Block bid-A Demand 150 500 1-5 Block bid-B
Block bid-B Supply 200 200 10-18 -

Flexible bids: Participants give quantity and price information but they do not specify the

hour information, so flexible bids can be accepted at any hour of the day. In Turkish DAEM,

flexible bids are occasionally observed, but only supply type of flexible bids are supported at

the moment.

1.2 Rules of Market Clearing

In Turkish DAEM, aggregation method is used to determine the demand and supply

curves of the system for each hour. For every price value of a supply or demand bid, the

quantity of the demand and supply bids are summed up at those price points respectively,

giving us one demand, one supply curve for each hour. This method gives us one curve rather

than multiple curves for each side which is easier to work with, however, because of the ag-

gregation of all the participants’ bids, this newly obtained curve has more segments and more

variance in slopes between the data points. Varying slopes between the data points may lead

to non-convexity of the problem.

Each bid in the system either becomes in the money (ITM) or out of the money (OTM)

with respect to the MCP value of the hour. For an hourly bid, it is ITM in that segment if that

transaction incurs an income to market. If a demand (supply) side bid price value is greater

(less) than to the MCP value of that hour, then that bid is ITM. For example, if a bid consists

of quantity and price values of (150, 500) and MCP value is 400, accepting that bid results in

surplus to the overall system. If a demand (supply) side bid price value is less (greater) than
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to the MCP value of that hour, then we call that bid OTM. OTM bids incur loss of welfare

to the system if accepted. If the MCP value is between price values of two bid points, it is

referred as at the money (ATM) and that hourly bid is partially accepted.

A block bid might be ITM or OTM at different hours it span, therefore we refer to an

average income value for them. So, if a demand (supply) block bid’s price value is greater

(less) than or equal to the average of the MCPs of the hours spanned by the block bid, then

that block bid is ITM . It is OTM if the other way around. If a block bid’s price value is equal

to the average of the MCPs of the hours spanned by the block bid then that block bid is ATM.

A flexible bid is ITM if the price of the flexible bid is less than or equal to the maximum MCP

of that day. Since flexible bids only on the supply side are considered in Turkish DAEM, we

have only one ITM condition. If the maximum MCP value is equal to the flexible bid’s price

value then that bid is ATM.

According to Turkish DAEM regulations, ITM bids should be accepted and OTM bids

may or may not be accepted while ensuring a feasible matching between the participants.

Turkish market has paradoxically accepted bids (PABs) similar to the U.S. markets. PABs

incur negative income to the system because the bid is accepted although they incur loss to

the system. Turkish regulations state that all the money lost in that particular transaction

will be paid to that participant, and this payment is called uplift or side payment. Market

operator pays those losses to the bidder in case OTM bids are accepted. European DAEM is

different than Turkish DAEM, some ITM block bids might be rejected if necessary, resulting

in paradoxically rejected bids (PRBs).

Energy Exchange Istanbul (EXIST) is an energy exchange company legally incorporated

under the Turkish Electricity Market Law and enforced by the Energy Markets Operation

License granted by the Energy Markets Regulator Authority (EMRA) of Turkey. EXIST has

developed its own model for solving Turkish DAEM clearing problem. A feasible solution

obtained by the help of various heuristics is given to this model as a starting initial solution.

The objection function of EXIST’s model maximizes the total daily surpluses of demand and

supply sides which we will discuss later.
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1.3 Contributions

Our contribution to the literature is defining a new way of thinking for Turkish DAEM

clearing problem. Our three-stage solution approach speeds up the process quite a lot by

approximating the real data and obtaining an initial solution from the approximation. In

EXIST’s model, large data instances cannot be solved efficiently and within the time limit (10

min.) the model may not obtain even a feasible solution. Our three-stage model works well

with those, “hard” instances, in the Turkish DAEM. In our method, we get rid of the heuristics

part of the current solution approach of EXIST and design a model which only relies on

the optimization tools. Because of the data confidentiality, not many methods are tested for

DAEM clearing problems, and we come up with a different idea to solve these problems. Our

idea depends on data manipulation and approximation, therefore it can work together with

different approaches and ideas, and can work with different and more specialized market

rules than those employed by Turkish DAEM.

In Chapter 2, related literature review will be presented. The problem description and

formulations will be discussed in Chapter 3. In Chapter 4, we will define our three-stage

approach, and in Chapter 5, the results of the different approaches we implemented in each

step will be shown. In Chapter 6 we will discuss another formulation for DAEM market

clearing problems. Finally, Chapter 7 will outline the conclusion of our studies and the future

work that can be established from this work.
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2 Literature Review

In the literature, MCP calculation problem in DAEM is not covered thoroughly. One of

the reasons for that is the confidentiality of the real data solved in DAEM. In European case

[1] and Turkish case [2], there are only a few publications working with real data, and in this

thesis, we made use of the ideas presented in Madani and Van Vyve [1] and Derinkuyu [2].

Derinkuyu [2] explains and builds a model to solve Turkish DAEM clearing problem,

and develops a heuristic approach. The main structure of our model is very similar to the

one that is presented in Derinkuyu [2]. Ideas of giving limits to the MCP values and using

the aggregation method for demand and supply bids are also proposed by Derinkuyu [2].

One difference is that, Derinkuyu [2] used the minimization of MCP values in his work,

different than welfare maximizing of our work. We worked with EXIST on this thesis, so

that generated and real datasets are provided by the company. Our aim is to find a new

approach to improve the solution time of their method. One of the contributions of this

study is exploiting the linear structure of the hourly bid curves to solve an approximation

of the data and coming up with a good feasible solution close to the optimal solution. Our

three-stage solution approach is also flexible such that it can be combined with other solution

methodologies.

Our second contribution is implementing the ideas and models suggested by Madani and

Van Vyve [1] to Turkish DAEM. Madani and Van Vyve [1] develops a new formulation

for European DAEM problem without using auxiliary variables to force market equilibrium

conditions, using both the primal and dual of the model. Although, their work does not

consider the flexible and linked block bids, they came up with a new MIP formulation for the

European DAEM clearing problem. We modified their work to Turkish DAEM to obtain a

different formulation that can be extended in the future with the addition of flexible and block
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bids.

Participants of the DAEM agree on the specifications of their countries’ market rules.

Those rules determine which demand and supply bids are matched with each other and which

should be accepted considering the uniform prices of the MCP values for every hour. Non-

uniform prices for market clearing problem is discussed in the literature as well [3]. Differ-

ent countries have different specifications such as accepting ITM bids are forced in Turkish

DAEM, rejecting OTM bids are forced in European DAEM, uplifts are paid in some markets

by the government, and in some uplifts are nonexistent. Some studies minimize or at least

consider the uplift price of the system [4], however in Turkish DAEM, uplift minimization

is not considered. Martin et al. [5] focus on the constraints of the U.S. model as well,

which has similarities with the Turkish DAEM. Comprehensive guides of electricity market

are available in [6] and [7] to check the implementations of different market rules.

In several papers, multiple regions and electricity transferred between them are consid-

ered, but in Turkish DAEM and also in our work only single region is being considered at the

moment. Usually, electricity trade between the regions have limits due to the infrastructure

of the lines carrying the electricity, but in many of the models changing the system from one

region to multiple regions can be done without the loss of generality [1, 5]. Even multi-

ple countries can be coupled in the same DAEM clearing problem. For example, in Central

West Europe many countries are coupled together and their DAEM clearing problem solved

together [8]. With the addition of other European countries in the south and north, the algo-

rithm Euphemia is used to solve their DAEM clearing problem [8]. Turkish DAEM has a

single region at the moment, but considerations are made to divide the region into multiple

regions in the coming years.

Martin et al. [5] presented a new comprehensive model including flexible bids and used

decomposing methods in European DAEM. Two types of cuts are developed in this work:

the first one can lead to suboptimal solutions, and the second one ensures finding the optimal

solution. The latter cuts are slightly slower than the first cuts. Both of these cuts are very

similar to the Bender’s [9] type cuts and similar ideas can be added to the Turkish DAEM in

the future as well.

In this thesis, we maximize the welfare of the whole system. But in some works, only pro-
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ducer side is considered with incorporating the competition among other producers [10] so

that the optimal quantity and price bids are decided on one side of the auction. Additionally,

producer side does not have all the necessary information which leads to use of stochastic

programming models in the energy sector [11, 12]. Most basic scenario we can observe is,

producer side optimizes their bidding considering the MCP values of the previous days. In

our work, competition side is not considered. Additionally, we do not use stochastic models

because we solve the system knowing all the bids from both sides.

In our work, we solved our problem using the primal model only, but the dual of the

problem can be incorporated as well to improve the solution time, especially if strong du-

ality can be proven [13, 14]. Work of Madani and Van Vyve [1] combine the primal and

dual constraints to build a new model that can improve the solution time. In the literature,

other works combining the primal and dual constraints to build a new model can be found.

As an example, the work of Zak et al. [15] solve a non-linear MIP formulation to provide

a solution to the market clearing problem. Using the dual problem, the dual variables can

be interpreted as the MCP values of the system [16]. Generating cuts and using Lagrangian

methods [17]and other state-of-the-art methods are needed to solve the DAEM clearing prob-

lem because the integer flexible and block bids make this problem combinatorial. It is known

that combinatorial problems cannot be handled by the today’s solvers without implementing

more complicated methodologies to decrease the solution time of the system [18, 19].
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3 Problem Description and Formulation

In this section, the market clearing problem will be discussed further and then the main

model will be explained. Decision variables and constraints of the Turkish DAEM model will

be explained in detail as well.

3.1 Problem Description

In DAEM, for each location and each hour, an optimization problem is solved to max-

imize the surplus of the system while finding the MCP values of the system. While maxi-

mizing the surplus, certain market regulations should be satisfied. For example, almost in all

markets demand and supply sides’ quantities should be equal to each other for every hour.

Currently, Turkish DAEM is considered as one location, and all the MCP calculations are

uniform across the country. This assumption eases the notation of the model, the location

indices in the DAEM models can be ignored. We also do not deal with network constraints

in our model some other markets do.

There are two main approaches to deal with the data provided in discrete points. Some

markets work with step-wise linear curves for demand and supply sides, and some market

rules interpolate the points in between to obtain a piece-wise linear system. In step-wise

system, because of the rectangular nature of the system, it is relatively easy to calculate

the objective function. On the other hand, piece-wise linear model type results in quadratic

objective function terms. Figure 3.1 and Figure 3.2 show a small example for each curve

type.

Essentially, we need to find the optimal MCP values, such that the accepted total demand

and total supply quantity values should be equal for each hour considered.
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Figure 3.1: Step-wise bid curves Figure 3.2: Piece-wise bid curves

3.2 Mathematical Formulation

For the aggregation of hourly bids, firstly, a set P is constructed from the different price

values for every bid on every segment for each demand and supply side. Secondly, distinct

price values of p are selected in set P , and for all selected distinct values of p, the quantity

values are summed up. If it does not match, then interpolation is used. At the end for each

distinct p value we obtain a q value of aggregated quantity. This way, for every hour, we

obtain one demand and one supply curve derived from multiple curves. Each bid curve has

at least one segment, each two consecutive data points (Ql, P l) and (Ql+1, P l+1) make one

segment of our curves, Q and P giving the quantity and price arrays of the curve respectively.

Consider the two demand hourly bids for a specific time in Table 3.1. Hourly bid-A has 3

data points and Hourly bid-B has 4. For aggregating them, we need to consider all the distinct

price values. Price set P contains the values 0, 500, 1,000 and 2,000. Shared price values of

two hourly bids are 0, 500 and 2,000. So, interpolation is needed for the unique price value

of 1,000. For hourly bid-A, quantity value corresponding to price value of 1,000 should be

calculated.

Table 3.1: Single demand hourly bid

Hourly bid-A Price(TL/MWh) 0 500 2,000 -
Quantity(Lot) 2,000 1,600 1,300 -

Hourly bid-B Price(TL/MWh) 0 500 1,000 2,000
Quantity(Lot) 2,000 1,200 1,000 500

In Table 3.2, with the summation of quantity values associated with the price values, we

obtain our aggregated curve with 4 data points.
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Table 3.2: Single demand hourly bid

Aggregated hourly bid Price(TL/MWh) 0 500 1,000 2,000
Quantity(Lot) 4,000 2,800 2,400 1,800

Set Li gives us the segment of the bid i. Furthermore, we define xil as our continuous

decision variable showing the acceptance rate of an hourly bid i ∈ H of segment l ∈ Li. H

is the set of all aggregated continuous hourly bid segments, Hd representing the demand and

Hs representing the supply hourly bid segments. T represents the number of hours in the day

for which the MCP values will be determined. Usually T is 24 in DAEM, but T may take any

positive integer value in general. Value of ti corresponds to the hour which hourly bid curve

i ∈ H is defined. Because of the aggregation method, every t value in T has one demand and

one supply curve only. For example for bid i: ti = 1 means we select the demand and supply

curves of hour 1 and so on. As previously mentioned, at most one segment can be partially

accepted at each hour, if there exists a partially accepted bid that means that optimal MCP

value is between two real data points.

B is the set of all binary block bids, similarly Bd and Bs represent the set of demand

and supply block bids, respectively. Λb represents the set of block bids linked to block bid

b. Moreover, in Turkish DAEM we only consider supply side of flexible bids, therefore, the

set of all flexible bids is F . Finally, MCPt defines the MCP values of the system for every

hour t ∈ T . Pmin and Pmax are the minimum and maximum possible values for MCP values.

In our model all MCP values are between 0 and 2000. P t
min and P t

max are the lowest and

highest possible market clearing prices for each hour t. P 0
il and P 1

il are the initial and final

price values of hourly bid i ∈ H at segment l ∈ Li. Similarly, Q0
il and Q1

il are the initial and

final quantity values of hourly bid i ∈ H at segment l ∈ Li.

Nb shows the total number of time periods where block bid b spans and δbt is the binary

parameter taking the value of 1 if block bid b spans time period t, and 0 otherwise. Pb, Qb

values are the price and quantity values of block bids b ∈ B and Pf , Qf values are the price

and quantity values of flexible bids. All quantity and price values are being greater than or

equal to 0. From segment l = 0 to l = |Li|, the quantity of demand and supply bid values
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are non-decreasing, so Qi(l+1) ≥ Qil for i ∈ H and l ∈ {1, 2, .., |Li| − 1}. From segment

l = 0 to l = |Li| supply curves have non-decreasing price values and demand curves have

non-increasing price values, which means, Pi(l+1) ≥ Pil for i ∈ Hs and l ∈ {1, 2, .., |Li|− 1}

and Pi(l+1= ≤ Pil for i ∈ Hd and l ∈ {1, 2, .., |Li| − 1}. bburay dzelt

In addition to the decision variable xil, we define yb ∈ {0, 1} which is equal to 1 if block

bid b ∈ B is accepted, and 0 otherwise. zf ∈ {0, 1} is similarly defined which is equal to 1

if f ∈ F is accepted, and 0 otherwise. Similarly, decision variable rft ∈ {0, 1} defines the

hour of the day that the flexible bid is accepted. Lastly, the decision variable wil ∈ {0, 1}

is defined as 1 if we fully accept a segment of hourly bid i ∈ H of segment l ∈ Li, and 0

otherwise. Decision variable wil is used to make sure all ITM hourly bids are accepted and

OTM hourly bids are rejected.

Following tables 3.3, 3.4 and 3.5 recapitulates the sets, parameters and the decision vari-

ables of the mathematical model of Turkish DAEM clearing problem respectively:

Table 3.3: Sets of the Model

Symbol Definition
T Set of time periods
ti Time period corresponding to hourly bid i ∈ H
Li Set of segments for hourly bid i ∈ H
Hd Set of demand hourly bids
Hs Set of supply hourly bids
H Set of all hourly bids Hs ∪Hd

Bd Set of demand block bids
Bs Set of supply block bids
B Set of all block bids Bs ∪Bd

Λb Set of block bids to which block b is linked, b ∈ B
F Set of flexible bids (all supply bids in Turkish DAEM)
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Table 3.4: Parameters of the Model

Symbol Definition
P t
min The lowest possible market clearing price for period t ∈ T

P t
max The highest possible market clearing price for period t ∈ T
Pmin The lowest valid bid price
Pmax The highest valid bid price
P 0
il, P

1
il The initial and final price for the hourly bid i ∈ H of segment l ∈ Li

Q0
il, Q

1
il The initial and final quantity for hourly bid i ∈ H of segment l ∈ Li

Pb, Qb The price and quantity of block bid b ∈ B
Pf , Qf The price and quantity of flexible bid f ∈ F
Nb Number of time periods where block bid b spans, b ∈ Bs ∪Bd

δbt Binary parameter equal to 1 if block bid b ∈ B spans period t ∈ T

Table 3.5: Decision Variables of the Model

Symbol Definition
xil Accepted fraction of segment l of hourly bid i
wil 1 if segment l of hourly bid i is fully accepted, 0 otherwise
yb 1 if block bid b is accepted, 0 otherwise
rft 1 if flexible bid f is accepted in period t , 0 otherwise
zf 1 if flexible bid f is accepted, 0 otherwise

MCPt Market clearing price in period t

Now, we will introduce the objective function and constraints of the market clearing prob-

lem in Turkish DAEM. In Turkish DAEM, uplifts are ignored while calculating the MCP val-

ues, therefore, only the summation of welfare obtained from hourly, block and flexible bids

are considered.

If we consider piece-wise linear curves, welfare summation has additional calculations

resulting from interpolation of discrete points. The calculations should include the triangles

under the piece-wise linear curves, and because of the partial acceptance of the bids, we

need to deal with quadratic terms while calculating the welfare of piece-wise linear curves in

DAEM. Total welfare of the system is given by:∑
i∈Hd

∑
l∈Li

∆QilP
0
ilxil + ∆Qil(∆Pil)

x2il
2
−

∑
i∈Hs

∑
l∈Li

∆QilP
0
ilxil + ∆Qil(∆Pil)

x2il
2

+∑
b∈Bd

Ωbyb −
∑
b∈Bs

Ωbyb −
∑
t∈T

∑
f∈F

Ωfrft,

where ∆Qil = Q1
il −Q0

il, ∆Pil = P 1
il − P 0

il , Ωb = QbNbPb, and Ωf = QfPf .

For block bids we accept the bid for every interval it is covering therefore we also multiply

the number of hours that the bid is covering.

13



For every hour, accepted quantity of the demand and supply sides should be equal to each

other:

∑
i∈Hd:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈Bd

ybQbδbt =
∑
i∈Hs:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈Bs

ybQbδbt +
∑
f∈F

Qfrft t ∈ T.

The same amount of electricity is used among all the bidders, so the system should accept

equal amounts of electricity on both sides to acquire a balance. Whether from hourly, block

or flexible bids, the total accepted demand quantity should be equal to the total accepted

supply quantity.

For all hourly bids, the system should accept ITM and ATM bids and reject OTM bids.

For every hour and each side at most one bid which may be ITM or ATM can be partially

accepted. So, if the MCP value of an hour is between two data points, that should be partially

accepted with interpolating the acceptance rate according to the MCP value. We introduced

constraints called w-constraints for applying these rules to our system:

wi1 ≤ xi1 ≤ 1 i ∈ H,

wil ≤ xil ≤ wi(l−1) l = 2, ..., |L(t)| − 1, i ∈ H,

0 ≤ xi|Li| ≤ wi(|Li|−1) i ∈ H.

For every hour, summation of the demand and supply prices gives us the MCP values:

MCPt = Pmin +
∑
i∈Hs:
ti=t

∑
l∈Li

∆Pilxil t ∈ T,

MCPt = Pmax +
∑
i∈Hd:
ti=t

∑
l∈Li

∆Pilxil t ∈ T.

Because we need to accept ITM hourly bids, these constraints give us the MCP values of

each hour. For supply side, bids with prices that are less than or equal to the MCP values are

accepted. For demand side, bids with prices that are more than or equal to MCP values are
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accepted. These constraints also help in the approximation step that we can obtain meaningful

MCP values even if the whole data is not used.

Supply (demand) block bids having bid price less (greater) than or equal to the average

MCP of the periods, where the bid is active, must be accepted if they are not child linked

bids. Because of that, we write these constraints if that block bid is not also a child bid.

For supply side:

∑
t∈T

δbtMCPt −NbPb ≤ (
∑
t∈T

δbtP
t
max −NbPmin + ε)yb − ε b ∈ Bs\Bsc.

For demand side:

NbPb −
∑
t∈T

δbtMCPt ≤ (NbPmax −
∑
t∈T

δbtP
t
min + ε)yb − ε b ∈ Bd\Bdc.

While deciding on accepting or rejecting a specific bid we make the decision by calcu-

lating average welfares of each bid. Therefore, a block bid is accepted if the average income

of that block bid is positive. This means that an accepted block bid does not have to increase

welfare for each hour it is covering, but it should increase the overall welfare of the system.

Note that ε is needed because we should accept block bids if they are ATM. Therefore, if

a price of a block bid is equal to the average MCP values of hours which that block bid spans

we should accept that block bid in Turkish DAEM.

If we have linked bids, we need additional constraints for them. A child block bid cannot

be accepted unless its parent bid is accepted as well. Linked bid constraints in our model:

yb ≤ yλ b ∈ B, λ ∈ Λb.

Child block bid can be rejected even if it provides positive welfare to the system because

its parent might be rejected considering its contribution to the total welfare obtained.

A supply flexible bid must be accepted if the maximum MCP is equal to or greater than

the bid price. Meaning, if the bid definitely increases welfare for every hour in that day, we

should accept the bid. The model will pick the best and the only hour the bid should be
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accepted according to the objective function. If the flexible bid does not increase the welfare

for every hour, it can be either accepted or rejected.

∑
t∈T

rft ≤ 1 f ∈ F,

∑
t∈T

rft ≥ zf f ∈ F,

MCPt − Pf ≤ (P t
max − Pf + ε)(zf )− ε f ∈ F, lt ∈ T.

We have two different decision variables here, zf is for determining whether we should

accept the flexible bid or not, and rft will give the hour that the flexible bid is accepted. If a

flexible bid is accepted, it should be assigned to only one hour among the time interval T .

Lastly, our decision variables are binary with the exception of acceptance rate of hourly

bids i and the MCP values.

xil,MCPt ≥ 0, yb, rft, zf , wil ∈ {0, 1} f ∈ F, t ∈ T, i ∈ H, b ∈ B, l ∈ Li.

The full model that we solve for the DAEM clearing problem is as follows:
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maximize
∑
i∈Hd

∑
l∈Li

∆QilP
0
ilxil + ∆Qil(∆Pil)

x2il
2
−

∑
i∈Hs

∑
l∈Li

∆QilP
0
ilxil + ∆Qil(∆Pil)

x2il
2

+∑
b∈Bd

Ωbyb −
∑
b∈Bs

Ωbyb −
∑
t∈T

∑
f∈F

Ωfrft (1)

subject to∑
i∈Hd:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈Bd

ybQbδbt =
∑
i∈Hs:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈Bs

ybQbδbt +
∑
f∈F

Qfrft t ∈ T (2)

wi1 ≤ xi1 ≤ 1 i ∈ H (3a)

wil ≤ xil ≤ wi(l−1) l = 2, ..., |Li| − 1, i ∈ H (3b)

0 ≤ xi|Li| ≤ wi(|Li|−1) i ∈ H (3c)

MCPt = Pmin +
∑
i∈Hs:
ti=t

∑
l∈Li

∆Pilxil t ∈ T (4a)

MCPt = Pmax +
∑
i∈Hd:
ti=t

∑
l∈Li

∆Pilxil t ∈ T (4b)

∑
t∈T

δbtMCPt −NbPb ≤ (
∑
t∈T

δbtP
t
max −NbPb + ε)yb − ε b ∈ Bs\Bsc (5a)

NbPb −
∑
t∈T

δbtMCPt ≤ (NbPb −
∑
t∈T

δbtP
t
min + ε)yb − ε b ∈ Bd\Bdc (5b)

yb ≤ yλ b ∈ B, λ ∈ Λb (6)∑
t∈T

rft ≤ 1 f ∈ F (7a)∑
t∈T

rft ≥ zf f ∈ F (7b)

MCPt − Pf ≤ (P t
max − Pf + ε)zf − ε f ∈ F, t ∈ T (7c)

xil,MCPt ≥ 0, yb, rft, zf , wil ∈ {0, 1} f ∈ F, t ∈ T, i ∈ H, b ∈ B, l ∈ Li (8)
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Our problem is maximizing the total welfare surplus (1). At every period, accepted de-

mand and supply quantities must be equal, so constraint (2) gives us our balance equations.

Constraint (3) is needed to find the acceptance rates of hourly bids of consumers and suppli-

ers, w-constraints make sure that all ITM hourly bids are fully accepted and all OTM hourly

bids are fully rejected. Constraint (4) determines the market clearing prices according to the

bid acceptance. Constraint (5) ensures that we accept the block bids which are ITM accord-

ing to the MCP values. Constraint (6) links the parent and child block bids to each other.

Then, constraint (7) are needed to accept a supply flexible bid if it is ITM. The whole model

is currently used by EXIST to solve the Turkish DAEM problem.

One slight variation of piece-wise linear curve is step-wise linear curves. If step-wise lin-

ear curves are used to calculate the total welfare value, modifying only the objective function

is sufficent. As in Figure 3.1, in step-wise curves either the quantity or the price values of

the consecutive data points are the same. Therefore, each segment becomes parallel to either

x-axis or y-axis, and rectangular shapes are obtained under the step-wise linear curves. There-

fore, for calculating the total welfare of the system we need to sum up the rectangles under

the bid curves which can be obtained without the quadratic terms in our objective function.

If step-wise linear curves are considered our new objective function becomes:

∑
i∈Hd

∑
l∈Li

∆QilPilxil −
∑
i∈Hs

∑
l∈Li

∆QilPilxil +
∑
b∈Bd

Ωbyb −
∑
b∈Bs

Ωbyb −
∑
t∈T

∑
f∈F

Ωfrft.
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4 Methodology

We implement the model that the EXIST is using, for solving the data they provided,

which we call the generated data. With the main model without changing anything, we solved

the 243 intances that we have. The demand and supply curves for each hour are piece-wise

linearly represented but not necessarily convex. The non-convexity of the data arises from

the fact that, in Turkish DAEM aggregation method is used, and aggregating multiple curves

to one curve leads to non-monotonicity. Our 243 intances have 5 features each of which can

take 3 different values. These features are:

1) Number of segments for each hourly bid curve which takes the values of 100, 500 and

1,000

2) Number of block bids we have in the system which takes the values of 200, 500 and 1,000

3) Number of flexible bids we have in the system which takes the values of 10, 50 and 100

4) Ratio of the supply block bids to all block bids which takes the values of 0.5, 0.75 and 1

5) The range of the time that block bids cover in the system which takes the values of 1 to 4,

1 to 24 and 16 to 24 in units of hours in a day

Every instance that we consider have three types of bids: hourly, block and flexible. For

hourly bids, we have their ID, the segment number, and quantity and price values for each

segment number. Block bids do not have any information regarding the segments; however,

we have the information of starting and finishing hour of a block bid. Since we can accept

flexible bids in any hour in the day, the only information we have on them are the price and

quantity values.
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In each instance, only one of these features is changed to see the effect of each feature

on the efficiency of the solution approach. First we test the model presented in the previous

chapter with the generated data obtained from EXIST. All the solution times recorded in this

section are performed on 64-bit server with Intel Core i5-5200U processor with a speed of

2.19GHz and 4GB RAM. GUROBI 7.0.1 is utilized for the optimization purposes under the

time limit of 10 minutes. We summarize our observations below.

Figure 4.1: The effect of the number of segments on the solution time

As it can be observed from the Figure 4.1, the increase in the number of segments dou-

ble or triple the average solution time of the problems. Therefore, lowering the number of

segments each bid has, leads to much faster solution times for the datasets.

Figure 4.2: The effect of the ratio of block bids on the solution time
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As illustrated in Figure 4.2, when the ratio of number of supply block bids to the number

of all block bids move from 1 to 0.5, meaning that number of demand and supply block

bids are getting closer to each other, instances get harder to solve since the possibility of

combining the block bids increase. If the ratio is 1, it means that we have only supply block

bids and thus problems become easier to solve.

Figure 4.3: The effect of the number of block bids on the solution
time

Not surprisingly, other factor that has an effect on run time is the number of block bids in

the system. Figure 4.3 reveals that, increasing the number of block bids results in increased

solution times, especially if the number of segments of hourly bids is small.

Figure 4.4: The effect of the block bids’ spanning interval on the so-
lution time
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The time interval covered by the block bids also plays a role at solution times. A block

bid affacts the total quantities and consequently the MCP values of the periods it covers.

Therefore, we can claim that if we increase the time intervals covered by block bids, problems

get much harder to solve. Our claim is supported by 4.4.

In our preliminary computational experiments we observe that even a feasible solution

may not be found for some data instances with 1,000 segments at the end of the time limit of

ten minutes by the formulation of EXIST. In those instances, solution times are taken as the

time limit, ten minutes.

4.1 Three-stage Approach

In the previous section, we discussed the effect of number of segments in the hourly bid

curves on the running time of the main model. Additionally, in 1,000-segment cases, we hit

the time limit before reaching a feasible solution. This way the idea of figuring out a way

to solve the model with fewer segments and still get the same optimal solution as before is

obtained. Therefore, our aim becomes finding a good approximation for each demand and

supply curves to make a powerful claim about the MCP values of the datasets. We develop a

three-stage solution approach which aims to find the optimal MCP values more efficiently.

4.1.1 Approximation Step

In the first step, we solve the approximation of the data. At the end of step 1, we obtain

the MCP values from the approximation method and would like to infer the optimal MCP

values based on the approximation. In the approximation step, we exploit two features for

getting a speed up. First one is, dealing with fewer segment points than before so we can

lower the number of decision variables and constraints of our problem by removing some

of the data points. And the second one is, we eliminate the non-convexities of the demand

and supply curves. Convex curves are obtained since we delete the real data points which

make the curves non-convex, and with deleting them we obtain convex curves. When convex

curves are obtained, some decision variables that we introduced because of the non-convexity

of the original curves can be deleted from the problem. Dealing with convex functions in MIP
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problems usually, without exception in this case, is much easier and faster than dealing with

non-convex functions.

In the generated data, the demand and supply curves have several non-convex components

. In our first step, we ignore those non-convexities in the curves, and consider the convex

approximations of the supply and demand curves. We consider several approximations as

described below.

Using step sizes: One very easy way to diminish the size of the data is to skip them. We

introduce a value, step size, to jump from point to point by ignoring the points in between. In

the most basic implementation, this is enough for approximating the curves. In the generated

data, because of its nice structure, even without doing anything using step sizes of ten works

well. We can actually observe that by jumping ten data points at a time, non-convexities of

the data are eliminated and consequently, w-binary variables can be excluded from the first

step. The number of the step size can play a big role in the solution time of the problem. If

the step sizes are too big, we would obtain bad results due to poor approximation of the data.

Similarly, if step sizes are too small, the procedure may result a non-convex approximation.

We will present the details of these problems in the next sections.

Modified step sizes: One modification can be made for randomly selecting data points.

Sometimes, if the variation is high, jumping ten data points ahead can lead to an insuffi-

cient approximation of the data. Modified step sizes method overcomes this disadvantage by

adding additional data points if they are needed. For example, if we pick our step size as ten,

we will consider k data points such as k ∈ {1, 11, 21, ..}.Assume from data point 11 to data

point 21 there is a huge price difference. Then we can add additional points between 11 and

21 to better approximate the original data. Of course, this depends on the problem instance.

For example, in Turkish DAEM’s real data, we do not observe a price difference of 50 that

easily between two data points. If the user specifies 50 as the threshold number, then data

points with price differences more than or equal to 50 are also added to the approximation.

Additional points added each run: Another way to add data points is running the ap-

proximation step more than once. We start with several data points and solve the problem,

then add new points that are close to the MCP of the previous approximation, and solve the

problem again. Because approximation step usually runs very fast, this method might give
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better results than previous two ideas. After each solution, we will add additional real data

points closer to previous MCP optimal values to represent the proximal area of MCP values

better. In this way we increase the chance to obtain a feasible solution for the problem. Since

the speed of step 2 relies on the quality of the solution of the first step, this may lead to an

improvement in the overall solution times.

The disadvantage of this method is, for every 24 hours we need to add additional points

each time, so if we have lots of real data points the total solving time of step 1 might increase

exponentially. In the worst case scenario, the step 1 would be run until all the data points are

added to the system which is a highly time consuming process. Solution time improvement

in step 2 may be less than solution time increase in the solution times of step 1.

At the end the first step we obtain a solution to the approximated dataset. The 3-stage

method’s efficiency is highly correlated with the accuracy of the first step’s MCP values.

4.1.2 Feasible Solution Step

In the second step, we want to convert our findings of the first step to an incumbent

solution. No matter how good the approximation is, demand and supply accepted quantities

may not match with the original dataset. Since we ignore some real data points, the MCP

values of first step may be infeasible due to the demand-supply imbalance in the second step.

Even if there is feasibility, the first step maximizes the welfare based on the approximated

dataset, and thus, the same solution may not be the optimal for the original dataset. In this

step, we solve our main problem with all segments and we make use of the solution of the

approximation step to obtain a feasible solution for the original problem. So, We consider

three methods called as delta, sigma and SC methods:

Delta method: In this method, we introduce a predetermined value delta, and assume

that the difference between the MCP values of the second and the first step is not larger than

delta. Therefore, we search for a feasible solution in a subset of the original feasible region,

which is obtained by introducing additional constraints. For the generated case, even the delta

value of 5 works well and finds the optimal solution in 90% of the cases. One drawback of

this method is, delta values should be determined carefully. Larger values of delta may lead

to excessive computation times, whereas smaller values of delta may result in infeasibility of
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the second step. One possible solution for this problem is to dynamically update the delta

values, but this may also cause additional computational time.

The first step of our problem solves this approximated version and we obtain approxi-

mated MCP values, which we define as Approximated Market Clearing Price valuesAMCPt

at period t ∈ T .

In delta method, only difference we make is that we solve our problem in a subspace of

our feasible region. We define this subspace by observing that our first part’s AMCP optimal

solutions reflect the main problem’s optimal MCP values.

Therefore, if we use the delta method, we add the constraints:

AMCPt + delta value ≥MCPt t ∈ T (9a)

AMCPt − delta value ≤MCPt t ∈ T (9b)

Because we deal with a subset of the whole feasible region, we can further improve our

big-M variables in the corresponding constraints (5a), (5b) and (7c) in our model:

∑
t∈T

δbtMCPt −NbPb ≤ (
∑
t∈T

δbt(AMCPt + delta value)−NbPb + ε)yb − ε b ∈ Bs\Bsc (5a 2)

NbPb −
∑
t∈T

δbtMCPt ≤ (NbPb −
∑
t∈T

δbt(AMCPt − delta value) + ε)yb − ε b ∈ Bd\Bdc (5b 2)

MCPt − Pf ≤ (AMCPt + delta value− Pf + ε)(zf )− ε f ∈ F, t ∈ T (7c 2)

Solving the second part, if the subset is not empty for the predetermined delta value, will

definitely give us a feasible point for the problem.

Sigma method: Sigma method is the slight variation of delta method which assumes delta

as a decision variable rather than a predetermined value. We consider a step-wise objective

function to penalize the difference between the MCP values of the second and the first steps.

However, our computational experiments show that this method works much slower than the

delta method. Additionally, the upper bound of the sigma decision variable highly affects the

speed of the second step.

SC method: S-constraint (SC) method is proposed to overcome the feasibility problem

of the delta method and solution speed problem of the sigma method. In this method, the

solution of the integer decision variables obtained in the approximation step will be given
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as an initial solution to the problem. Of course, given solution might be infeasible because

of the demand and supply imbalance. For that reason, we relax the demand-supply balance

constraints for each hour and keep the difference between them by a new decision variable

st for t ∈ T . In the objective function, we penalize the st values with very large weights to

make sure they become zero in the optimal solution. Making them zero is a must to obtain a

feasible solution without any demand and supply imbalances in the system. Since we try to

obtain a feasible solution as close to the optimal solution as possible, welfare of the overall

system is maximized while all the s values are forced to become 0 for every hour of the day.

∑
i∈Hd:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈Bd

ybQbδbt −
∑
i∈Hs:
ti=t

∑
l∈Li

∆Qilxil −
∑
b∈Bs

ybQbδbt −
∑
f∈F

Qfrft = st t ∈ T (10)

If a solution with objective function value 0 is obtained, then we obtain a feasible solution

to the original model. On the other hand, the observed feasible solution may result in a very

small welfare if we do not incorporate the total welfare to the objective function.

To obtain a high quality feasible solution for the problem we consider the following ob-

jective function:

maximize Total Welfare −M
∑
t∈T

st

Big-M values should be sufficiently large to force st = 0. Additionally, we maximize the

total welfare for obtaining solutions closer to the optimal solution at the end of step 2.

4.1.3 Optimal Solution Step

At the end of the second step, we obtain a feasible solution. In the third step, we want to

find the optimal solution to the main problem. Therefore, we solve the main problem start-

ing from the second step’s feasible solution as the initial solution. If we obtain the optimal

solution in the second step, the third step would take less time; and if not, additional compu-
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tational time would be needed for converging to the optimal solution. We obtain the optimal

solution of the main problem by solving the third step.

In the third step we use the model presented in the previous section which EXIST uses

currently. Little modifications can be done according to the user preference. For example,

changing the focus of the model in GUROBI or CPLEX affects the overall solution time. If

the user is confident about the optimality of the initial given solution, the focus can be on

the optimality proof. If little improvements are necessary, the focus on improving the initial

objective function might be more beneficial.

In the Turkish DAEM, in two minutes, tentative MCP values are shared by the bidders

and after additional time the final MCP values are announced. Therefore, the solution of the

second step could be the tentative values in this case, and the solution of the third step would

be the finalized MCP values.

4.2 Additional Changes

To improve the computation times of our solution method, we make several changes in

our formulations.

Bounds on Market Clearing Prices: Note that the bid assignments can be easily de-

cided given the MCP values for each hour. All the hourly bids accepted and rejected can be

determined, and the decisions for most of the block and flexible bids may be also determined.

Remaining part is accepting or rejecting integer-valued bids while obtaining a balance be-

tween the demand and supply sides. Because of this reason, finding a reasonable interval

of the MCP values for each hour is important. Additionally, big-M values used in the block

and flexible bid constraints depend on the maximum and minimum values of the MCP val-

ues, therefore another benefit of obtaining an interval of MCP values is getting tighter big-M

values for the problem. To obtain a tighter upper and lower bounds for MCP values we

implemented the idea of EXIST [2].

Additional w-constraints: Typically, we have w-constraints for each segment of the

demand and supply curves. In the approximation step, we ignore all w-constraints to make

the solution time faster, although the solution may not be feasible. However, adding severall

w-constraints to the system usually make the overall solution time faster. We can select
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several segments and include the w-constraints for them. This way, if the data is highly non-

convex, we can increase the accuracy of the approximation by including w-constraints to the

problem.

We can choose additional w-constraints by observing the slopes of the linear lines be-

tween each data points. When the non-convexity is apparent we can select the data points

causing the non-convexity and add w decision variables and their respective constraints to

those points. This was if that w decision variable becomes 1 all the previous points should be

accepted as well and if it is 0 all the points after that should be rejected. Real datasets are usu-

ally highly nonconvex at some points, therefore adding this application speeds up the overall

solution time. Because of the addition of new constraints and decision variables, approxi-

mation step solution time slightly increases, but having a more accurate portrayal of the real

data compensates that speed decrease by solving the Feasible Solution Step more efficiently.

For generated datasets, additional w-constraints are not needed because approximation of the

curves are convex.

Additional x-constraints: Additional x-constraints are added for the same idea with

additional w-constraints to the approximation step. In this application, we get rid of all the

w-constraints, however, for making a better approximation we add additional constraints to

related to x decision variables. Normally, we should accept the bids on one side of the MCP

of that hour, and reject the other side. We can have at most one partially accepted bid for

each side at each hour. The previous segments of the partially accepted segment should be

accepted and the succeeding ones should be rejected. Getting rid of w-constraints overrides

this necessity and the solution acceptance rates could become arbitrary. Our new proposed

constraints are as follows:

xi(l+1) ≥ xil, i ∈ H, l = {1, ..., |Li| − 1}.

These types of constraints still do not guarantee feasible solutions for hourly bids, but gives

better approximated solutions than not having them. In highly non-convex datasets consecu-

tive bids can become accepted-rejected-accepted, and with additional x-constraints, the new

sequence would be accepted-partial-partial.
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Fixing block bid values: Because block and flexible bids are substantial reasons for

increased solution times, getting them fixed may improve the solution time of the model.

We experiment with fixing block bids or giving them as initial solutions, and both methods

prove inefficient. Fixing block bids improve the solution times tremendously, however, can

lead to infeasibilities or suboptimal solutions frequently. If we directly give block bids’

values obtained after approximation step as an initial solution to the system, without using

s-constaint method, demand-supply balance constraints may lead to infeasibilities againg and

the initial solution may be ignored by the solvers.

Relaxing the quadratic terms: Another improvement that can be made is getting rid of

quadratic objective terms. We can have partial acceptance rates for our hourly bids in demand

and supply sides. Every hour can have at most two partially accepted segments, one from the

demand side and one from the supply side. For example, if we have 500 segments for every

hourly bid curves, it makes 24,000 quadratic objective terms while at most 48 of them will

get partial values and other 23,952 of them will get binary values. For the today’s solvers,

dealing with quadratic terms are much slower than dealing with their linear counterparts.

To overcome this difficulty, we change the quadratic terms cx2 with their linear counterpart

cx. Our observation is that quite good solution time improvements can be achieved without

losing accuracy of the optimal solution. For example, in one dataset, using relaxed linear

terms rather than quadratic objective function terms has improved solution time more than

240 seconds.
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5 Results

In this section, the results of the proposed method will be presented and discussed.

5.1 Data

In Chapter 4, we discussed the important features of the datasets we have and conclude

that the number of segments of the hourly bid curves and the number of block bids are the

two main factors that affect the solution times the most.

In this section, we consider the 500-segment datasets because they are the most repre-

sentative of the real data used in Turkish DAEM. Real dataset demand and supply bid curve

segment numbers are between 200 and 400 and because of that we solved the 81 data with

500 segments we have. Furthermore, we disregard the cases with demand-supply ratio equal

to 1.0, because their solution times are under 5 seconds most of the time with the model

presented in Chapter 3 so that we do not observe any significant time-saving with any of our

methods. Disregarding those 27 datasets with ratio of 1.0, we work with the remaining 54

generated datasets with 500 segments and block bid ratio of 0.5 and 0.75.

All the solution times recorded in this section are performed on 64-bit server with Intel

Core i5-5200U processor with a speed of 2.19GHz and 4GB RAM. GUROBI 7.0.1 is utilized

for the optimization purposes. In this section, step 1, step 2 and step 3, refer to the approx-

imation step, feasible solution step and optimality solution step of the three step approach,

respectively.

Our main model is the model used by EXIST at the moment, and when the main model

is discussed, it refers to the model without any methodologies used. Figure 5.1 shows the

solution times of the data with the main model. Since the time limit is 600 seconds, we cut
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off the solutions at time 600. However, some of them do not reach to optimal even in 30

minutes.

Figure 5.1: Solution times of the main model

5.2 Comparison of Methods

In Figure 5.2, solution times of delta method with delta value 5 is given. In all the cases

a solution time improvement is observed. In 3 cases, even with the small value of 5, finding

the optimal solution in the subset of feasible region was fairly slow. The main reason for that

slow down is that, GUROBI cannot lower the best bound fast enough and reaching the 10−6

relative gap was hard because of the tailing effect of MIP.

In Figure 5.3, solution times of delta method with the delta value of 20 are given. As we

can observe, some of the solution times of second step increase significantly. One reason for

that change is that we increase the feasible region of the second step, so more time is needed

to find the optimal solution in that sphere. Increasing the delta value usually makes the step

2 slower but the step 3 faster because we increase the chance of finding the optimal solution

at the end of the second step. At the end, if user chooses the delta value of 20, two of the

datasets cannot be solved to optimality in 10 minutes.
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Figure 5.2: Delta method solution times with delta value 5

Figure 5.3: Delta method solution times with delta value 20

For the delta method, finding a good delta value is crucial, if too small values are selected

then we have infeasibility problem, and if we pick too large values then the solution times

increase. For example, choosing 100 for our delta value affects the effeciency of the program
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significantly.

In Table 5.1 we report average solution times of each step for different values of delta.

The final absolute gap of step 2 is the objective function value difference of our solution at

the end of step 2 to the optimal value of that data. Solved to optimality at step 2 means that,

if the solution of the step 2 is the optimal solution of the system and the step 3 is unnecessary.

We expect to see solution time increase in step 2 and decrease in step 3 while we are

increasing our delta value. If we select delta as 5, we can solve all 54 data to optimality at the

end, but we find suboptimal solutions at the end of the step 2 and improvements are needed

at the step 3. The average of 468 unit distance is observed between the solutions obtained at

the end of step 2 and step 3. In contrast to that, if we select 100 as our delta value, we can

only solve 88% of all the data, however, at the end of the step 2, if a solution is reached, it is

the optimal of the data.

Table 5.1: The results of delta method with different delta values

Delta Values 5 20 100
Solution time of step-1(s) 9.53 11.9 13.2
Solution time of step-2(s) 13.91 31.18 80.97
Solution time of step-3(s) 58.73 55.2 49.62

Solved to optimality at step 3 100% 96% 88%
Solved to optimality at step 2(solved instances) 85% 94% 100%
Final absolute gap of step 2(solved instances) 468 53 0

In Table 5.2, sigma method, SC methods with quadratic terms and relaxed terms are

compared with each other. Sigma method gives the best performance in step 2, since it stops

when it finds the first feasible solution to the problem. The obtained solution may not be close

to the optimal solution. Therefore, step 3 solution times of sigma method are the highest since

it needs to reach to the optimal solution from a far away initial solution.

One interesting observation is that changing the quadratic terms to linear terms in the SC

method results significant solution time improvement in some of the instances. Because we

have quadratic terms in our objective function, our main model is a Mixed Integer Quadratic

Program (MIQP). If we remove the quadratic terms from the objective function, GUROBI

switches its tactics from solving MIQP to MIP and in some of the instances this switch
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results decreased solution time. At the end, the average of 8 seconds of improvement can be

observed at step 2. Only in 1 of 54 datasets SC-Linear cannot find the optimal solution at

the end of the step 2, and that improvement is less than 10−5 relative gap from the objective

function. With that in mind, if the methodology used is SC, step 3 may become unnecessary

for the problem instances for which step 2 ends up with the optimal solution to the original

problem.

Table 5.2: The results of sigma, SC-Linear and SC-Quadratic methods

Methods SC-Quad SC-Linear Sigma
Solution time of step-1(s) 8.02 9.01 12.24
Solution time of step-2(s) 16.51 8.52 7.7
Solution time of step-3(s) 58.70 45.7 140.3

Solved to optimality at step 3 100% 100% 96%
Solved to optimality at step 2(solved instances) 100% 98% 0%
Final absolute gap of step 2(solved instances) 0 78 -

In Figure 5.4, we give the average solution times of the SC model with linear terms.

Time 1, Time 2, and Time 3 represent the solution times of our three-stage solution approach,

approximation step, initial feasible step and optimality check step respectively. This method

shows the best performance in terms of the solution time. Although the step 3 solution times

are the longest, they are usually for proving the optimality and the improvements observed

are insubstantial. Therefore, if a good speedup is needed, the solution found after the step 2

can be used as a good quality solution.

In Figure 5.5, the average solution times of each step under different methods are reported.

While the SC method and delta method is competitive, sigma method is not competitive

because the initial solution found in the step 2 is not close to an optimal solution, meaning

that step 3 has to run for a long time to reach the optimal solution. As we can see, finding a

quality initial solution is more important than finding any initial solution.

Table 5.3: The results of SC with linear terms versus main model

Methods SC-Linear Main Model
Solution time(s) (solved instances) 17.52 128.05

Solved to optimality 100% 79%
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Figure 5.4: Solution times of the SC model

In Table 5.3, we compared the best of our model with these datasets and the main model

without any methodologies implemented. Solution time of SC-Linear is the summation of

step 1 and step 2 solution times because with the exception of one data point relaxing the

quadratic terms did not change the optimal solution. Because of that, we can use the optimal

solution of step 2 as the optimal solution of the system. Step 3 solution times can be observed

in Figure 5.2. In all of the datasets using SC method with linear terms results in improved so-

lution times and the eleven datasets that cannot be solved to optimality in 10 minutes before,

can be solved. Average time improvement is more than 100 seconds for the instances that are

solved to optimality, only in one dataset step 3 improved the solution of SC linear terms, and

the value of less than 100 can be negligible in that case.

In all the methodologies implemented, we can beat the main model. Delta and sigma

methods focus on specific subsets of the feasible region so that big-M values are tightened,

and w-constraints are relaxed. In the SC method, we give an initial solution to both step 2

and step 3. In those steps, we ease the hardness of dealing with integer decision variables by

fixing them in the initial solution, and this way solving the problem becomes easier. In the

end, in our methodologies, the hardness coming from integer decision variables or the non-
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Figure 5.5: Comparing the solution times of three different methods

convexity curves of hourly bids are alleviated and that results in obtaining better solution

times for the Turkish DAEM clearing problem.

Another advantage of our methodologies is that we can obtain a good solution at the end

of the step 2 with great efficiency. This is particularly important in DAEM because tentative

MCP values are shared with the bidders before the finalized MCP values. Because of that,

our 3-stage approach may be a good tool to implement and our step 2 solution can be used as

the tentative solution of the system and then the finalized solutions can be acquired from the

step 3.
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6 EMM Method

Mehdi Madani and Van Vyve [1] introduced a cut based approach to solve European

DAEM problems. In this thesis, we implemented their approach to provide a time comparison

for our three-stage approach method. Additionally, we investigated the feasibility of applying

a similar approach to Turkish DAEM. Their method named European Market Model - mixed

integer quadratically constrained program (EMM-QUAD-MIQCP) exploits the nature of the

dual problem and solves the DAEM problem in European market setting without introducing

additional auxiliary variables. Linked and flexible bids are omitted in this approach.

The main model can be written without market specifications, and we will call this model

the main primal problem. For the sake of making the notations more concise, quantities of

supply bids are counted negatively. This is the main primal model:

maximize
∑
i∈H

∑
l∈Li

∆QilP
0
ilxil +

∑
b∈B

ybΩb (11)

subject to∑
i∈H:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈B

ybQbδbt = 0 t ∈ T [MCPt] (12)

xil ≤ 1, i ∈ H, l ∈ Li [sil] (13)

yb ≤ 1, b ∈ B [sb] (14)

xil ≥ 0, yb ∈ Z i ∈ H, l ∈ Li, b ∈ B (15)
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When we consider the dual of the main primal problem:

minimize
∑
i∈H

∑
l∈Li

sil +
∑
b∈B

sb (16)

subject to

sil + ∆QilMCPti ≥ ∆QilP
0
il i ∈ H, l ∈ Li (17)

sb +
∑
t∈T

MCPtδbtQb ≥ Ωb b ∈ B (18)

sil, sb,MCPt ≥ 0 i ∈ H, l ∈ Li, b ∈ B, t ∈ T (19)

And the complementarity conditions that follow:

sil(1− xil) = 0 i ∈ H, l ∈ Li (20)

sb(1− yb) = 0 b ∈ B (21)

xi(sil + ∆QiMCPti −∆QilP
0
il) = 0 i ∈ H, l ∈ Li (22)

yb(sb +
∑
t∈T

MCPtδbtQb − Ωb) = 0 b ∈ B (23)

Madani and Van Vyve’s EMM-QUAD-MIQCP formulation aggregates all three forms

into one mathematical model, dual constraints of block bids are altered to make it suit to

European Electricity Market. In European model, if block bids do not generate welfare they

have to be rejected, if they generate welfare then they could be either accepted or rejected.

Then the last version of the constraint becomes:
sb +

∑
t∈T

MCPtδbtQb ≥ Ωb −Mb(1− yb) b ∈ B (24)

With replacing the constraint (18) by (24), revised model finds the optimal solution to the

European Electricity Market, without flexible and block bids. Constraints (26) and (36) are

combining the objective functions of primal and dual models using the strong convexity idea.

We have implemented this idea to the Turkish Electricity Market with small changes as it is

described in the next subsection.
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6.1 EMM-QUAD-MIQCP-TR

maximize
∑
i∈H

∑
l∈Li

∆Qil(P
0
ilxil +

x2il
2

∆Pil) +
∑
b∈B

ybΩb (25)

subject to∑
i∈H

∑
l∈Li

∆Qil(P
0
ilxil +

x2il
2

∆Pil) +
∑
b∈B

ybΩb ≥
∑
i∈H

∑
l∈Li

sil +
∑
b∈B

sb −
∑
i∈H

∑
l∈Li

∆Qil
x2il
2

∆Pil (26)∑
i∈H:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈B

ybQbδbt = 0 t ∈ T (27)

xil ≤ 1 i ∈ H, l ∈ Li (28)

yb ≤ 1 b ∈ B (29)

sil + ∆QilMCPti ≥ ∆Qil(P
0
il −∆Pilxil) i ∈ H, l ∈ Li (30)

Ωb −
∑
t∈T

δbtMCPtQb ≤ sb b ∈ B (31)

sb ≤Myb b ∈ B (32)

sb ≥ −Myb b ∈ B (33)

xil, sil,MCPt ≥ 0, yb ∈ {0, 1}, sb free, b ∈ B, i ∈ H, l ∈ Li, t ∈ T (34)

In EMM-QUAD-MIQCP-TR model, we need to ignore the last complementary constraint

to force the Turkish DAEM requirements. Dual of quadratic objective function is used to

write constraints of the model [20]. Additionally, since the ITM block bids must be ac-

cepted in Turkish DAEM, different than European DAEM [1] specifications, modifications

are made in block bid constraints. In this new set of constraints we free the decision variable

sb, furthermore, in constraints (32) and (33) we force sb to 0 if a block bid is rejected. If

a block bid is accepted while they are OTM, then sb takes the value of loss of welfare and

compensate the loss in constraint (26), if they are ITM and accepted sb takes the value of

gained welfare and at the end strong duality condition is satisfied.

Similarly we can create the same model with step-wise bid curves. Only changes are due

to the change in objective function and from its duality.
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6.2 EMM-MILP-TR

maximize
∑
i∈H

∑
l∈Li

∆QilP
0
ilxil +

∑
b∈B

ybΩb (35)

subject to∑
i∈H

∑
l∈Li

∆QilP
0
ilxil +

∑
b∈B

ybΩb ≥
∑
i∈H

∑
l∈Li

sil +
∑
b∈B

sb (36)∑
i∈H:
ti=t

∑
l∈Li

∆Qilxil +
∑
b∈B

ybQbδbt = 0 t ∈ T, l ∈ Li (37)

xil ≤ 1 i ∈ H, l ∈ Li (38)

yb ≤ 1 b ∈ B (39)

sil + ∆QilMCPti ≥ ∆QilP
0
il i ∈ H, l ∈ Li (40)

Ωb −
∑
t∈T

δbtMCPtQb ≤ sb b ∈ B (41)

sb ≤Myb b ∈ B (42)

sb ≥ −Myb b ∈ B (43)

xil, sil,MCPt ≥ 0, yb ∈ {0, 1}, sb free, b ∈ B, i ∈ H, l ∈ Li, t ∈ T (44)

With current solvers, these problems take a lot of time to find the optimum. Madani and

Van Vyve [1] add cuts to the system for acquiring a speed boost. The model finds a feasible

solution first, then if it qualifies the restrictions of the European Market we conclude that it

is the optimal solution, if it does not qualify, then local cuts are added to the model. Cuts are

added such that the optimal solution will be cut from the system. After obtaining the optimal

solution, Farkas’ lemma is used to check whether the solution satisfies the European market

specifications or not. If not, then local cuts added with lazy heuristics callback and until we

find an optimal solution satisfying European market specifications we continue adding cuts.

Ultimately, we change their model to the Turkish model and compare the results of both

models. EMM-QUAD-MIQCP-TR method cannot be solved without further improvements

in today’s solvers. We solve the EMM-MILP-TR and EXIST’s main model for comparison

purposes. Flexible and linked bids are ignored in these results, and step-wise curves are used

as the main objective function.
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Table 6.1: The results of EMM-MILP-TR and EXIST’s main model

Methods EMM-MILP-TR Main Model
Solution time(s) (solved instances) 88.2 90.4

Solved to optimality 79% 79%

In Table 6.1, we can observe the solution times of both models are close to each other. We

decide to use EXIST’s model in our results section because that model has flexible and linked

bids. Also, with w-constraints, EXIST’s main model can be used to achieve better time saves

in the approximation step than EMM-MILP-TR model.
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7 Conclusions and Future Research Directions

Finding the MCP values in DAEM more efficiently would lead higher bidder satisfac-

tion and better welfare outcomes. Bidders can participate in more effective decision-making

processes if the MCP values are given them earlier. Because the MCP values are calculated

every day, coming up with novel ideas to quicken this process is a top priority. We have

investigated one idea which can be used to reach better solution times for this purpose.

We examine the approximated data to estimate where the optimal solution might lie in

the feasibility region. Although, we do not obtain a feasible solution, we find a place to

start for seeking a feasible solution. As long as the approximation is a good estimate of

the real data, our solution times are highly competitive. We implement this idea in three

steps; approximation step, finding a feasible solution step, and reaching the optimality step.

In all datasets, applying this idea yield better solution times. Especially, if the data points

are suitable and create “nice” piece-wise linear curves, then our solution finds the optimal

solution after the second step and the last step only serves the purpose of proving optimality.

In this thesis, we conclude that SC-linear method works the best comparing the solution

time of all the methodologies we implement at step 2. Sigma method gives the quickest

feasible solutions, however the quality of the solutions are subpar compared to the other

methodologies we implement. Additionally, delta method can be used efficiently if the fea-

sibility problem can be overcome, or in the case that delta values with feasible solutions can

be identified.

Apart from the improved solution times, one additional advantage of this method is the

flexibility of the idea. The method itself is tremendously adaptable to different or more

experimental approaches of the electricity market. Therefore, the addition of new constraints,

new cuts, new decision variables and so on would not interfere with the main idea of using
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approximated data to lead to the optimal solution. Therefore, different models and markets

may observe improvement in solution time with implementing the ideas presented in this

thesis. This is because our idea changes the way the data is read, but do not change the

constraints themselves directly, with the exception of w-constraints.

One future research area could be the addition of cuts to Turkish DAEM. We find the

main model as EMM-QUAD-MIQCP-TR, so the addition of flexible and linked bids would

be the last step to implement the cuts to the Turkish market. Furthermore, even though we

work around the value of delta issue, coming up with tighter values for delta which gives a

feasible solution in the respective region would improve the solution time even more. At the

moment, we plan to work on these two future research subjects in Turkish DAEM.
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8 Appendix: CPLEX and GUROBI Results

In this section we will give the objective function values and solution times for both

GUROBI and CPLEX implementations. Both used the SC method with 10−6 optimality

gap, and modifications in the methodologies section are implemented. Tables are divided

according to their number of block bids, 8.1 has the 18 datasets with 200 block bids, 8.2 has

the 18 datasets with 500 block bids and finally 8.3 has the 18 datasets with 1,000 block bids.

Both GUROBI and CPLEX reached the optimal value after the second step of our algorithm.

Time1 and Time2 values represent the step 1 and step 2 of our solution approach, respectively.
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Table 8.1: The results of GUROBI and CPLEX for instances with 500 segments and 200
block bids.

GUROBI CPLEX
ID Time1(s) Time2(s) Time1(s) Time2(s)
1 1 4 2 7
2 4 1 1 6
3 2 2 1 6
4 1 2 1 8
5 1 2 1 7
6 3 4 2 9
7 1 6 1 8
8 7 13 3 8
9 3 5 1 7

10 2 2 1 8
11 1 1 2 7
12 4 2 1 8
13 3 3 3 8
14 5 2 1 8
15 4 2 2 6
16 1 2 1 9
17 4 9 2 8
18 13 19 6 14
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Table 8.2: The results of GUROBI and CPLEX for instances with 500 segments and 500
block bids.

GUROBI CPLEX
ID Time1(s) Time2(s) Time1(s) Time2(s)
19 1 1 1 10
20 5 4 3 13
21 2 3 2 11
22 2 3 2 11
23 7 2 1 14
24 12 6 4 13
25 3 5 16 11
26 18 40 6 50
27 6 2 1 7
28 3 2 2 11
29 4 4 2 9
30 4 2 1 8
31 1 1 1 8
32 23 2 1 8
33 22 15 7 11
34 6 3 2 8
35 18 10 4 13
36 22 10 4 17
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Table 8.3: The results of GUROBI and CPLEX for instances with 500 segments and 1,000
block bids.

GUROBI CPLEX
ID Time1(s) Time2(s) Time1(s) Time2(s)
37 12 4 1 10
38 10 4 2 11
39 8 9 4 12
40 11 6 2 11
41 14 8 2 10
42 11 7 3 14
43 19 7 4 35
44 29 14 12 75
45 48 15 21 38
46 11 4 7 17
47 7 4 5 12
48 27 49 32 19
49 10 8 3 16
50 7 10 9 14
51 41 7 8 12
52 3 7 27 10
53 16 5 6 12
54 10 18 8 14
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