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ABSTRACT 

 

 

Based on the Zero Emission Vehicle (ZEV) targets, automotive manufacturers realize the 

necessities to develop new technologies that replace the Internal Combustion Engine 

(ICE). Nowadays there are two major trends in the automotive industry; First, hybrid 

vehicles which combine hydrogen energy with combustion energy, and second there is a  

down-sizing trend. By using hybrid technologies auto makers can obtain a significant drop 

in emission levels and the efficiencies increase up to 80%. Reaching 80% efficiency is not 

only achieved by using hybrid technologies. Automotive manufacturers also use different 

technologies such as the second mega trend: down-sizing. Engine volumes start to decrease 

but the horse powers of the engines keep increasing. 20 years ago a 2.0lt engine could 

create up to 120hp. However today, Original Equipment Manufacturers (OEM) could build 

an engine which can generate 150hp with a1.0lt engine volume. These are great results, but 

still this technology needs fuel to consume and by using ICE it is not possible to obtain 

ZEV. In long term this raw material requirement can cause rise in fuel costs. On the other 

hand, there is still ICE which means there is emission. 

 

Fuel cells (FC) can be the shining star of ZEV targets. There are several types of fuel cells 

that can be applicable to transportation. The most convenient type is Proton Exchange 

Membrane (PEM) fuel cell due to its start up time, cold performance and working 

temperature. 

 

PEMFC systems can be a great displacement for internal combustion engines in 

transportation industry [84]. FC technologies have high efficiency and when they used in 

automotive industry they can reduce the COx emissions. This makes them a potential 

candidates for European auto companies to meet their voluntary carbon dioxide emission 

limits in the European Union [85],[86]. 
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The objective of this work is to find a way to decrease the cost of the fuel cells. Time is 

necessary to obtain deep knowledge on design principles of proton exchange membrane 

fuel cell (PEMFC) which could be used in automotive applications. Fuel cells are 

continuous clean energy converters which run on hydrogen or conventional hydrocarbons. 

They produce energy much more efficiently and they process quieter than ICE systems 

with higher power densities. For improved design and control of FCs, better understanding 

of fuel cell systems and components by means of developing and simulating accurate 

model FC is necessary. 

 

In this thesis; combinations of simulations were carried out and the results analyzed for 

enhancing the understanding of distribution of flow and temperature for a 400 cm
2
 flow 

field PEMFC. A three-dimensional (3D) computational fluid dynamics (CFD) based model 

was used to predict heat and mass distributions of this design. The effect of flow direction 

and the cooling pattern on this design were also taken into account to enhance the 

understanding for this selected flow field design. 
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ÖZET 

 

 

Sıfır emisyon hedefleri göz önünde bulundurulduğunda otomotiv üreticilerinin içten 

yanmalı motor teknolojilerinden bir adım öteye ilerlemesi gerekmektedir. Günümüz 

otomotiv sanayinde bu doğrultuda oluşmuş iki akım mevcuttur. Bunlar hidrojen energisi 

ile içten yanmalı motor teknolojisi birleştiren hibrit araç teknolojileri ve düşük hacimli 

motor akımlarıdır. Hibrit teknolojiler sayesinde araç üreticileri emisyon seviyelerini ciddi 

miktarda düşürmüş ve yüzde 80 seviyelerine kadar verimlilik sağlamayı başarmıştır. Tabii 

ki bu yüzde 80 verimlilik sadece hibrit teknoloji kullanılarak sağlanmamıştır. Günümüzün 

büyük akımlarından olan düşük hacimli motor teknolojilerinin de payı vardır. Bu düşük 

hacim akımı, motor hacimlerinin düşerken motor güçlerinin yükseltilmesi üzerine 

kuruludur. Yaklaşıl 20 yıl önce 2.0 litre hacimli bir motordan 120 beygire kadar güç 

üretilebilirken günümüzde otomotiv üreticileri 1.0 litre hacimli bir motordan 150 beygire 

kadar güç üretebilmektedirler. Gelişime bakıldığında bunlar çok iyi sonuçlar olmak ile 

beraber halen yakıt tüketimine ihtiyaç duyan içten yanmalı motor teknolojileri 

kullanıldığından sıfır emisyon hedefini sağlamak mümkün değildir. Uzun dönemde ise 

yakıt için hammadde gereksinimi sebebi ile yakıt fiyatlarında artışlar gözlenmesi de 

kaçınılmazdır. Yani içten yanmalı motor var ise, emisyon da var olacaktır. 

 

Yakıt pilleri sıfır emisyon hedeflerinin en önemli aracı olabilirler. Ulaşım amacı ile 

kullanılabilecek birkaç farklı yakıt pili tipi bulunmaktadır. Bunlarda ulaşım için en 

uygunu; hızlı çalışma süresi, çalışma sıcaklığı ve soğuk koşullarda çalışma performansına 

bağlı olarak  Proton Değişim Membranlı yakıt hücresidir. 

 

Proton değişim membranlı yakıt hücresi sistemleri otomobiller için içten yanmalı 

motorlara potansiyel rakip olarak kabul edilmektedir [84]. Yakıt pilli araçlar; yüksek 

verimliği ve düşük karbondioksit salınımı sayesinde Avrupa otomobil şirketlerinin Avrupa 
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Birliği emisyon sınırlarını karşılamaları adına büyük bir potansiyeli bulunmaktadır 

[85],[86]. 

 

Bu çalışmanın amacı, yakıt pillerinin maliyetlerini düşürmek için bir yol bulmaktır. Bunun 

için otomotiv uygulamalarında kullanılabilecek proton değişim membranlı yakıt hücresi 

tasarım ilkelerini öğrenmek de şarttır. Yakıt hücreleri; hidrojen yada konvansiyonel 

hidrokarbonları ile çalışan sürekli temiz enerji kaynaklarıdır. Onlar geleneksel yakıtlara 

göre çok daha verimli ve sessizce ; daha yüksek güç yoğunlukları ile elektirik üretirler. 

Yakıt pillerinin gelişmiş tasarım ve kontrolü için yakıt pili sistemlerini ve bileşenlerini 

daha iyi anlamak gerekmektedir bu ise ancak gerçekci yakıt pili modelleri ve analizleri 

gereklidir. 

 

Bu tezde 400 cm2 akış alanlı proton değişim membranlı yakıt hücresi modeli kullanılarak 

akışkanların ve ısı dağılımlarınnın durumu değerlendirilmiştir. Bu tasarımlarda  ısı ve kütle 

dağılımları tahmin etmek için üç boyutlu, hesaplamalı akışkanlar dinamiğine dayalı bir 

metodoloji kullanılmıştır. Akış yönünü ve soğutma kanallarının etkisi de bu çalışmada 

seçilen akım kanallarının tasarımlarında dikkate alınmıştır. 
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1. INTRODUCTION 

 

In many different fields owned by automotive, energy, fuel cell, etc. sectors, zero emission 

vehicle targets have emerged. Most of the vehicles in traffic produce their energy by 

internal combustion engine and most of the automotive manufacturers try to improve their 

ICE technologies over hundred years, to figure out how to produce a ZEV.  Regulations 

force car makers to decrease their vehicles’ emission levels. If they are going to use ICE, 

they can do it two ways; they can improve their engines’ efficiency or they can improve 

their after treatment system (ATS). One should not forget that, ICE systems are limited 

with the Carnot principle that disables to have a zero emission level. For medium duty or 

heavy duty vehicles improving ATS system is logical but for passenger cars there is no 

space for a complicate ATS system. Decreasing the energy output is also an option but this 

is not feasible due to the market competition.  

 

 

Graph 1 Emission levels based on regulations 

 

Nowadays there are two major trends in automotive. The first one is the hybrid vehicle 

which combines hydrogen energy with combustion energy. So the vehicle’s acceleration is 

supported by more than one energy system. Due to the hybrid vehicle trend there is a fast 

growing market based on liquid petroleum gasses (LPG), liquid natural gasses (LNG) and 
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compressed natural gasses (CNG). On the other hand, vehicles with electric engines enjoy 

a high popularity in nowadays markets. By using hybrid technologies automakers can 

obtain a significant emission drop and the efficiency increases up to 80%. While 

decreasing the emission levels they also benefit from some of the advantages of the 

downsizing trend. They use smaller volume engines with higher strength material super 

charges, turbo charges, etc. They increase engine cylinder pressures, so they can have 

much better combustion efficiency. It is obvious, that they need to use different systems to 

cool down the system such as intercoolers, etc. These are great results, however car makes 

spend billions of dollars for the research and development process and still use ICE 

technology. The problem is, there is pollution. If they really aim to reach zero emission 

level they need to use a system based on a different energy source, such as electricity. 

 

Fuel cells (FC) can be the shining star of ZEV targets. There are some different types of 

fuel cells that can be use for transportation applications. The most convenient type is 

Proton Exchange Membrane (PEM) fuel cell due to its star up time, cold performance and 

working temperature. 

 

 

Graph 2 Energy production efficiency comparison 
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PEMFC systems have a great potential to be the replacement of internal combustion 

engines in passenger vehicles [84]. FC have a high efficiency with almost no pollution 

makes them a potential candidate for European auto companies to meet required 

regulations in the European Union [85],[86]. 

 

Proton Exchange Membrane Fuel Cell (PEMFC) is the most used fuel cell type in a variety 

of applications. Compared to the PEMFC applications; transportation is the most 

competitive and promising one due to startup time, low sensitivity to orientation, and 

favorable W/kg ratio. People started to care about the environment and prefer clean energy 

sources which routes to promising potential of this alternative technology. Also 

governments force car makers to use clean sources. Car makes need to reach lower 

emission levels year after year due to homologation requirements. There are many 

expensive ongoing Research and Development (R&D) studies in this field  . Fuel cells 

have no emissions.  

 

Competing with the Internal Combustion Engine (ICE), incorporation of the PEMFC in 

transportation applications comes along with different challenges. This thesis is dedicated 

to give a perceptive about the design and operation of PEMFCs that is applicable to 

automotive industry. Fuel Cell Vehicle (FCV) development requires a proper energy 

management system which can be obtained by the integration of a FC system with electric 

energy storage devices. Major carmakers in the world are engaged in developing prototype 

FCVs for reaching to the future transportation goals. 
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Graph 3 PEMFC performance graphs 

 

 

The future and present specifications of PEMFC for FCV can be explained by the 

technology roadmaps and there are many different FCV roadmaps present. All of them 

focus on similar points. Those major similar four points are critical for the commercial 

adaptation of FC in automotive. They are cost, durability, start up (warm up) time and 

volumetric power density. When we look a bit more detailed at the targets of the lifetime 

of FC, it aims to reach freeze-start capability down to 1C for 5000 hours, reaching 50% of 

the rated power in 30 seconds with a 2500Wnet/l volumetric power density which targeted 

to be cost of US$ 30/kW net at a volume of 500,000 units. 

 

In these road maps FC manufacturers are not the only responsible ones. There are also 

some roles for government and the automakers. Policy makers need to force automakers to 

use electricity based systems in their vehicles by regulations. For example if there is no 

emission requirements it will not be possible to reach euro 6 emission limits; every 

automotive manufacturer spend billions of dollars every year. On the other hand policy 
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makers must support their regulations too, by creating new funding for fuel cell 

technologies. Also car makers need to provide vehicle volume commitments. There is a 

strong duty distribution here. The energy industry must support this process too by 

building hydrogen stations in  the cities. By doing this it can be possible to reach lower 

emission or zero emission targets.  

 

 

Graph 4 California's 2020 emission regulation targets 

 

The success of PEMFC in the automotive industry can be a very important opportunity for 

applications in other fields. Due to the usage volume of FC in the automotive industry, the 

costs decrease. It begins to be feasible for application in different field’s cause decreased 

costs. 

 

Due to the ZEV targets, homologation requirements, increase of green house gases and the 

advantages of FCs emerges; PEMFCs are feasible to be used in automotive industry. For 

using a FC system in automotive applications, there are many challenges. Due to the 

bigger size of the FC, cost is the most important challenge. At the beginning, FCs matter of 

platinum have the highest effect on cost. However, in the early days they used 28gr/cm
2
 

platinum, nowadays it is just 0,2gr/cm
2
. To do the decrease they had to simplify the FC 

system. Less complexity means less devices. Concerning the complexity decrease; for 
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example to eliminate the recovery pump in anode side the flow needed to be studied. So 

that heat and flow distributions start to be a challenge due to components with very large 

surface area. In this thesis flow through FC model is developed and its anode side, cathode 

side and water channels studied. 

 

In the anode side, due to continuous flow; uniform mass transfer tried to be obtained. The 

fuel pumped in the FC is optimized to almost the same amount with the required fuel. The 

aim is to operate all the H2 into the reaction; due to the chemical reaction, supply needs to 

be equal to demand. By doing this, it is possible to have a dead-end anode site. 

 

In the cathode side; the challenging point is to optimize the inlet pressure of the fuel. The 

pressure difference between the outlet and the inlet needs to be minimum; otherwise based 

on irregular pressure distribution, it is not possible to obtain from all channels. Lower 

pressure drop results with homogeneous pressure distribution. By homogeneous pressure 

distribution  it is also possible to reach uniformity in temperature management. 

 

In water channels; the water flow should be optimized for having an uniform flow 

distributing among the channels. Out of that the uniform heat distributions is also 

necessary.  All the het needed to be removed from the membrane with a maximum 

efficiency to keep the efficiency on higher levels 
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2. BACKGROUND INFORMATION 

 

 

FC is an electrochemical energy conversion device which produces electricity by using 

chemical energy. As a result of the chemical reaction occurring inside the membrane, 

electricity is generated. Side reactants flow into the fuel cell without interruption and the 

electricity is generated as the supply continues without recharging the cell. 

 

 

 

Figure 1 Schematic of a fuel cell 

 

A general view of a fuel cell is showed in Figure 1 above. Fuel enters the cell from anode 

(negative electrode) and oxidant enters the cell from cathode (positive electrode). In many 

types of FCs electrodes are platinum (Pt) and this is where the high cost comes from. Pt is 

a very expensive material. The chemical reactions occur at the electrolyte. The reaction 

occurring inside the cell produces a potential of about 1 Volt. To obtain a higher voltage 

and current output, FC stacks created by combining the cells parallel and serial. 
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Figure 2 Example of a FC Stack 

 

With respect to the electrolyte material different chemical reactions take place so different 

products are released in addition to heat. Types of fuel cells are defined by the electrolyte 

material, fuel and the conducting ions. Energy conversion process from chemical reaction 

is common for all of them. Finally, each type of fuel cell stack generates direct current 

(DC) electricity. 

 

2.1. History of Fuel Cells 

 

In 1838, Christian Friedrich Schoenbein was discovered the first fuel cell whom is a 

German-Swiss Professor from the University of Basel. Grove's apparatus consisting of a 

platinum electrode immersed in nitric acid and a zinc electrode immersed in zinc sulphate 

took in hydrogen and oxygen to generate electricity and water. It generated 12 amperes 

current at about 1.8 volts [2]. 
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Figure 3 William Grove 

 

The term "Fuel-Cell" was first used in literature in 1889 by Ludwig Mond and Charles 

Langer. They attempted to build the first practical device using air and industrial coal gas. 

Chronologically milestones of the FC technology can be stated as: 

 

 William Jacques invented first FC for household use in 1886.  

 Walther Nernst first solid electrolyte, zirconium for FCs in 1900. 

 Emil Baur invented the first molten carbonate fuel cell in 1932.  

 NASA began experiments for obtaining a FC powered power source for spacecrafts 

in the late 1950’s.  

 Allis-Chalmers Manufacturing Company demonstrated a 20 hp Solid oxide FC 

powered tractor in 1962. 
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Figure 4 An Allis-Chalmers D21 series II tractor 

 

The first FCs were very expensive for commercial success when compared with today's 

conditions. In the early twentieth century with the development of the internal combustion 

engines which was a lower cost power source, fuel cells cannot be popular. FCs were 

developed just for space or military technology until nowadays. After this initiative, the 

automotive industry recognized the potential of fuel cells for commercial use with the 

support from governments, research and development (R&D). Fuel cell technology has 

been encouraged and many companies and research centers around the world are engaged 

with the technology. The government of Turkey also has R&D foundations for FC  

researches. 

 

Due to the environmental and economical concerns based on oil, coal and nuclear energy 

resources, sustainable energy sources such as fuel cells are seen as promising alternatives 

for many different applications. FCs have many potential benefits although the commercial 

deployment of fuel cells still faces many challenges such as high cost.  

2.2. Energy Variations of Fuel Cells 

 

The characteristics of fuel cells make them preferable between conventional energy 
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converters in many different applications. These characteristics which vary in different 

types of fuel cells determine the applications area. The most effective decision of where to 

use which type of fuel cell is to check operating temperature, start up time and power 

density. For example it is not logical to use a fuel cell operating in 800 degree Celsius to 

generate electricity for a passenger car but you can use it in buildings (stationary 

applications) so you can also use it as a heat source to heat a building or for hot water. 

 

 

 

Table 1 Comparison of FC types 

 

2.2.1. Efficiency 

 

Direct conversion of the chemical energy to electrical energy is not limited by Carnot 

Cycle like what happened in ICEs. The FC stack efficiencies are greater than are 

combustion type energy converters. Depending on the FCs type, stack efficiencies up to 

60% are available with a wide range. Ideally it is possible to obtain up to 90% overall 

system efficiencies. FCs can reach to very high efficiency levels but the problem is 

obtaining the suitable environment for FC. There is always a chemical reaction going on so 

it requires its fuel, hydrogen. The amount that you delivered is to important; if you supply 

less hydrogen, efficiency decreases. If you provide to much hydrogen pressure can increase 

significantly and to much material could cause slowdown in reaction rate. Similar to this 

all the material must have a balance. On the other hand there is heat that appears by result 
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of chemical reaction. The heat must be removed from membrane to keep the efficiency in 

high level so water management systems is required to decrease the temperature which can 

work with all other systems in a harmony. Every single thing can affect the efficiency. 

 

2.2.2. Power Density 

 

It is possible to obtain a higher power from a FC which has the same size with 

conventional energy converter but as mentioned before the suitable environment must be 

obtained to keep the efficiency on high levels. If the efficiency decreases, depending on 

that power density decreases. 

 

2.2.3. Emission 

 

When pure hydrogen is used, the FC maintains zero emission characteristics which make 

FCs perfectly suitable for using in automotive sector and obtaining long term zero 

emission level. However, oxides of nitrogen, sulfur and carbon occurs as a result of the 

chemical reactions when carbon rich fossil fuels used for obtaining hydrogen. The 

emission values are lower than conventional energy converters. For electrolysis, CO2 

release does not cause any problem. 
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Graph 5 Greenhouse gas emissions from electricity productions 

 

2.2.4. Reliability and Availability 

 

FCs have no moving parts, also the FC systems have almost no moving parts. Only the 

moving parts in this system are the auxiliary components so the integrity of the FC to a 

system is simple. Due to the type of the FC thermal management could be a challenge. The 

maintenance requirements are reduced and the life of the FC increases based on simplicity. 

It is reported that a PC25 fleet consisting of more than 200 units has demonstrated 90% 

availability during 4 million operating hours [13]. Also the maximum power is available 

99% of the operating time. Most of the time reliability and lifetime of FC is limited by the 

catalyst performance. 

 

2.2.5. Size Range 

 

The range of output power from a fuel cell of a few watts to some megawatts which results 

with high application range depending on size and the required power. Also numbers of 

cells you use in stack have a major effect on your range. By combining the cells, required 

energy output can be obtained as a FC stack. When compared to ICE the weight of FC 

system is lower but the volume of the system is higher. For a passenger car it is possible to 

reach the same ranges of mileages by FCs compared with gasoline engines. 

 

2.2.6. Fuel Flexibility 

 

Direct hydrogen, direct methanol or reformed hydrogen from natural gas, methanol and 

different hydrocarbons can be used as fuel for different types of cells.  

 

 

Table 2 Fuels of FCs 
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2.3. Fuel Cell Applications 

 

The first application of fuel-cell systems were used to generate electricity in a space shuttle 

in Apollo and Gemini space programs. There are 3, 12 kW alkaline FCs used in over 87 

missions with 65,000 hours working time [9]. Out of that, fuel cells are expected to be used 

as regenerative power systems for space stations. In today's conditions; commercial usage 

of FCs are also possible. FC applications can be classified in three groups; stationary 

applications, portable applications and transportation applications. 

 

 

 

Table 3 Various application tests of PEMFC 

 

2.3.1. Stationary Applications 

 

Electricity generation for buildings is one of the most common examples of stationary FC 
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applications. Especially for inner city buildings, FCs are niche applications due to its clean 

operations and low noise. The power capacities of stationary plants have a wide range from 

kilowatts to megawatts. In stationary application most common used fuel cell type is Solid 

Oxide FCs. SOFCs operates over 800 degree Celsius so in addition to generation 

electricity; they can be used as heat source for heating the buildings or obtaining hot water. 

 

 

 

Figure 5 PC-25 FC Plant 

 

The first commercial fuel cell plant PC-25 consisting of a 200 kW phosphoric acid fuel cell 

(PAFC) stack has been used for many stationary applications in hospitals, hotels and 

manufacturing sites.  

 

2.3.2. Portable Applications 

 

FCs have been used since 1960s in military portable applications. There was a significant 

increase in usage of portable FC applications until 1990s, approximately 1700 operating 

systems in the power range of 1 W to 1500 W had been built due to a survey of 2002 [3]. 

Why they only use this technology only for military is because of its cost. FC technologies 

had been developed for military and space applications for a long time. According to 

important decrease in its cost, FCs started to be used commercially. 

 

Since FCs are modular devices, they can be used in small portable applications instead of 

batteries. Compared to batteries; FCs have higher energy density so they have longer 
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operation time and able to used for higher power requirements of the devices. Many device 

manufacturers have begun to develop and try the FC technology in their devices in order to 

use batteries for dealing with short battery life problem. 

 

Nowadays, there are many mobile applications of FCs that shows the usage of FC 

technology in consumer electronics such as mobile phones and laptops. The 

commercialization of the systems is not completed due to the high cost of the systems and 

the regulations relating to the distribution. By the increase of the demand on FCs, the mass 

production of FCs increases and due to that, costs start to decrease so portable fuel cell 

applications will be provided to markets. 

 

2.3.3. Transportation Applications 

 

In the long term the biggest pie of the cake is going to be transportation for fuel cells. 

There are many targets in the automotive industry such as decreasing emissions and 

making zero emission vehicle in a long term but most of the vehicles in traffic produce its 

energy by internal combustion engine so for ZEV target they need to move a step forward 

and start using electricity based technologies in their vehicle. That’s where FCs come into 

play. 

 

Car makes spend millions of dollars for research and development processes to decrease 

emission levels of their internal combustion engines. Homologation requirements for 

emissions are getting to strict. Because of this, company research costs are extremely high. 

Companies can also use the capital for FC researches. This way, they can decrease 

emission levels and also have better fuel consumptions. Low emission values, high 

efficiencies and simple mechanical integrities of FCs constitute merits in their use in heavy 

duty and light duty vehicle propulsion. Also, under today's conditions, Euro 6 emission 

regulations must be implemented to sell a vehicle in Europe. FC vehicles offer the high 

power density with a very low COx emissions; this makes them potential candidates for 

European car makers to meet their voluntary carbon dioxide emission limits and regulation 

limits in the European Union [85],[86]. 



17 

 

PEMFCs have been used for transportation applications because of their high power 

densities, high efficiencies, low corrosion characteristics and cell life time. In a long term 

PEMFC is considered as a potential replacement systems for internal combustion engines 

in automobiles [84]. As mentioned before, when compared to internal combustion engine, 

PEMFC efficiency is higher at partial loads; also efficiency of the FC at nominal speed is 

two times higher with direct hydrogen supply [4],[6]. In a FC, energy created due to 

chemical reaction and directly used in an electric motor. In combustion engines, chemical 

energy is first converted to thermal energy and then converted to usable mechanical energy 

then the energy transports to wheels. Efficiency of the combustion engine is limited with 

Carnot cycle. 

 

The present and future specifications of PEMFC for FCV are explained in many different 

roadmaps so everything is planned. The question is how and when to expand FCs in to the 

market. All of them focus on similar points. Major items are durability, cost, start up 

(warm up) time and volumetric power density. When we look a bit more detailed, the 

targets are the lifetime of FC aims to reach 5000 hours with freeze-start capability down to 

1C, reaching 50% of the rated power in 30 seconds with a 2500Wnet/l volumetric power 

density which targeted to be cost of US$ 30/kW net at a volume of 500,000 units. Now the 

manufacturers push to reach those limits. The most problematic point is cost for now. The 

success of PEMFC in automotive industry is very important opportunity for applications in 

other industries because due to the increase of usage volume, the costs decrease so it 

begins to be feasible for application in different fields. 
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3. PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC) 

 

There is a proton conductor in a PEMFC which is stacked between two electrodes. In order 

to maintain a good conduction between the ions, the membrane is needed to be humidified. 

Water and heat becomes the end products of the operation. It is not possible to use the 

produced heat in cogeneration applications, since the operating temperatures are low 

because of the limitations that the polymer membrane imposes. PEMFC can operate in low 

temperate so it allows quick start because of the shorter warming time and better 

durability. However, high Pt catalyst loadings are required to promote the reactions at the 

operating temperatures. Catalyst is sensitive to carbon mono oxide poisoning so hydrogen 

fuel is required to prevent poisoning. The following chemical reactions take place in the 

electrodes. 

 

   Anode  : H2→ 2H + 2e−   

   Cathode : 1/2O2 + 2H + 2e− → H2O 

 

 

 

Figure 6 Schematic of PEMFC 
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For car makes PEMFCs are preferable for use in transportation applications due to the fast 

startup time, low sensitivity to orientation, and high W/kg ratio. Currently, hydrogen 

storage is limiting the use of PEMFC passenger cars due to lack of space.  

 

As stated before PEMFC is the most used fuel cell type in a variety of applications. 

Competing with the ICE, incorporation of the PEMFC in transportation applications comes 

along with different challenges. Optimization of the operating conditions, transients of the 

system, robustness of the operation and system integration issues are the main concerns. 

 

3.1. Design of the PEMFC 

 

A PEMFC consists of two electrodes, a polymer electrolyte membrane, current collectors 

and gas flow fields. The combination of anode, electrode and cathode is referred as 

membrane electrode assembly (MEA). 

 

3.1.1. Electrodes 

 

All electrochemical reactions consist of two separate reactions, oxidation and reduction. 

Oxidation reaction occurs in the anode side and reduction reaction occurs in the cathode 

side. Both of the electrodes are porous. This property increases the surface area and 

enhances the reaction rate and allows reactants to be transported easily. The electrolyte 

layer on the electrode surface needs to be thin in order not to block the pores and so there 

will be more area for transportation of the reactants to active sites. Target is to establish a 

three phase interface consisting of gas, electrolyte and electrode surface.  

 

The structure of the electrodes is composed of carbon black and Poly Tetra Fluoro 

Ethylene (PTFE). Platinum (Pt) catalyst is bounded to the high surface area carbon black 

which is an electronic conductor. PTFE is a hydrophobic material that lets the gases 

permeate inside the electrode. Due to the material properties, carbon black also acts like a 

wet proofing agent. This composite structure establishes a stable three phase interface in 

the electrode, which is regarded as the benchmark of PTFE bonding. An increase in the 
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PTFE loading results in a decrease in the permeability of the liquid water and an increase 

in the volume fraction of the gas pores which then enhances the cell performance [1]. 

 

The only catalyst that reacts sufficiently with both hydrogen (H) and oxygen (O) 

intermediates is Pt which has also high performance in releasing these intermediates. As in 

the anode half reaction, Pt first bond H atoms then release the intermediate as two protons 

and two electrons. 

 

In the first term of PEMFC development, Pt is used as a catalyst with an amount of 28 

𝑚𝑔 𝑐𝑚2⁄   of Pt [87]. Pt has a major affect on the cost of a PEMFC so higher rate of Pt has 

a major effect on total cost of FC. In recent years the usage has been reduced to around 

0.2𝑚𝑔 𝑐𝑚2⁄ , yet with power increasing [87]. The basic structure of the electrode in 

different designs of PEMFC is similar. The anodes and the cathodes are similar too. The Pt 

catalyst is formed into very small particles on the surface of larger particles of finely 

divided carbon powders. The Pt is highly divided and spread out. Only that very high 

proportion of the surface area will be in contact with the reactants.  

 

3.1.2. Membrane 

 

In PEMFCs, solid polymer membrane is used (as a thin plastic film) as electrolyte. 

The membrane of PEMFC is generally poly per fluoro sulfuric asid. Not only the material 

but also the thickness, which generally derives between 50 to 175 microns, is crucial. 

 

Sulphonic groups, SO3, are attached to side chains and are stationary. The presence of 

water in the membrane allows protons to move. Protons, that are bond to water molecules, 

can move from one sulphonic group to another one. By this mechanism, the membrane 

becomes an ionic conductor in the existence of water. 

 

PEMFCs’ operating temperature is restraint by the range when the water is in the liquid 

form, which means operating temperature of the PEMFC usually does not extend beyond 

100 Celsius degree. In order not to limit the membrane by the temperature, new 
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mechanisms for proton conducting should be suggested. 

 

Despite resembling plastic wrap; due to the Teflon backbone structure, selectively 

permeable membrane is stronger and makes protons available to move through without 

mixing the reactants. Due to the membrane’s organic nature, it does not conduct electrons, 

which are vital for the operation of FC. 

 

Based on their material features, numerous different membranes could be used in 

PEMFCs. PEMs can be made from polymer membranes or composite membranes where 

other materials are embedded in a polymer matrix. Proton exchange membranes are 

primarily characterized by thermal stability, methanol permeability (P), and proton 

conductivity (σ) [17].  

 

Membranes can be generalized under four topics; sulfonated aromatic hydrocarbon 

polymer membranes, organic - inorganic composite membranes, polymer blend 

membranes and Polybenzimidazole based acid base membranes. 

 

3.1.2.1. Sulfonated Aromatic Hydrocarbon Polymer Membranes  

 

Sulfonated aromatic hydrocarbon polymer membranes would be used as membranes of 

PEMFCs. Below, it is possible to see the details of some of these membranes such as 

sulfonated poly p-phenylene, Sulfonated Polyether Ketone, Sulfonated Polysulfone, etc. 

 

3.1.2.1.1. Sulfonated Poly P-Phenylene 

 

The polymer that is produced was treated at room temperature with H2SO4. The polymer 

was washed with DI water after sulfonation and was left to dry for 24 hours at 80 Celsius 

degrees before usage. 
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Figure 7 Polymerization technique via nickel-catalyzed coupling polymerization 

 

Membrane fabrication turned out to be difficult since it was a rigid polymer. After placing 

small piece of a glass cloth over a glass plate, the polymer solution in n-methylpyrrolidone 

was poured on the plate. Following the coverage of the plate with a dish, it is heated via an 

infrared lamp at 60 Celsius degrees. The membrane which is produced in the form of glass 

fibers was 150 μm thick.  Kobayashi [25] indicated the sulfonated P-Phenylene 

membrane’s synthesis and features. To be able to synthesize SPPBP, concentrated H2SO4 

was used to dissolve PPBP in inert atmosphere. Via filtration, the sediment was collected 

and first was pulverized and then it was washed properly until a neutral pH was obtained 

for the solution. After, a cellulose acetate membrane was used to dialyze the SPPBP 

against DI water. 

 

3.1.2.1.2. Sulfonated Polyether Ketone 

 

It is possible to synthesize polyether ketone via nucleophilic aromatic substitution 

polycondensation [26]. In the existence of K2CO3 in TMS as a solvent, the polymerization 

occurred at 210 Celsius degrees. High molecular weight polymers were attained in four 

hours. The attained polymer was spilled into 150 ml of ethyl alcohol and it was heated 

several times in ethyl alcohol and under reflux in DI water in order to eliminate the salts 

and solvents. After, it was dried for 24 hours at 120 Celsius degrees. Later on it was 

washed and left under drying for 24 hours at 120 Celsius degrees. In 5 grams of polymer, 

100 ml of concentrated H2SO4 was added. For the fabrication of the membrane, a glass 

plate is used to pour the sulfonated polymer solution in DMAc under inert atmosphere at 

50 Celsius degrees [27]. Later on, the membrane with 100-150 μm thickness was left to 

dry under vacuum for 24 hours at 120 Celsius degrees. 
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Figure 8 Sulfonated polymer 

 

3.1.2.1.3. Sulfonated Polysulfone 

 

A technique by using (CH3)3SiO3Cl (TMSCS) as the sulfonating agent was claimed by 

Genova Dimitrova for the sulfonation of polysulfone [28]. A polymere solution is prepared 

by mixing di chloro ethane and iso propanol. The phosphate anti monic acid was used just 

as the aqueous gel. The existing water in the solution was eliminated under vacuum at 80 

Celsius degrees. The intense suspension was poured on a glass plate. To eliminate the 

solvent, high temperature was used for heating the membrane with the ventilation for a few 

hours. The flat glass was placed at 24 Celsius degrees, where also water was used to peel 

the polymer film. The membranes had 150-200 μm of thickness. 

 

3.1.2.1.4. Sulfonated Polyaryleneethersulfone 

 

The most common procedure for polyaryleneethersulfone synthesis is Nucleophilic 

aromatic polycondensation [29]. Sulfonation of the resultant polymer was done by using 

chlorosulfonic acid in dichloromethane. The product was washed several times with water 

and hexane. After that, it dried at 60 Celsius degree under vacuum for 15 hours to obtain a 

white powder of sulfonated polymer. Sulfonated polymers were added to DMAc. As a next 

step, it was casted on to a glass plate and waited for 15 hours. At the end in nitric acid; the 

colorless membranes were then immersed. Colorless membranes washed with DI water 

several times and placed under vacuum at 60 Celsius degree for 15 more hours. 
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3.1.2.2. Organic - Inorganic Composite Membrane 

 

Also there are organic - inorganic mixture based composite membranes that can be used in 

PEMFCs. You can see some of the materials with details below. 

 

3.1.2.2.1. Fluorinated Polymer / 𝐒𝐢𝐎𝟐 

 

Synthesis of organic polymers involving hexa fluoro iso propyli dene di phenol and deca 

fluoro bi phenyl in the presence of di methylacetamide followed by the addition of KCO3 

and heating to 120 Celsius degree
 
for 2 to 3 hours under an inert atmosphere [34]. Then 

waited for it to cool down in normal conditions. As a next step washed with CH3COOH - 

DI water mixture to precipitate the polymer. By using fuming H2SO4, sulfonation of the 

polymer was done. The sulfonated polymer was precipitated in water and washed for 

neutoralizing the pH. Using tetra ethoxy silane, DI water and HCl; a silicon oxide solution 

was prepared and waited for 3 hours. Then silicon oxide solution was added to sulfonated 

polymer and waited for 24 hours to get dry under 100 Celsius degree. 

 

3.1.2.2.2. Nafion / Ptfe / Zirconiumphosphate (𝐙𝐫(𝐇𝐩𝐎𝟒)𝟐) 

 

The thin PTFE film was immersed into the Nafion - ZrOCl2 blend solution for 5 hours. 

Then it was annealed at 130 Celsius degree for 1 hour. Next step was removing the 

residual solvent. The residual ZrOCl2 was precipitated on the membrane surface, then the 

membrane was washed in DI water. The membrane was treated with H3PO4 solution for 4 

hours under normal conditions to convert the ZrOCl2 to Zr(HPO4)2.  

 

 
 

To clean out the residual H3PO4 on the membrane surface, the membrane was washed and 

dried with DI water several times at ambient temperature. Than the membrane was swollen 

in DI water for 24 hours at ambient temperature, and then for a further 6 hours in H2SO4 at 

room temperature. The membrane was subsequently dried at ambient temperature. As a 
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result you obtain the NF–ZrP composite membrane with a thickness  between 20 to 22 μm.  

 

3.1.2.2.3. Nafion / 𝐓𝐢𝐎𝟐  

 

Most of the time, the Nafion / TiO2  composite is prepared by solgel process [37]. The 

solgel incorporation of a catalyst is essential as it can provide an acidic environment for the 

reaction to initiate. Addition of acid is not needed in the reaction below because the 

sulfuric acid clusters of Nafion structure act as a catalyst [38]. 

 

 
 

The Nafion membrane was swollen in a CH3OH solution for 20 minutes at 60 Celsius 

degree. By mixing TBT and CH3OH a precursor solution that had been prepared and the 

swollen membrane was dipped in to that solution to complete hydrolysis. At the end; the 

membrane was dried for 12 hours at 60 Celsius degree under vacuum. 

 

3.1.2.2.4. Pva / Si𝐎𝟐 / Silicotungsticacid (Siw) 

 

Using a solgel method, the organic polyvinyl alcohol and inorganic (SiO2) composite was 

prepared [39]. Tetra ethyl ortho silicate and silicotungstic acid were added to a solution of 

PVA in water and refluxed for 6 hours at 80 Celcius degree.  SiW acted as an acid catalyst 

for hydrolysis. It was promoted the condensation of tetra ethyl ortho silicate to SiO2. To 

obtain a membrane between 60 to 100 μm in thickness, transparent gel form was drop 

casted.  

 

3.1.2.3. Polymer Blend Membrane  

 

Third type of membrane can be used in PEMFC are polymer blended membranes. You can 

see some of the exact materials can be used with details below. 
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3.1.2.3.1. Nafion/Poly (1-Vinyl-1, 2, 4-Triazole) 

 

Using AIBN as the initiator, PVTri is produced by the free radical polymerization of 1-

vinyl1, 2, 4-triazole in toluene [49]. The reaction mixture was purged with nitrogen. 

Following to that the polymerization reaction was performed for 2 hours at 85 Celsius 

degree. The white powder occurred as a result of the reaction was filtered and dried by a 

vacuum. The resulting polymer was dissolved in DMF. Next step is mixing it with a 

Nafion solution. The solutions were then cast onto polished Teflon plates. The slow 

evaporation of the solvent was carried out for at least 24 hours at 40 Celsius degree and at 

80 Celsius degree. As a result a hygroscopic and free standing film is obtained with 

thickness between 150 and 300 μm. 

 

3.1.2.3.2. Sulfonated Pbibi/Poly (Vinylidene Fluoride) 

 

By dissolving SPBIBI and polyvinylidenefluoride in DMSO for 12 hours blends were 

prepared [50]. The homogeneous blend solutions were filtered through a 0.5 μm PTFE 

membrane and poured into a glass petri dish at 80 Celsius degree to cast the blended films. 

The transparent homogeneous thin films between 30 to 50 μm were boiled in water. Then 

to remove the solvent; sample was dried in a vacuum oven for 48 hours at 100 Celsius 

degree. The PEMs were washed thoroughly with DI water and dried in a vacuum for 10 

hours at 100 Celsius degree.  

 

3.1.2.3.3. Polybenzimidazole/Polyether 

 

As a first step, both polymers were placed in a DMAc solution. The mixture solution was 

stirred at ambient temperature for 2 hours.  
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Figure 9 Synthesis of partially fluorinated polyether 

 

By using petri dishes, the resulting PEMs were casted from the mixture solution. The 

majority of the solvent was evaporated in a ventilated oven at temperatures ranging from 

60 to 120 Celsius degree. Then the membranes were peeled off and boiled in water. Then 

they dried for 2 hours at 200 Celsius degree. The blend membranes were doped with 

H3PO4 in a closed container to avoid changes in the concentration from acid evaporation. 

As a next step; the blended membranes were removed from the acid solution, blotted with 

filter paper and dried under vacuum for 120 hours at 110 Celsius degree.  

 

3.1.2.3.4. Ppo/Poly (Styrene-B-Vinylbenzylphosphonic Acid) 

 

By stable free radical polymerization; Polystyrene-b-vinylbenzylphosphonic acid (PSb-

PVBPA) has been prepared [52]. Then by vigorous stirring, PPO and PS-b-PVBPA 

copolymer were dissolved in NMP at 80 Celsius degree. The obtained solution was filtered 

rapidly through a 0.45 μm membrane and casted onto a 95 Celsius degree glass plate. NMP 

was then evaporated for 6 hours at 95 
◦
C. The resulting film was dried again under vacuum 

for 24 hours at 95 Celsius degree. The film was treated with an HCl solution for 12 hours 

at 50 Celsius degree to transform the film into a membrane, and then in boiling DI water 

for 12 hours. As a final step sample was  washed with DI water.  
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3.1.2.4. Polybenzimidazole (PBI) Based Acid–Base Membrane  

 

For synthesing the PBI there are two types of synthesis is possible; heterogeneous 

synthesis and homogeneous synthesis.  

 

For heteregeneous synthesis Choe proposed a single stage method to synthesize high 

molecular PBI using tetra amino bi phenyl and iso phthalic acid as monomers [55].  

 

 

 

Figure 10 PBI synthesis 

 

Other method is homogeneous synthesis. A liquid with low viscosity such as a mixture of 

P2O5  and methanesulphonic acid were also used as a solvent for the homogeneous 

synthesis of PBI [58].  

 

After synthesing the PBI next step is modifiying it. Pyridine based PBI was synthesized 

from the pyridinedi carboxylic acids [58]. Schuster synthesized OO-PBI and OSO2-PBI. 

By using tetra amino di phenyl sulphone and oxydibenzoic acid mixtures; the OO-PBI was 

prepared by a poly condensation reactions and OSO2-PBI was synthesized [59]. Bhadra 

synthesized hyperbranched PBIB with a honeycomb structure through the condensation 

polymerization of trimesic acid and di amino benzidine [60]. Xu synthesized amine-

terminated hyperbranched PBI [61]. Bhadra also synthesized Poly(5-aminoisophthalic 

acid) by the oxidative polymerization of amino iso phthalic acid, which was then subjected 

to condensation polymerization with di amino benzidine to obtain poly benzimidazole-co-

aniline, a self-cross-linked, net-structured, proton conducting PBI type of polymer 
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membrane for high temperature proton exchange membrane FCs [62].  

 

Poly benzimidazole (AB-PBI) has an uncomplicated structure compared to PBI. The 

polymerization procedure of ABPBI was carried out using a single monomer (di amino 

benzoic acid). Recent efforts were made to synthesize AB-PBI in poly phosphoric acid 

[59] or in a P2O5 - MSA mixture [57]. Figure below shows the synthetic route for the 

fabrication of AB-PBI.  

 

 

 

Figure 11 Synthesis of AB-PBI 

 

When these steps are completed, materials for membrane are ready. After preparation part 

is completed, membrane needed to be cast.  

 

The conductivity of Polybenzimidazole (PBI) generally increases by increasing acid 

doping level and decreases by the ways of mechanical strength. Different methods have 

been used to improve the proton conductivity without decreasing the mechanical strength. 

These methods include ionic and covalent cross linking of the polymeric membranes.  

 

For Ionic cross-linking; flexible ionomer networks can be prepared from acid–base 

polymers by the ionic cross-linking of polymeric acids and polymeric bases [65]. 

Sulphonated polysulphone [66], sulphonated polyetheretherketone [67], sulphonated poly 

(2, 6-dimethyl-1, 4-phenylene oxide) and sulphonated poly (arylene thioether) s are the 

acidic polymers typically used to modify basic PBI through ionic cross-linking [68], [69]. 

Basically the ionic cross-linked membrane shows poor thermal stability and readily 

ruptures at elevated temperatures, resulting in unacceptable swelling and mechanical 

instability.  
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For covalent cross linking using in FC applications, dibromo-p-xylene is used as a cross 

linker for PBI membranes [70]. Above 250 
◦
C, cross-linked membranes not only show 

higher proton conductivity but also improved mechanical strength. 

 

3.1.3. Flow Fields 

 

There are two flow field designs commonly used in PEMFCs, conventional and 

interdigitated. As seen in Figure 13, in conventional flow fields, gases enter from the inlet 

port of the channel and leave the cell from outlet port. However in the interdigitated flow 

field design, the grooved channels are dead ended. This dead ended design forces gases to 

flow from inlet to outlet through the porous electrodes, resulting in a convection dominant 

mass transport, whereas in the conventional flow field, diffusion was the motive force for 

mass transport. As reported in the literature, when FC performance is considered 

interdigitated, flow fields have some advantages over the conventional type.

 

 

Figure 12 Conventional (left) and interdigitated (right) flow field designs 
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3.1.4. Current Collector Plates 

 

As a collector plate; graphite or metals commonly used due to light strength. Flow fields 

on the plate have a significant effect on the performance of the FC. The width of the 

grooves directly affects the produced current.  

 

3.2. Performance Issues 

 

The performance of the FC dependents on many different parameters and all these 

parameters interact with each other. These parameters should be optimized in order to 

obtain high performance which is also high efficiency FC. 

 

Figure 13 Simplified FC reactant supply system 

 

A FC model developed above contains nine states [102]. The compressor has a state based 

on speed of rotor, the supply manifold has two states based on air mass and pressure; the 

return manifold has a state based on air pressure and the FC stack has five states based on 

𝑂2 , 𝑁2 , vapor masses in the cathode side and 𝐻2 , vapor masses in the anode side. 

Combination of these states determines the voltage output of the FC. In this thesis FC is 

the focus point. 
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When we talk about performance the first think comes to the mind is produced voltage. 

Voltage of a FC has a basic formulation based on Gibbs free energy for open circuit 

voltage for hydrogen based FCs such as PEMFCs. You can see the equation below but 

there is also many voltage losses that you can see in following pages. 

 

𝑉 =  
−∆𝑔𝑓

2𝐹
 

 

The target is to obtained a high efficiency cell. Simple equation of efficiency based on 

Gibbs free energy and enthalpy can be seen below. 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
−∆𝑔𝑓

−∆ℎ𝑓
 

 

In FCs the general equation used for obtaining efficiency is; 

 

∈𝑓𝑐=  
𝑤𝑓𝑐

𝑚𝑓𝑐 𝑥 𝐿𝐻𝑉
 

 

where  𝑚𝑓𝑐 is mass flow rate, 𝑤𝑓𝑐 is FC power produced, and LHV is fuel lower heating 

value. In this equations FC power comes from a basic equation which is; 

 

𝑊𝑓𝑐 =  
𝑉 𝑥 𝐼

1000
  

3.2.1. Mass Transfer in Cathode Side 

 

Ideally while the calculations air should be investigated in three different steps, as oxygen, 

as nitrogen and as water vapor. The inlet and outlet mass flow rate of air is calculated from 

the inlet and outlet cathode flow conditions using thermodynamic properties. You can see 

the mass flow rate calculations below where m is the mass and, W and  𝑑𝑚
𝑑𝑡⁄  is the mass 

flow rate. The mass continuatively is used to balance the mass of air which includes three 

elements (in this case). 
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𝑑𝑚𝑂2

𝑑𝑡
= 𝑊𝑂2,𝑖𝑛 − 𝑊𝑂2,𝑜𝑢𝑡 − 𝑊𝑂2,𝑟𝑒𝑎𝑐𝑡𝑒𝑑 

𝑑𝑚𝑁2

𝑑𝑡
= 𝑊𝑁2,𝑖𝑛 − 𝑊𝑁2,𝑜𝑢𝑡 

𝑑𝑚𝑤,𝑐𝑎

𝑑𝑡
= 𝑊𝑣,𝑐𝑎,𝑖𝑛 − 𝑊𝑣,𝑐𝑎,𝑜𝑢𝑡 + 𝑊𝑣,𝑐𝑎,𝑔𝑒𝑛 + 𝑊𝑣,𝑚𝑒𝑚𝑏𝑟 

 

Also it is possible to beneficial from electrochemistry principle while the mass flow rate 

calculations as it seems below where F is the Faraday's constant, I is current and M is 

molar mass. 

 

𝑊𝑂2,𝑟𝑒𝑎𝑐𝑡𝑒𝑑 = 𝑀𝑂2
 𝑥 

𝑛𝐼𝑠𝑡
4𝐹⁄  

𝑊𝑣,𝑐𝑎,𝑔𝑒𝑛 = 𝑀𝑣  𝑥 
𝑛𝐼𝑠𝑡

2𝐹⁄  

3.2.2. Mass Transfer in Anode Side 

 

The inlet and outlet mass flow rate of air is calculated from thermodynamic properties 

using flow properties. Air flow behavior is developed using the mass conservation 

principle and the thermodynamic and psychometric properties of hydrogen as you can see 

below. 

 

𝑑𝑚𝐻2

𝑑𝑡
= 𝑊𝐻2,𝑖𝑛 − 𝑊𝐻2,𝑜𝑢𝑡 − 𝑊𝐻2,𝑟𝑒𝑎𝑐𝑡𝑒𝑑 

 

𝑑𝑚𝑤,𝑎𝑛

𝑑𝑡
= 𝑊𝑣,𝑎𝑛,𝑖𝑛 − 𝑊𝑣,𝑎𝑛,𝑜𝑢𝑡 + 𝑊𝑣,𝑚𝑒𝑚𝑏𝑟 

 

Also due to the electrochemistry principle you can see the mass flow rate equation below.  
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𝑊𝐻2,𝑟𝑒𝑎𝑐𝑡𝑒𝑑 = 𝑀𝐻2
  

𝑛𝐼𝑠𝑡
2𝐹⁄  

 

3.2.3. Water Management 

 

One of the most important items that can affect FC performance is water management 

system. Water management is effective in two ways; for humidifying the cell and for 

removing the heat. Humidity values of entering gases and the liquid water generated 

during the reaction are the water sources. On the other hand while the chemical reaction 

occurs in the membrane there is heat as a result of the chemical reaction. The point is, if 

the heat produced does not disappear from the reaction area, it decreases the reaction rate 

so efficiency of the FC decreases. 

 

The water transport across the membrane can happen by the help of two forces. First one is 

the electro osmotic drag. Electro osmotic drag phenomenon is the drag forced cause by the 

molecular forces. In this case it drags across the membrane from anode side to cathode 

side. The amount of water transported is proportional to the electro osmotic drag 

coefficient which is defined as the number of water molecules carried by each proton. 

Second one, is the gradient of water concentration. The water concentration differs on the 

membrane linearly. By combining these two calculated methods you can see the final 

equation below where 𝑛𝑑 is drag coefficient, 𝑐𝑣 is water concentration, 𝑡𝑚 is the membrane 

thickness and 𝐷𝑤 is the water drag coefficient. 

 

𝑊𝑣,𝑚𝑒𝑚𝑏𝑟 = 𝑀𝑣  𝐴𝑓𝑐  𝑛   (
𝑛𝑑   𝐼𝑠𝑡

𝐹
−  𝐷𝑤   

𝑐𝑣,𝑐𝑎 − 𝑐𝑣,𝑎𝑛

𝑡𝑚
)  

 

There are some assumptions while calculating the mass transfer such as water content and 

mass flow. They are perfectly uniform over the surface area of the membrane, and are 

functions of stack current and relative humidity of the gas in the anode and cathode.  
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3.2.4. Heat Management 

 

A chemical reaction taking place inside the FC. As a result of this reaction a heat flux 

happening form inside the membrane to outside of the cells. It is very important because of 

two reasons; high temperature causes a decrease in reaction rate so FC efficiency decreases 

and, high heat can damage the cell. The ideal is having a homogenized distribution of 

temperature over the cell for decreasing the thermal stresses. 

3.2.5. Voltage Losses 

 

Another very important performance issue in FC's is voltage losses. In a FC there is four 

major voltage loss reasons; activation losses, internal losses, ohmic losses and losses 

caused by mass transport. When all different type of voltage losses comes together the 

equation for FC voltage is below. The aim is to decrease losses to develop higher energy. 

You can see the details of the losses in the following pages. 

 

∆𝑉 = 𝐸 −  𝑟 (𝑖 −  𝑖𝑛) −  𝐴 ln (
𝑖 + 𝑖𝑛

𝑖𝑜
) +  𝐵 ln (1 −  

𝑖 + 𝑖𝑛

𝑖𝑙
)  

3.2.5.1. Activation Losses 

 

Activation losses are directly connected with activation energy of the chemical reaction. 

Before reaching the activation energy level, reaction does not start. Activation losses can 

be calculated with Tafels equation you can see below; where A is a constant based on 

material properties and 𝑖𝑜 is exchange current. 

 

𝑉 = 𝐴 ln (
𝑖

𝑖𝑜
) 

 

And the constant A can be calculated by the equation below; where T is temperature as 

Kelvin Degree, R is ideal gas constant, F is the Faradays constant and α is charge transfer 

coefficient which generally changes between 0,1 and 0,5. 
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𝐴 =  
𝑅 𝑇

2 𝛼 𝐹
 

 

For having a minimal loss what needed to be done is to prefer a better catalyst with lower 

𝑖𝑜. Most common used material is Platinum. 

 

Table 4 𝒊𝒐 values of some materials 

3.2.5.2. Internal Losses 

 

Second major voltage loss is the internal losses. They are the losses based on leakage 

problems such as fuel leakage to electrode or electron leakage to electrode. It is very 

important for low temperature FCs, for high temperature FCs 𝑖𝑛  is too small so it is 

negligible. You can see the equation below. 

 

𝑉 = 𝐴 ln (
𝑖𝑛

𝑖𝑜
) 

3.2.5.3. Ohmic Losses 

 

Ohmic losses are based on resistance of the components. It is directly affected by the 

resistance of the electrodes and collector plates to the transfer of electrons and the 

resistance of the polymer membrane to the transfer of protons.  

 

𝑉 = 𝐼  𝑅 
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On the other hand, resistance depends on cell temperature and membrane humidity [103]. 

So as like seen in the equation below, resistance is effected by membrane thickness and 

conductivity. 

 

𝑅 =  
𝑡𝑚

𝜎𝑚
 

 

3.2.5.4. Mass Transfer Losses 

 

The last reason of voltage losses is the losses caused by mass transfer. It is because of the 

concentration of fuel issues. High concentration of fuel or low concentration of fuel affects 

the chemical reactions rate. So the rate between supply and demand is very important for 

the cell. 

 

∆𝑉 =  
𝑅 𝑇

2 𝐹
ln (

𝑃2

𝑃1
) 

 

𝑃1  is the pressure of fuel so most of the time hydrogen pressure and 𝑖𝑙 is the limiting 

current density. 

 

𝑃2 =  𝑃1  (
𝑖𝑙 −  𝑖

𝑖𝑙
) 

 

3.2.6. Power Management 

 

The power produced by the stack is used for the auxiliary components like the compressor 

that is used to increase the pressure. Increase in the pressure affects the power output. The 

parasitic power due to the compressor demand also increases so it reduces the net power. 

The pressure should be optimized due to required power output of the system. 
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3.2.7. Sealing 

 

The sealing function in FCs is can effect reliability, durability and cost of the FC [83]. A 

small leakage in the cell can result with a major decrease in efficiency.  

 

3.3. System Integration 

 

Between the application areas of PEMFC; transportation applications have the main 

attraction. In order to be used in automotive, PEMFC must be combined with many 

components and systems. Figure 15 shows the automotive FC system prepared by 

Pukrushpan [5].  

 

Figure 14 Automotive FC propulsion system 

 

A compressor is used to supply pressurized air to the FC stack. It enhances the power 

output of the system. The air temperature increases during the compression process so a 

heat exchanger is used to reduce the temperature. Air entering the stack is humidified for 

water management purposes. Water produced at the stack is used in humidifiers after it is 

separated from the exhaust gases. On the other side a valve is used to control the flow of 

hydrogen from the pressurized tank. The hydrogen entering the stack also humidified by a 

humidifier. The extra heat formed due to the chemical reaction is removed from the stack 
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by using a de-ionized water coolant to keep temperature in suitable operation ranges. 

 

Change in one parameter may affect another. For example, change in the pressure of the 

reactants affects temperature and humidity of the gases entering the stack. The output 

power directly affected from humidity of the membrane. Also the rate of the chemical 

reactions affected from the temperature of the stack and it directly affects the energy 

output. 
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4. AUTOMOTIVE APPLICATIONS 

 

When all different types of FCs and their application areas are studied transportation 

applications are the most promising and competitive application. People are more aware 

about clean energy sources; they started to care about greenhouse gasses so they prefer to 

obtain from a clean energy source. This is the reason of promising potential. On the other 

hand, the success of PEMFC in automotive industry can be a very important opportunity 

for applications in other fields. When mass production of Fuel Cell Vehicles (FCV) begins, 

due to the manufacturing rates and mass production the cost of FCs reduces which can also 

affect all application areas of FCs.  

 

The development of a FCVs require development on many different areas such as thermal 

management of the cell, transportation of required fuels to the cell, managing size 

problems due to vehicle size, locating the FC system in the right place of the vehicle due to 

safety based on crash tests or flammability, etc. As a general view integration of the system 

is the issue; the onboard integration of the FC system and its energy storage devices with a 

proper energy management [94]. In order to meet the future transportation needs, most 

major car makers in the world are engaged in developing prototype FCVs.  

 

The most important factor that supports the growing market for FCV is the success of the 

hydrogen economy and related technologies to that [94]. FCV system equipped with direct 

conversion fuel processor can compete with Internal Combustion Engine (ICE) 

technologies because the performance of hydrogen would exceed the performance of ICE 

in all aspects out of cost performance [95]. 

 

By the technology roadmaps; the present and future specifications of PEMFC for FCV are 

explained clearly [96]. Those roadmaps were prepared due to required improvement areas 

and they try to route the developments promising areas for supporting of FC technology. In 

those roadmaps they focused in four areas that are critical for the commercial adaptation of 
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FC in automotive industry, which is durability, cost, freeze start time and volumetric 

power density.  

 

When we make a general overview on those targets; 

 As a durability target; 5000 hours lifetime tried to be reached by 2010.  

 For decreasing to costs; a 500,000 unit volume tried to be reached of having a stack 

cost of 30 $/kW. 

 A freeze start capability; the target is to obtain 50% of the maximum power in 30 

seconds under 1 Celsius degree temperatures.  

 And as a volumetric power density target; 2500 W/l tried to be reached. 

 

 

 

 



42 

5. METHODOLOGY 

 

As stated before the success of PEMFC in automotive industry can be a very important 

opportunity for many other fields because of mass production opportunity. To increase the 

usage of FCs the most important problem needed to be solved, which is high cost. In the 

first years of FCs, most of the costs come from raw materials prices such the price of Pt. 

Nowadays; it has significantly decreased. Usage of Pt was 28 gr/cm
2
 but today it is less 

than 0,2 gr/cm
2
. After this point the cost can decreased by eliminating some components of 

the system. Simplification of the system can be an opportunity for cost reduction. For 

elimination some components such as recovery pump of anode flow optimization needed 

to be developed and due to the large size of automotive applicable FCs, the heat and flow 

distributions start to be a challenge. 

 

In this thesis a 20x20 cm fuel cell model was designed. Due to the challenges stated above, 

for optimizing the heat and flow different anode/cathode gas channels and water 

management system a 3D model of the cell was created by using solid modeling, computer 

aided design (CAD) and computer aided engineering (CAE) program named Solid Works. 

After creating few models; they exported to finite element analysis and solver program that 

can analyze multi-physics named COMSOL for beginning optimization process of this 

thesis. 

 

Steady state, 3D, single phase, isothermal PEMFC model is developed. The models used 

for these simulations consists of three different parts; anode, cathode and water channels. 

A commercial flow solver based on finite element technique COMSOL; solves the 

complete equations with determined source terms. The stationary nonlinear solver is used 

since the source terms of the current conservation equation make the problem nonlinear. 

The impact of various parameters on inlet and outlet studied while optimization process 

such as flow rates, velocities, pressures and temperatures. After determining the inlet and 

outlet; boundary conditions needed to be clarified and model needed to be meshed for 

getting ready for analysis. To accelerate the convergence of the analysis, model is firstly 
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solved based on the initial settings of Comsols solver and than Navier-Stokes modules and 

Darcys Law modules are used for analysis that use the results of previous standart solver. 

 

To sum up; at first the behavior of fluid flow and pressure distribution is studied by using 

solvers. And then a theoretical study of temperature distributions is analyzed. So the 

simulations are based on two different studies; fluid flow and heat flow. 

 

For fluid flows as a first step flow type is needed to be clarified by calculating Reynolds 

number because you need this number for determining the flow type such as; creeping, 

laminar or turbulent. If the Reynolds number is lower than 2300 flow is laminar, if it is 

higher than 4000, it is turbulent and if it is between 2300 and 4000 it is transient flow. If 

the Reynolds number is very small so the flow rate is also very slow, it is called creeping 

flow. You can see the equations below where ρ is density, u is velocity, μ is dynamic 

viscosity, v is kinematic viscosity and L is the total length of a single channel. 

 

Re =  
ρ u L

μ
; 

 

Re =  
u L

v
. 

 

In this equations kinematic viscosity equals to;  

 

v =  
dm

dt⁄

ρ A
. 

 

Than Navier Stokes equations, Darcy's Law, and the Brinkman Equations are used. The 

flow is solved due to the Newton's second law by using Navier Stokes equations. In the 

case of a compressible Newtonian fluid, Navier Stokes equation consists of four main 

parts; inertial forces, pressure forces, viscous forces, and the external forces applied to the 

fluid. 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑠   =  ρ (
du

dt
+  u . ∇u)  
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𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐹𝑜𝑟𝑐𝑒𝑠 =  −∇𝑝 

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝐹𝑜𝑟𝑐𝑒𝑠    =  ∇ . [μ (∇u +  (∇u)T) − 2
3⁄  μ(∇ . u)I]  

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑜𝑟𝑐𝑒   = 𝐹 

 

So the total equation is below where μ is the fluid dynamic viscosity, p is the fluid 

pressure, u is the fluid velocity and ρ is the fluid density. 

 

ρ (
du

dt
+  u . ∇u) =  −∇𝑝 +  ∇ . [μ (∇u +  (∇u)T) −  2 3⁄  μ(∇ . u)I] +  F  

 

Navier Stoke equations are solved together with continuity equation as general you can see 

below. The Navier Stokes equations represent the conservation of momentum, while the 

continuity equation represents the conservation of mass. 

 

𝑑ρ

𝑑𝑡
+  ∇ . (ρu) = 0 

 

In low Reynolds numbers so when the flow type is creeping flow; inertial forces and 

exteral forces are neglectible. In this condition Navier Stoke equation can be simplified. 

 

Darcy’s law is also an approach for solving fluid flows but it is only valid for very slow 

flows which have Reynolds number smaller than one. Darcy’s law was derived from the 

Navier Stokes equations you can see below where K is the permeability. 

 

𝑢 =  − 
𝐾

μ
 ∇𝑝 

 

Brickman’s equation is an approach derived from the Darcy’s law. Equation can be seen 

below where β is an effective viscosity term.  

 

𝐵 ∇2𝑞 + 𝑞 =  − 
𝐾

μ
 ∇𝑝  

https://en.wikipedia.org/wiki/Viscosity
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After the solvers of the analysis clarified, details of the model needed to be determined. 

First step is creating the model. It is possible to create the model in Comsol, the same 

program with the one that can simulate flow analysis. In this thesis models created by a 3D 

modeling program named Solidworks. Then models were imported to Comsol, which is 

the multi-physics analysis program. After importing the model to Comsol, it was extracted 

from a bulk block to obtain channels in it. Then, it was like a cycle; model created than 

analyzed; if the results were far beyond than expected, new design must be created. If the 

results are close to expected levels, keep the design but optimize channel sizes. And this 

process repeated till the desired distribution can observe. 

 

While the analysis other some settings needed to be determined. When the analysis was 

investigated one by one; for the cathode side; stationary study was developed under 

laminar flow physics conditions. In the laminar flow physics some other detailed needed to 

be clarified such as wall conditions, inlets, outlets, etc. The material that flows was chosen 

as pure air and the fluid properties directly determined based on general properties of air. 

The air temperature is determined as 333 Kelvin degrees which is the cell temperature 

under 1,5 atm pressure condition. These values have direct affect on viscosity. Next step is 

determining the wall conditions. In this analysis it is no-slip. Then inlet and outlet were 

determined. Inlet is determined as mass flow with a flow rate at 1.10
-5 

kg/s. The outlet is 

determined as pressure. Initial pressure condition is 1,5 atm and backflow was suppressed. 

The last step before starting analysis is determining the mesh properties. On the one side of 

the cathode channel model; free triangular mesh distribution was used with maximum 

0,001 m and minimum 0,00004 m particle sizes. Then this distribution swept down as 4 

layers (you can see details in appendix 1).  

 

A laminar, continuous flow with uniform mass transfer tried to obtain but the challenging 

point was optimizing the pressure of the fuel because aim was minimizing the pressure 

drop. The pressure drop between the inlet and the outlet needs to be too low in all over the 

channels. 

 



46 

The other part needed to be analyzed is anode channel. For the anode model; stationary 

study was developed under creeping flow physics conditions. The material that flows was 

chosen as pure hydrogen and the fluid properties was determined based on that. Initial 

temperature was determined as 333-Kelvin degree that is the cell temperature and the 

reference pressure determined 1 atm. Then the wall condition was chosen as no-slip. Next 

step is determining inlet and outlet. Inlet is determined as pressure and outlet determined as 

flow. Inlet pressure is 1,5 atm and back flow was neglected. Outlet velocity is 7,6.10
-4 

l/min and it is a laminar out flow. On the one side of the anode channel model; free 

triangular mesh distribution was used with maximum 0,001 m and minimum 0,00004 m 

particle sizes. Then this distribution swept down as 4 layers (you can see details in 

appendix 2).  

 

Due to continuous flow, uniform mass transfer tried to be obtained. Significant point is to 

supply enough H2 for the cell reaction. If supplied hydrogen is much more than required, 

H2 accumulates and due to accumulation reaction rate decreases. What is needed to be 

done is optimizing the flow rate. The flow type for anode model is used as creeping flow 

as mentioned above. 

 

The last part that was analyzed is water channels. For the anode model; stationary study 

was developed. This time physics conditions are a bit more complicated then anode and 

cathode. Two different physics conditions were used; laminar flow and heat transfer. The 

material was chosen as water; this time the material of the ribs are also important and they 

were chosen as graphite. Ribs are important because they also affect the heat distribution. 

Initial temperature was determined as 333-Kelvin degree that is the cell temperature and 

the reference pressure determined 1 atm. For the laminar flow study; the walls determined 

as no-slip. Inlet was a mass flow in 1.10
-5 

kg/s flow rate and outlet is pressure with 0 atm. 

In this case outer pressure and the back flow is neglected. For the heat transfer study; an 

extra surface is added to the model for representing the membrane. A heat flux (Qin) was 

defined to that surface as 6 kW/s. There was also an outflow; it was the same port with the 

outflow of laminar flow. The flow entering to water channels defined as 293 Kevin 

degrees, which is room temperature. Mesh was also complicated than cathode and anode 
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layers due to complication of two physic studies. For membrane side triangular mesh was 

used and swept to 4 layers. For the water channels side free tetrahedral mesh is used and 

boundaries of the meshed studied. As a last step for meshing; corner refinement was done. 

All the mesh sizes were calibrated for fluid dynamics (you can see details in appendix 3). 

 

Uniform flow distribution tried to be obtained in those channels. After that as a second 

step, uniform heat distribution tired to be obtained. By homogeneous distribution of high 

flow rate; the heat flux coming from the membrane can be carried out faster. Higher rate of 

heat removing can increase the efficiency of the FC. 
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6. RESULTS, ANALYSIS AND DESIGN 

 

As mentioned in methodology section; three parts of the FC is analyzed during this thesis. 

There are the flow model of the cathode side, the flow model of the anode side and the heat 

and mass flow model of the membrane cooling system what was called, water channels.  

 

In the cathode channels; homogeneous distribution and uniform flow is very important. In 

this case the challenge is optimizing the pressure drop. After trying several designs five-

channel parallel serpentine model were used. While optimizing the channels at the end; 

sizes were chosen as 2 mm depth and 2mm width. When you give a look to the geometry 

of the cathode side, it is perfectly symmetrical as you can see below. 

 

 

 

Figure 15 Cathode model channel design 

 

Having continues and symmetric channel design as you can see below it is easier to obtain 

a uniform flow with homogeneous distribution. And as a result you can see below, a 

uniform velocity and pressure distribution was obtained. 
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Figure 16 Cathode model velocity distribution 

 

When the color scale was checked it seems like there is a decrease in pressure and velocity 

but when we checked the values pressure is seem like all the same and the velocities are 

almost the same in same axis. Pressure seen like the same all over the channels but when 

calculated manually, we saw that there is only 80Pa pressure drop, which is too low like 

we try to obtain. On the other hang the velocities above seen like changing but it is almost 

the same in all over the cell again. The color difference is caused by the way of flow. Red 

and blue colors are just the same velocity with different ways like +x and –x. And the 

green part which seen like 0 velocity is zero velocity in x-axis, because in that channel 

velocity is in y-axis. 
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Figure 17 Cathode channel pressure distribution 

 

In anode channels, homogeneous distribution with uniform flow tried to be obtained. 

Problem is keeping the concentration of the gasses constant in the channels for minimizing 

its effects on reaction rate. After trying several designs fish bone model with perpendicular 

entrance side and angular outflow side is used as you can see below. While optimizing the 

channels, sizes were chosen as 1 mm depth for all the channels. 2mm width is used for 

main channels perpendicular to sides and 1 mm width for small channels, which is angular 

to sides. You can see the design below. 
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Figure 18 Anode model channel design 

 

By the ways of pressure distribution it reached to the level we expected. It has a uniform 

pressure distribution in all over the anode surface as you can see below. 

 

  

 

Figure 19 Anode model surface pressure distribution 
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The velocity distribution on the surface of the anode was a bit more complicated.  Velocity 

in y-axis is uniform in everywhere. The velocity in x-axis is uniform in the places closer to 

inlet and outlet; just in to the middle the velocity in x-axis decreases as you can see below. 

 

 

Figure 20 Anode model slice velocity distribution 

 

The last part is water channels. This was the most challenging part of these analyses 

because both heat flux and mass transfer needed to be analyzed and optimized at the same 

time. Homogeneous distribution and uniform flow is again very important but the most 

important part is the heat transfer. These channels remove the heat that is a result of the 

reaction in the membrane. Three parallel serpentine channel model designs are used. For a 

single layer of a channel; sizes were optimized as 1 mm depth for all layer, 5mm width for 

channels and 4mm width for ribs.  
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Figure 21 Water channel design 

 

When geometry of the water channels checked, it is perfectly symmetrical as you can see 

above. This has a major affect on flow distribution. Uniform flow distribution is obtained. 

You can see the velocity distribution below. 

 

 

 

Figure 22 Water channel flow velocity distribution 
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Additional to mass flows; heat transfer in solids/liquids module is used as mentioned 

before in methodology section. Due to heat transfer studies; a heat distribution was also 

obtained. While the studies due to the defined parameters mentioned in methodology part, 

temperature of the cell kept constant at 333-Kelvin degree as you can see below. 

 

 

Figure 23 Membranes heat distribution with water channel 
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7. CONCLUSION 

 

Due to the high costs of new homologation emission requirements in the automotive 

industry and increase in costs of raw materials, developing renewable energy sources 

become feasible. In regulative ways, emission levels based on COx, SOx, particle size, etc. 

decrease and therefore research costs increase exponentially. These investments can be 

shifted to renewable energy sources; especially to FC development for the automobile 

industry. 

 

There are too many different fuel cell types. They differ based on the membrane that they 

use. The working temperature, start up time and the efficiency are the major reasons of the 

distributing FC to different applications. Compared to other fuel cell types, Proton 

Exchange Membrane fuel cells are the most suitable for transportation applications 

because it is the most competitive and promising one due to startup time, low sensitivity to 

orientation and favorable W/kg ratio. 

 

Determining the right FC type based on application is not enough for having a high 

efficiency system. The system integration is very important. Water management, heat 

management, oxygen excess ratio, sealing, etc. all have major effects on the efficiency of 

the FC system.  

 

FC systems can reach up to 60% efficiency in different applications. However, there is a 

potential to reach 90%. There is still a long way to go. Next to increasing the efficiency, 

the cost change is the second major point. This can be changed by two ways: First; most of 

the cost comes from platinum so replacing Pt with a low cost material significantly 

decreases the cost of FC. Second; if the usage rate of FC systems increase; price of FC 

systems decrease due to mass production. 

 

In this thesis a methodology to recognize the various interactions in a fuel cell system is 

illustrated by the ways of mass flows and heat transfers such as air flow, water flow and 

thermal management in anode, cathode and water channel layers. By optimizing the flows; 
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system can be simplified by eliminating some components such as anode recovery pump. 

The 3D modeling tools like Solid works and a finite element solver program like 

COMSOL is required for such an analysis are described. While that impacts of varying 

parameters on fuel cell system operation are studied. 

 

In this study; FC were studied in three parts; flow analysis in anode channel, flow analysis 

in cathode channel and flow analysis in water channels with heat distribution. In anode 

channels; homogeneous distribution with uniform flow tried to be obtained. The challenge 

is keeping the concentration of the gasses constant in the channels to minimize its effects 

on reaction rate. This obtained by defining creeping flow in anode channels with uniform 

flow. 

 

In the cathode channels; as like anode homogeneous distribution and uniform flow is very 

important. In this case the challenge is optimizing the pressure drop. This is also obtained 

by a laminar flow. It will be good to analyze it by turbulent flow also as a future work. 

 

For the water channels; homogeneous distribution and uniform flow is important but the 

most important part is the heat transfer. These channels remove the heat which is a result 

of the reaction in the membrane. Homogeneous distribution with uniform flow obtained by 

a laminar flow and the heat distribution studied. Analyzing these flows under turbulent 

condition is important as a future work. A comparison with laminar flow and other channel 

design is needed to decide the best. 

 

By these studies; it is clarified that obtaining a 20cm x 20cm FC with a well distributed 

heat and low pressure drops in mass transfer of anode and cathode side is possible. So by 

the ways of these results it is possible to develop a simplified, low cost FC which is 

suitable for automotive applications. 

 

As a future work; analyzing the flows in turbulent conditions and studying heat distribution 

with more details is very important. For studying the heat distribution it is also required to 

simulate the reaction in the membrane; in the studies belong this thesis, membrane heat 
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determined as a constant value. For heat distribution, interaction of the material is very 

important so as a next study it can be simulated and then by combining the FC models; a 

stack assembly model can be created and analyzed. But before analyzing the stack; sealing 

of the FC need to be designed and analyzed to be sure there is no leakage under high 

pressures. Due to the high pressure point bolt locations needed to be determined. A FC 

model developed above contains nine states so as a last step other components of the FC 

system can be integrated to energy calculations to reach the net output and efficiency of the 

system. 
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APPENDIX 

 

A 1: Cathode Layer Analysis Details 

 

Analysis run by the program COMSOL 5.1. For having a more realistic analysis result we 

defined most of our parameters. Our analysis done in stationary mode (not time 

dependent). You can see defined parameters below. 

 

 Study : Stationary 

 

 Laminar flow 

 

o Incompressible 

o Pref=1,5atm 

 Material : Air 

 

 Fluid properties : T=293,15 K 

 Initial values: 

o u= 0.x + 0.y + 0.z 

o P=1atm 

 Wall : no slip 

 Inlet 

o Mass flow 
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o Mass flow rate 

o Mdot=1.e-5 kg/s 

 Outlet 

o Pressure 

o Po=1,5 atm 

o Suppress backflow 

 Mesh 

 

o Size 

 Max: 0,02 m 

 Min: 0,0036 m 

o Free triangular 

 Size 

 Max: 0.001 m 

 Min: 0,00004 m 

 Distribution: 4 layers 

o Swept 

 Distribution : 4 layers 
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A 2: Anode Layer Analysis Details 

 

 

Analysis run by the program COMSOL 5.1. For having a more realistic analysis result we 

defined most of our parameters. Our analysis done in stationary mode (not time 

dependent). You can see defined parameters below. 

 

 Study: Stationary 

 

 Creeping flow 

 

o Incompressible 

o Neglect inertial term 

o Pref=1atm 

 Material : Hydrogen 

 

 Fluid properties : T=293K 

 Initial values: 

o u= 0.x + 0.y + 0.z 

o P=1atm 

 Wall : no slip 

 Inlet 

o Pressure 

o Po=1,5 atm 

o Suppres back flow 
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o Normal flow 

 Outlet 

o Laminar out flow 

o Flow rate 

o Vo= 7,6e-4 l/min 

o Lexit= 1m 

 Mesh 

 

o Size 

 Max: 0.02m 

 Min: 0,0036m 

o Free triangular 

 Size 

 Max: 0.001m 

 Min: 0,00004m 

 Distribution: 4 layers 

o Swept 

 Distribution: 4 layers 
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A 3 :Water Channel Analysis Details 

 

 

Analysis run by the program COMSOL 5.1. For having a more realistic analysis result we 

defined most of our parameters. Our analysis done in stationary mode (not time 

dependent). You can see defined parameters below. 

 

 Study: Stationary 

 

o Study extensions 

 

 Material : Water (for flow channels) & Graphite (for membrane) 

 

 Laminar flow 

 

o Incompressible 

o Pref=1 atm 

o Fluid properties : T=293,15 K 

o Initial values: 

 u= 0.x + 0.y + 0.z 
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 P=1000 Pa 

o Wall : no slip 

o Inlet 

 Mass flow 

 Mass flow rate 

 Mdot=1.e-5 kg/s 

o Outlet 

 Pressure 

 Po=0 Pa 

 Suppress backflow 

 Global definitions 

o Parameters 

 

 Heat Transfer 

 

o Initial values : Tcell 

o Heat flux (Qin) 

o Temperature (Tcell) 

 Mesh 
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o Size (of water channels): Calibrate for fluid dynamics 

o Swept 

 Distribution : 4 layers 
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A 4: Solid Works Models 

 

 

 

Figure 24 SolidWorks model of anode side 

 

 

Figure 25 Solid Works model of cathode side 
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Figure 26 Solid Works model of water channels 

 

 

 

 

 

 

 

 

 

 


