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Abstract

Cache-based side-channel attacks are increasingly exposing the weaknesses of

many cryptographic libraries and tools by showing that, even though the algorithms

might be considered strong, their implementations often lead to unexpected behav-

iors that can be exploited to obtain sensitive data, usually encryption keys. In this

study we analyze three methods to detect cache-based side-channel attacks in real

time, preventing or limiting the amount of leaked information. We focus our efforts

on detecting three attacks on the well-known OpenSSL library: one that targets

AES, one that targets RSA and one that targets ECDSA. The first method is based

on monitoring the involved processes and assumes the victim process is known. By

collecting and correlating the monitored data we find out whether there exists an

attacker and pinpoint it. The second method uses anomaly detection techniques

and assumes the benign processes and their behavior are known. By treating the

attacker as a potential anomaly we understand whether an attack is in progress and

which process is performing it. The last method is based on employing a neural

network, a machine learning technique, to profile the attacker and to be able to

recognize when a process that behaves suspiciously like the attacker is running. All

the three of them can successfully detect an attack in about one fifth of the time

required to complete it. We could not experience the presence of false positives in
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our test environment and the overhead caused by the detection systems is negligible.

We also analyze how the detection systems behave with a modified version of one of

the spy processes. With some optimization we are confident these systems can be

used in real world scenarios.
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GERÇEK ZAMANLI OLARAK TESPİT EDİLMESİ
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Özet

Ön-bellek kullanılarak gerçekleştirilen yan-kanal saldırıları giderek artan bir hızla

birçok kriptografik yazılım kütüphanesinin zaaflarını ortaya çıkartmaktadır. Kul-

lanılan kriptografik algoritmalar teorik olarak güvenilir olsa da, yazılım olarak gerçek-

lerken yapılan hatalar nedeniyle, algoritmanın çalışması sırasında beklenmeyen bil-

giler dışarıya sızmakta ve bu yolla gizli anahtarlar elde edilebilmektedir. Bu çalışma-

da ön-bellek kullanılarak gerçekleştirilen yan-kanal saldırılarının gerçek zamanlı ola-

rak tespit edilmesi, önlenmesi ya da sızan hassas/gizli bilgi miktarının en aza in-

dirgenmesi icin önerdiğimiz üç farklı yöntem ele alınacaktır. Bu tez kapsamında

yaygın olarak kullanılan OpenSSL yazılım kutuphanesinde gerçeklenmiş üç adet

kriptografik algoritmaya karşı geliştirilen saldırılara odaklanacağız: blok şifreleme al-

goritması AES, RSA ve eliptik eğri elektronik imza (ECDSA) algoritmaları. Geliştir-

diğimiz ilk yöntem saldırı yapılan kriptografik algoritmayı çalıştıran prosesi bildiğimizi

kabul ederek sistemdeki ilgili prosesleri izlemeyi gerektirmektedir. İzledigimiz pros-

eslerden elde edilen veriler arasında bir korelasyon bulmaya çalışarak, bir saldırının

olup olmadığı, var ise saldırgan prosesin tespit edilmesi hedeflenmektedir. İkinci

yöntem, temel olarak ayrık değer bulma ya da anomali tespiti yaklaşımını esas al-

maktadır. Bu yöntemde saldırgan olmayan proseslerin ve bunların dinamik davranış-

larının bilindiği varsayılmaktadır. Saldırgan prosesin dinamik davranışının anomali

oluşturduğu kabulüyle, sistemde bir saldırgan prosesin olup olmadığı ve varsa hangisi-

nin olduğunun bulunması amaçlanmaktadır. Önerilen son yöntemde ise, saldırgan

prosesin davranışının makina öğrenmesi yöntemleri kullanılarak modellenmesi esas

alınmaktadır. Önerilen üç yöntemde de, saldırının gerçekleşmesi için gereken za-



manın en fazla beşte biri kadar bir sürede, saldırı başarılı bir şekilde tespit edilebilmek-

tedir. Yapılan deneylerde, hic pozitif yanlış durumu oluşmamıştır. Ayrıca saldırı

tespit yöntemlerinin hız açısından sistem başarımındaki olumsuz etkisinin ihmal

edilebilecek mertebelerde kaldığı gözlemlenmiştir. Saldırıyı gerçekleştiren prosesin

farklı sürümleri kullanılarak saldırı tespit sisteminin başarımı da ölçülmüştür. Gelişti-

rilen saldırı tespit yöntem ve yazılımları, daha da iyileştirilerek gerçek dünya senary-

olarında da kullanılabilecek niteliğe sahip hale getirilebilir.
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Chapter 1

Introduction

Side-channel attacks are a particular class of attacks, usually targeting cryptographic

algorithms, which do not exploit a flaw in the design of the algorithms themselves

but rather in their implementation.

Cache-based side-channel attacks represent a subset whose purpose is to retrieve

sensitive information from a system just by exploiting the shared cache memory in

modern CPUs [2]. Moreover such attacks can be conducted between virtually iso-

lated environments such as virtual machines or Linux containers as shown in [11], [12]

and [13].

As described in the next chapter, a class of cache-based attacks rely on the

presence of an assembly instruction to partially or fully manipulate the state of

the shared cache (in the case of Intel CPUs the instruction is CLFLUSH) and the

presence of a feature, such as Kernel Same-page Merging (KSM) [3] or Transparent

Page Sharing (TPS) [4], which allows processes to share identical pages in memory.

To prevent such attacks between processes or virtual machines, we would either

need to switch to a CPU architecture that prevents the usage of the aforementioned

instruction or to disable any memory optimization feature. In the first case, it would

be necessary to recompile any incompatible program for the new architecture (e.g.

ARM) while in the second case there would be a loss of performance given by the

fact that processes would be unable to share identical pages, therefore increasing

memory consumption.

With regard to virtual machines, another problem is co-location. That is, to

carry out the attack it is necessary that the attacker’s virtual machine and the vic-
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tim’s virtual machine run on the same physical hardware, therefore sharing the main

memory and the cache. Until Amazon upgraded their platform, implementing the

proper countermeasures, such problem had been partially solved by Ristenpart et

al. [5] who were able to colocate two virtual machines on the Amazon EC2 cloud

computing service with a probability of 40%. More recently Inci et al. [6] showed a

new, more accurate, approach to achieve and detect co-location, again on Amazon

EC2, by monitoring the last level cache. The link between co-location and exploita-

tion is established in [13], where Irazoqui et al. managed to detect the version

of popular cryptographic libraries, such as OpenSSL and PolarSSL, in a cross-VM

scenario using the Kernel-based Virtual Machine (KVM) [38] supervisor, simplify-

ing the process of detecting whether a target is vulnerable to specific cache-based

attacks.

The first practical implementation of a cache-based attack was presented by

Tsunoo et al. in [7] and targeted the DES algorithm. In [8] Osvik et al. devised

two techniques (EVICT+PRIME and the more efficient PRIME+PROBE) to attack AES

by evicting everything in the cache and measuring the time for an encryption. More

recent cache attacks include [9], by Yarom and Falkner, that uses the FLUSH+RELOAD

technique to retrieve the private exponent used in GNU Privacy Guard (GPG)’s

implementation of RSA, [10] by Yarom and Benger where the same technique is

used against the ECDSA implementation in OpenSSL and [11], by Irazoqui et al.,

and [12], by Gulmezoglu et al., where FLUSH+RELOAD is used to detect the key used

in the last round of an AES encryption.

The problem we address is to detect such attacks in time, before they are com-

plete, to be able to take the proper countermeasures, i.e. to kill the suspicious

process, in a same-OS scenario, or relocate the virtual machine, in a cross-VM sce-

nario. A similar attempt at detecting this kind of attacks is [16].

In this study we present three methods, of which two are based on machine learn-

ing techniques, that can be combined or used separately to detect cache-based side-

channel attacks at runtime, with a particular focus on those using the FLUSH+RELOAD

technique [9]. Our methods do not require any modification to the operating system

and run as normal user-level processes. The only requirement is the availability of

hardware performance counters, quite common on most modern CPUs [25].
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The organization is as follows: in Chapter 2 we present necessary background

information on cache-based side-channel attacks and hardware performance counters

followed by an analysis of three attacks against RSA, AES and ECDSA. In Chapter 3

we describe our methods and their advantages and shortcomings. In Chapter 4 we

show our results and how it is possible to detect an attack in time to take the proper

countermeasures; we also analyze the overhead caused by our detection system.

Chapter 5 presents an improved version of one of the attacks that is able to deceive

the first (and simplest) detection method while still being able to complete an attack,

although in more time. We believe this might trigger interest in further research on

how to deceive, and therefore improve, detection systems for these kinds of attacks.

Chapters 6 and 7 present a discussion about our results, and their implications, and

the feasibility of employing such detection systems in real world scenarios.
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Chapter 2

Background

In this chapter we introduce background information necessary to better understand

the attacks themselves and the techniques used to detect them.

2.1 Cache-based side-channel attacks

Numerous attacks based on shared hardware and software resources have been car-

ried out in the past. Recently those based on CPU’s cache memory turned out to be

very effective, easy to implement and fast. This study focuses on a particular class of

cache-based side-channel attacks that utilize a technique named FLUSH+RELOAD [9].

Modern CPUs utilize one or more layers of cache [18] to speed up frequent

operations by decreasing the average access time of content stored in the main

memory. Most Intel CPUs have 3 levels of cache with increasing access time: L1

(usually split into L1i for instructions and L1d for data), L2 and L3. The last

two levels are shared among the CPU cores. Furthermore processes can arbitrarily

flush specific memory addresses from the CPU’s cache by using a specific assembly

instruction. On most modern Intel processors (mainly Core i3, i5, i7 and Xeon) such

instruction exists under the assembly mnemonic CLFLUSH [20]. The shared cache and

the unregulated access to this kind of instructions are what makes possible most of

the attacks analyzed in this study.

These cache memories operate on units of 64 B called lines. That is, let P1 and

P2 be two processes running on separate cores. If P1 accesses address a1 what will

be loaded into the cache is not just the content of a1 but a block of 64 B (i.e. a
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line) containing a1 (the block’s start and end addresses depend on the main memory

alignment). Therefore if P2 calls CLFLUSH on a1 what will be flushed is not just the

content of a1 but the entire line.

The entities usually involved in attacks based on FLUSH+RELOAD are indeed two

processes: a victim and a spy. The victim performs some kind of cryptographic

operation (i.e. encryption, decryption or signature) where some secret data, likely

a key, are being used while the spy attempts to capture such data by analyzing the

victim’s behavior.

The success of the attack mainly depends on three factors: the ability of the

spy to synchronize with the victim (that is, to start the attack as soon as the

cryptographic operation starts), the presence of a user-level instruction to evict

a specific area of the CPU’s cache (such as CLFLUSH) and, in the case of virtual

machines, the presence of mechanisms such as Transparent Page Sharing (TPS) [4]

or Kernel Same-page Merging (KSM) [3].

KSM was implemented for the first time in Linux 2.6.32 as a technique to aug-

ment memory density and it is enabled by default. It allows processes to transpar-

ently share identical pages by mapping addresses which belong to different virtual

address spaces to the same physical address. Two downsides of KSM are the high

CPU load needed to regularly run the merging process [15] and the fact that it

makes attacks such as FLUSH+RELOAD feasible.

TPS is, instead, a proprietary technology of VMWare whose purpose is to make

virtual machines share identical pages with the hypervisor taking care of searching

and merging them. The feature is enabled by default in both their cloud and desktop

solutions until the latest version (6.0 at the time of writing) [17] where it has to be

manually enabled because of security concerns [19].

Since two merged pages are mapped to the same physical address, in the main

memory, different processes that try to retrieve a shared page cause the MMU

(Memory Management Unit) [27] to access the same physical address. Furthermore

the cache, being physically indexed, is mapped onto the same address space and

content that is evicted from it will be evicted for all processes that share it in the

main memory.

Calling CLFLUSH with a single address causes the whole cache line, which includes
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the content from that address, to be evicted. Furthermore, on Intel CPUs, cache

levels form an inclusive hierarchy: the L3 cache includes the L2 cache content and

the L2 cache includes the L1 cache content. For this reason evicting a line from the

LLC (L3) propagates the eviction to the lower levels as well. The algorithm roughly

works as described in Example 1.

Example 1. Algorithm for a generic FLUSH+RELOAD attack.

Assume 0xABC to be a physical address in a page shared

by the spy and the victim.

Repeat until the victim terminates:

- Victim accesses 0xABC.

- Spy evicts 0xABC from the LLC and sleeps for a few clock

cycles (to be determined according to the victim process).

- Victim may or may not access 0xABC.

- Spy loads 0xABC and keeps track of how long it takes.

- If it takes longer than a specific threshold it means

the victim did not access 0xABC and therefore

it was not in the cache.

- Else the victim accessed 0xABC and it was put in cache.

The original FLUSH+RELOAD attack [9], by Yarom et al., focused on guessing

which instructions are being executed by the victim. In fact, by knowing which

instructions are or are not executed while performing a cryptographic operation it is

often possible to retrieve information that can be used to reconstruct the secret used

during the process, such as encryption keys. In particular the first attack described

in the paper is used to determine the bits of the key used in GPG when performing a

decryption with RSA, thanks to a vulnerable implementation of the square multiply

algorithm.

To address the concern that this attack would only work on non-constant-time

implementations (that is, implementations whose execution time highly depends on

the input, especially sensitive input such as encryption keys, that determine which

instructions are executed), a second version of the attack was released, this time

aimed at breaking the supposedly robust implementation of the elliptic curve point
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scalar multiplication algorithm based on the Montgomery ladder used in OpenSSL’s

ECDSA [10].

A variant of such technique [11], i.e. the third type of attack, by Irazoqui et al.

was able to retrieve all the AES last round’s key bits by observing a few seconds to

a minute worth of encryptions or decryptions, although the amount of time required

to complete an attack makes it more prone to be detected as demonstrated by our

experiments in Chapter 4.

In our work we aimed at detecting the second and third types of attack, the first

being a simpler version of the second.

2.2 Attacking RSA

While performing a signature or a decryption with RSA there is the need to compute

md mod n where m is the plaintext, d is the private exponent and n is the product

of two large prime integers. One algorithm to perform such computation is square

multiply, also known as binary exponentiation, described in Algorithm 1. Here the

function bin(d) returns the individual bits of the private exponent as an array of

integers.

Algorithm 1 Square multiply

1: procedure square-multiply(m, d, n)
2: x = 1
3: for i in bin(d) do
4: x = x2 mod n
5: if i == 1 then
6: x = x ·m mod n
7: end if
8: end for
9: return x
10: end procedure

Given the non-constant time nature of the algorithm its implementations are

vulnerable to different kinds of side-channel attacks, including those based on timing

and power analysis [21]. In particular the operations performed according to the

value of each key bit leak valuable information that can be used to reconstruct the

key.
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Algorithm 2 FLUSH+RELOAD attack on RSA

1: procedure flush-reload-rsa(addr)
2: bits = [ ]
3: while True do
4: flush(addr)
5: sleep(ncycles) . ncycles empirical value
6: t = time(access(addr))
7: if t1 < threshold then
8: bits.append(1)
9: else
10: bits.append(0)
11: end if
12: end while
13: return bits
14: end procedure

In [9] Yarom et al. exploited the implementation of the square multiply algorithm

inside GPG. By reverse engineering the OpenSSL binary it is possible to retrieve the

memory address of line 6, from Algorithm 1, in the GPG binary and use it to carry

the attack described in Algorithm 2.

The attack briefly works as follows: the spy starts executing a loop in which it

first flushes the targeted address, in line 4, then waits an empirically determined

number of cycles before reloading the address, in line 6. When the spy reloads

the address there exist two possibilities corresponding to the two branches of the

conditional at line 7: if the victim accessed its content the loading time will be

lower than a predefined threshold, which means the bit is likely 1, otherwise it will

be higher, which means the bit is likely 0.

In [9] the authors reported that, on average, the percentage of the private expo-

nent’s bits that can be recovered is 96.7% with a worst case of 90%, in a cross-VM

scenario, and 98.7% with a worst case of 95% on the same operating system.

2.3 Attacking AES

It is possible to perform a known-ciphertext attack on common implementations of

AES (such as the one used in OpenSSL). What makes this kind of attack feasible is

the use of lookup tables (often named T-tables or T-boxes), originally proposed in [1],

to optimize the operations needed to compute a single AES round (i.e. KeyAddition,
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SubBytes, ShiftRows, MixColumns) into some table lookups and XOR operations.

These tables, being used frequently, are usually loaded in the CPU’s cache once

they are accessed. With some reverse engineering it is possible to find the memory

locations where the tables will be stored at runtime. Once the locations are known

the attacker can understand whether a given table was accessed by loading its cor-

responding memory address and looking at the loading time. For each round the

attacker flushes the tables from the cache, waits until the victim uses the tables and

then understands which table was used by employing the FLUSH+RELOAD technique.

Irazoqui et al. devised an algorithm to fully recover the scheduled key used in the

last round of AES in a matter of seconds to minutes [11]. As already mentioned, their

algorithm is a variant of the more generic FLUSH+RELOAD that focuses on guessing

which values of the AES lookup tables were accessed and uses this information

to reconstruct the round key. In a byte-oriented implementation of AES the i-th

ciphertext byte in the last round is produced as follows:

Ci = T [Si] XOR Ki.

where T is the lookup table, Si is the i-th byte of the current state, used as an index

for T , and Ki is the i-th byte of the round key.

Let T be the lookup table and let us assume that the monitored cache line holds

the first n table entries. It is not possible to understand precisely which of the n

entries is used but we know that, in general, whenever one of the entries is accessed,

T is accessed. Every time this happens we store the corresponding ciphertext byte

and create a set of all 16 possible values for Si and Ki for that ciphertext byte. By

repeating the steps for multiple ciphertext bytes, we should see a common value in

each set which is likely the correct key’s byte.

For further details refer to [11], Section 5.1.
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2.4 Attacking ECDSA

Algorithm 3 ECDSA signature

1: procedure signmessage(m,G) . m = message
2: z = truncate(hash(m), Ln) . Truncate the hash to the first Ln chars
3: k = random(1, n− 1) . Choose a random integer in the given interval
4: (x, y) = k ·G . G = generator
5: r = x mod n
6: s = k−1 · (z + r · d) mod n . d = private key
7: return (m, r, s)
8: end procedure

A message signed with ECDSA consists of a triple (m, r, s) where m is the message

and r and s are computed as in Algorithm 3. We assume an elliptic curve group of

order n and that G is a generator of such group. Specifically the curve used in the

attack is sect571r1 whose parameters are described in [22].

The ephemeral key k used in the signature algorithm can be exploited to retrieve

the private key d since d = (sk− z)r−1 and s, z and r are known (see Algorithm 3).

Attacking an implementation of the signature algorithm means, indeed, attacking

the step where the elliptic curve point (x, y) is computed, as shown in Step 4 of

Algorithm 3. In fact the implementation of the point multiplication algorithm used

for the computation can lead to some data leakage that provides information for an

attacker to reconstruct the ephemeral key.

Algorithm 4 Double-and-add point scalar multiplication

1: procedure double-and-add(k, P )
2: Q = P
3: for i in bin(k) do
4: double(Q) . Q = 2Q
5: if i == 1 then
6: add(Q,P ) . Q = Q+ P
7: end if
8: end for
9: return Q
10: end procedure

A simple implementation of the point multiplication algorithm, called double-

and-add, is provided in Algorithm 4. Such implementation could be exploited with

the same process shown in the previous chapter.
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In fact it can be noticed that by using a simple attack based on FLUSH+RELOAD

we can guess when a bit is 0 or 1 by monitoring the cache line corresponding to

the function called at Step 6 in Algorithm 4. Whenever the bit is 1 the line will

be loaded in cache by the victim and the loading time in the spy will be shorter

otherwise it is fair to assume the bit is 0.

Algorithm 5 Montgomery ladder point scalar mulitplication

1: procedure montgomery-ladder(k, P )
2: R0 = 0
3: R1 = P
4: for i in bin(k) do
5: if i == 0 then
6: add(R1, R0) . R0 = R0 +R1

7: double(R0) . R0 = 2R0

8: else
9: add(R0, R1) . R1 = R0 +R1

10: double(R1) . R1 = 2R1

11: end if
12: end for
13: return R0

14: end procedure

To avoid this kind of attacks, OpenSSL uses a different implementation based

on the Montgomery ladder [23] described in Algorithm 5. The Montgomery ladder

relies on the same functions being called regardless of whether the bit is clear or set.

The only change between the two cases is in the order of the arguments passed to

the functions.
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268 for (; i >= 0; i--)

269 {

270 word = scalar->d[i];

271 while (mask)

272 {

273 if (word & mask)

274 {

275 if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err;

276 if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;

277 }

278 else

279 {

280 if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;

281 if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;

282 }

283 mask >>= 1;

284 }

285 mask = BN_TBIT;

286 }

Figure 2.1: Main loop of the Montgomery ladder implementation in OpenSSL

OpenSSL’s implementation was broken by Yarom et al. [10] proving that FLUSH+RELOAD

can be used even when the algorithm is supposed to resist against timing attacks.

The target of the attack is the code contained in function ec GF2m montgomery point multiply,

a sample of which is shown in Figure 2.1.

To perform the point scalar multiplication using the Montgomery ladder the

scalar k is read bit by bit in a loop. According to the value of each bit a different

conditional branch is taken and the functions to add and double the point, gf2m Madd

and gf2m Mdouble, are called with the arguments in a different order. The principle

behind this design is that since the same functions are called regardless of the state

of the current bit, an attack based on timing would fail.

With some reverse engineering on the OpenSSL binary it is possible to retrieve

the memory addresses of the lines of interest: 275, 276, 280 and 281. With spatial

prefetching [24] the content of the cache is optimized by copying not only the line

that contains the addresses being accessed but also a limited number of adjacent

lines, therefore it is necessary to probe addresses that are as distant as possible from

each other in memory (and consequently in the cache) to avoid false positives caused

by this feature.
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Algorithm 6 FLUSH+RELOAD attack on ECDSA

1: procedure flush-reload-ecdsa(addr1, addr2)
2: bits = [ ]
3: τ = getthreshold()
4: while True do
5: flush(addr1)
6: flush(addr2)
7: sleep(ncycles) . wait for the victim to complete a loop
8: t1 = time(access(addr1))
9: t2 = time(access(addr2))
10: if t1 < τ and t2 > τ then
11: bits.append(1)
12: else if t2 < τ and t1 > τ then
13: bits.append(0)
14: end if
15: end while
16: return bits
17: end procedure

Specifically lines 275 and 281 of Figure 2.1, whose memory addresses are passed

as arguments addr1 and addr2 in Algorithm 6, are suitable for the attack since they

lie at the very beginning and the very end of the main conditional branch of line

273. The attack proceeds by flushing and reloading these addresses to understand

which ones were accessed.

Assuming the spy starts executing the loop in Algorithm 6 and at the same

time the victim starts the main loop in Algorithm 5 the two processes are perfectly

synchronized and the attack has the highest likelihood of success.

It is necessary, for the spy, to sleep for a certain amount of CPU cycles (ncycles

in Algorithm 6) equal to the average number of cycles needed for the victim to

complete a loop. The actual time is not always constant but depends on how the

processes are scheduled.

In line 10 of Algorithm 6 other than just checking whether t1 < τ we also check

whether t2 > τ . That is, we make sure that addr1 was not loaded in memory because

of spatial prefetching. Because of spatial prefetching if two addresses belong to the

same set of lines loaded from the main memory it is impossible to understand which

one was intentionally loaded by a process and which one was retrieved because of

this feature. In this case we want to make sure that addr1 was not loaded in the

cache just because addr2 was (and viceversa in line 12).
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Another issue arises when the spy has to terminate. If it terminates too soon it

will miss some of the last bits so the best course of action would be to keep executing

the loop up to a point when a certain number of bits are equal to 0 (i.e. both t1

and t2 are above the threshold) indicating those addresses are not being accessed

anymore.

At the end of the attack some (or all) of the bits of the ephemeral key are

recovered and it is possible to reconstruct the private key. In the worst case the

attack is known to miss 34 bits but the actual value of the scalar k can be restored,

by using the baby step giant step algorithm, in less than one second of computation

and using just 10 MB of memory [10].

2.5 Hardware Performance Counters

Modern microprocessors are equipped with special purpose registers used to store

data about a wide range of CPU related events: clock cycles, cache hits, cache misses,

branch misses etc. Such registers, called Hardware Performance Counters (in short

HPCs), are commonly used to profile the behavior of a program and understand

what to optimize in order to increase its performance [25]. In this study we describe

an alternative usage of such feature that allows us to collect predictive data about

one or more processes with little overhead.

Similar alternative usages are described in [30] where the timing function of a

particular time based cache attack is replaced with data coming from HPCs, in [31]

where malwares are detected by constructing a dynamic signature of the processes

involved and in [32] which briefly mentions how it would be possible to mitigate the

effects of some classes of cache-based side-channel attacks through the use of HPCs.

The Linux kernel, assuming the target CPU supports them, provides an inter-

active interface to the HPCs via a command-line tool named perf [26]. The tool

allows to collect, visualize, filter and aggregate data gathered through the HPCs on

a system-wide, process or even thread basis.

The most interesting sub-command, for the purposes of our experiments, is

perf-stat. Using this utility it is possible to specify which events to monitor,

a target process or thread, the output format and the interval of time between
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two consecutive reports. An example report from perf-stat, while monitoring the

execution of the tool make, is shown in Figure 2.2.

$ perf stat make -j

Performance counter stats for ’make -j’:

8117.370256 task clock ticks

678 context switches

133 CPU migrations

235724 pagefaults

24821162526 CPU cycles

18687303457 instructions

172158895 cache references

27075259 cache misses

Wall-clock time elapsed: 719.554352 msecs

Figure 2.2: Sample output of the perf-stat utility

An important shortcoming of perf-stat is its limited resolution; perf-stat

gives the opportunity to sample HPCs multiple times in a second but the minimum

interval between two consecutive samples is 100 ms, much higher than the time

necessary to complete some of the attacks, as shown in Chapter 4.

For this reason we developed a custom utility, called quickhpc [40] that offers a

subset of the features of perf-stat but with some improvements. The tool can be

run as a normal user level process and requires the privileges used by the process that

should be monitored (e.g. if the process to monitor was run as root quickhpc has

to be run as root as well). When running quickhpc the required arguments are the

PID of the process to monitor and the list of events to be monitored. Optionally, it is

possible to specify the maximum number of samples and the interval in microseconds

between two samples.

The library used for probing HPCs is PAPI (Performance Application Program-

ming Interface) [28]. The main reason quickhpc uses PAPI is its high resolution.

After a thorough optimization quickhpc reaches a maximum resolution (i.e. the

time between two samples) of 3 microseconds, more than 30000 times faster than

perf-stat.

It is worth noting that the resolution of quickhpc is not fixed but is influenced by
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the workload on the system, the scheduling policy, the behavior process monitored

and so on. Also the number of collected samples, for the same process, may vary

each time since it is not possible to start the monitored process and quickhpc at

exactly the same instant; it all depends on the scheduling policy set in the operating

system.

2.6 Anomaly detection

Anomaly detection is used to find outliers, or anomalies, in an unlabeled dataset.

Some examples of real world problems, where anomaly detection plays an impor-

tant role, are detection of faulty products in factories and detection of fraudulent

transactions.

The assumption is that there exists a set of features, for each instance, or sample,

in the dataset, that can let us determine whether the instance belongs to a specific

model (e.g. ”legitimate transactions”) or not. Let us indicate with x
(i)
j the j-th

feature of the i-th instance in the dataset.

The aim is to retrieve a good number of samples considered ”good” and find

a probabilistic model that fits them. A usual assumption is that each feature xj

fits a Gaussian distribution with mean and variance relative to that feature’s values

across all samples.

Therefore finding a model for feature xj means finding µj and σ2
j such that

xj ∼ N (µj, σ
2
j ). Once these values are found the model can be tested by computing

the distribution’s density function for a new sample (i.e. probability that the given

value x belongs to a Gaussian distribution with the given mean and variance):

p(xj;µ, σ
2) = 1√

2πσ
exp(− (xj−µ)2

2σ2 )

The value returned by this function has to be compared to a threshold which

can be determined, in turn, by testing the model on a dataset that contains known

anomalies. This allows to find a threshold that clearly separates the anomalies

from the normal samples, very similarly the purpose of a classifier in the domain

of supervised learning explained in the next chapter. For each new sample this

probability is computed for each feature. The total probability is computed as

follows:
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2
n)

In our experiments we tried to fit a model for each kind of spy process imple-

mentation and considered all other (benign) processes as anomalies. The reason for

not acting in the opposite way is that it is usually impossible to fit a model for all

kinds of processes running on a system.

2.7 Supervised Learning and

Neural Networks

The purpose of supervised learning is to construct models (classifiers) that are able

to make predictions based on labeled data that were previously collected. Unlike

unsupervised learning (where the purpose is to find patterns in non-labeled data)

a datum, or sample, fed to a classifier, for the training phase, contains a vector

of values named features (or independent variables) and a label whose value is a

function of them (dependent variable).

The classifier is then trained by using a relatively large number of samples,

aggregated in what is called the training set. Upon completion of each training

phase a cross-validation and a test set, consisting of data not present in the training

set, can be used to assess the effectiveness of the classifier.

Once the training phase is complete it is possible to feed the classifier with a

single vector of features, omitting a label, which should be able to assign the label

of the correct class to the given vector of features (the confidence of the prediction

being dependent on a wide range of parameters). The hardest task in supervised

learning is to find features that well characterize a certain class.

Although the principles behind supervised learning are similar to the ones behind

anomaly detection there are a few key differences. In anomaly detection the classes

are naturally skewed since the number of positives, i.e. anomalies, and negatives

differ by several orders of magnitude (e.g. 1000 normal samples and 10 anomalies)

where in supervised learning the more balance, between samples of different classes,

the better; furthermore an anomaly detection mechanism does not distinguish be-

tween two or more classes but is only able to tell whether a sample belongs to the
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main class or not. In this study we explored both options, taking into account their

advantages and disadvantages.

Neural networks are intended to represent a set of classifiers inspired by how neu-

rons collaborate in a brain to accomplish some tasks, hence the name. A commonly

used model is the feedforward network.

Figure 2.3: Representation of a simple neural network

As shown in Figure 2.3 such a network is formed by multiple layers. Each layer

contains a certain number of neurons (or units), that hold a numerical value, called

weight, and neurons of adjacent layers are connected to each other.

The vector of features is distributed among the neurons in the input layer and,

after executing a feedforward propagation, the neurons in the output layer contain

a vector of values whose maximum determines the class, i.e. its index in the vector,

that the features supposedly belong to.

To train a neural network the feedforward propagation is followed by a back-

propagation [35] step. In this step an error on the prediction is computed. Such

error is then utilized, through the gradient descent algorithm, to adjust the weights

of the neurons in the hidden layers to improve the accuracy of future predictions.

A common problem with supervised learning is overfitting. That is, the neu-

ral network precisely fits the training set but performs poorly on new, unlabeled

samples. Such problem is partially solved by applying a technique named regular-

ization [36] during the training phase.
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The metric we used to assess how well both the neural network and the anomaly

detection system performed is their F-score [34]. This metric is more reliable than

merely measuring accuracy (i.e. right predictions over all predictions) since it is not

influenced by datasets where some classes contain a larger number of samples than

others, called skewed classes.

Thanks to neural networks we are able to devise a more sophisticated mechanism

for detecting a spy process, compared to correlation and anomaly detection, that

decreases the chances of incurring in false positives and serves as an initial attempt

to detect spy processes that employ strategies to avoid being uncovered.
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Chapter 3

Detecting a spy process

In this chapter we present three methods for detecting spy processes that exploit

the FLUSH+RELOAD technique to perform cache-based side-channel attacks. All de-

tection methods can successfully detect a spy before the attack is complete, therefore

allowing to take appropriate countermeasures in time to prevent a leakage.

The first method is based on finding a correlation between the victim and the spy

by analyzing the data collected by quickhpc. The intuition is that, in all the attacks

we analyzed, both the spy and the victim processes, so far as the memory accesses are

concerned, behave approximately the same way: the main operations are performed

in a loop where specific, fixed memory addresses are accessed. Since the number of

memory addresses accessed at each iteration is the same and both attacks work by

flushing and reloading data from the L3 cache we consider the number of total L3

cache accesses (regardless of whether they are hits or misses) over time as a good

indicator of correlation. While the number of total L3 cache accesses only depend on

the behavior of the process, the number of hits and misses change according to the

key bits being processed, which can change, and are influenced by other processes

using the cache; therefore they are not a reliable indicator of correlation.

Although our experiments did not show any false positives we devised two more

methods, based on machine learning techniques, that operate in a more fine-grained

manner and therefore can be used to detect a spy with more confidence.

The second method makes use of a machine learning technique that has recently

become widespread: neural networks. Although computationally more expensive

to train, neural networks usually give better results than other supervised learning
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techniques [29] and do not require the data to be preprocessed (e.g. apply feature

scaling and mean normalization). Even though there exist many other supervised

learning techniques, the good results yielded by our neural network convinced us

to explore an option based on semi-supervised anomaly detection, another machine

learning technique, instead of iterating over multiple supervised learning models.

In anomaly detection we treat the data coming from the spy process as valid

samples and data coming from any other process as anomalies or outliers. We were

then able to determine whether a process is benign if it is recognized as an anomaly.

The downside of using anomaly detection or supervised learning is that there has

to exist data that profiles a sample spy process, similarly to anti-virus applications

that require a sample of the malware to be able to recognize it. The main difference

is that both neural networks and anomaly detection are flexible enough to detect

different types of spy processes as long as they behave similarly to the profiled one,

although with less confidence as shown in Chapter 4.

3.1 Correlation based approach

The intuition is that both processes spend most of their time in a loop where there is

a regular access to potentially cached data. Without loss of generality, with regard

to the other attacks, let us analyze the Montgomery ladder implementation, in the

point scalar multiplication function ec GF2m montgomery

point multiply of OpenSSL exploited in the second version of Yarom’s

FLUSH+RELOAD implementation [9].

The function contains a for loop, previously shown in Figure 2.1, in which

the ephemeral key (the scalar used in the multiplication) is scanned bit by bit.

Depending on the value of the bit a different conditional branch is evaluated at each

iteration where the same two functions (gf2m Madd and gf2m Mdouble) are called

with the arguments in a different order. This constant-time implementation should

ensure that no useful information leaks through time while executing such function.

The spy, though, in this case is able to time the access to the first function in the

first branch and to the second function in the second branch. This allows to guess,

with high probability, which branch was chosen and, therefore, the value of the last
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bit of the word from Figure 2.1.

Figure 3.1: Total L3 cache accesses of spy and victim of the attack to ECDSA. The
similarities are visible between samples 200 and 550 when the Montgomery ladder
loop is executed.

Figure 3.2: Total L3 cache accesses of the spy and the victim of the attack to AES.

Since the loop is executed a large number of times it is fair to presume that its

instructions will be loaded in the CPU’s cache. In fact, as shown in Figure 3.1,
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between samples 200 and 550, the number of L3 cache accesses over time, while

executing the main loop of the Montgomery ladder, is a value oscillating between

approximately 0 and 25. The same kind of behavior can be observed, with regard

to the AES spy and victim processes, in Figure 3.2 where the L3 cache accesses over

time for the two processes, after sample 50, almost overlap.

It is important to note that even though a piece of data is not present in the

CPU’s cache, each access to it will be registered as an access to the LLC. The MMU

will then take care of triggering a cache miss, stall the process and eventually load

the necessary data from the main memory into the cache and resume its execution.

Not surprisingly the spy process follows a similar pattern to that of the victim

process. The core of the computation lies in a loop where the process continuously

flushes and reloads specific addresses from and into the cache. In this case the

addresses of interest are the ones of the functions gf2m Madd and gf2m Mdouble.

This regularity is a requirement for the attack to work. In fact, as mentioned in

the previous chapter, the spy has to synchronize with the victim to maximize the

chances of success.

Algorithm 7 Detect a spy process through correlation

1: procedure detect-corr(victimPID, processPID)
2: s1 = [ ] . s = samples
3: s2 = [ ]
4: pipe(quickhpc(victimPID), s1)
5: pipe(quickhpc(processPID), s2)
6: while True do
7: if correlation(s1, s2) > threshold then
8: processPID is likely a spy!
9: break
10: end if
11: end while
12: end procedure

Such behavior can be exploited by monitoring both the victim and the spy at

the same time and check how similar the number of LLC accesses over time is, as

shown in Algorithm 7. In a real scenario it is often impossible to know when an

attack of this sort is in progress therefore it is mandatory to continuously monitor a

potential victim process and, separately, each new process spawned by the system.

The variant of the attack by Irazoqui et al., targeting AES, uses a similar mech-
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anism to determine the key used in the last round of an encryption. The substantial

difference is that their implementation uses a client-server architecture to trigger

the encryptions and repeats the operation thousands of times.

Thanks to the high number of iterations the spy is, in this case, able to retrieve

100% of the bits of the last round’s key. A major drawback of this approach is that

it is easy to detect even by using lower resolution tools such as perf-stat. In fact,

given the 100 ms minimum resolution of perf-stat and assuming an execution time

of 5 seconds, we are able to collect 50 samples, sufficient to determine whether there

is correlation or not.

Since only a few milliseconds are sufficient to determine, with high accuracy,

whether there exists a correlation between two processes, the monitoring phase does

not affect their overall performance. Furthermore, while performing the experiments,

it was noticed that the overhead caused by the monitoring tool is negligible.

Figure 3.3: Total L3 cache accesses of the Apache webserver serving a 211 B HTML
file 1000 times with 100 concurrent clients and the victim of the attack to ECDSA.
The difference in cache accesses over time is so high that the line corresponding to
the victim process is barely visible.
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Figure 3.4: Total L3 cache accesses of the Apache webserver serving a 1 MB JPG
file 1000 times with 100 concurrent clients and the victim of the attack to ECDSA.

Figure 3.5: Total L3 cache accesses of the Apache webserver serving the output of a
PHP script calling php info 1000 times with 100 concurrent clients and the victim
of the attack to ECDSA. The difference in cache accesses over time is so high that
the line corresponding to the victim process is barely visible.

Previous Figures 3.1 and 3.2 show how visible this correlation is in both variants

while Figures 3.3, 3.4 and 3.5 show how the number of L3 accesses over time differs
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significantly between the tested benign processes and the victim.

3.2 Anomaly detection based approach

The reasons why methods based on machine learning techniques might be needed

are the potential presence of false positives (that is, there might exist processes that

are benign but behave in a similar manner to a spy and would erroneously be flagged

as malicious) and due to a more sophisticated spy process which might find a way

to escape the detection system based on correlation by creating noise, on purpose,

to confuse the detection mechanism (such scenario is discussed further in Chapter

5). Utilizing machine learning techniques allows to profile this behavior as well,

increasing the confidence of the detection.

In both methods, based on machine learning, the following combination of events,

used as features, yielded the best F-scores: total instructions, total CPU cycles, L2

cache hits, L3 cache misses, L3 cache accesses. Given the good results obtained with

this set of features we decided not to explore further combinations and believe this

is more a matter of optimization.

By using anomaly detection we can treat the data samples coming from the spy

as normal and the data samples coming from other processes as anomalies. Similarly

to supervised learning there is a ”training” phase where the system is given some

samples from the spy process. The training consists of three phases that are repeated

until an optimal threshold ε is found:

1. Find µj and σ2
j for each feature j.

2. Compute the probability density function p(x) for each sample x and find a

value ε such that if x is an anomaly p(x) < ε.

3. Test p(x) on a dataset that contains anomalies and verify that such anomalies

are recognized.
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Figure 3.6: In this example different circles representing distinct values of epsilon,
the threshold for the density estimation function, visually show how anomalies are
flagged according to the value picked.

Figure 3.6 shows a visual example of how changing the value of ε changes which

samples are marked as anomalies. The optimal value of epsilon is chosen according

to the F-score reached on the cross-validation set at each iteration. Once this phase

is complete the system can be used on new data.

3.3 Based on supervised learning

Another way of detecting a spy process, by analyzing its behavior at runtime, is to

profile it in order to construct some kind of signature that can be used to identify

it with a certain confidence, similarly to what anti-virus software does with static

signatures.

In the context of supervised learning, the profiling phase translates into a training

phase for the classifier (in this case a neural network). The possible outputs represent

the two classes of interest: malicious process or benign process. The victim process

is always labeled as benign in the training set. The presence of samples from the

victim is useful to make the neural network differentiate between two processes that

have a very similar behavior (as shown by their correlation) but belong to different
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classes.
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Chapter 4

Experiments and results

In this chapter we first introduce an overview of the system used and the results

obtained followed by a detailed analysis of such results for each kind of attack.

4.1 Overview

All our experiments were performed on an HP Z400 workstation with a Intel Xeon

W3670 CPU, operating at a manually fixed clock of 3.2 Ghz, and 20 GB of RAM. The

operating system used was Ubuntu 14.04 LTS with kernel Linux 3.13.0-46-generic.

To recreate a realistic environment we simulated workloads, representing the be-

nign processes in the system, that resemble most of the operations performed by the

average web backend server nowadays. Different kinds of operations, with different

degrees of concurrency, are generated to stress an instance of the Apache web server

while serving static and dynamically generated content: a 1KB static HTML file,

a 1 MB JPG image and the result of a PHP script that outputs information about

the system. This choice was dictated by the fact that this kind of attacks mainly

targets cloud computing instances.

For each type of attack we performed 100 iterations where we monitored the spy,

the victim and the benign processes operating in different contexts. Each iteration

is divided into the following phases:

1. Execution and monitoring of the victim process

2. Execution and monitoring of the spy process
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3. Execution and monitoring of the benign processes

4. Data analysis and prediction

All processes are launched at the same time. Once the spy successfully completes

an attack all monitored processes are terminated and the analysis phase begins. Dur-

ing this phase we feed the data to three scripts: one that implements the correlation

system, one that implements the anomaly detection system and one that implements

the neural network. Each script reports the number of samples used, the confidence

of the detection and the time it took to complete it.

Algorithm 8 Compute correlation coefficient between two datasets

1: procedure correlation(dataset1, dataset2)
2: num samples = min(len(dataset1), len(dataset2))
3: diff = dataset1 − dataset2
4: v = variance(diff)
5: confidence = num samples · (1/v)
6: return confidence
7: end procedure

The correlation coefficient is computed as in Algorithm 8. Because we have

control over how many samples are collected we assume the number of samples in

both datasets is similar. The confidence that a correlation exists is given by the

following formula:

confidence = num samples · (1/variance).

Table 4.1: Benchmarks of the detection method based on correlation
Correlated processes
(100 iterations)

Min confidence
(samples)

Max confidence
(samples)

AES spy with AES victim 0.094715 (42) 5.4 (522)
ECDSA spy with ECDSA victim 0.001565 (21) 1.66 (744)
Apache (HTML file) with AES victim 0.000002 (42) 0.000008 (157)
Apache (JPG file) with AES victim 0.000028 (42) 0.000398 (862)
Apache (PHP script) with AES victim 0.000004 (42) 0.000163 (862)
Apache (HTML file) with ECDSA victim 0.000001 (36) 0.000008 (157)
Apache (JPG file) with ECDSA victim 0.000007 (11) 0.000566 (1422)
Apache (PHP script) with ECDSA victim 0.000002 (29) 0.000295 (1422)
Time to find correlation over 500 samples 0.35 ms

Table 4.1 gives a quantitative insight on how such value changes according to the

type of attack we try to detect. With respect to the spy process used, while attacking
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AES the range of confidence varies from a minimum of 0.095 to a maximum of 5.4

but when attacking ECDSA the minimum and maximum confidence values drop

to around 0.002 and 1.66 respectively. It is clear that this value is influenced by

the number of samples quickhpc was able to process and the higher the number of

samples the higher the chance of getting a good level of confidence.

As far as the benign processes are concerned the range decreases significantly

with a minimum of 10−6 and a maximum of 5.66 · 10−4 which ensure the absence

of false positives since the latter value is roughly one order of magnitude lower than

the minimum confidence given by any spy process.

Table 4.2: Benchmarks of various operations
Time

ECDSA signature
Montgomery Ladder loop
(OpenSSL, curve sect571r1)

2.8 ms (default compilation flags)
9.5 ms (with debug symbols enabled)

ECDSA signature
Total time
(OpenSSL, curve sect571r1)

6 ms (signed 1 B file)
9 ms (signed 1 MB file)

ECDSA spy
Minimum time needed

2.8 ms (the time it takes to complete a
single Montgomery ladder loop)

AES spy
Minimum time needed

5 s (same OS scenario)

Maximum quickhpc resolution 3 µs (measured with clock gettime())

The execution time measurements for both the AES and ECDSA victim pro-

cesses are reported in Table 4.2 where the fastest operation is the execution of the

Montgomery Ladder loop, previously shown in Figure 2.1, that takes a maximum

of 2.8 ms.

On our system the time to execute Algorithm 8 over a dataset of 500 samples

is 0.35 ms on average. Considering the fastest implementation of the attack has

a minimum execution time of 2.8 ms (i.e. the duration of the Montgomery ladder

loop in OpenSSL) there are still 2.45 ms that can be used to take appropriate

countermeasures.

The performance of the neural network is a little worse but good enough for our

purposes. Within 0.64 milliseconds the network completes the feedforward propa-

gation over 100 samples and returns the predicted class (spy or not). In this case

the confidence is measured as follows:
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confidence = predictionsspy/predictionstotal

On the other hand, the anomaly detection system, for a prediction over 100

samples, only takes 0.2 ms on average making it the fastest one. Unfortunately, it

is also the one that suffers the most from noisy data causing it to perform poorly

on certain datasets as shown in the next chapter. Even in this case, the confidence

is computed with the aforementioned formula.

Table 4.3: Benchmarks of the detection methods based on machine learning tech-
niques

Method Max F-score
Time for prediction
(over 100 samples)

Anomaly detection (AES) 0.509091 0.2 ms
Anomaly detection (ECDSA) 1.0 0.2 ms
Neural network (AES) 0.932331 0.64 ms
Neural network (ECDSA) 1.0 0.64 ms

F-scores for both the anomaly detection system and the neural network are

reported in Table 4.3 together with the time it takes to perform a prediction (i.e.

to classify) over 100 samples.

4.2 Detecting AES spy process

As described in [11] finding the last round’s key in an AES encryption, by using a

variant of the FLUSH+RELOAD technique, takes a varying amount of time in the

order of seconds to minutes.

The execution time depends on the scenario in which the attack is carried out.

If both the spy and victim processes are being executed within the same operating

system the attacks takes a few seconds (a minimum of 5 s on our test system) while

still being able to recover all the bytes of the key. If the spy and the victim are on

separate virtual machines, although share the same CPU, as it often happens with

virtualization services such as Digital Ocean [33] or Amazon EC2 [37], the execution

takes approximately one minute.

Given the long execution time needed by the spy, to successfully complete an

attack, quickhpc is able to collect a very large number of samples in a short amount
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of time. In our experiment we let the spy and the victim run for 50 ms, 100 times

less than the minimum time needed to complete the attack.

Figure 4.1: Relationship between the number of samples collected during an attack
to AES and the confidence of the prediction based on correlation. Even though the
relationship is not linear (since the confidence is influenced by noise caused by other
processes, scheduling policies etc.) the general trend is that the higher the number
of samples the higher the confidence.

Figure 4.1 shows the confidence of the detection according to the number of

samples collected. As expected the more the samples the higher the confidence,

with the minimum (0.095) reached with 42 samples and the maximum (5.4) reached

with 522 samples.

The minimum confidence with regard to the benign processes reached a maxi-

mum value of 0.0005, two orders of magnitude less than the minimum confidence

with regard to the spy, effectively eliminating the chance of incurring in false posi-

tives in our test environment.

The methods based on machine learning performed very differently in this case.

The anomaly detection system performed poorly (see Table 4.3) with a maximum

F-score of 0.51 while the neural network reached instead an F-score of 0.93.
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4.3 Detecting ECDSA spy process

A complete signature of a 1 B file, using ECDSA with OpenSSL, takes 6 ms on

average while using a 1 MB file increases this time by 3 ms for a total of 9 ms.

The main loop used in the Montgomery ladder implementation lasts 2.8 ms on

average which means that, since all detection methods take approximately 0.2 to 0.64

ms, there are around 2-2.5 ms left to take countermeasures, assuming a successful

attack is complete once all the bits of the ephemeral key have been scanned.

Considering a resolution of 10 µs, for quickhpc, we could obtain, in 2.8 ms,

roughly 280 samples. The resolution varies according to how the system is perform-

ing (i.e. how many processes are running, how the scheduler acts with regard to

quickhpc and the monitored process etc.) so the number of samples obtained, and

thus the sampling resolution, might be more or less than this theoretical value.

The minimum confidence reached by determining a correlation between the vic-

tim and the actual spy was of approximately 0.0016 with 21 samples while the

maximum was 1.66 with 744 samples. Even in this case the maximum confidence

for the correlation between a benign process and the victim is almost one order of

magnitude less than the minimum confidence for the correlation between the spy

and the victim.

All machine learning methods, though, performed well with an F-score of 1.

Since the time to perform a prediction over 100 samples does not change according

to the samples themselves, even in this case it took 0.2 and 0.64 ms on average

respectively for the anomaly detection system and the neural network.

4.4 Overhead

We focused on determining the computational overhead caused by quickhpc since

it is responsible for collecting the data of the monitored processes. For our system

to work in a realistic scenario we need to monitor processes as soon as they start

executing and for as long as needed. For example we might modify the operating

system so that quickhpc is attached to every new process and keeps monitoring

their behavior until they terminate spontaneously or are recognized as suspicious.

This mechanism requires quickhpc’s overhead to be relatively low.
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We determined the overhead in two different contexts. In the first one we mea-

sured the overhead caused by quickhpc with regard to the victim process’ alone.

That is, whether the execution time of the victim process increased due to the con-

tinuous monitoring. In the second one we assessed whether a potentially higher

execution time is the consequence of just the higher workload caused by quickhpc

or by quickhpc actually interfering with the victim process.

In our first approach we performed 1000 signatures using OpenSSL ECDSA

(curve sect571r1), i.e. the victim process described in Chapter 2.4, twice: the first

time without monitoring the process and the second time attaching quickhpc. In

the worst case the average execution time for the processes that were monitored

by quickhpc (6.16 ms) was 0.99% higher than the average execution time for the

processes that were not monitored (6.10 ms). To make sure the parallelism offered

by a multi-core architecture was not responsible for such low overhead (i.e. because

the crypto process and quickhpc were being executed on different cores) we pinned

all of the processes to a single core by using the utility taskset [39].

In our second approach we simulated a heavy, CPU-bound, workload by running

2 rounds of 100 instances of the ECDSA victim process. In the first round only the

first 99 instances were monitored by quickhpc while in the second round also the last

instance was monitored. In both rounds we profiled the last instance to determine

its execution time. We then repeated both rounds 1000 times and collected the data

to compute the average execution time of the victim process in both cases. The

higher workload increased the average execution time of the victim processes, that

were not monitored, to 8.45 ms and the average execution time of the processes

monitored by quickhpc to 8.65 ms, i.e. causing an overhead of 2.3%.
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Chapter 5

A smarter spy process

The purpose for building a more sophisticated version of a spy process is to evade

one or more of the detection systems presented in the previous chapters.

We were able to decrease the confidence range given by the first system, based

on correlation, by slightly changing the behavior of the spy so that it would take

more time to complete an attack but act in a more clever way. We chose to modify

the spy for AES by Irazoqui et al. [11] because of its already long execution time

(i.e. minimum 5 s on our system).

Since the correlation is established only by the total number of cache accesses,

the modified spy, similarly to what happens in the actual attack, can start accessing

a random number of addresses generating, therefore, a random number of cache hits

or misses: accesses nonetheless.
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Figure 5.1: Relationship between the total LLC accesses of the AES victim process
and the modified version of the spy process.

Although these random accesses, performed for each iteration of the main loop

of the spy, cause the total execution time to increase, the success of the attack is

in no way influenced. Figure 5.1 shows the relationship between the total cache

accesses of the AES victim and the AES modified spy; a very different pattern than

the one previously seen in Figure 3.2 with the original spy process.

We modified the spy to access up to 10, 100 and 1000 random addresses for each

iteration of the main loop. In all cases the key was correctly retrieved, proving the

attack can still be completed, even though the execution time increased dramatically,

up to 96 s, in the last case. On the other hand the confidence range of the correlation

method noticeably decreased. The minimum value went from 0.095, for the original

spy, to 0.003 for the modified version while the maximum dropped from 5.4 to 0.35.

This proves that it is possible to partially circumvent the detection system based on

correlation while still being able to successfully complete an attack.

Table 5.1 shows how the confidence range depends on the number of random

addresses used. The data have been collected over 100 attacks for each number of

random addresses.

We experienced the opposite trend when trying to catch such process by using

the neural network and anomaly detection system. In the first case the maximum
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Table 5.1: Confidence values and execution time for the three variants of the mod-
ified version of the AES spy process. Each variant sets a different value for the
maximum number of addresses that are probed for each iteration.

Number of
random accesses

Min confidence Max confidence
Max time
to complete
an attack

10 0.063545 3.197853 19s
100 0.159697 1.229513 43s
1000 0.003177 0.355517 96s

F-score was 0.98 while in the second case the value dropped to 0.79, similarly to the

unmodified AES spy process. The new behavior clearly makes the process stand out

more, rendering the detection even easier when using techniques based on machine

learning.
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Chapter 6

Discussion

Our results show that it is possible to catch a process that uses the FLUSH+RELOAD

technique before the attack can be successfully completed. The fact that our detec-

tion system can run as a process in user space makes it convenient to use both on a

same-OS scenario and on virtual machines. In the latter scenario the choice would

be to either integrate the system into the hypervisor or preinstall the software on

any new virtual machine.

In a same-OS scenario the time left between the completion of the detection and

the completion of the attack, in the case of the fastest spy where there are 2.6 to

2.2 ms left, allows for a variety of countermeasures, the simplest being killing the

suspicious process and prevent further access to any file or socket opened by it. In

case of a cross-VM attack it would be enough, for the hypervisor, to suspend the

virtual machine where the spy is running and relocate the one where the victim is

running since co-location is the first requirement for these kinds of attacks to work.

The creation of a smarter spy process proved that the detection based on corre-

lation can be partially circumvented opening the doors to further research on how

to implement a more advanced variant of the aforementioned attacks. Deceiving

the other detection systems, based on machine learning techniques, proved to be

a harder task, although the assumption that there exist training data might not

always be correct when encountering new variants that work in unexpected ways

(which often happens with antivirus software).

The low footprint generated by our system and its ability to run as yet an-

other user space process, together with the fact that most systems are not regularly
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patched against such attacks, make it a good tool for cloud service providers. We

think the best way to employ our detection system would be to integrate it in the

operating system and attach quickhpc to each new process, monitor them for a pre-

defined amount of time, run one (or all) of the detection algorithms on the collected

data and decide whether to terminate the process or simply detach quickhpc and

let the process run.
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Chapter 7

Conclusion and future work

We introduced three methods to detect a spy process that is performing a cache-

based side-channel attack based on techniques such as FLUSH+RELOAD (in general

any technique where the attacker accesses the CPU cache with a certain regularity).

While each of the methods has its own strengths and weaknesses we proved that

it is definitely feasible to detect and prevent an attack in a relatively short time.

Furthermore we did so without altering any of the components of the system (e.g.

the kernel) and without causing too much overhead, simply by running our detection

system as a user space process.

We are confident that such system might be easily integrated in a physical or vir-

tual cloud environment (such as DigitalOcean or Amazon EC2) either as a separate

process (similarly to an anti-virus) or as a plugin for the hypervisor.

On the other hand we also demonstrated how, with just some tweaks, it is

possible to deceive one (the simplest) of the detection methods. This, we hope, will

fuel more research on increasingly ”smarter” detection systems and, consequently,

attacks.
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