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Abstract

Multiple-input-multiple-output (MIMO) antenna technology has attracted sig-

nificant interest in recent years due to its great potential to increase wireless capac-

ity and to provide reliability without extra power and/or bandwidth consumption.

Thus, MIMO antenna technology finds wide employment in current wireless net-

working standards such as wireless LAN (IEEE 802.11n) and it is also expected to

be employed in the next-generation systems such as 4G cellular networks. More-

over, as the diversity in services provided to mobile users increases, the capability to

support diverse delay quality-of-service (QoS) requirements arises as a key feature

of next-generation networks.

This thesis investigates resource allocation schemes in the downlink channel of

MIMO cellular networks serving multiple users with different delay QoS require-

ments. This work specifically focuses on proportionally fair resource allocation al-

gorithms that optimize the aggregate system utility given in terms of “effective

capacity” of users. The effective capacity of a user identifies the maximum arrival

rate supportable by the system while satisfying a probabilistic delay constraint. Re-

source allocation problem is solved for both time-division-multiple-access (TDMA)

and space-division-multiple-access (SDMA) systems, and two resource allocation al-

gorithms for each are given. In a TDMA system, each user is assigned a distinct

slot of optimal length, based on the instantaneous channel conditions and QoS re-

quirements of active users in each frame. In a SDMA system, multiple streams are

transmitted simultaneously. The transmitter gives different power assignments to

each stream determined as a solution to the utility maximization problem. The

performance and the efficacy of the proposed algorithms are demonstrated both

via numerical experiments and simulations considering realistic channel models and

various QoS settings.
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Özet

Çok Girişli Çok Çıkışlı (ÇGÇÇ) anten teknolojisi, ek güç ve/veya bant genişliğine

ihtiyaç duyulmadan, kablosuz kanal kapasitesini artırması ve güvenilir iletişim sağlaması

nedeniyle son yıllarda oldukça ilgi çekmektedir. Bu sebeple, ÇGÇÇ anten teknolo-

jisinin kablosuz yerel ağlar (LAN) (802.11n) gibi günümüz kablosuz ağlarında geniş

kullanım alanı bulduğu gibi, 4G gibi yeni-nesil hücresel ağlarda da kullanılması bek-

lenmektedir. Son yıllarda, yeni-nesil ağların artan veri hızlarını desteklemelerinin

yanısıra, türdeş olmayan rötar gibi kullanıcı servis kalitesi isterlerini karşılayabilmeleri

önem kazanmaya ve kilit bir özellik olmaya başlamıştır.

Bu tezde, çok kullanıcılı hücresel ağlardaki uca yönelim sistemlerinde sınırlı za-

man ve güç kaynaklarının eniyileme yöntemleriyle yönetimi, aynı anda ÇGÇÇ kanal

getirilerinden faydalanılarak ve türdeş olmayan kullanıcı servis kalitesi isterleri göz

önünde bulundurularak, kullanıcıların etkin kapasiteleri üzerinden tanımlı fayda

işlevleri toplamları üzerinden orantılı adil servis sağlayan iki farklı temel algorit-

mayla değerlendirilmiştir; zaman paylaşımı algoritması (ZPA) ve güç paylaşımı algo-

ritması (GPA). Kullanıcılara servis, ZPA’da dinamik olarak girişim sakınımlı ayrık

zaman paylaşımlı ışın biçimlendirmeyle, GPA’da ise üst üste kodlama ile yapılan

eş zamanlı iletimde güç kontrollü girişim yönetimiyle verilmektedir. ZPA’da her

çerçevede tüm kullanıcıların kanal durumlarına bağlı olarak, her kullanıcıya en iyi

uzunlukta ayrık zaman tahsisi yapılmaktadır. GPA’da ise kaynak paylaşımı tüm kul-

lanıcıların kanal durumlarının uzun süreli ortalamaları göz önünde bulundurularak

gerçekleştirilmektedir.

Çalışmada, gerçekçi kanal modelleri ile çeşitli kullanıcı servis kalitesi isterleri

göz önünde bulundurularak alınan çözümsel verilerle ve yapılan benzetim ortamı

deneyleriyle, önerilen algoritmaların etkinlikleri gösterilmiştir.
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Chapter 1

Introduction

1.1 Motivation

Last-mile connections to end-users are becoming predominantly wireless. Rapid in-

crease in use of mobile devices providing various real-time services such as IPTV,

VoIP, Internet Radio, video conferencing results in search for better use of the wire-

less medium. In order to deliver the same performance to end-users as if they

are connected to a wired network, new techniques to maximize the throughput in

all-wireless networks must be developed. One of the most promising approaches

in achieving this, is the use of multiple-input multiple-output, or MIMO, technol-

ogy [1], [2]. In MIMO, both the transmitter and receiver are equipped with multiple

antenna elements, where each antenna pair provides an independent spatial path

between the transmitter and receiver. Hence, the capacity scales linearly with the

number of antenna elements even though the antennas transmit and receive simul-

taneously on the same frequency band [3].

Besides increased data rates, the efficient use of the wireless medium also requires

to take into account the heterogeneous quality-of-service (QoS) constraints (e.g.

delay constraints) imposed by each different service provided by mobile network

operators and internet service providers.

Independent of the wireless channel, to overcome latency in data transmission,

data compression methods are used, which increase the information carried by unit

time. In addition, multiple alternative paths, i.e. wireless channels, can be consid-
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ered depending on the varying nature of the wireless medium, via multiple access

points. In [4], these two approaches are combined to show that given a delay-QoS the

efficient use of the wireless medium for video transmission can be improved. How-

ever, such approaches are limited in the sense that they cannot efficiently exploit the

wireless channel characteristics. E.g. in terms of supporting high definition (HD)

video streaming, there are works focused on transmission rate adaptation schemes,

that take into consideration the variations in the wireless channel [5]. However,

from the physical layer (PHY) perspective, these schemes are hard to employ in

multi-user wireless networks, and thus, need further improvement.

In this thesis, we focus on downlink channel multi-user QoS provisioning via

different resource allocation methods in MIMO cellular networks while considering

both PHY and media access control (MAC) layers. There is a plethora of work on

cross-layer resource optimization in wireless systems. All these works illustrate that

significant throughput gain can be obtained by joint optimization of radio resource

across PHY and MAC layers. A typical assumption is that the transmitter has an

infinite backlog and the information flow is delay insensitive. However, in practice,

it is very important to consider random bursty arrivals and delay performance met-

rics in addition to the conventional PHY layer performance metrics in cross-layer

optimization.

To achieve efficient wireless communications while supporting diverse delay QoS

requirements, we employ the effective capacity as the main performance metric in

this thesis. The effective capacity was defined in [6] to evaluate the capability of

a wireless service process in supporting data transmission subject to a statistical

delay QoS requirement metric, called QoS exponent and denoted by θ. A higher θ

corresponds to a more stringent delay constraint. Also, θ can continuously vary from

0 to∞, and thus a wide spectrum of QoS constraints can be readily characterized by

a general model. However, incorporating the effective capacity model into multi-user

communications faces significant challenges, which are not encountered in a single

user wireless link. Multi-user systems often have to “carefully” allocate the wireless

resources based on mobile users’ channel state information (CSI), and they usually

need to balance the performances among all mobile users according to users’ diverse

2



QoS requirements.

1.2 Literature Review

Existing practical wireless networks that are based on the multi-layer communica-

tion structure, provide modularity and transparency across the layers, which led

to today’s robust and flexible standard internet protocols [7]. However, the multi-

ple layers functioning independent of each other, cause inefficient use of the wireless

resources provided by MIMO systems. Exploiting the characteristics of MIMO tech-

nology in the physical layer and translating its performance gains to higher layers

has motivated the integrated, cross layer approaches [8]. MIMO technology specifi-

cally requires designing and managing the interaction between the PHY and MAC

layers. Additionally, fairness constraints together with QoS requirements imposed

by the higher layers and time-sensitive applications must be taken into account in

designing an integrated communication system.

The most fundamental unit used in resource management of MIMO systems is

called a MIMO stream. A MIMO stream is logically defined as the spatial communi-

cation channel that is obtained by making use of one the spatial degrees-of-freedom

(DoF) of the MIMO channel. Physically, MIMO streams are fundamental spatial

channels that are obtained by cooperative coding of multi-antennas on both trans-

mitter and receiver sides. Accurate computation of the MIMO channel capacity

requires complex matrix operations and use of methods that do not provide closed-

form solutions. This hardens the integration of the PHY models to the higher layers.

In order to overcome this difficulty and enable cross-layers designs, closed-form, sim-

pler and accurate uncorrelated MIMO channel capacity computation methods have

been proposed [9]. There are also capacity computation methods that employ K-

state Markov models and Gilbert-Elliot (GE) channel models for correlated MIMO

channels [10]. In both approaches, MIMO channels are defined via their DoF, i.e.,

independent signaling dimensions.

The MIMO stream term has been employed in Stream Controlled Multiple Acces

(SCMA) protocol, which provides resource management and adaptation of the higher
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layers with respect to the MIMO channel in [11], [12]. The main principle of this

system is to schedule links that can cause congestion without the stream approach,

and then scheduling the remaining links based on streams. In the literature, optimal

scheduling policies based on the stream-based structure and considering the trade off

between spatial multiplexing and diversity have been proposed [13]. Another work

focused on MIMO streams proposes a stream control approach that aims to increase

the efficiency of a wireless network with a distributed and two-level heuristic [14].

[15] focuses on the admission control problem in transport and application layers

of MIMO-based wireless networks. Reception and transmission capabilities of the

nodes are quantified based on channel estimation errors, transmit power levels and

channel statistics, and probabilistic DoF for spatial transmission and reception are

extracted. The proposed model also considers the trade off between the spatial

multiplexing and reuse advantages of MIMO, so that admission control allows higher

flow rates with efficient resource utilization. However, the work focuses only on the

admission control and it does not provide any scheduling and routing solutions.

As far as cross-layer MIMO resource management is concerned, time-division-

multiple-access (TDMA) based interference aware transmission scheduling [16] is

used to resolve contention problems in wireless networks by considering spatial

DoF [17]. There are also works, such as [18] that take into account scheduling,

transmission power control and routing in an integrated manner. This work also

incorporates data rate and queue stability constraints, resulting in a large and com-

plex optimization problem, which can only be solved by dividing the network into

broadcast domains and applying dynamic programming methods within each broad-

cast domain separately. However, the performance enhancements of the proposed

method are not quantified in a realistic simulation environment.

Opportunistic scheduling policies are also proposed for the channel optimization

of MIMO based wireless networks [19]. The works in the literature show that the

use of opportunistic MAC protocols together with multi-user MIMO systems can

increase the system capacity up to threefold in wireless mesh networks [20]. A

similar opportunistic approach is proposed together with cooperative methods [21].

The work reports that the proposed TDMA-based special scheduling method can
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achieve eight times better network capacity values than standard 802.11 networks.

In 4G wireless networks, maximizing the system capacity while satisfying QoS

requirements of different user applications is crucial. In addition to works that

consider different fairness criteria in scheduling, such as [22], there are a limited

number of studies on scheduling in MIMO networks with QoS constraints. The

main approach common on all these works is that packet transmission schedules

and resource allocation are handled in the MAC layer, and PHY layer performs

beamforming and multiuser diversity gain. [23] proposes such an approach, with

a packet prioritizer followed by a resource allocator, which tries to maximize the

throughput of a given packet priority order.

There are various approaches dealing with delay-QoS-aware resource allocation

control in wireless networks [24], [25]. One approach dealing with delay-QoS-aware

resource control employs the notion of Lyapunov stability and in the stability sense

builds throughput optimal control policies. The throughput optimal policies guar-

antee the stability of the queueing network if stability is to be achieved under any

policy. Three known throughput-optimal classes of policies are the Max Weight

rule [26], the Exponential rule [27], and the Log rule [28]. Especially, the Max

Weight-type class of algorithms, which are proved to minimize the Lyapunov drift

and are throughput-optimal, are utilized in many dynamic control algorithms used

to optimally allocate limited resources in satellite and wireless systems [29], [30], [31].

A second and more systematic approach to deal with delay-QoS-optimal resource

allocation control is the Markov decision process (MDP) approach. It is possible

to obtain delay-optimal solutions in some special cases, e.g. [32], [33], where the

authors show that the longest queue highest possible rate (LQHPR) policy is delay-

optimal for multi-access systems with homogeneous users. However, in general this

approach is not utilized due to the challenges mentioned in [34].

A third and most-widely used approach in dealing with delay-aware resource

control is to utilize effective bandwidth and effective capacity theories, which con-

vert average delay constraints into equivalent average rate constraints using large

deviation theory. In this approach, the optimal resource allocation problem is

solved using an information theoretical formulation based on the average rate con-
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straints [35], [36], [37], [38], [39].

The key aspect of guaranteeing delay-QoS in a wireless network in the third

approach is to be able to model both the data arrival traffic and the service offered

by the network, i.e. wireless channel process. The majority of the works utilizing

this approach like [40], [41], where trade-off between power allocation and delay is

studied, consider single-input-single-output (SISO) wireless channels due to relative

simplicity of extracting effective capacity expressions. However, when MIMO chan-

nels are considered, even the modeling of a single wireless channel process turns

into a challenging problem [42]. Due to these challenges, closed form solutions for

optimal resource allocation under QoS provisioning in multi-user MIMO networks

rarely exist [43], which are usually hard to be utilized in real systems.

A cross-layer design controlling MAC and PHY layers is essential for designing

optimal scheduling for MIMO systems. Exploiting the physical characteristics and

flexibility of MIMO while satisfying individual users’ QoS requirements remains to

be an active research topic.

1.3 Problem Statement

In this thesis, we consider a single cell of a MIMO cellular network, where the base

station in each cell operates in a different frequency band than the base stations

in the neighboring cells within its transmission range. We investigate two different

resource allocation schemes for MIMO users receiving delay-sensitive data streams

from the base station over time-varying wireless channels.

In the first approach, we adopt an interference-free model, where only one user

transmits at a time. The base station acquires the instantaneous channel state

information from each user and determines how long each user receives service from

the base station within a time frame. We refer to this resource allocation scheme as

resource allocation in time-division-multiple-access (TDMA) system.

In the second approach, all users are served simultaneously by precoding the

data streams prior to transmission. In this case, transmission power of each of

the user streams are determined based on the average channel state information.
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This scheme is referred to as resource allocation in space-division-multiple-access

(SDMA) system.

These two approaches complement each other, since the acquisition of instanta-

neous CSI may induce large overheads, and thus, it may be prohibitively expensive

to be implemented in some systems. On the other hand, precoding of data streams

require more complex wireless transceivers, which may not be preferred due to cost

considerations.

In both of these approaches, we first model the effective capacity of MIMO

links by explicitly taking into account multi-user scheduling and resource allocation.

Based on this model, we formulate the resource allocation problem as a network util-

ity maximization (NUM) problem with each user having potentially different quality

of service requirement. The solution of this problem under realistic channel models

and the efficacy of the algorithms are demonstrated first by numerical experiments,

and then via network level simulations.

1.4 Contributions and Thesis Organization

Our main contributions in this thesis can be summarized as follows:

• We propose two different proportionally fair resource allocation algorithms in

form of NUM problems for both the TDMA system and the SDMA system.

The objective in the proposed algorithms is to optimize the aggregate system

utility given in terms of effective capacity of users in the downlink channel of

MIMO cellular networks. The base station within each cell has limited wireless

resources and serves multiple users with different delay-QoS requirements .

• We show the performance and the efficacy of the resource allocation schemes

via both numerical analysis and simulations under realistic channel models and

considering various delay-QoS requirements compared to trivial equal resource

allocation schemes.

• We propose a simple but accurate closed-form moment generating function

(MGF) and effective capacity expression for MIMO channel process, which is
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obtained by discretization of the MIMO channel process.

• We propose an approximate effective capacity expression as a function of power

allocation vector by forming distribution models for the eigenvalue distribu-

tions of the MIMO channel matrices and employing central limit theorem

(CLT), which is utilized in the practical power allocation algorithm that is

proposed for resource allocation in the SDMA system.

The organization of the thesis is as follows. In Chapter 2, a general background

is given on the theories and technologies utilized in the proposed algorithms. In

Chapter 3, we first introduce our closed-form effective capacity expression obtained

by state-aggregation of the MIMO channel process, present static and dynamic frame

allocation algorithms, and show their performance via numerical analysis. Chapter

4 introduces a static power allocation algorithm and a practical algorithm that uses

the approximate effective capacity expression for the MIMO channel process as a

function of power allocation vector, and concludes with their numerical analysis.

Chapter 5 explains briefly the simulation environment and presents simulation data

obtained with ns-2 to show the performance of the algorithms in a realistic setting

and provides delay-QoS analysis for users with different QoS demands under various

channel conditions. The thesis ends with Chapter 6, which contains the conclusion

and the planned future work.
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Chapter 2

Background

2.1 Effective Bandwidth and Effective Capacity

Theory

As a need to analyze the delay control problem in asynchronous transfer mode

(ATM) and internet protocol (IP) networks, the authors formed [44], [45] and ex-

tensively used [46], [47] the effective bandwidth theory, which models the asymptotic

stochastic behavior of source traffic process to a queueing system, and tries to figure

out the minimum constant channel rate that can serve a stationary source process

while guaranteeing a target delay-QoS requirement, such that the delay does not

exceed a given bound Dt with probability, (1− ε).

Consider a single queue system with instantaneous arrival rate a(τ) and channel

service c(τ) in terms of bits, which arrive at and served by the queue in a finite

length slot of τ seconds, respectively. Let A(t) be the cumulative source process,

i.e. the aggregate number of bits that arrived at the queue in [0, t] expressed as

A(t) =
∑t

τ=0 a(τ), and C(t) denote the cumulative channel process, i.e. aggregate

number of bits served by the queue in [0, t] expressed as C(t) =
∑t

τ=0 c(τ). Define

the workload process for the queue as Q(t) = (A(t)−C(t))+ with (x)+ , max(0, x)

and provided that c(t) ≤ Q(t) ∀t, which means that at any instant there are bits
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to be transmitted. Next, we define the Gartner-Ellis limit of Q(t) by

αQ(θ) = lim
t→∞

1

t
logE

[
eθQ(t)

]
. (2.1)

Exploiting the independence of both a(τ) and c(τ), αQ(θ) can be decomposed into

two terms, i.e.

αQ(θ) = αA(θ) + αC(−θ). (2.2)

Defining EQ(θ) = α(θ)/θ (i.e. effective bandwidth function definition in [6]) we get

EQ(θ) = EB(θ)− EC(θ). (2.3)

Now, we focus on the terms EB(θ) and EC(θ).

Assuming that the Gartner-Ellis limit of A(t), denoted by

αB(θ) = lim
t→∞

1

t
logE

[
eθA(t)

]
, (2.4)

exists for all θ ≥ 0, the effective bandwidth function of A(t) is defined as

EB(θ) =
αB(θ)

θ
= lim

t→∞

1

θt
logE

[
eθA(t)

]
. (2.5)

Now, considering a queue with infinite buffer size served by a channel with a con-

stant service rate R, it is shown [44] that the probability of the instant delay D(t)

exceeding a delay bound Dt, i.e. target delay, satisfies

ε = sup
t

P{D(t) > Dt} = γ(R).e−θ(R).Dt . (2.6)

by the large deviation theory [48], where γ(R) = P{D(t) ≥ 0} is the probability

that the queue is not empty and θ(R) = R.E−1
B (R) is the so-called QoS exponent,

i.e. R multiplied by the solution of EB(θ) = R. θ(R) is used as the metric for

QoS requirement, such that a higher θ(R) indicates a stricter QoS requirement and

vice versa. Since both θ(R) and γ(R) are functions of constant channel rate R, a
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source with a common delay bound Dt is said to be able to tolerate a delay violation

probability of at most ε with the channel capacity being at least R. This means that

the tail probability P{D(t) > Dt} is proportional to the queue being nonempty and

decays exponentially fast as Dt increases.

Inspired by the effective bandwidth theory, where a constant channel rate is used

to model the source traffic in wired networks, the authors in [6] used a constant

source traffic rate µ and developed a dual effective capacity theory, in order to

analyze the random and time-varying wireless communication channel. Contrary

to effective bandwidth theory, the effective capacity theory tries to figure out the

maximum constant arrival rate that can be served by a stationary channel service

process at a queue, while satisfying a target delay-QoS requirement, such that the

delay does not exceed a given bound Dt with probability, (1− ε).

Assuming that the Gartner-Ellis limit of C(t), denoted by

αC(−θ) = lim
t→∞

1

t
logE

[
e−θC(t)

]
, (2.7)

exists for all θ ≥ 0, the effective bandwidth function of C(t), i.e. effective capacity

function, is defined as

EC(θ) = −αC(−θ)
θ

= − lim
t→∞

1

θt
logE

[
e−θC(t)

]
. (2.8)

Note that if the process C(t) is uncorrelated, the effective capacity reduces to

EC(θ) = −1

θ
logE

[
e−θc(t)

]
. (2.9)

Now, considering again queue with infinite buffer size served by a data source

with a constant data rate µ rate, it is shown [6] that the probability of the instant

delay D(t) exceeding a delay bound Dt, i.e. target delay, satisfies

ε = sup
t

P{D(t) > Dt} = γ(µ).e−θ(µ).Dt (2.10)

by the large deviation theory [48], where γ(µ) = P{D(t) ≥ 0} is the probability that
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the queue is not empty and θ(µ) = µ.E−1
C (µ) is the so-called QoS exponent. Since

both θ(µ) and γ(µ) are functions of constant source rate µ, a source with a common

delay bound Dt is said to be able to tolerate a delay violation probability of at most

ε with the data rate being at most µ. As in effective bandwidth theory, a high QoS

exponent indicates a strict QoS requirement.

2.2 MIMO Channels

Since its introduction [1], [2], MIMO technology is widely employed as a key feature

to increase wireless capacity. By using multiple antennas on both the transmitter

and the receiver side of a wireless channel, it is shown that the wireless capacity

can increase almost linearly [3]. Due to this critical gain introduced by MIMO

technology into the wireless communications, it is widely utilized in wireless LAN

(IEEE 802.11n), WiMAX access networks (IEEE 802.16), and 4G cellular networks

(LTE). This performance gain, called as multiplexing gain, is a result of the fact that

a MIMO channel can be decomposed into a number of independent parallel channels,

the number of which depends on the number of antennas employed on both sides

of a link. Multiplexing independent data onto these independent channels results

in a linear increase in data rate compared to a system with one antenna at both

transmitter and receiver side.

The channel of a MIMO link l with nt transmit and nr receive antennas is charac-

terized byH l, i.e. the nr×nt channel gain matrix. The channel gain matrix consists

of elements hlij with i and j denoting the row and column indices, respectively. Such

a channel is said to have a maximum degrees of freedom (DoF) of d = min{nt, nr},

i.e. the maximum number of independent signaling dimensions. Communication

over a wireless MIMO channel with H l is described by

yl = H lxl + nl, (2.11)

where xl, yl and nl, represent the vectors of transmitted signal, received signal and

zero-mean white Gaussian noise with variance σ2
n. The entries of the channel matrix
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H l, i.e. hlij, denote the channel gain between the ith antenna of the transmitter and

the jth antenna of the receiver.

To compute the MIMO channel capacity, the diagonalization of the channel

gain matrix H l is required, in which the channel is transformed into a set of parallel

spatial channels. By singular value decomposition (SVD) of the channel gain matrix,

H l is written as

H l = U lΣlV̂
l
, (2.12)

where U l and V l are unitary matrices, x̂ denotes the Hermitian transpose, and

Σl is a diagonal matrix with the singular values σli of H l on its diagonal. If H l

is a random matrix, Σl may change its size depending on the number of non-zero

singular values at a given instance. The number of non-zero singular values of H l

is referred to as the available DoF of the MIMO link.

The parallel decomposition of the MIMO channel is obtained by defining a linear

transformation on the channel input vector xl as x̃l = V̂
l
xl, i.e. transmit precoding,

and another linear transformation on the channel output vector yl as ỹl = Û
l
yl,

i.e. receiver shaping. Performing the mentioned linear transformation on the output

vector, we get

ỹl = Û
l
(H lxl + nl)

= Û
l
(U lΣlV̂

l
xl + nl)

= Σlx̃l + ñl. (2.13)

After decomposition, communication over the independent parallel channels is de-

scribed by

ỹli = σlix̃
l
i + ñli for i = 1, . . . , d . (2.14)

For a static MIMO channel, its capacity as the sum of the capacities of the
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parallel channels is given by

C l =
d∑
i=1

log2

[
1 +

Piσ
l
i
2

σ2
n

]
, (2.15)

when channel state is known at the transmitter side of the link. Capacity maximizing

Pi values are found by water-filling (WF) algorithm by

Pi =

(
µ− σ2

n

σli
2

)+

for i = 1, . . . , d . (2.16)

Above, (x)+ represents max(0, x), µ denotes the water level computed by WF and

Pi satisfy
∑

i Pi ≤ P , where P is the total transmit power of the link.

In fading MIMO channels, the channel matrix entries hlij vary with time. As in

the case of the static channel, the instantaneous capacity of the link depends on what

information on the channel matrix H l is available at the transmitter side. Based

on the available information, the transmitter can adapt to channel fading. In this

case, the MIMO channel capacity is computed as the average of all channel matrix

realizations with optimal power allocation, which is termed by ergodic capacity [49].

The ergodic capacity of the MIMO channel is given by

C l
erg = EHl

[
max

Pi:
∑
i Pi≤P

d∑
i=1

log2

[
1 +

Piσ
l
i
2

σ2
n

]]
. (2.17)

The capacity unit in the capacity expressions for both the static and fading MIMO

channels is bits/second/Hz.

2.3 Superposition Coding

In the context of MIMO fading channels, superposition coding together with rate and

power allocation has been applied to maximize the average transmission rate [50].

In superposition coding the encoder constructs the signals in a nested fashion in

which the codeword, i.e. signal, that is intended for a certain receiver is a “satellite”

of the codeword that is intended for the next more degraded receiver.
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Let us first consider the two receiver case, and a scenario, where the signal ob-

served by receiver 2 is more degraded than that observed by receiver 1. The trans-

mitter wishes to communicate two independent messages simultaneously to both

receivers. To do so, the transmitter synthesizes the signal, x, by superimposing the

signal v, which contains the message intended for receiver 1 on the signal u, which

contains the message intended for receiver 2. The signal u is typically visualized

as the center of a cluster of codewords and is chosen from a codebook with rate

R2. In each cluster, there are (2)nR
1

satellites centered around u, where n is the

length of the codeword and R1 is the rate of the codebook used for receiver 1. For

Gaussian channels, when the transmit power budget is P , it was shown that the

capacity achieving codebooks are independent and Gaussian, and that the average

powers with which these codebooks are transmitted are (1 − β).P and β.P , where

β ∈ [0, 1] is a partition of power among codebooks.

The decoding of superposition encoded signals, i.e. successive interference can-

cellation [51], is as follows. The Gaussian signal v contains the message intended

for receiver 1. When operating at the boundary of the capacity region, this signal

is not decodable by receiver 2, and hence receiver 2 sees it as additive Gaussian

noise. Thus from receiver 2’s perspective, the situation resembles an additive white

Gaussian noise (AWGN) channel with signal power β||H2||2P and noise variance

σ2
n+(1−β)||H2||2P . For receiver 2 to decode the signal u, the rate R2 must satisfy

R2 ≤ log

[
1 +

βP ||H2||2

(1− β)P ||H2||2 + σ2
n

]
. (2.18)

Since receiver 1 observes a channel that is less degraded than the channel observed

by receiver 2, it can decode the signal u, and subtract it from its received signal.

Having done that, receiver 1 has a signal of power (1−β)||H1||2P , and noise variance

σ2
n. Similarly, receiver 1 can correctly decode signal v, if

R1 ≤ log

[
1 +

(1− β)P ||H1||2

σ2
n

]
. (2.19)

For the base station to send independent messages to L > 2 receivers, it gener-

ates L independent Gaussian codebooks, one for each degradation level [52]. The
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transmitter superimposes L codewords, one from each codebook, to generate the

transmitted signal. The transmitted signal can be regarded as a codeword from

nested clusters. Each codebook represents a set of cluster centers that are decod-

able by the receiver at the corresponding degradation level as well as less degraded

receivers. For more degraded receivers, these cluster centers are observed as unde-

codable satellites that contribute to the total noise observed by these receivers. Let

ψl denote the particular degradation level of receiver l. The receivers at degradation

levels ψk < ψl are considered as less degraded receivers.

As codewords are transmitted from the nested clusters, the transmitter parti-

tions its power, and in order to decode superposition-coded messages, each receiver

begins by decoding and subtracting the signals intended for more degraded receivers.

Treating the signals intended for less degraded receivers as additive Gaussian noise,

each receiver then proceeds to decode its intended signal. Given a power partition

β = (β1, . . . , βL), and degradation levels ψl, for all l = 1, . . . , L, the lth receiver is

able to decode its intended signal, if the rate of the corresponding codebook satisfies:

Rl(β) ≤ log

[
1 +

βlP ||H l||2∑L
j=1 Iψj<ψlβjP ||H

l||2 + σ2
n

]
, (2.20)

where βl is the partition of power allocated for user l, and Ix<y is an indicator

function which takes value 1 when x < y, and 0 otherwise.

In this two receiver case, the signal observed by receiver 2, which is more degraded

than the signal observed by user 1, is said to be encoded in the second position, and

the signal observed by receiver 1 is said to be encoded firstly by the transmitter.
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Chapter 3

Resource Allocation in TDMA

System

In resource allocation in time-division-multiple-access (TDMA) system, we investi-

gate exploitation of beamforming capability of MIMO communication, as the base

station communicates with one user at a time over a point-to-point MIMO link in

time division multiple access mode. Interference between users is avoided, since a

particular portion, Φl, of the unit time frame is allocated to each user, i.e., each

MIMO link, l, so that
∑L

l=1 Φl = 1. Time durations to be allocated for the ac-

tive users are variable size slots, which are changed dynamically, frame-by-frame,

considering the users’ QoS constraints and instantaneous channel conditions that is

reflected to the available DoFs of the links.

For this problem, we define two algorithms, i.e. static resource allocation algo-

rithm and dynamic resource allocation algorithm. In static resource allocation, we

solve a one-shot NUM problem, with user utilities given as functions of effective

capacities of the corresponding MIMO links. To solve this problem, we first derive

an expression for the effective capacity of a single MIMO link. In dynamic resource

allocation, we iteratively solve a NUM problem, where user utilities are denoted by

functions of auxiliary variables, which are obtained from the derived effective ca-

pacity expression and are directly dependent on the instantaneously available DoF

of the links.
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3.1 System Model

We consider the downlink channel of a single cell in a MIMO based cellular network,

where the base station is deployed with nt antennas to communicate with multiple

receivers each with nr antennas. We assume a Gaussian broadcast scenario, in which

the base station is sending independent messages to L receivers in time division

multiple access mode with transmit beamforming, and the channel gain matrix

observed by each receiver l is denoted by H l, which consists of circularly symmetric

complex Gaussian (CSCG) entries H l(i, j) = hlij ∼ CN (0, σlij
2
). The medium is

assumed to have zero-mean Gaussian noise with variance σ2
n, and the base station

with both full and instantaneous channel state information (CSI) has a total transmit

power of P Watts.

Figure 3.1: Resource allocation in TDMA system with three users.

As explained in detail in the following sections of this chapter, the proposed

algorithms are designed with the aim of maximizing the aggregate system utility

given in terms of effective capacity of L active users in the downlink channel. Each

user has a different QoS exponent, θl, l = 1, . . . , L.

In static resource allocation, the users obtain a utility which is a concave function

of their effective capacity. Similarly, the utility that the users get in dynamic resource
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allocation is a concave function of the derived auxiliary function that is a part of the

effective capacity expression. In this work, we assume a logarithmic utility function

which is shown to achieve proportional fairness among the users [53].

3.1.1 Channel Model

In order to to find the effective capacity of a MIMO channel process (i.e. (2.8)), one

needs to both find a closed-form expression for the instantaneous MIMO channel rate

and fully characterize its distribution, which involves an expectation operation with

complex matrix operations to be performed together with water-filling algorithm.

To overcome this complexity, the MIMO channel rate is expressed over its available

Degrees of Freedom (DoF) [54].

This approach enables the point-to-point MIMO channel to be modeled as a

discrete Markov chain, where each state i represents the number of available DoF

with i = 1, . . . , d and d = min{nt, nr}, and occurs with probability πi [10]. For

each link l, the total average Signal to Noise Ratio (SNR) is ρ̄l = P.σlij
2
/σ2

n. Given

the average SNR of each link, ρ̄l, the discretized channel model can be obtained by

considering sufficiently large number of channel realizations, applying singular value

decomposition and water filling algorithm [1] for each channel matrix H l, marking

the number of values exceeding the water level as the available DoF of the link, and

then counting the occurrences of the different DoF to obtain the probability of lth

link having i DoF, i.e., πli, for all i = 1, . . . , d.

Figure 3.2 displays πli for a MIMO channel with d = 3 as a function of σlij
2

with

P/σ2
n = 5, which are obtained utilizing the above mentioned method. As the channel

gain increases, the probability of the MIMO channel having 3 DoF at a given frame

increases and the probability of the MIMO channel having 1 DoF decreases, which

is an expected result.

In resource allocation in TDMA system, active users are served once in each

frame, which is of unit length normalized with respect to the channel coherence

time. Hence, the available DoF and the total average SNR ρ̄l per link remain

constant throughout a frame. Due to fading, however, the available DoF per link

can change independently from one frame to another, since there is no correlation
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Figure 3.2: DoF probabilities, πi for i = 1, 2, 3

between the entries of the channel gain matrices between two consecutive frames

and the links are memoryless. With this assumption, (2.9) can be used.

The full CSI assumption for the base station means that it knows the Markov

characterization of each MIMO link, and the instantaneous CSI assumption means

that it knows the available DoF for each link in a given time frame.

Having introduced the discretization of the MIMO channel process, we now state

the capacity of a MIMO link l in state i, that is approximately given as

Rl
i = i · log2

[
1 +

ρ̄l

i

]
(3.1)

with units bps/Hz. This is a simple, but accurate estimation of the ergodic (opti-

mal) MIMO channel capacity obtained after singular value decomposition and water

filling [54].

3.1.2 Effective Capacity Formulation

In order to calculate the effective capacity of a single MIMO link, we first determine

the moment generating function (MGF) of the channel process. Note that the

cumulative channel process of each MIMO link can be described as an uncorrelated

homogeneous Markov Modulated Process (MMP). For a general MMP, MGF is

20



given by π(Γ(θ)Q)t−1Γ(θ)1T , where π is the steady-state probability vector, Γ(θ) =

diag(eθR
0
, . . . , eθR

d
) is the rate matrix, Q is the state transition matrix and 1 is the

column vector of ones [55]. Utilizing this expression and applying its definition, the

MGF of the point-to-point MIMO channel process is determined as

MC(θl, t) = E
[
e−θ

lC(t)
]

=
d∑
i=0

(πli)
te−θ

lRlit , (3.2)

where Rl
i is the transmission rate of MIMO link l when it has i DoF. Note that

(3.2) reduces to the MGF of the ON-OFF traffic source, when a MIMO link has one

antenna at both transmitter and receiver side [55].

Once the MGF of the service process is determined, the Gartner-Ellis limit of

log-MGF can be calculated according to (2.7). However, due to the complexity of

obtaining a closed-form expression, we use the approach presented in [56], which

first finds an upper-bound on the MGF of the channel process and then extracts the

effective capacity expression for a general channel process using (2.8), so that the

given QoS constraint in form of QoS-exponent is not violated [57], i.e.

log(MC(θl, t)) = log

(
d∑
i=0

et(log πli−θRli)

)
≤ log

(
(d+ 1)etmaxi{log πli−θRli}

)
. (3.3)

Then, substituting (3.3) into (2.7), we obtain,

αC(−θl) = max
i
{log πli − θRl

i}. (3.4)

Finally, the effective capacity of a single MIMO link with i DoF is obtained by

substituting (3.4) in (2.9):

El
C(θl) = min

i=0,...,d

{
Rl
i −

log πli
θl

}
. (3.5)

The above given expression is valid for θl such that El
C(θl) does not exceed the

Shannon capacity limit of the link.
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Figure 3.3: Effective capacity and Shannon capacity limit

In Figure 3.3, the effective capacity of a MIMO channel with d = 3 and ρ̄l = 5 is

given. It is seen that for θl = 0.147, the effective capacity is at the Shannon capacity

limit 6.6583 bps/Hz for the given conditions. As the QoS requirement gets stricter,

the effective capacity decreases, which means that in order for the wireless channel

to satisfy a stricter QoS demand, it should operate at a lower rate.

3.2 Static Resource Allocation Algorithm

In static resource allocation in TDMA system, for each MIMO link a fraction of

time is reserved at each time frame depending on the instantaneous DoF of all links

and considering their QoS requirements in the system. The problem of resource

allocation is solved once by taking into consideration all possible DoF combination

of the links. With the solution of the NUM problem, what fraction of the frame is

to be allocated to which user is known given all possible DoF combinations.

Let δl(t) be the available DoF in frame t and φl(t) represent the fraction of

frame t reserved for this MIMO link. Then, the instantaneous transmission rate of

a MIMO link l can be approximately given as:

Rl(t) = δl(t) φl(t) log2

[
1 +

ρ̄l

δl(t)

]
. (3.6)
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In order to determine the effective capacity of each link according to (3.5), we

require the long term average rates for each DoF, E
[
Rl(t)|δl(t) = i

]
, ∀i = 1, . . . , d.

The expectation is with respect to the joint channel state distribution of all links,

which is simply the product of marginal distributions of individual MIMO links,

since all links are independent. Hence, the problem reduces to the allocation of

proportion of the time frame based on the DoF of each of the MIMO links given

the joint channel distribution and QoS parameters θl. Let δ = (δ1, . . . , δL) be the

vector of DoFs of MIMO links, and Φl(δ) be the proportion of frame allocated to

link l when MIMO links have DoFs δ. Note that the effective capacity El
C(θl) is

hence given by

min
i=1,...,d

i · log

(
1 +

ρ̄l

i

)
πli
∑
δ−li

Φl(δ−li )
∏
m 6=l

πmδm

− log πli
θl

 , (3.7)

where δ−li = (δ1, . . . , δl−1, i, δl+1, . . . , δL) denotes the vector of DoFs with link l hav-

ing i DoF and πli
∑
δ−li

(
Φl(δ−li )

∏
m 6=l π

m
δm

)
is the long term average frame allocation

for link l, when it has i available DoF, considering all possible vectors δ−li .

Our objective in static resource allocation is to determine Φl(δ) for all δ such

that total system utility is maximized given the channel distributions and user QoS

parameters.

max
Φl(δ)

L∑
l=1

log[1 + El
C(θl)]. (3.8)

The optimization problem in (3.8) is a non-convex optimization problem due to

the min operator in the definition of effective capacity. Hence, we decompose the

effective capacity expression into its d states, start to use the auxiliary variable γl

to denote the effective capacity for each link l, and modify the problem by adding
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d additional inequality constraints for each possible DoF for each link.

max
Φl(δ)

∑
l

log[1 + γl] (3.9a)

γl ≤ i · log

(
1 +

ρ̄l

i

)
πli
∑
δ−li

(
Φl(δ−li )

∏
m6=l

πmδm

)
− log πli

θl
,∀l, i (3.9b)

0 ≤ Φl(δ) ≤ 1,∀l (3.9c)∑
l

Φl(δ) ≤ 1, (3.9d)

where the first set of constraints in (3.9b) are defined ∀ l and i = 1, . . . , d. These L·d

constraints are obtained by the decomposition of the effective capacity expressions

into their states. The constraints in (3.9c) and (3.9d) represent the slot durations

of the links and the limited resource constraints, defined for all l and δ.

Note that the above presented problem statement considers all possible δ and

based on these makes the frame allocation decision Φl(δ) for each link l. Since one-

shot solution of the presented optimization problem gives all slot allocation decisions

for all possible δ, the algorithm is referred to as the static resource allocation in

TDMA system. Based on the slot allocation results, the base station reserves each

link the optimal length of slot using instantaneous CSI, which gives information on

instantaneous δ per frame.

3.3 Dynamic Resource Allocation Algorithm

Note that the optimization problem stated in the previous section (3.9a) has L · dL

decision variables Φl(δ), and L · (d + 1) + 1 constraints (i.e. (3.9b), (3.9c) and

(3.9d)). As d or L increases, the number of decision variables grow exponentially,

which enlarges the search space of the defined problem. In a realistic scenario, e.g.

802.11n, d cannot exceed 4, since the protocol allows a maximum of 4 parallel MIMO

streams. However, high L values, i.e. the number of concurrently-active MIMO links

or users, need to be taken into consideration, which can potentially introduce large

overhead to a realistic system. Thus, we introduce a new algorithm, i.e. dynamic
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Table 3.1: Parameters used in dynamic resource allocation algorithm

Parameter Description
L total number of MIMO links
l link index
i DoF index
d DoF of MIMO link, i.e. d = min{nt, nr}
θl QoS of lth link

ξk kth vector of DoFs of L links, i.e. ξ1 = (1, ..., 1) and ξd
L

= (d, ..., d)
slk slot allocation for link l for ξk in initialization phase
δl(t) DoF of lth link at time t, i.e. δl(t) = i ∈ {1, ..., d}
δ̃(t) vector of DoFs of all links, i.e. δ̃(t) = (δ1(t), . . . , δL(t)) ∈ {ξ1, ..., ξdL}
ξ−li DoF vector with lth link having i DoF, i.e. ξ−li = (δ1, . . . , δl−1, i, δl+1, . . . , δL)

φ̃l(δ̃(t)) instantaneous slot allocation for lth link

Φ̃l(δ̃(t)) updated slot allocation for lth link
πli probability of lth MIMO link having i DoF

ρ̄l average transmit SNR of lth MIMO link, i.e. Pσlij
2
/σ2

n

α(t) weight used in update function

υl auxiliary function Rl
i −

log πli
θl

Ẽl
C(θl) updated effective capacity for link l

Ψ(t) sum of the logarithm of effective capacities, i.e.
∑

l log(1 + Ẽl
C(θl))

0 vector of zeros
ε halt condition

resource allocation in TDMA system, which iteratively solves a simplified version of

the optimization problem (3.9a) by updating slot allocations and thus, automatically

the effective capacity for each link per frame. This significantly reduces the search

space of the optimization problem. However, a modified version of the NUM problem

is now solved repetitively.

Due to the changes in the NUM problem statement, the slot allocation variables

used before become time-dependent. Thus, frame index t is added to the slot alloca-

tion variables. Additionally, they are denoted by x̃ in order not to confuse the reader

with the variables used in static resource allocation. Table 3.1 gives a complete list

of the variables used in dynamic resource allocation algorithm.

In dynamic resource allocation, we introduce now the new variable φ̃l(δ̃(t)), the

instantaneous frame allocation for link l, which becomes the decision variable of the

optimization problem, and we describe Φ̃l(δ̃(t)) as the updated slot allocation for

link l based on δ̃(t).
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3.3.1 An Optimization Framework for Dynamic Resource

Allocation

The natural outcome of dynamically updating the frame allocations is the dynamic

update of the effective capacity for each link. Recall that in order to simplify the

optimization problem, the derived effective capacity expression, i.e. (3.5), is decom-

posed into its states, which are added to the set of constraints in the static resource

allocation.

In dynamic resource allocation algorithm, we apply the same method with the

exception, that in each frame with δl(t) = i, the algorithm computes each utility

function by taking the logarithm of the auxiliary function υl = Rl
i −

log πli
θl

, which

is obtained by the decomposition of the effective capacity. With this approach,

depending on the instantaneous available DoF of the link, the effective capacity

of each link is updated per frame, and the number of constraints obtained by the

decomposition reduces from d to 1.

With the mentioned changes, the optimization within each frame with frame

index t becomes

max
φ̃l(δ̃(t))

∑
l

log
[
1 + υl

]
(3.10a)

υl ≤ i log2

(
1 +

ρ̄l

i

)
πli
∑
ξ−li

({
Φ̃l(ξ−li \δ̃(t)) + Φ̃l(δ̃(t))

}∏
m 6=l

πmδm

)
− log πli

θl
, ∀ l

(3.10b)

0 ≤ φ̃l(δ̃(t)) ≤ 1, ∀ l (3.10c)∑
l

φ̃l(δ̃(t)) ≤ 1 (3.10d)

where Φ̃l(ξ−li \δ̃(t)) denotes slot allocations for the link l for all DoF vectors ξ−li except

δ̃(t), for which the slot allocation is updated in frame t. In this form, the optimization

problem has a total of L decision variables φ̃l(δ̃(t)) and 2L + 1 constraints (i.e.

(3.10b), (3.10c), (3.10d)) per frame.
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3.3.2 Initialization and Dynamic Control

In the initialization phase of the dynamic resource allocation algorithm, i.e. t = 0,

each link l is given the a slot length slk for all ξk such that
∑

l s
l
k = 1. Given this, the

optimization problem is solved based on the instantaneous channel characteristics

and the given QoS requirements. As a result, φ̃l(t=0) for all l are obtained.

Next, our algorithm searches for the frame allocation Φ̃l for each link l that were

lastly updated for the vector of DoFs present at t (3.11a) (For t = 0, the frame

allocations are readily given in the initialization phase). Using a simple linear first

order filter (3.11b), Φ̃l
(t) for all l are updated.

Iterations continue until difference of the sum of the logarithm of the updated

effective capacities between two consecutive iterations, i.e. |Ψ(t) − Ψ(t−1)| ≤ ε, falls

below a threshold value ε.

In general, we express the dynamic control part of dynamic resource allocation

algorithm in mathematical notation by

t− = sup
τ<t

{
τ : δ̃(τ) − δ̃(t) = 0

}
(3.11a)

Φ̃l(δ̃(t)) = α(t)

[
Φ̃l(δ̃(t−))

]
+ (1− α(t))

[
φ̃l(δ̃(t))

]
, ∀l (3.11b)

where 0 denotes the vector of zeros. (3.11a) looks for the last frame index t−, for

which the vector of DoFs (i.e. δ̃(t−)) is the same as the vector of DoFs at frame t, i.e.

δ̃(t). (3.11b) performs a weighted sum of the instantaneous frame allocation φ̃l(δ̃(t))

with the lastly updated frame allocation Φ̃l(δ̃(t−)) for the same vector of DoFs δ̃.

The weighting term α(t) used in (3.11b) is defined as frame-dependent, which may

be useful for certain sets of scenarios. However, throughout our work we prefer to

keep it constant at some value 0 ≤ α(t) ≤ 1.

3.3.3 Algorithm for Dynamic Resource Allocation

In this section, to understand the dynamic resource allocation in TDMA system,

the proposed algorithm is provided below. Table 3.1 displays all the variables used

in the algorithm.

27



Algorithm 1: Dynamic Resource Allocation in TDMA System

1 Input: L, d, ρ̄l, σlij
2
, σ2

n, α(t), θ
l, slk, ε

2 for l = 1 to 1 do

3 for k = 1 to dL do

4 Φl(ξk)← slk

5 end

6 end

7 while |Ψ(t) −Ψ(t−1)| > ε do

8 t− ← supτ<t

{
τ : δ̃(τ) − δ̃(t) = 0

}
9 for l = 1 to L do

10 Φ̃l(δ̃(t))← α(t)

[
Φ̃l(δ̃(t−))

]
+ (1− α(t))

[
φ̃l(δ̃(t))

]
11 end

12 Solve max
φ̃l(δ̃(t))

∑
l log

[
1 + υl

]
υl ≤ i log2

(
1 + ρ̄l

i

)
πli
∑
ξ−li

({
Φ̃l(ξ−li \δ̃(t)) + Φ̃l(δ̃(t))

}∏
m 6=l π

m
δm

)
− log πli

θl

0 ≤ φ̃l(δ̃(t)) ≤ 1∑
l φ̃

l(δ̃(t)) ≤ 1

13 for l = 1 to L do

14 Update ẼlC(θl)

15 end

16 Ψ(t)←
∑

l log(1 + ẼlC(θl))

17 t← t+ 1

18 end

19 obj = max
∑

l log(1 + ẼlC(θl))

3.4 Numerical Results

In this section, we analyze and compare the performance of the two proposed re-

source allocation methods in TDMA system via numerical experiments. In our

experiments, we investigate the behavior of the methods with respect to hetero-

geneity of users’ QoS demands and channel conditions. In this analysis, our aim

is to understand how heterogeneous QoS requirements and channel conditions af-
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fect the resource allocation decisions in MIMO cellular networks. For this reason,

we have not performed large-scale simulations, since having a large number of users

would have obscured the effects of varying channel conditions and QoS requirements

on resource allocation.

Table 3.2: Resource Allocation in TDMA System Experiments

Experiment # Channel Gains QoS Guarantees

I σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.9 θ1 = θ2 = θ3 = 0.25

II σ1
ij

2
= 0.6, σ2

ij
2

= 0.9, σ3
ij

2
= 1.2 θ1 = θ2 = θ3 = 0.25

III σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.9 θ1 = 0.1, θ2 = 0.25, θ3 = 0.75

In our numerical studies, we consider a single cell MIMO network, where L = 3

users receive service from a base station, as shown in Figure 3.1. Both the base sta-

tion and users have three antenna elements, and thus, the maximum degrees of free-

dom of MIMO links between the base station and users is d = 3. The channel gain

matrix observed by each receiver l consists of entries H l(i, j) = hlij ∼ CN (0, σlij
2
).

Total noise normalized transmit power available at the base station is P = 10 Watts.

The bandwidth of the wireless channel for each link is set to 1 kHz. The duration

of a time slot is one time unit. The users’ QoS requirements are indicated by QoS

parameter θl, l = 1, 2, 3.

We performed three experiments for varying channel conditions and QoS pa-

rameters. The values of the parameters used in each experiment are depicted in

Table 3.2. In the first experiment, we consider homogeneous channel conditions and

homogeneous user QoS requirements. In the second experiment, we consider het-

erogeneous channel conditions but homogeneous QoS requirements. Finally, in the

third experiment, we consider heterogeneous QoS requirements and homogeneous

channel conditions.

We compare the total utilities obtained in these experiments to equal time al-

location case, in which each link transmits one third of the entire frame duration.

Hence, with these three experiments we aim to understand how much effect the

channel conditions and QoS requirements have on resource allocation. It is worth
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emphasizing that the frame allocation decisions presented in the graphs correspond-

ing to the three experiments give information in the average sense, i.e. average frame

allocation for each link is obtained by computing the expectation of all the frame

allocations dependent on vectors of DoFs with the corresponding DoF probabilities.

Table 3.3: Total Utility and Percentages of Improvement in TDMA System

Experiment # Equal Time Allocation static Res. Alloc. dynamic Res. Alloc. Change [%]
I 21.0812 21.3954 21.3281 1.49
II 21.0221 21.9185 21.8485 4.26
III 21.0944 22.4313 22.3368 6.33

In Figure 3.4a, we observe that all users are allocated almost the same slot length

under static resource allocation, since the channel variance and QoS requirements

are the same. However, this is not the case for the dynamic resource allocation

(see Figure 3.4b). This is due to the stopping condition |Ψ(t) − Ψ(t−1)| > ε in the

algorithm, which stops iterations until the sum of the utilities falls below a given

threshold.

user 1 user 2 user 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

av
er

ag
e 

tim
e 

al
lo

ca
tio

n 
fo

r 
ea

ch
 li

nk

 

 

0

130

260

390

520

650

780

910

1040

1170

1300

ef
fe

ct
iv

e 
ca

pa
ci

ty
 in

 b
ps

avg. slot lengths

E
C
l (θl)

(a) Static Resource Allocation

user 1 user 2 user 3
0

0.1

0.2

0.3

0.4

0.5

av
er

ag
e 

tim
e 

al
lo

ca
tio

n 
fo

r 
ea

ch
 li

nk

 

 

0

128

256

384

512

640

768

896

1024

1152

ef
fe

ct
iv

e 
ca

pa
ci

ty
 in

 b
ps

avg. slot lengths

E
C
l (θl)

(b) Dynamic Resource Allocation

Figure 3.4: Resource Allocation Decisions for Experiment I.

Despite this, it is worth mentioning that the corresponding effective capacities (see

Figure 3.4a and 3.4b) and the total utilities (see Table 3.3) are almost the same. In

addition, there is not any significant improvement in total utility compared to the

equal time allocation case. Note that the improvement percentages are calculated

based on the static resource allocation results.
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In Figure 3.5a and in Figure 3.5b, the performance results of static and dynamic

resource allocation in Experiment II are given. For static resource allocation, it can

be seen that the user with highest channel gain is given the shortest slot length.

Despite this, the third user has highest effective capacity. For, dynamic resource

allocation, such an observation is not valid. However, both algorithms are again

consistent in the effective capacity values, i.e. their total utilities are almost the

same as shown in Table 3.3. In this experiment, we see an almost linear relation-

ship between the channel gains and the effective capacity values. One important

observation here is that there is a significant 4.26% improvement in our proposed

resource allocation scheme compared to the equal time allocation case.
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(b) Dynamic Resource Allocation

Figure 3.5: Resource Allocation Decisions for Experiment II.

In Figure 3.6a and In Figure 3.6b, the results of static and dynamic resource

allocation of Experiment III are given. The most important observation in this

experiment for both the static and the dynamic resource allocations is that the user

with the highest QoS-exponent, i.e. the strictest delay-QoS requirement, suffers a

lot due to this demand. In Figure 3.6a, despite the fact that user 3 is assigned longer

slot than user 1, its effective capacity is much lower. In both Figure 3.6a and 3.6b,

it is seen that as the delay-QoS gets stricter, the effective capacity decays more dra-

matically under the limited resource of unit length frame. Results displayed in Table

3.3 for Experiment III prove the efficiency of our resource allocation algorithm, as

the improvement in total utility is 6.33% compared to the equal time allocation.

Next, we demonstrate the direct effect of change in one user’s parameters, i.e.
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Figure 3.6: Resource Allocation Decisions for Experiment III.

the channel gain σlij
2

and the QoS-exponent θl. Data displayed in Figure 3.7a is

obtained for θ1 = θ2 = θ3 = 0.5, σ1
ij

2
= σ2

ij
2

= 0.5 and σ3
ij

2
is varied from 0.4 to

1.2. As it is seen, the increase in the channel gain for a single user affects the total

utility positively, which is an expected result, as this increases the received power

on the receiver side of this user. However, the increase is limited.
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Figure 3.7: Utility as a Performance Metric in Frame Allocation I

Data displayed in Figure 3.7b is obtained for σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.5, θ1 = 0.25,

θ2 = 0.5 and θ3 is varied from 0.125 to 1.0. It is seen that as the QoS demand of

third user gets stricter, the total utility rapidly decreases.

Finally, we demonstrate the effect of total umber of antennas per link and the

total number of users served by the base station. Figure 3.8a, which is obtained

for all three users having the same channel gain σlij
2

= 0.9 and the QoS-exponent
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θl = 0.25, displays the total utility of the three users when the number antenna

elements on both the transmitter and the receiver side of each link is increased

from 2 to 5. Even though the transmit power budget at the base station is kept

constant, we observe an increase in the total utility. This due to the multiplexing

gain introduced by MIMO channels. Data presented in Figure 3.8b, where all users

have the same channel gain 0.9 and the QoS-exponent 0.25, shows the change in

total utility as the number of users are increased. It is seen that despite the limited

resource of unit length frame the total utility increases almost linearly. This behavior

is to be explained by the definition of the user utilities given as logarithmic functions

of effective capacities.
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Figure 3.8: Utility as a Performance Metric in Frame Allocation II
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Chapter 4

Resource Allocation in SDMA

System

In resource allocation in TDMA system, we have investigated the dynamic alloca-

tion of time slot lengths among the users based on the instantaneous CSI feedback

acquired from the users. However, in multi-user systems, it is well known that the

acquisition of instantaneous CSI introduces significant overhead to system opera-

tions. For example, in CDMA/HDR (High Data Rate) system [58], the SNR of each

link is measured, from which a value representing the maximum data rate that can

be supported is determined. This information is then sent back to the base station

via the reverse link Data rate Request Channel (DRC). According to CDMA/HDR

specifications, the channel state information is 4 bits long and it is updated every

1.67 ms. If there are 25 users in a cell, 100 bits of channel information has to be

sent every 1.67 ms. This requires 60Kbps of channel rate to be dedicated only for

CSI feedback. The overhead of acquiring CSI is twice the minimum data rate, and

is approximately more than 20% of the average transmission rate as specified by

CDMA/HDR specification. Clearly, in a MIMO system, this overhead is expected

to be significantly higher. Hence, in this section, we investigate the case when in-

stantaneous CSI is not available at the base station, so the resource allocation is

based only on the average channel distributions.

Since the exact instantaneous channel state of the users are not available, dy-

namic allocation of time slot lengths is in reality not possible. Thus, we determine a
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static allocation of resource among the users based on their average channel statis-

tics and QoS requirements. The performance of a static resource allocation policy

based on average statistics can never improve upon the performance of an optimal

dynamic policy. Hence, by taking interference into consideration we investigate the

use of superposition coding in order to simultaneously serve multiple users, and

improve the system performance of the proposed static policy.

For this resource problem, we first define a static power allocation algorithm, in

which we solve a one-shot NUM problem, with user utilities given as functions of

effective capacities of the corresponding MIMO links. In this algorithm, we again

use the effective capacity expression we derived in Chapter 3. Next, we define a

practical resource allocation for the same problem, in which we adopt a central

limit theorem (CLT) approach [59] and use curve fitting for the distributions of the

eigenvalues of the MIMO channel gain matrix in finding the effective capacities.

4.1 System Model

We again consider the downlink channel of a single cell in a MIMO based wireless

network with a Gaussian broadcast scenario, in which the base station is sending

independent messages to L receivers in space division multiple access mode with su-

perposition coding employed for interference cancellation. We assume, the channel

gain matrix observed by each receiver l is denoted byH l, consisting of CSCG entries

hlij ∼ CN (0, σlij
2
). The medium is assumed to have zero-mean Gaussian noise with

variance σ2
n. The base station with full CSI and deployed with nt antennas to com-

municate with multiple receivers each with nr antennas has a total transmit power

of P Watts, which is partitioned among multiple links l, i.e. P
∑L

l=1 β
l = P , where

βl is the partition of power reserved for link l by the base station. Communication

over each MIMO link l with a different QoS requirement θl is done simultaneously,

i.e. each user is served in the entire frame duration. The base station is assumed to

have only full CSI, i.e. it has enough a priori realizations for each link in its memory.

As in the resource allocation in TDMA system, the users obtain a utility function

that is a concave function of their effective capacity in both static and the practical
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Figure 4.1: Resource allocation in SDMA system with three users.

power allocations. In resource allocation in SDMA system, we again consider a

logarithmic utility function that is shown to achieve proportional fairness among

the users [53].

4.1.1 Channel Model

Each fading MIMO channel in SDMA system is assumed to be memoryless, i.e. there

is no correlation between the channel gain matrix entries hlij between two consecutive

frames. Each user is served within each frame in the entire frame duration. The

channel process is again described by performing state-aggregation, i.e. the process

is defined over the available DoF within each frame of length equal to the channel

coherence time.

In the static resource allocation algorithm in SDMA system, MIMO channel is

again modeled as a discrete Markov chain, where each state i representing the avail-

able DoF of a link within a frame occurs with probability πi. Unlike in TDMA

system, the DoF probabilities used to discretize the channel to form Markov model

in SDMA system are extracted considering large number of channel realizations, ap-

plying only SVD on each channel matrix H l, marking the number of singular values
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on the main diagonal of the resulting Σl exceeding a sufficiently small threshold

level as the available DoF of the link, and counting the number of occurences of

each different DoF. The effect of the choice for this threshold value on the effective

capacity and the corresponding utility is to be found in Appendix A. So, WF algo-

rithm is not utilized. With the full CSI assumption, the base station knows Markov

characterization of each MIMO link.

With the above given procedure to obtain DoF probabilities, the instantaneous

channel rate of a channel without interference and with power partition βl is given

by

Rl
i = i · log2

[
1 +

σlij
2
Pβl

σ2
n i

]
(4.1)

with units bps/Hz [54] and SNR is given by ρ̄l =
σlij

2
Pβl

σ2
n

.

In the existence of interference from neighboring links, when we apply superpo-

sition coding, we need to take into account degradation levels ψl. In this case the

instantaneous channel rate as a function of both βl and ψl is expressed by

Rl
i(β

l, ψl) = i · log2

[
1 +

1

σlij
2
P
∑L

k=1 Iψk<ψlβk + σ2
n

(
σlij

2
Pβl

i

)]
, (4.2)

where
(
σlij

2
P
∑L

k=1 Iψk<ψlβk + σ2
n

)
is the noise term including the interference from

other links for the link l.

4.1.2 Effective Capacity Expression

We adapt (3.5) to static resource allocation in SDMA system algorithm by replacing

Rl
i for all i = 1, . . . , d with (4.2) and expressing them as a function of power partition

βl as
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El
C(θl, βl, ψl) = min

i=0,...,d

{
Rl
i −

log πli
θl

}
= min

i=0,...,d

{
Rl
i(β

l, ψl)− log πli
θl

}
= min

i=0,...,d

{
i · log2

[
1 +

1

σlij
2
P
∑L

k=1 Iψk<ψlβk + σ2
n

(
σlijPβ

l

i

)]
− log πli

θl

}
(4.3)

As Rl
i become a function of βl and ψl, we start to denote the effective capacity as a

function of θl, βl and ψl.

4.2 Static Resource Allocation Algorithm

Our objective in static resource allocation algorithm in SDMA system is to determine

the power allocation vector β = (β1, . . . , βl, . . . , βL) together with the degradation

level vector ψ = (ψ1, . . . , ψl, . . . , ψL) informing about the encoding order of the links

such that the total system utility is maximized given the channel characteristics and

user QoS requirements given as QoS-exponents.

max
β,ψ

L∑
l=1

log[1 + El
C(θl, βl, ψl)]. (4.4)

As the optimization problem in (4.4) is a non-convex optimization problem due

to the min operator in the effective capacity expression, the effective capacity expres-

sion is decomposed into its d states and the auxiliary variable γl is used to denote

the effective capacity for each link l in the objective function, i.e. (4.5a). This adds

d additional inequality constraints, i.e. (4.5b), per link to the optimization problem.
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max
β,ψ

L∑
l=1

log[1 + γl] (4.5a)

γl ≤ i · log2

[
1 +

1

σlij
2
P
∑L

k=1 Iψk<ψlβk + σ2
n

(
σlijPβ

l

i

)]
− log πli

θl
,∀l, i (4.5b)

∑
l

βl ≤ 1 (4.5c)

In case of L active links, one can form L! possible degradation level vectors ψ.

The above defined optimization problem solves for optimal power allocation vector

β for each degradation level vector ψ, and then decides on the optimal degradation

level vector. Given ψ, the optimization problem has L decision variables βl and

L · d+ 1 constraints (i.e. (4.5b) and (4.5c)).

4.3 Practical Resource Allocation Algorithm

In practical resource allocation algorithm, we utilize a CLT approach in finding

the effective capacities of the MIMO links. However, this approach requires the

extraction of the eigenvalue distributions of a MIMO channel process. In literature,

the exact distributions are shown to be too complex to be utilized [60]. Thus, based

on the channel characteristics we assume, we apply curve fitting to approximate the

distributions.

In this section, we extract the effective capacity of each link as a function of power

allocation vector β. Once this expression is extracted, we solve the optimization

problem given in (4.4), in which only β becomes the decision variable.

The following subsections introduce the steps taken to form the effective capacity

for MIMO channel process. Table 4.1 presents a complete list of parameters used in

this section.
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4.3.1 Channel Rate Expression

As shown in the algorithms presented so far, the first step in forming an effective

capacity expression for a channel process is to express its instantaneous rate. In

practical power allocation algorithm, we employ the instantaneous MIMO channel

rate formula given in [61], which is the sum of multiple terms, each representing a

different parallel and independent data stream or channel, among which transmit

power is symmetrically partitioned, i.e. Pβl/d, with d = min{nt, nr},

Rl =
d∑
i=1

log2

[
1 +

d−1Pβlλli

σlij
2
P
∑L

k=1 Iψk<ψlβk + σ2
n

]
, (4.6)

where σlij
2

is the variance of the MIMO channel entries, σ2
n represents the Gaussian

noise present in the medium, and λli representing the ith eigenvalue of link l, i.e.

square of the ith singular value σli
2

of the MIMO channel gain matrix. The symmet-

rical partition of the transmit power indicates that WF algorithm is not applied in

the practical power allocation algorithm.
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Figure 4.2: Eigenvalue distributions of a MIMO link with d = 3

In (4.6), in each of the terms, i.e.

[
1 +

d−1Pβlλli

σlij
2
P
∑L

k=1 Iψk<ψlβk + σ2
n

]
, (4.7)
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except λli, the random variable denoting the ith eigenvalue of link l, all other terms

are deterministic. Thus, we denote

ζ l(β) =
d−1Pβl

σlij
2
P
∑L

k=1 Iψk<ψlβk + σ2
n

, (4.8)

and then write, Rl =
∑d

i=1 log2

[
1 + ζ l(β)λli

]
. Next, we study how λli’s are dis-

tributed (Figure 4.2).

4.3.2 Modeling Eigenvalue Distributions of H Matrix

It is well-known that to determine the eigenvalues of H lĤ
l
, where Ĥ

l
is the Hermi-

tian transpose of the MIMO channel matrix H l, one needs to solve the characteris-

tic polynomial equation [54]. However, even for a cubic polynomial equation, which

corresponds to a MIMO channel with d = 3, the formula for roots computation

is cumbersome to use. Thus, the polynomial equation is solved approximately by

numerical methods. The complexity gets even higher if the aim is to determine the

eigenvalue distributions of H l. For this reason, we create approximate eigenvalue

distribution models for H l.
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Figure 4.3: Change in eigenvalue distributions of a MIMO link with d = 3 as a
function of σ2

ij

In Figure 4.2, we give eigenvalue distributions of a single MIMO link with d = 3,
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where we see that λli’s resemble well-known distributions. In the context of our

practical power allocation algorithm, we model λl1 as an exponential random variable

and other λli for i = 2, ..., d as log-normal random variables based on the distributions

given in Figure 4.2. What affects both the mean and the variance of the λli’s is the

variance of the MIMO channel entries, i.e. σlij
2
. So, given the channel characteristics,

we can a priori extract mean- and variance-functions for each λli as functions of

σlij
2
, i.e. ml

i(σ
l
ij

2
) and vli(σ

l
ij

2
), and then extract the parameters characterizing both

exponential and log-normal distribution functions, i.e. ξ, µ, σ (Table 4.2). Since

each parameter is both eigenvalue- and link-specific, we add both superscript l and

subscript i to the parameters, i.e. ξli, µ
l
i and σli. Figure 4.3 displays how the

distributions change as σlij
2

is increased.

Table 4.2: Eigenvalue Distribution Models

distribution pdf mean variance parameters
Exponential ξe−ξx 1

ξ
1
ξ2

ξ

Log-normal 1

x
√

2πσ2
exp

[
− (lnx−µ)2

2σ2

]
eµ+σ2

2 (eσ
2 − 1)e2µ+σ2

µ, σ

The instantaneous channel rate Rl is in fact the sum of d functions of random

variables λli with X l
i = log2

[
1 + ζ l(β)λli

]
, i.e. Rl =

∑d
i=1X l

i =
∑d

i=1 log2

[
1 + ζ l(β)λli

]
.

Now, we characterize X l
i ’s in terms of their means and variances.

λl1 assumed to be exponentially distributed, the mean and the variance of its

function X l
1 denoted by µX l1 and σ2

X l1
are given as [62], [63],

µX l1
= log2(e) exp

(
1

ζ l(β)ml
1

)
E1

(
1

ζ l(β)ml
1

)
, (4.9)

σ2
X l1

= log2(e)2 exp

(
1

ζ l(β)ml
1

)[π2

6
+ g2 + 2g log

(
1

ζ l(β)ml
1

)
+ log2

(
1

ζ l(β)ml
1

)
−

2

(
1

ζ l(β)ml
1

)
F(ζ l(β),ml

1)− exp

(
1

ζ l(β)ml
1

)
E2

1

(
1

ζ l(β)ml
1

)]
,

(4.10)

where ml
1 is the mean of λl1, g is the Euler constant, E1 is the exponential integral,

F(ζ l(β),ml
1) = 3F3

(
[1, 1, 1], [2, 2, 2],− 1

ζl(β)ml1

)
, where pFq(n,d, k) is the hypergeo-
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metric function.

λli for i = 2, ..., d modeled as log-normally distributed random variables, X l
i for

i = 2, ..., d with high SNR assumption becomes,

X l
i = log2

[
1 + ζ l(β)λli

]
≈ log2

[
ζ l(β)λli

]
. (4.11)

Given this expression, the transformation of the random variable λli results in X l
i

being normally distributed, i.e. X l
i ∼ N (µli+ζ

l(β), σli
2
). The mean and the variance

of λli for all i = 2, ..., d become µX li = µli + ζ l(β) and σ2
X li

= σli
2
.

4.3.3 Curve Fitting for Distribution Modeling

In order to be able to use the distribution models mentioned in the previous section,

we need to extract the parameters characterizing them, i.e. ξli, µ
l
i and σli, for each λli.

However, since eigenvalue distributions do not fully fit to the mentioned distribution

models, we apply curve fitting, in which two optimization problems are constructed

that try to approximate the mean and the variance of the assumed distribution

models given a priori information ml
i(σ

l
ij

2
) and vli(σ

l
ij

2
).

min
ξli

{∣∣∣∣ml
i(σ

l
ij

2
)− 1

ξli

∣∣∣∣+

∣∣∣∣∣vli(σlij2
)− 1

ξli
2

∣∣∣∣∣
}

(4.12)

min
µli,σ

l
i

{∣∣∣∣ml
i(σ

l
ij

2
)− eµli+

σli
2

2

∣∣∣∣+
∣∣∣vli(σlij2

)− (eσ
l
i
2

− 1)e2µli+σ
l
i
2
∣∣∣} (4.13)

(4.12) is defined for exponentially distributed eigenvalues, i.e. λl1 for all l, and (4.13)

is formed for log-normally distributed eigenvalues, i.e. λli for i = 2, . . . , d and all l.

The objective in both optimization problems is to minimize the difference between

the given mean and variance of the eigenvalues, and the mean and the variance

definitions of the assumed distribution models over ξli, µ
l
i and σli.

44



4.3.4 Effective Capacity Formulation

With no time-correlation among samples, the accumulated channel process for link

l, i.e. C l(t), is simply the addition of t uncorrelated and iid random variables.

Expressing the instantaneous channel rate Rl by cl(τ) =
∑d

i=1X l
i (τ), the cumulative

random variable C l(t) can be expressed by C l(t) =
∑t

τ=0 c
l(τ) =

∑t
τ=0

∑d
i=1X l

i (τ).

As t → ∞, the Central Limit Theorem (CLT) can be applied and C l(t) can be

considered as a Gaussian random variable with mean µCl = tµcl and variance σ2
Cl

=

tσ2
cl

.

The use of this theorem enables us to express both the mean and the variance

of the instant channel rate as µcl =
∑d

i=1 µX li and σ2
cl

=
∑d

i=1 σ
2
X li

, and the statistics

of the accumulated channel process as µCl = t
∑d

i=0 µX li and σ2
Cl

= t
∑d

i=0 σ
2
X li

. Note

that these statistics are function of ζ l(β), i.e. function of power allocation vector β

used as a parameter, as shown in the previous section.

Finally, the effective capacity expression for the resulting Gaussian random pro-

cess C l(t) is given by [64],

El
C(θl, ζ l(β)) = µcl(ζ

l(β))− θl

2
σ2
cl(ζ

l(β)). (4.14)

This effective capacity computation method, which we refer to as the CLT approach,

is presented in [59], and we study the limits of this approach in [65], where we show

that effective capacities computed with this method are valid for relatively loose

QoS requirements.

4.3.5 Algorithm for Practical Resource Allocation

In this section, to understand the practical power allocation in SDMA system, the

complete algorithm is provided below. Table 4.1 displays all the parameters used in

the algorithm. Additional information for the practical encoding order decision is to

be found in Appendix B. Given the encoding order decision, the effective capacity

of a link with encoding order o becomes only a function of power allocation vector

β and is denoted by γo(β).
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Algorithm 2: Practical Resource Allocation in SDMA System

1 Input: L, d, P, σlij
2
, σ2

n,m
l
i(σ

l
ij

2
), vli(σ

l
ij

2
), θl

2 for l = 1 to L do

3 ζ l ← d−1P
σ2
n

4 for i = 1 to d do
5 if i = 1 then

6 Solve minξli

{∣∣∣ml
i(σ

l
ij

2
)− 1

ξli

∣∣∣+
∣∣∣vli(σlij2

)− 1

ξli
2

∣∣∣}
7 m̄l

1 ← (ξli)
−1

8 Compute µX l1(ζ
l, m̄l

1) and σ2
X l1

(ζ l, m̄l
1)

9 else
10 Solve

minµli,σli

{∣∣∣∣ml
i(σ

l
ij

2
)− eµli+

σli
2

2

∣∣∣∣+
∣∣∣vli(σlij2

)− (eσ
l
i
2

− 1)e2µli+σ
l
i
2
∣∣∣}

11 µX li ←
(
µli + ζ l

)
12 σ2

X li
← σli

2

13 end

14 end

15 Compute µcl =
∑

i µX li and σ2
cl

=
∑

i σ
2
X li

16 El
C ←

(
µcl − θl

2
σ2
cl

)
17 end

18 Form ψ based on the set
{
El
C

}L
l=1

19 Start using superscript o to identify the links

20 for o = 1 to L do

21 Express ζo(β) = d−1Pβo

σoij
2P

∑L
k=1 Iψk<ψoβk+σ2

n
based on ψ

22 for i = 1 to d do
23 if i = 1 then
24 Express µX o1 (ζo, m̄o

1) and σ2
X o1

(ζo, m̄o
1)

25 else
26 Express µX oi (ζo)

27 end

28 end

29 Express µco(ζ
o, m̄o

i ) and σ2
co(ζ

o, m̄o
i )

30 Express γo(β) = Eo
c (θ

o, ζo(β))

31 end

32 obj = maxβo
∑

o log [1 + γo(β)]∑
o β

o ≤ 1
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4.4 Numerical Results

In this section, we analyze and compare the performance of the two proposed re-

source allocation methods in SDMA system in numerical experiments. In our ex-

periments, we investigate the behavior of the methods with respect to heterogeneity

of users’ QoS demands and channel conditions. In this analysis, our aim is to un-

derstand how heterogeneous QoS requirements and channel conditions affect the

resource allocation decisions in MIMO networks.

Table 4.3: Resource Allocation in SDMA System Experiments

Experiment # Channel Gains QoS Guarantees

I σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.9 θ1 = θ2 = θ3 = 0.25

II σ1
ij

2
= 0.6, σ2

ij
2

= 0.9, σ3
ij

2
= 1.2 θ1 = θ2 = θ3 = 0.25

III σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.9 θ1 = 0.1, θ2 = 0.25, θ3 = 0.75

Like in the numerical analysis section of resource allocation in TDMA system,

we consider a MIMO downlink network where there are L = 3 users receiving service

from a base station, as shown in Figure 4.1. Both the base station and users have

three antenna elements, and thus, the maximum degrees of freedom of MIMO links

between the base station and users is d = 3. The channel gain matrix observed by

each receiver l is denoted by H l, consisting of entries H l(i, j) = hlij ∼ CN (0, σlij).

Total noise normalized transmit power available at the base station is P = 10 Watts.

The duration of a time slot is one time unit. The bandwidth of the wireless channel

for each link is set to 1 kHz. The users’ QoS requirements are indicated by QoS

parameter θl, l = 1, 2, 3.

We perform three experiments for varying channel conditions and QoS parame-

ters. The values of the parameters used in each experiment are depicted in Table 4.3.

In the first experiment, we consider homogeneous channel conditions and homoge-

neous user QoS requirements. In the second experiment, we consider heterogeneous

channel conditions but homogeneous QoS requirements. Finally, in the third ex-

periment, we consider heterogeneous QoS requirements and homogeneous channel

conditions. We compare the total utilities obtained in these experiments to equal
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power allocation case for the optimal encoding order of the static resource allocation

algorithm, in which each link uses one third of the total transmit power budget of

the base station.

Table 4.4: Total Utility and Percentages of Improvement in SDMA System

Experiment # Equal Power Allocation static Res. Alloc. practical Res. Alloc. Change [%]
I 19.8754 21.1342 20.7076 6.29
II 20.0921 21.2379 21.1358 5.73
III 19.9332 21.1564 20.9220 6.11

In Figure 4.4a and 4.4b, the performance results under Experiment I are given.

The first thing to notice is that under the same conditions, the power levels allocated

to each user significantly differ from each other.This is due to the fact that each user

treats the signals intended for less degraded receivers as additive Gaussian noise.

Equal conditions are negatively reflected to the effective capacity values.
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(b) Practical Power Allocation

Figure 4.4: Resource Allocation Decisions for Experiment I.

This means that due to the equal conditions, it is harder for the algorithm to com-

pensate for the large noise. Thus, compared to the results of both Experiment II,

the difference between the highest and the lowest effective capacity value is the

largest. In addition, we see the encoding order of the links in both figures. The

encoding order decisions in both algorithms are different. However, the difference

in this decision is not important due to the equal conditions for all links, as any

decision would give the same results. An important observation for this experiment
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is that our power allocation algorithm improves the total utility by 6.29% compared

to the equal power allocation case as shown in Table 4.4. Note that the improvement

percentages are calculated based on the static resource allocation results.
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(b) Practical Power Allocation

Figure 4.5: Resource Allocation Decisions for Experiment II.

In Figure 4.5a and 4.5b, we see the results of Experiment II. In general, there

is not a significant difference between the results of the static resource allocation

and the practical resource allocation. Encoding orders are the same. An important

observation is that the user with the highest channel gain is encoded first by the

base station, which means that its signal is not interfered by the signals of other

users. The user with the worst channel conditions is encoded lastly. However, to

compensate for this, the algorithm allocates the largest portion of the transmit power

for this user. Due to this compensation, user 1 gets the highest effective capacity.

In the practical algorithm, the first encoded user has the largest effective capacity.

However, the gap between the effective capacities of the first and last encoded users

is small. As data in Table 4.4 shows, our static resource allocation algorithm makes

5.73% improvement in total utility as compared to the equal power allocation case

in this experiment.

In Figure 4.6a, which displays the data of Experiment III, we observe that the

gap between the power allocations is not as large as the first two experiments. The

first encoded user gets the smallest power allocation as expected. This user has

the strictest QoS requirement. The last encoded user, i.e. user 1, has a very loose

QoS requirement. We normally expect a high effective capacity value for this user.
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(b) Practical Power Allocation

Figure 4.6: Resource Allocation Decisions for Experiment III.

However, due to interference from other two users, it remains almost at the same

level as the first encoded user. It is worth emphasizing that the last encoded user

does not need as much power as the last encoded users in the first two experiments

due to its very loose QoS demand. Other important observation for this algorithm

is that the gap between the highest and the lowest effective capacity values is the

lowest as compared to the other experiments. However, Figure 4.6b shows that the

power allocations and the encoding order decisions for this experiment are totally

different in two algorithms. In Figure 4.6b, it is seen that the user with the loosest

QoS demand is encoded first. So, in addition to favoring the loose QoS demand,

this user also benefits from the encoding order decision. As a result, its effective

capacity is very high. On the other hand, third user with the strictest QoS demand

is encoded lastly, which results in a very low effective capacity value despite highest

power allocation among the other links. According to Table 4.4, the static resource

allocation algorithm makes 6.11% improvement in total utility as compared to the

equal power allocation case in this experiment.

Next, we demonstrate the direct effect of change in one user’s parameters, i.e.

the channel gain σlij
2

and the QoS-exponent θl. Data displayed in Figure 4.7a is

obtained for θ1 = θ2 = θ3 = 0.5, σ1
ij

2
= 0.25, σ2

ij
2

= 0.5 and σ3
ij

2
is varied from 0.125

to 1.0. As it is seen, with the increase in the channel gain for a single user the total

utility grows. This is an expected result, as this increases the received power on the

receiver side of this link. However, the increase is limited.
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Figure 4.7: Utility as a Performance Metric in Power Allocation I

Data displayed in Figure 4.7b is obtained for σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.5, θ1 = 0.25,

θ2 = 0.5 and θ3 is varied from 0.125 to 1.0. It is seen that the looser the QoS demand

of the third user gets, the higher gets the total utility. So, the QoS demand of a

single user affects the performance of the entire system.
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Figure 4.8: Utility as a Performance Metric in Power Allocation II

Finally, we give the effect of total number of antennas per link and the total

number of users served by the base station on the system performance. In Figure

4.8a, which is obtained for all three users having the same channel gain σlij
2

= 0.9

and the QoS-exponent θl = 0.25, the total utility of the three users is seen, when

the number antenna elements on both the transmitter and the receiver side of each

link is increased from 2 to 5. Despite the fact that the transmit power budget at the

base station is kept constant, an increase in the total utility is seen. This due to the
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multiplexing gain introduced by MIMO technology. Data presented in Figure 4.8b,

where all users have the same channel gain 0.9 and the QoS-exponent 0.25, shows

the change in total utility as the number of users are increased. As in the resource

allocation in TDMA system case, the total utility increases almost linearly despite

the limited resource.
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Chapter 5

Network Simulations

In this chapter, we show the performance of the resource allocation algorithms pre-

sented in Chapter 3 and Chapter 4 in simulation environment. As the simulation

environment, we use ns-2 (network simulator 2), which is an open-source discrete

event simulator focused on networking research [66].

A discrete event simulator models the operation of a system as a sequence of

events in discrete form, i.e. each event occurs in a particular instant and ends with

a change of state in the system. Thus, the assumption in all discrete event simulators

is that there happens no change in the system between consecutive events.

ns-2 provides basis for research and development in a wide variety of fields such

as TCP (transmission control protocol), routing, multicast protocols over both wired

and wireless networks. An advantage of ns-2 is that its source codes are available

and thus, can be changed such that new protocols can be tested. Another advantage

of ns-2 is that due its extensive use there are many modules available on different

networking research fields. However, due to its openness it is also subject to bugs

that need to be taken care of.

5.1 MIMO Channel Model in ns-2

The most fundamental element in wireless simulation in ns-2 is the node. In order

to create a simple wireless communication simulation, one needs first to create two

nodes. One node should be defined as the transmitter and the other node needs to
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be defined as the receiver, i.e. sink in ns-2. On the transmitting node side, a traffic

type (e.g. FTP (file transfer protocol), an analytical arrival process model etc.)

and a transmission protocol (e.g. TCP and UDP (user datagram protocol) etc.)

need to be configured. Next, there is need to define the PHY, MAC and Link layer

properties of the wireless link between the nodes. Finally, the desired simulation

can be performed according to the settings written on the OTCl code.

As given in the previous chapters, this thesis focuses on resource allocation poli-

cies among multiple links with antenna arrays on both the transmitter and the

receiver side. However, ns-2 supports one antenna per node. An official IEEE

802.11n protocol module, i.e. wireless networking standard using multiple antennas

to increase data rates, is not present in ns-2.

Figure 5.1: ns2 channel model.
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As a result, we decided to model each node as an antenna element on both the

transmitter and the receiver sides. Next, we decomposed each MIMO channel into

independent parallel data streams. Each particular data stream is modeled as a

data transmission between two particular nodes creating a pair, each of which is

independent of the remaining pairs of the same MIMO link. In Figure 5.1, we give

the representative MIMO channel model with d antenna elements on both sides of

the link.

Next, we created a module, which proportionally allocates the limited power

of the base station, i.e. transmitter side of each link, based on the instantaneous

eigenvalues of the MIMO channel gain matrix. ns-2 originally does not consider

random variations in the wireless channel. Instead, ns-2 focuses on the reduction

in power density of the electromagnetic wave as it propagates through space, i.e.

path loss. Since we do not consider signal attenuation, we have disabled path loss

in ns-2 and integrated fading to the power module to simulate random variations in

the wireless channel.

5.2 System Model

In the ns-2 simulations, we again adopt the MIMO based downlink scenario. The

base station deployed with nt = 3 antennas serves a total of 4 users with nr = 3.

The base station is assumed to have both full and instantaneous CSI for the TDMA

case and only full CSI for the SDMA case. The assumptions for the channel gain

matrix entries and noise distributions given in Chapter 3 and 4 are also valid in this

chapter.

Table 5.1: PHY Layer Parameters

Parameter Value
Carrier Frequency 2.4 GHz

Overall Channel Bandwidth 22 MHz
Overall Transmit Power 10 dBm

Overall Noise Power -20 dBm

In Table 5.1, PHY layer parameters used in ns-2 are given. [67] is taken as a
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reference in selecting these values. The resource allocation algorithms under inves-

tigation are integrated to Mac/802.11 module in ns-2.

Figure 5.2: ns-2 simulation setting.

In Figure 5.2, the overall setting used in ns-2 is given. Since path loss is disabled,

the distance between the nodes are to be neglected. Only, the random channel vari-

ations affect the resource allocation policies. Additionally, the users are stationary.

5.2.1 Model for Wireless Channel Interference

In discrete event simulators, modeling the wireless channel interference is crucial,

since the accuracy of the simulation data is determined by the level of detail of the

adopted model. In a network simulator, a successful data packet reception occurs
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only if the power of the received packet exceeds given thresholds, where interference

in the wireless channel can be integrated.

ns-2 uses the so-called capture threshold model, which only accounts for one in-

terferer at a time. Since this is not applicable to our simulation setting for SDMA,

where interference is taken into consideration due to simultaneous access of multi-

ple links to the wireless medium, we adopt the additive interference model (SINR

thresholding) in [67] by omitting the carrier sense threshold, which checks the idle-

ness of the wireless medium prior to transmission to avoid packet collisions, since in

our resource allocation algorithm in SDMA system, all users are forced to transmit

the entire frame duration.

In our wireless channel interference model, each receiver checks only for the ratio

of the intended received signal to the sum of the noise in the medium and the other

signal powers, i.e. signal to interference and noise ratio (SINR). The superposition

coding uses this interference model.

5.2.2 Actual Delay Computation

In Chapter 2, the delay violation of data sent by a source with constant rate µ is given

in (2.10). From the effective capacity perspective, we know that once the effective

capacity of a channel process is extracted as a function of θ, i.e. EC(θ), given a θ∗, µ

can as high as EC(θ∗), such that the target delay Dt satisfies ε. Assuming that the

probability of the queue not being empty is 1, i.e. γ(µ) = 1, (2.10) can be rewritten

as

ε = e−θ
∗EC(θ∗).Dt . (5.1)

Next, given a desired delay violation probability ε, the target delay corresponding

to both ε and θ∗ can be computed by

Dt =
log(1/ε)

θ∗EC(θ∗)
. (5.2)
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It is important to note that (5.2) does not consider data transmission in packet

format, i.e. its direct use would result in delay value for bit-by-bit transmission of

data. However, data is transmitted packet-by-packet in real systems, which is also

the case in discrete event network simulators. Hence, (5.2) is modified as

Dt =
log(1/ε) plength
θ∗EC(θ∗)

, (5.3)

where plength denotes the packet length in bits. (5.3) considers packet transmission

rate, as the effective capacity is normalized by the packet length.

5.2.3 Delay Analysis in ns-2

In order to analyze the output produced by ns-2, the actual delay computation is

necessary. However, this requires the prior numerical computation of the effective

capacity values by the proposed algorithms. Thus, the target delay Dt of each link

is numerically computed before the ns-2 simulations given ε, which is kept at the

same value for all links throughout our simulations.

In ns-2 simulations, an input traffic with a constant rate is defined for each

transmitting node based on the numerically computed effective capacity value. The

simulations are run for relatively long time durations. In the analysis of the resulting

output files, the delay value corresponding to the delay violation probability, i.e. ε,

is extracted for each link. Once the delay value for a link is obtained, the corre-

sponding throughput, i.e. effective capacity, is calculated by counting the number

of successfully received packets not violating the obtained delay value.

In the following section, we first give the delay values obtained numerically,

compare them to the ones obtained by the analysis of ns-2 data, and then give

figures displaying the resource allocation decisions and the corresponding effective

capacity values extracted in ns-2.
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5.3 Simulation Results

In this section, we analyze the delay performance and demonstrate the resource

allocation decisions in TDMA and SDMA systems in simulation environment. For

the resource allocation in TDMA system case, we employ the dynamic algorithm.

For the resource allocation in SDMA case, we utilize the practical algorithm.

Table 5.2: ns-2 Resource Allocation Experiments

Experiment # Channel Gains QoS Guarantees

I σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= σ4

ij
2

= 0.9 θ1 = θ2 = θ3 = θ4 = 0.25

II σ1
ij

2
= 0.6, σ2

ij
2

= 0.8, σ3
ij

2
= 1.0, σ4

ij
2

= 1.2 θ1 = θ2 = θ3 = θ4 = 0.25

III σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= σ4

ij
2

= 0.9 θ1 = 0.1, θ2 = 0.25, θ3 = 0.5, θ4 = 0.75

We perform three experiments for varying channel conditions and QoS parame-

ters. The values of the parameters used in each experiment are depicted in Table 5.2.

In the first experiment, we consider homogeneous channel conditions and homoge-

neous user QoS requirements. In the second experiment, we consider heterogeneous

channel conditions but homogeneous QoS requirements. In the third experiment,

we consider heterogeneous QoS requirements and homogeneous channel conditions.

In all experiments, plength is set to 1024 bytes and ε is taken as 0.001 for all links.

Before presenting the results, we give the Shannon capacity limit and the max-

imum achievable effective capacity for each experiment in Table 5.3 to be used as

a reference to comment on the simulation data. The capacity limits in Table 5.3

are computed by selecting the user with the best channel gain and the loosest QoS

Table 5.3: Capacity Limits

Experiment # Shannon Capacity Limit Maximum Effective Capacity
I 569.55 Mbps 387.95 Mbps
II 596.47 Mbps 406.17 Mbps
III 569.55 Mbps 398.25 Mbps

demand in each experiment, and allocating all the resources, i.e. frame length and

the power, to this user.
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Figure 5.3: Performance of Resource Allocation Algorithms for Experiment I in ns-2.

5.3.1 Experiment I

For Experiment I, the numerical solution of the NUM problem results in effective

capacity values 72.64 Mbps, 72.09 Mbps, 66.57 Mbps and 74.56 Mbps in TDMA

system, and 76.05Mbps, 113.28Mbps, 59.21Mbps and 83.27Mbps in SDMA system

corresponding to the users 1 through 4, respectively. Evaluation of these numerical

effective capacity values in (5.3), results in actual delay values 3.1ms, 3.1ms, 3.4ms

and 3.0ms in dynamic algorithm proposed for TDMA system, and 3.0ms, 2.0ms,

3.8 ms and 2.7 ms in practical algorithm proposed for SDMA system for the users

1 through 4, respectively.

Table 5.4: Delay Values for Users in Experiment I

TDMA System SDMA System
user # 1 2 3 4 1 2 3 4

numerical result in ms 3.1 3.1 3.4 3.0 3.0 2.0 3.8 2.7
simulation result in ms 3.7 3.6 3.5 3.5 3.1 2.7 3.8 3.1

Analysis of ns-2 data resulted in the delay values given in Table 5.4. An initial

observation for both algorithms is that the delay values obtained in simulation envi-

ronment are higher. Based on (5.3), this behavior can be explained by lower effective

capacity values obtained in ns-2 based on the extracted delay values matching ε as

shown in Figure 5.3a and Figure 5.3b. A deeper analysis on the receiver side of each

link shows that there are relatively high number of packets dropped at the receiver
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side. Dropping of the packets can be explained by the transmitter trying to send

packets at a much higher rate than the channel can support. As a result of this,

the power consumed per packet transmission decreases, and due to the receiver sen-

sitivity, i.e. power threshold, which “accepts” packets based on their power, some

packets are dropped. This threshold in fact is an indicator for the ability of the

receiver to successfully decode a packet.

In Figure 5.3a and 5.3b, the effective capacity values together with resource

allocation decisions are given in detail. The difference between the effective capacity

values obtained in numerical experiments and simulation environment is between

6.8 − 9.6% in TDMA system, and 7.7 − 8.6% in SDMA system. We see that the

sum of the effective capacities of four users are lower than the limits given for this

experiment in Table 5.4. This shows that the use of the system by multiple users

makes it operate at a much lower capacity.

An important observation for the delay values in TDMA system is that they

are relatively in the same range. This observation is also valid for the resource

allocation decisions. It is seen that each user is given almost the same length of

slot. As a result, the effective capacities of the users are very close. This is due to

the equivalent conditions for each user. In Figure 5.3b, we observe that the effective

capacity values are different. As a result of this, their corresponding delay values also

differ. Furthermore, the encoding order decision is given as link 4, link 3, link1, link

2 by the practical power allocation algorithm. In fact, under the same conditions

all 4! possible encoding order decisions are equivalent. Furthermore, it is again seen

that the last encoded user is allocated the largest portion of power resulting in the

highest effective capacity among the other users despite the interference from all

other links. In comparison to the third and first links, second link encoded firstly

has a higher effective capacity despite relatively low power allocation. This shows

the impact of the interference on the effective capacity of the links. As a result

of diverse effective capacity values obtained in SDMA, the actual delay values are

different.
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5.3.2 Experiment II

For Experiment II, the numerical solution of the utility maximization problem

gives effective capacity values 67.80Mbps, 68.48Mbps, 77.24Mbps and 81.11Mbps

in TDMA system, and 102.72 Mbps, 73.13 Mbps, 73.68 Mbps and 84.04 Mbps in

SDMA system corresponding to the users 1 through 4, respectively. Evaluating

these numerical effective capacity values in (5.3), results in actual delay values 3.3ms,

3.3 ms, 2.9 ms and 2.8 ms in dynamic algorithm proposed for TDMA system, and

2.2ms, 3.1ms, 3.1ms and 2.7ms in practical algorithm proposed for SDMA system

for the users 1 through 4, respectively.
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Figure 5.4: Performance of Resource Allocation Algorithms for Experiment II in
ns-2.

We give delay analysis results of ns-2 data in Table 5.5. The numerically found

delay values are again lower than the ones found in simulation environment. In

general, it can be stated that simulation data follows the trend in the numerically

computed delay values, i.e. as the effective capacity decreases the delay of the

packets get higher. So, the simulation data proves the relation given in (5.3). Due

to the same QoS requirements in form of QoS-exponent, we observe that the actual

delay values are almost inversely proportional to the effective capacity values. The

same observation is also true for the first experiment.

The difference between the effective capacity values obtained in numerical ex-

periments and simulation environment in this experiment is between 6.2− 8.7% in

TDMA system, and 6.3−9.7% in SDMA system. It is again seen that the sum of the
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Table 5.5: Delay Values for Users in Experiment II

TDMA System SDMA System
user # 1 2 3 4 1 2 3 4

numerical result in ms 3.3 3.3 2.9 2.8 2.2 3.1 3.1 2.7
simulation result in ms 3.7 3.6 3.2 3.3 2.4 3.7 3.6 3.1

effective capacities of four users are lower than the limits given for this experiment

in Table 5.4.

In Figure 5.4a and 5.4b, we see the effective capacities and the resource allocation

results of Experiment II in ns-2. Important observations for data displayed on 5.4a

is that the link with highest channel gain is assigned the shortest average length

of slot, and there is almost a linear relationship between the channel gain and the

effective capacity of a link, which are also valid for the results given in the second

experiment in Chapter 3. The most important observation in Figure 5.4b is that the

encoding order decision is given as link 4, link 3, link 2, link 1, which indicates that

the user with the highest channel gain is encoded firstly, i.e. receives no interference,

and the user with the lowest channel gain is encoded lastly.

5.3.3 Experiment III

In Experiment III, the effective capacity values obtained by numerical solution

of the defined maximization problem are 86.79 Mbps, 70.34 Mbps, 61.90 Mbps

and 50.86 Mbps in TDMA system, and 95.05 Mbps, 86.19 Mbps, 70.93 Mbps and

75.56 Mbps in SDMA system corresponding to the users 1 through 4, respectively.

Actual delay values obtained based on these numerical effective capacity values using

(5.3) results in actual delay values 6.5ms, 3.2ms, 1.8ms and 1.5ms in dynamic algo-

rithm proposed for TDMA system, and 0.8ms, 1.3ms, 3.2ms and 7.5ms in practical

algorithm proposed for SDMA system for the users 1 through 4, respectively.

Table 5.6 presents delay values obtained as a result of the analysis of ns-2 data

together with the delay values computed numerically. An important observation for

the actual delay values is that the difference among the user delays is the highest in

this experiment compared to the first two experiment. This to be explained by the
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Table 5.6: Delay Values for Users in Experiment III

TDMA System SDMA System
user # 1 2 3 4 1 2 3 4

numerical result in ms 6.5 3.2 1.8 1.5 0.8 1.3 3.2 7.5
simulation result in ms 7.7 3.6 2.5 1.8 1.1 1.7 3.2 7.1

diverse QoS requirements of the users in form of QoS-exponent directly affecting the

delay value in (5.3). Thus, we do not observe an inverse proportionality between

the effective capacity value and the actual delay value for each user. It is again

important to note that the simulation data tends to follow the numerically found

delay values.
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Figure 5.5: Performance of Resource Allocation Decisions for Experiment III in ns-2.

In Figure 5.5a and 5.5b, the simulation data of Experiment III is presented.

In this experiment, the difference between the effective capacity values obtained in

numerical experiments and simulation environment in this experiment is between

7.6− 9.8% in TDMA system, and 6.6− 8.5% in SDMA system. In this experiment,

the capacity limits given in Table 5.3 are again not reached.

For the resource allocation in TDMA system, it is seen that as the QoS require-

ment gets stricter, the effective capacity decreases significantly, which cannot be

compensated by the resource allocation algorithm. The user with the loosest QoS

constraint is given the shortest slot length. However, it does not differ much from

the slot length allocations to other users. An important observation in Figure 5.5b
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is that the encoding order decision is given as link 1, link 2, link 3, link 4, which

indicates that the user with the loosest QoS demand is encoded firstly, i.e. receives

no interference, and the user with the strictest QoS demand is encoded lastly. Sim-

ilar to the results of the dynamic resource allocation algorithm in TDMA system, it

can be stated for this experiment that as the QoS demand gets looser, the effective

capacity increases. However, this statement cannot be generalized. A final observa-

tion for the resource allocation decisions in SDMA system is that the gap between

the highest and the lowest effective capacity values is at its lowest value among all

three experiments. This can be explained by the algorithm trying to compensate

for the large variance in QoS demands by allocating the limited power more evenly

rather than concentrating the largest portion at one user.
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Chapter 6

Conclusion and Future Work

In this thesis, we propose two main resource allocation approaches with delay-QoS

provisioning in MIMO based downlink systems, i.e. resource allocation in TDMA

system and resource allocation in SDMA system. For this, applying state aggrega-

tion we first formulate the effective capacity of a general MIMO process by utilizing

effective capacity theory, which converts average delay constraints into equivalent

average rate constraints. Delay-aware resource control is then performed by forming

a NUM problem, where a logarithmic utility function of effective capacity is defined

for each user, which is shown to achieve proportional fairness among the users.

For the resource allocation in TDMA system, we present a static and a dynamic

resource allocation algorithm, where optimal length of slot for each link is allocated

based on the channel conditions and the QoS requirements. In both of these algo-

rithms, we assume both full and instantaneous CSI at the base station. In static

resource allocation algorithm, a one-shot optimization problem is solved by taking

into account all possible DoF vectors of the links based on full CSI, whose result is

to be applied based on the instantaneous channel conditions, i.e. available DoFs,

with instantaneous CSI knowledge. In dynamic TDMA, we only assume that the

prior knowledge of the state probabilities of all the links is available at the base

station, and iteratively perform slot length allocation among the links based on

instantaneous CSI.

For the resource allocation in SDMA system, considering interference we present

a static resource allocation algorithm and a practical resource allocation algorithm,
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where optimal portion of the limited power available at the base station is allocated

to simultaneously transmitting links based on the overall channel characteristics and

the QoS requirements in the long term. To deal with interference, we utilize super-

position coding. In static resource allocation algorithm, we form an optimization

problem similar to the one formed in static resource allocation algorithm in TDMA

system by adopting the extracted effective capacity expression for the MIMO chan-

nel process. In practical resource allocation algorithm, we first extract the eigenvalue

distributions of the MIMO channel process as a function of the MIMO channel gain

entries’ statistics by applying curve fitting. Next, applying CLT and considering

each cumulative channel process as a Gaussian process, we extract a simple effective

capacity expression, based on which we form another optimization problem.

After introducing the algorithms, we show their performance via numerical ex-

periments. Finally, we demonstrate the performance of the algorithms together

with actual delay analysis in simulation environment by considering realistic chan-

nel models.

As a future work, the effective capacity expression for the MIMO channel process,

which we believe is the most significant contribution of this thesis, may be integrated

into more sophisticated networking research fields such as multi-hop wireless net-

works and routing protocols exploiting MIMO technology, which particularly lack

such an expression that takes into account QoS considerations. In particular, we

believe that the integration of this expression into the NUM problem given in [9]

may be a real contribution to wireless networking research. As another future work,

we have plans to run the proposed algorithms in a more advanced and up-to-date

discrete event simulator, which preferably has a ready-to-use IEEE 802.11n module.
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Appendix A

DoF Probability Computation in

SDMA System

In Chapter 4, it is stated that the DoF probabilities required for the discretization of

the MIMO channel process are found by applying only SVD on each channel matrix

H l, marking the number of singular values on the main diagonal of the resulting Σl

exceeding a sufficiently small threshold level as the available DoF of the link, and

counting the the number of occurences of each different DoF. As it should be noticed,

the choice of this threshold value may affect the effective capacity of a MIMO link.
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Figure A.1: Effect of Choosing the Threshold Value in Finding DoF Probabilities

As a result of the choice, the utility of the link may take different values, which may
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change the resource allocation decisions in the NUM problems. Hence, we study in

this part of the thesis the effect of the choice for this threshold value.

Figure A.1 displays both the effective capacity and the corresponding utility of a

single MIMO link with 3 antennas on both the receiver and the transmitter side. The

MIMO link with gain σ2
ij = 1.0 is given a bandwidth of 1kHz. The noise-normalized

power of the transmitter is 10W, and the link has a QoS-exponent θ = 0.25. The

threshold level is varied from 10−1 to 10−9. The data displayed is obtained by taking

1 million channel realizations.

The first thing to notice in Figure A.1 is that as the threshold value is lowered

the effective capacity increases. This is to be explained by π3 getting a higher value

due to the decreased threshold. For threshold level 10−9, the DoF probabilities are

found as π1 = 0, π2 = 0.0001 and π3 = 0.9999. On the other hand, for the threshold

being equal to 10−1, the probabilities are found as π1 = 0.0001, π2 = 0.2595 and

π3 = 0.7404. As a result of the lower probability for the MIMO link having 3 DoF,

its effective capacity value decreases dramatically.

However, the change in the utility values is not as large as it is the case for the

effective capacity values. This is due to the use of the logarithmic utility function

shown to provide proportional fairness. Throughout the simulations presented in

this thesis, the threshold is taken as 10−3.
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Appendix B

Decision of Encoding Order

For the resource allocation in SDMA system the determination of the encoding order

of the links is very important, because the given optimization problem for the static

power allocation is solved L! times, since there are L! possible degradation level

vectors ψ.

For the practical power allocation algorithm presented in Chapter 4, we examined

the effects of the QoS-exponents, i.e. θl, and the variance of the MIMO channel

matrix entries, i.e. σlij
2
, on the encoding order of the links to reduce the search

space of the optimization problem. For this, we performed controlled experiments

with the static resource allocation algorithm in SDMA system.

Table B.1: Encoding Order Experiments I

σ3
ij

2
encoding order β1 β2 β3 E1

C E2
C E3

C utility

0.125 2,1,3 0.5707 0.3156 0.1137 400.25 499.15 720.42 18.7907
0.25 2,3,1 0.6923 0.2005 0.1072 498.54 420.91 686.07 18.7909
0.5 3,2,1 0.7517 0.1882 0.0601 582.77 555.75 524.09 18.9552
0.75 3,2,1 0.7445 0.1893 0.0662 572.25 539.24 673.96 19.1580
1.0 3,2,1 0.7454 0.1991 0.0555 582.39 549.63 786.83 19.3492

Table B.1 displays numerical results obtained with the static resource allocation

algorithm for a 3 user MIMO-link-scenario with d = 3, where the transmit power

budget of the base station is 10W , the power of the noise is 1W , QoS-exponents

for all links are kept constant at 0.5 (i.e. θ1 = θ2 = θ3 = 0.5), the variance of the

MIMO channel matrix entries for l = 1, 2 are kept at σ1
ij

2
= 0.25 and σ2

ij
2

= 0.5,
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and σ3
ij

2
is varied. The wireless channel bandwidth is set to 1 kHz. In this scenario,

where QoS diversity is taken out of the question, we clearly see that the algorithm

benefits encoding links with better conditions earlier. So, the conclusion is that the

better condition (i.e. the higher channel gain) the link has, the earlier it should be

encoded.

Similarly, we created another scenario where the variance of the MIMO channel

matrix entries are kept constant at 0.5 (i.e. σ1
ij

2
= σ2

ij
2

= σ3
ij

2
= 0.5), the QoS-

exponents for l = 1, 2 are kept at θ1 = 0.25 and θ2 = 0.375, and θ3 is varied (Table

B.2).

Table B.2: Encoding Order Experiments II

θ3 encoding order β1 β2 β3 E1
C E2

C E3
C utility

0.125 1,3,2 0.9098 0.0349 0.0553 1068.93 940.54 708.77 20.3876
0.25 1,3,2 0.8893 0.0678 0.0429 972.23 642.83 649.86 19.8264
0.5 3,2,1 0.2211 0.6710 0.1079 473.27 822.49 735.28 19.4769
0.75 3,2,1 0.2154 0.6540 0.1307 471.48 745.77 735.79 19.3760
1.0 3,2,1 0.2129 0.6444 0.1427 470.71 710.93 735.41 19.3258

Clearly, commenting on the results given in Table B.2 is not as easy as it is the

case for Table B.1. For θ3 = 0.125 and θ3 = 0.25, it is seen that the links with better

conditions (i.e. the smaller QoS-exponent or looser QoS requirement) are encoded

earlier. However, as θ3 is increased further, the reverse of the statement becomes

true.

So, it is apparently hard to form a general statement on the encoding order

decision based on the results of these two sets of experiments. It gets even harder

when one set of parameters (either the QoS-exponents or the variance of the channel

matrix entries) is not kept at the same value, which is the case for the results

displayed on both Table B.1 and B.2.

In Chapter 4, it is shown that the effective capacity for each single MIMO link l

can be expressed given its θl and σlij
2
, i.e. (4.14). Computing the effective capacities

of the MIMO links using the MIMO channel rate expression in (4.6) without includ-

ing interference term, i.e. Rl =
∑d

i=1 log2

[
1 +

d−1Pλli
σ2
n

]
using (4.14), they are turned

into decision metrics, and inspired by the dominant conclusion for the above pre-
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sented experiments, the practical power allocation makes the decision for encoding

order of the links as follows:

“The higher the effective capacity a MIMO link has under full power budget and

no interference assumption from neighboring MIMO links, the earlier it should be

encoded by the base station.”

Having a pre-determined encoding order takes the decision variable ψ used in

static power allocation algorithm out of the optimization problem definition, which

decreases the total number of calculations by a factor of L!. We utilize this decision

of encoding order in the practical algorithm for SDMA system.
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