
 
 

 

 

 

 

 

THE FRANKEN-FONT 

 

 

 

 

 

 

by 

Cem Sina Çetin 

 

 

 

 

 

 

Submitted to the Graduate School of Arts and Social Sciences 

in partial fulfillment of 

the requirements for the degree of 

Master of Arts 

 

 

 

 

 

Sabancı University 

June 2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Cem Sina Çetin 2014 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   iv 

 
THE FRANKEN-FONT 

 
 

 

Cem Sina Çetin 

M.A, Visual Arts and Visual Communication Design Thesis, 2014 

Thesis Supervisor: Onur Fatih Yazıcıgil 

 

Keywords: Digital Typography, Generative Arts, Automatic Font Design, Letter 

Generation, Hand Writing 

 

ABSTRACT 

 
Today, the digital font system provides a standardized infrastructure for 

publishing and utilizing fonts with great versatility; such as simulating ligatures and 
specialty fonts for custom uses. Although the current fonts are able to provide solutions 
for almost any use case, everything they are capable of depend on the fact that font files 
are large prefabricated [1] letterform libraries, governed by a set of complex rules. 
Therefore, it is fundamentally impossible to create fonts, which generate the letters on 
the go. This would provide a solution for a scenario, where each instance of the same 
letter should be almost the same but slightly different, while maintaining an overall 
visual consistency, such as the handwriting. 
 
The Franken-font is a two-phase project. The first phase focuses on whether or not the 
human visual perception rejects a font with constantly changing letterforms and the 
second phase focuses on providing a new kind of font system, which is capable of 
generating letters instead of just fetching them from a library. This thesis project covers 
the first phase. 
 
The hypothesis of this thesis is that as long as the letterforms are consistent, the human 
brain should not marginally reject the font. To test this, a custom application is 
developed to interpolate between Helvetica and Syntax, which creates letters carrying 
characteristics of both typefaces. An online survey will be executed to see the 
preference rate of the Franken font. Consequently, the findings of the survey should 
show whether or not the phase two is feasible. 
 
 
 
 
 
 



	   v 

 
THE FRANKEN-FONT 

 
 

 

Cem Sina Çetin 

Görsel Sanatlar ve Görsel İletişim Tasarımı Yüksek Lisans Programı Tezi, 2014 

Tez Danışmanı: Onur Fatih Yazıcıgil 

 

Anahtar Kelimeler: Sayısal Tipografi, Yaratımsal Sanat, Otomatik Font Tasarımı, Harf 

Yaratımı, El Yazısı 

 

ÖZET 

 
Günümüzde dijital font sistemi, fontların kullanımı ve yayınlanmasında ligatür 
simülasyonu ya da özel amaçlar için tasarlanmış fontlar gibi bir çok kolaylık 
sağlamaktadır. Mevcut fontlar neredeyse tüm kullanımlar için çözüm sunabilse dahi, 
kabil oldukları her şey fontların önceden tasarlanmış[1] ve harf şekilleri kapsayan, 
karmaşık kurallar tarafından kontrol edilen büyük birer kitaplık olmalarına 
dayanmaktadır. Bu nedenle de, harfleri kullanım anında üreten bir font tasarlamak 
sistemin doğası gereği imkansızdır. Böyle bir font olsaydı, her harfin birbiriyle 
neredeyse aynı fakat biraz farklı olduğu ve genel görsel tutarlılığın korunmasını 
gerektirecek, el yazısı taklidi gibi amaçlar için çözüm sunabilirdi. 
 
Franken-font iki aşamalı bir projedir. İlk aşaması, insan beyninin harfleri sürekli 
değişen bir fontu kabul edip etmeyeceğini araştırmaya odaklanmıştır. İkinci aşaması ise, 
harf şekillerini kitaplıktan çekmek yerine kullanım anında üreten bir sistem tasarlamayı 
amaçlamaktadır. Bu tez projesi, ilk aşamayı kapsamaktadır. 
 
Bu tez projesinin hipotezi, harfler tutarlı olduğu sürece insan beyninin fontu marjinal 
şekilde reddetmeyeceğidir. Bunun test edilmesi için Helvetica ve Syntax fontlarının 
karakterlerinin ortalamasını alarak, iki fontun da özelliklerini taşıyan harfler üreten bir 
uygulama tasarlanmıştır. Bir internet araştırması düzenlenerek, Franken-font'un tercih 
edilebilirliği ölçülecektir. Böylece araştırma sonuçları, projenin ikinci aşamasının 
uygulanabilir olup olmadığını gösterecektir. 
 
 
 
 
 
 
	  



	   vi 

ACKNOWLEDGEMENTS 
	  
	  
	  
	  
I sincerely thank my thesis advisor, Onur Yazıcıgil, for his invaluable contributions to 

this thesis, for being an erudate mentor as well as a supportive friend. 

 

I would also like to thank Servet Ulaş and Doruk Türkmen for the unique masters 

experience, during which the Franken-font was fostered. 

 

I always was and always will be grateful to Merve Çaylı for my mind. 

 

I finally thank my parents, Ayşe Sedef Antay and Orhan Cem Çetin, for the diverse set 

of talents I was lucky enough to inherit from them, both through nature and nurture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   vii 

TABLE OF CONTENTS 
	  
1  Introduction ................................................................................................................ 1	  
2  Generative Art and Typography ................................................................................ 4	  
3  Related Work ............................................................................................................. 6	  
4  Choosing Fonts for Interpolation ............................................................................... 8	  
5  The Role of Typography on Subliminal Perception ................................................ 10	  
6  The Frankenstein Application .................................................................................. 11	  

6.1  Glyph Generation from a Font File ................................................................... 12	  
6.2  Interpreting Font Files as Vector Images .......................................................... 13	  
6.3  Generating Unique Glyphs ............................................................................... 14	  
6.4  Typing with Generated Glyphs ......................................................................... 19	  

6.4.1  Interpolating the Glyph Width ................................................................... 20	  
6.4.2  Spacing and Kerning .................................................................................. 21	  

6.5  Exporting Usable Text ...................................................................................... 23	  
7  The Output ............................................................................................................... 24	  
8  The Survey ............................................................................................................... 26	  

8.1  The Specimens .................................................................................................. 26	  
8.2  The Technique .................................................................................................. 27	  
8.3  The Audience .................................................................................................... 27	  
8.4  The Survey Results ........................................................................................... 28	  

8.4.1  Result Breakdowns .................................................................................... 29	  
8.4.1.1  Age-Based Analysis ................................................................................ 29	  
8.4.1.2  Profession-based analysis ....................................................................... 30	  
8.4.1.3  Medium of reading based analysis .......................................................... 32	  
8.4.1.4  Joint analysis ........................................................................................... 33	  

8.5  Further analysis ................................................................................................. 34	  
9  Conclusion ............................................................................................................... 36	  

9.1 Possible Uses ..................................................................................................... 37	  
References .................................................................................................................... 39	  
Appendices ................................................................................................................... 40	  

Appendix A – Online Survey ................................................................................... 40	  
Appendix B – Survey Specimens ............................................................................ 41	  
Appendix C – Franken Font Possible Sets ............................................................... 45 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	   viii 

LIST OF FIGURES 

 
Figure 1 Bilkent University (2011) Text Invader Workshop ........................................ 7 
Figure 2: Helvetica & Syntax Specimens ...................................................................... 9 
Figure 3 Helvetica vs. Syntax ........................................................................................ 9 
Figure 4 vector outline of Helvetica 'a' ........................................................................ 13 
Figure 5 Syntax 'a' vs. Helvetica 'a' in vector form ...................................................... 15 
Figure 6 Compensating the missing vertices ............................................................... 15 
Figure 7 The Interpolation Abomination ..................................................................... 16 
Figure 8 The Franken-a ................................................................................................ 17 
Figure 9 Intermediate steps of the Franken-a .............................................................. 17 
Figure 10 The intermediate forms ............................................................................... 18 
Figure 11 Using static spacing ..................................................................................... 19 
Figure 12 Using static per-letter spacing ..................................................................... 19 
Figure 13 Width difference between Helvetica and Syntax ........................................ 20 
Figure 14 Metric interpolation ..................................................................................... 21 
Figure 15 Using bounding boxes for spacing .............................................................. 21 
Figure 16 Using bounding boxes with extra spacing ................................................... 22 
Figure 17 Taking bearings into consideration ............................................................. 22 
Figure 18 Intermediate steps of the Franken-'g' ........................................................... 22 
Figure 19 The Franken-text ......................................................................................... 24 
Figure 20 Age-based result analysis ............................................................................ 30 
Figure 21 Profession-based result analysis .................................................................. 31 
Figure 22 Medium-based result analysis ..................................................................... 32 
Figure 23 Article 18 from "İhlal" ................................................................................ 38 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  



	   1 

	  
	  
	  
	  
	  
	  

1  Introduction 
	  
	  
	  
	  

Ever since the invention of the printing press, one of the premises that typeface 

design has been relying on is that every instance of a letter should be represented by the 

same glyph1. Even if it is not, the set of glyphs used to represent a letter should be very 

close variations of each other with minimal adjustments to support the text’s visual 

coherence, such as a longer tail for the "z" letter at the end of a line. (Zapf, 2007, p.127) 

[2] 

 

It would be unfair to question a type cutter’s intention for creating only a couple of 

glyphs for each character, when the physical limitations and difficulties caused by 

manually carving letters from lead are considered. Yet, as the process of type design is 

translated to the digital medium, the means of creation and thus the nature of the 

product change. The glyphs are no longer defined by their physical properties, but by 

mathematical abstractions of the desired shapes, stored as vector image definitions in a 

font file.  

 

"The computer is, on the face of it, an ideal device for reviving the old 
luxury of random variations in design at the threshold of perception. But 
conventional typesetting software focuses instead on the suicidal notion of 
absolute control - and has been hamstrung in the past by the idea of a single 
glyph per character. The modern computer with its practically limitless 
computing power is able to create different variations of a letter at each 
keystroke. The creation can be completely random, with controlled 
randomness or based on a pattern." (Bringhurst, 2002, p.185) [3] 

 

In order to mold lead into the desired shape, appropriate conditions should be met such 

as correct temperature, enough time and expertise. By contrast, when a shape is 

produced from a digital abstraction, the entity of the glyph - through the nature of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Through out this paper, the term glyph is used for the visual representations of letters, 
independent of the font that is used. 



	   2 

algorithmic bits that unlike their analogue counterparts, the atoms are open to infinite 

manipulation - is ready to be reshaped in endless ways without needing more than a 

couple of milliseconds. The algorithm replaces the analogue technology, the vertices 

replace the physical material of the typeset, the act of printing by ink is replaced by 

rasterizing the instances of the letterforms. Consequently, once the user is able to access 

the vertices and to transform them, it is no longer impractical to create thousands of 

variations of the same glyph in a heartbeat. Why then, should a designer be content with 

using only a limited number of glyphs for each letter? 

 

Once we know what a word looks like in its written form, the human brain no longer 

reads the letters that create the word but instead, the word is perceived as a whole shape. 

Therefore, the process of reading depends on the pattern recognition ability of our brain, 

which is highly evolved in our species. 

 

"Once we have learned the pattern of the word "window", we never again 
read the individual letters; the larger pattern is immediately matched as a 
gestalt." (Hill, 1999 p. 13) [4] 

 

The process of pattern recognition relies not only upon visual perception, but also the 

ability to intellectually understand and interpret features, visual references and concepts. 

In order to recognize letters and words, the brain does not run an algorithm to match the 

vertices of the shape and determine, which glyph it is. Instead, it refers to the glyph’s 

features and our past experiences to understand the meaning. Bill Hill refers to this as a 

result of an evolutionary selection: the survival of those, who are better at seeing subtle 

differences in texture and form (e.g. determining whether or not a fruit is edible by 

looking at its texture or understanding the emotional response of another primate by 

reading its facial gestures). 

 

"In a very real sense, the form of the book as we know it today was predetermined by 

the decision of developing humans to specialize in visual pattern recognition as a core 

survival skill." (Hill, 1999 p. 7) [4] 

 

Since we have an evolutionary advantage in "seeing" things, we are also able to 

recognize the letters no matter how distorted or differently designed they are. If this 

wasn’t the case, then we wouldn’t be able to read our own handwriting, in which no two 



	   3 

letters are the same. In other words, the technique of handwriting would be nonexistent 

as we wouldn’t be able to develop it to begin with. Therefore, it is not unimaginable to 

expect the human brain to easily interpret a piece of text, when it is written by a system 

that is capable of producing glyphs at each occurrence of a letter, which are very similar 

but slightly different versions of each other. 

 

Consequently, the project Franken-font proposes a testing procedure to understand 

whether or not using slightly different glyphs for each letter whilst reading a long text is 

obstructive to the reading experience. The procedure consists of two parts, namely the 

typing environment and the survey. 

 

The developed typing environment is responsible of generating letterforms for any 

given text and providing a vector image output of the rendered text, while the survey is 

tailor-made to use these outputs to gauge the user response to the generated text. The 

working principles of the typing environment and the survey will be explained in detail 

in the chapters The Frankenstein Application and The Survey, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  
	  
	  
	  
	  



	   4 

	  
	  
	  
	  
	  
	  

2  Generative Art and Typography 
	  
	  
	  
	  

Generative art is the practice of using an autonomous system to generate either 

the entire artwork or a part of it. Although the definition encourages to imagine the 

aforementioned "autonomous system" as a computer algorithm, generative art does not 

necessarily have to be digital. A generative artwork can be created by using simple 

machines, manual randomization or even biological, chemical and physical processes. 

An example for an artwork that utilizes physical events to generate the final spectacle is 

the Condensation Cube (1963-1965) by Hans Haacke. This work features a partially 

water filled, airtight plexiglass box of size 76 cm at each size. [5] The water inside the 

cube evaporates and condenses in an infinite loop, thus reflecting the artist’s focus on 

the motion, light and refraction. This work is considered as generative art because it is 

created by the autonomous system that is the laws of physics governing the state of 

water inside.  

 

The advances in computer science has an obvious impact on generative art, since the 

modern computer’s number crunching abilities far exceed the range of manual work and 

it is possible to simulate both real and imaginary phenomena to create generative 

artworks that are otherwise impossible or very difficult to realize. The exceptional rate 

and speed of randomizations the computer can achieve is at the core of this thesis. 

Conventional typography, however, does not tolerate randomness. Therefore merging 

generative arts and typography is a design challenge more than an algorithmic one. 

 

Even though digital fonts are - by definition - assets prepared for computer use, they 

inherit a five-century-old practice of the printing press, which begins with the 

production of the Gutenberg Bible in 1455. Even the terminology (e.g. "kerning", 

"leading" and "bearing") used for digital fonts is borrowed from its predecessor. 



	   5 

Consequently, digital fonts are not re-inventing type design but merely translating them 

into a new medium. By extension, the digital typography’s objective is the same with 

that of conventional typography: conveying specific and coherent ideas (Warde, 1955, 

p.2) [6] 

In the essay The Crystal Goblet, Beatrice Warde explains transparency as a necessary 

quality of good type design and the image of a crystal clear goblet acts as a metaphor of 

successful typography. Warde argues that typography should stay humble and not 

distractive, so that it does not interfere with the ideas it is meant to convey. Just like a 

perfect goblet, which doesn’t alter the visual quality of the wine it holds. 

 

"A public speaker is more 'audible' in that sense when he bellows. But a 
good speaking voice is one, which is inaudible as a voice. *** Type well 
used is invisible as type, just as the perfect talking voice is the unnoticed 
vehicle for the transmission of words, ideas. " (Warde, 1955, p.2) [6] 

 

So, is transparent generative typeface an oxymoron? Or is it possible to achieve a sense 

of humility and invisibility, while intruding every single building block of each letter at 

each occurrence? 

 

"The book typographer has the job of erecting a window between the reader 
inside the room and that landscape which is the author's words. He may put 
up a stained-glass window of marvellous beauty, but a failure as a window; 
that is, he may use some rich superb type like text gothic that is something to 
be looked at, not through." (Warde, 1955, p.3) [6]  

 

If good typography is a window to be looked through, then good generative typography 

should be a system of building windows to be looked through. Eventually, the aimed 

success of the Franken-font does not only lie in its ability to please aesthetically, but 

also to do this silently. The mechanism that keeps the letterforms constantly changing 

must not distract the readers and they should be able to focus on the written content that 

the text is meant to convey. 

 

	  
	  
	  
	  
	  
	  
	  



	   6 

	  
	  
	  
	  
	  
	  

3  Related Work 
	  
	  
	  
	  

Although currently there exists no dynamic font that creates letterforms during 

the runtime, there have been several attempts of creating fonts with random glyphs. The 

lack of dynamic fonts is due to the modern and standardized operating system 

architecture, which uses a font file that works as a look up table to fetch related glyphs 

rather than a generator. Consequently, a system that provides a generation algorithm 

rather than a shape library cannot currently be incorporated into the general usage. 

 

Among some of the notable examples, the typeface Kosmik (FontShop 
1993) by Erik van Blokland and Just van Rossum tries to tackle the 
randomization problem by providing three alternative glyphs for every 
letter. Not only the system is not truly dynamic (because the forms are still 
predefined), but also the algorithm is extremely resource consuming: "the 
printer-driver leaps from font to font with each repetition of each letter. This 
reduces many systems to a state of nervous collapse after setting a few 
lines." (Bringhurst, 2002, p.185) [3] 

 

Another notable example is the font Beowolf (FontShop, 1990), by Erik van Blokland.  

 

"The letterforms are sent to the output device through a subroutine, devised 
by Just van Rossum, that provokes distortions of each letter within 
predetermined limits in unpredetermined ways. Three degrees of 
randomization are available. Within the specified limits, every letter is a 
surprise." (Bringhurst, 2002, p.185) [3] 

 

The problem with the font Beowolf is that the randomizations are all based on a single 

seed2 and distortions tend to render the letters illegible after a few iterations. In other 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Seed is the initial state of a random generation system. Seed is necessary for digital 
randomization and arbitrary seeds result in different, uncorrelated random numbers.  



	   7 

words, the manipulations tend to diverge from the starting form and therefore not 

feasible as a way of setting constraints for the randomization. 

 

A more modern approach to creating hybrid forms is the font Roboto by Google 

Android, designed for mobile platforms. Roboto, ironically called a frankenfont as well, 

is a mixture of five different fonts: Helvetica, Myriad, Univers, FF DIN and Ronnia. 

Google describes it as having a “dual nature. It has a mechanical skeleton and the 

forms are largely geometric. At the same time the font’s sweeping semi-circular curves 

give it a cheerful demeanor.” (Coles, 2011) [7] 

 

Roboto is not a dynamic font and available on Google Webfonts. However, the design 

decision and naming shows a striking similarity with the Franken-Font, in terms of 

trying to merge grotesque sanserif with humanist sanserif. 

 

Last but not least, the project Text Invader by Onur Yazıcıgil tackles the problem of 

whether or not a piece of text can be enhanced by planting visual elements within the 

linear flow of the text. [8] To do this, image and word pairings are implanted in an 

existing font, which will in turn replace the words with the corresponding images. This 

way, unpredicted forms and meanings emerge from the rendered (or invaded) text. The 

randomness and generation in this workflow lies in the act of typesetting images within 

a body text. Yet, this approach as well does not address the problem of true generative 

typography as the pairings are predefined in the font, just like all the letterforms. 

 

 
Figure 1 Bilkent University (2011), Text Invader Workshop [8] 



	   8 

 

	  
	  
	  
	  
	  

4  Choosing Fonts for Interpolation 
	  
	  
	  
	  

Since the aim of the project is to see the effects of using different glyphs for the 

same letter at each occurrence, it sets certain constraints for choosing the correct fonts: 

The fonts that will be used for interpolation should not be too close, so that there is a 

tangible difference between the generated glyphs. Yet, they should not be too different 

either, so that even though the resulting glyphs are different, their skeleton is not. 

 

The findings of the paper Humanist vs. Grotesque Sanserif by Onur Yazıcıgil show that, 

when reading habits are considered - due to historical and habitual reasons - it is 

observed that people who are used to reading from printed media prefer humanist fonts, 

whereas people, who are used to reading from a digital environment such as a computer, 

prefer grotesque fonts. This preference however does not imply any correlation to the 

preference of serif or sanserif fonts. 

 

"More and more people use the screen for continuous reading. This can be 
explained by the high use of sophisticated mobile devices, and the 
accessibility of such devices like, Apple’s I Phone and other Internet 
connected multimedia devices. Consequently, findings in this paper illustrate 
a tendency to prefer grotesque sanserifs, which are highly used as default 
screen types. In such cases, habit factor may override the historical factor. 
 
On the other hand, respondents who chose print for often-used medium 
tended to prefer humanist sanserifs, which is a descendent of a long tradition 
of printed book types. This correlation between often-used medium and type 
preference may be a guide for type designers, typographers and graphic 
designers when designing for the intended user. " (Yazıcıgil, 2009 p. 47) [9] 

 

Based on this finding, for the Frankenfont project, it was decided to use a humanist and 

a grotesque sanserif fonts for interpolation. The survey results of Yazıcıgil clearly show 

that there is a transition in preference for humanist and grotesque fonts for reading long 



	   9 

texts. [9] Using a font from each family would generate letterforms that bear similarity 

to both categories, therefore supplying the missing gap between the two inclinations for 

fonts. 

 

Helvetica was selected as the grotesque end of the interpolation, whereas Syntax was 

selected as the humanist end of the interpolation. Both bear clear characteristics of their 

own families, added to which is that both of these fonts are designed for long texts. The 

following two specimens in Figure 2 belong to Helvetica and Syntax, respectively. 

 

 
Figure 2 Helvetica & Syntax Specimens 

 
Figure 3 Helvetica vs. Syntax 



	   10 

	  
	  
	  
	  
	  

5  The Role of Typography on Subliminal Perception  
	  
	  
	  
	  

Typography is, by definition, an inseparable part of written communication and 

therefore evolves along with the contemporary writing habits of the society. As an 

example, with the emergence of the Internet and user created content, there have 

appeared Internet-specific writing rules and ethics, such as writing in capital letters on 

an online platform being directly considered as an analogy of shouting. 

 

The analogy between capital letters and shouting has become an intrinsic part of the 

perception of the reader only within the last couple of decades, whereas typography 

existed long before the Internet. If a period as short as a couple of decades can 

transform our understanding of capital letters, it is not a farfetched assumption that we 

are hard coded with type design and context associations; Certain ways of type design 

carries a silent message to the reader, without needing to explicitly tell what the 

message is. For instance, a poet does not need to tell us what he writes is a poem; the 

format of the body of the text already implies what it is. In other words, even though the 

reader does not necessarily have to consciously perceive the design decisions on a piece 

text, he or she certainly perceives their effects on the message. 

 

As it is stated on paper Humanist vs. Grotesque Sanserif, people with specific reading 

habits tend to prefer either grotesque or humanist fonts. [9] In other words, the medium 

of the text and the form of the typeface has an implicit association. Therefore, once the 

interpolated font is used to render a piece of text, how the brain will respond is 

unknown. It might completely distract the reader as different letters might have 

different associations. On the other hand, it might not effect at all just like reading a 

hand written text, where every letter is a little bit different but they have over all 

consistency. The proposal of this project, as stated earlier, is that it won’t have a 

negative effect. 



	   11 

	  
	  
	  
	  
	  

6  The Frankenstein Application 
	  
	  
	  
	  
 In order to extract the letterforms from a font file in an editable format and 

compile them into a readable chunk of text, a number of programmatic procedures and 

manual preparation are necessary. The reason for this is the aforementioned 

standardization of font files, which forces them to be read-only vector shape look up 

tables. Consequently, a tailor-made platform is necessary. 

 

Existing commercial design systems are not possible to alter. On the other hand, open 

source solutions exist but they are prepared to cover a very large range of uses. Hence it 

is very inefficient to try to tweak an existing open source project to meet the needs of 

this special topic. Therefore, the easiest approach to solve this problem is to develop an 

environment from scratch. 

 

An application capable of undertaking the given task, needs to be able to: 

• Read vector graphics, 

• Decode them into a form of information that can be manipulated, 

• Render the manipulated data back into visual information. 

 

Among many vector graphics file formats, SVG format stores the vector data in 

readable ASCII format (opposed to binary), which is even possible to mentally visualize 

a given shape by simply reading the list of plain text instructions that are stored in the 

file. Therefore, using SVG format reduces the "import file" routine into text file 

reading, so decoding and rendering this information boils down to string parsing and 2D 

graphics generation. 

 

"Processing API" developed by Ben Fry, provides a programming environment for 

artists by simplifying the coding process. [10] Although simplified, it still supports 



	   12 

advanced JAVA programming, as well as coming bundled with a variety of libraries to 

make it easier to visualize data. The applications can effortlessly be compiled via 

processing for different operating systems as well. Thus, the Frankenstein Application 

is developed on Processing. 

	  
	  

6.1  Glyph Generation from a Font File 
	  
	  
	  

A font file is a library of vector images that are associated with keystrokes from 

a keyboard. As the user presses a key on the keyboard while a text input area is 

selected, the operating system: 

• Recognizes the keystroke 

• Searches for the relevant vector image (the glyph) stored in the font file 

• Rasterizes it on the desired location. 

 

Most of the font files provide relevant glyphs for relevant letters, i.e. when the user 

presses the ‘g’ key on the keyboard, a representation of the letter ‘g’ appears on the 

screen. This is not necessarily the case, because there can be font files for special uses 

such as ornaments or musical symbols, where pressing the ‘g’ key may result in 

generating the musical notation G-Key, instead of the letter g. In other words, a font file 

is only a list of glyphs and it does not necessarily have to contain letters, let alone 

recognizing them as letters at all.  

 

The process of fetching a vector image from a font file and creating a visual 

representation on the screen is executed on a lower level; It is hidden from the user and 

it should be hidden for the user friendliness of any design and/or typing environment. 

While this is necessary for the ease of use, it also makes it impossible to easily 

manipulate the font file for artistic or experimental purposes - as this project - on a 

commercial environment. 

 

 

	  
	  



	   13 

	  
	  

6.2  Interpreting Font Files as Vector Images 
	  
	  
	  

Since a font file is a collection of vector images that are called upon keystrokes, 

every text written on a vector graphics application is a collection of vector images. Even 

though a font file by itself is not editable, the glyphs that it fetches for letters are 

editable, once the text field is discarded and the letters are expanded back to vector 

images. 

 

As an example, typing the letter ‘a’ on Adobe Illustrator in a text field fetches 

the associated glyph from the selected font. This glyph, along with the parent text field, 

can be transformed (i.e. scaled, rotated and translated) but its vertices are hidden. Yet, 

after converting it to outline3, the internal pieces of the shape are exposed as shown in 

Figure 4. 

 

 

 
Figure 4 vector outline of Helvetica 'a' 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Convert to outlines: Adobe Illustrator feature that extracts the editable vector image 
from a text area by destroying its editable text features and exposing the underlying 
vector image. 



	   14 

The shape is no longer a glyph in a text field; two disjoint paths are exposed along with 

the vertices that create the shape. After converting a glyph into a vector image, the 

manipulation process no longer relies on understanding the intricate machinery of a font 

file, but it is simplified down to understanding arbitrary amount of Bezier curves. 

 
 

6.3  Generating Unique Glyphs 
	  
	  
	  
 In order to generate unique glyphs that resemble each other at an enough level 

that they can be recognized as different instances of the same letter, the computer 

should need a source to create derivations. 

 

Using a single source glyph would be enough to derivate infinite amount of new ones, 

but the chance of achieving visual harmony is either too low, or requires too many 

interventions on the process of generation, which undermines the effect randomness. 

 

Instead of using a single source, using two source glyphs results in a more desirable 

outcome. Choosing two different fonts and interpolating equivalent glyphs in between, 

practically yields as many intermediate glyphs as the floating-point accuracy of the 

computer (e.g. if the smallest step between two integers a computer can calculate is 

0.01, then there are 99 intermediate steps between the two arbitrary numbers). 

 

One problem of interpolating two glyphs is that in order to interpolate, the two shapes 

should have matching number of vertices at matching locations on each letter. For 

instance, the following two shapes in figure 5 cannot be interpolated because they have 

19 and 52 vertices respectively. 



	   15 

 
Figure 5 Syntax 'a' vs. Helvetica 'a' in vector form 

The solution for this problem is adding the missing vertices on the shape manually to 

prepare the shapes for interpolation. The additional vertices are highlighted in red in 

Figure 6. 

 
Figure 6 Compensating the missing vertices 

Now that the two shapes are ready for interpolation, the application should be told 

which vertices are matching. A vector image in SVG form is defined by the absolute 

position of the first vertex and the relative positions of the following vertices. The 

starting vertex can be any vertex and if the starting vertices are at matching positions on 

both shapes, then the interpolation can take place smoothly. Figure 7 shows the %50 

interpolation for the letter a before explicitly defining the starting vertices. 



	   16 

 
Figure 7 The Interpolation Abomination 

Notice how the shape is beyond recognition. When matching vertices are interpolated, 

the outcome vertex is positioned at the weighted mean of the two source vertices, where 

the weight is the ratio of interpolation. When the vertices are not matched correctly, the 

two shapes start from unrelated positions and the incorrect mapping between the 

vertices propagate through the entire shape as seen in Fig. 7. 

 

After the glyphs’ starting vertices are manually chosen before creating the SVG file, 

they become fully compatible for the interpolation. Explicitly declaring the starting 

point of a vector shape is a software specific task and therefore not relevant to the 

content of this thesis. 



	   17 

 
Figure 8 The Franken-a 

 

Once the vertex shift is fixed, it is possible to generate all the intermediate steps 

between the two shapes. 

 

 
Figure 9 Intermediate steps of the Franken-a 

 

 

 

The following letters show a hundred random interpolations of each letter. The pure 

grotesque and pure humanist ends of the interpolations are represented in red and blue, 

respectively, while the intermediate forms are light gray. See Appendix C for 5 possible 

sets generated by the Franken-font. 



	   18 

 
Figure 10 The intermediate forms 

 

 

	  
	  
	  



	   19 

	  
	  

6.4  Typing with Generated Glyphs 
	  
	  
	  
 As the letters are transformed into their vector image forms by creating their 

outlines, essential information, such as kerning is lost. Because, these information are 

imported from the source font file and what we have is regarded just as an image by the 

computer. Consequently, in order to type with the generated letters, the application 

should know how much space a letter spans horizontally, so that it can place the letters 

with appropriate spacing. 

 

Setting a standard kerning without taking the individual letters’ shapes into 

consideration yields a result as the following in figure 11. 

 
Figure 11 Using static spacing 

Every letter is placed in an equally separated grid, resulting in an uneven spacing 

between letters with extreme difference in width. As a solution, the letters are 

associated with predefined widths – just like the metric information of a font file – so 

that the separations are visually harmonious. 

 
Figure 12 Using static per-letter spacing 

Even though this method produces much pleasing results, there exist other fundamental 

problems. By using this approach the left bearing and the right bearing information are 

merged into a single variable, the kerning does not exist and the width difference 

between the two ends of the interpolation (i.e. the Helvetica end and the Syntax end) 

glyphs are not considered. 

 

 

 

 



	   20 

	  
	  

6.4.1  Interpolating the Glyph Width 
	  
	  
 The equivalent glyphs from different fonts do not necessarily have matching 

widths. As an example, the following two ‘s’ letters in Figure 13 are from Syntax and 

Helvetica, respectively. 

 
Figure 13 Width difference between Helvetica and Syntax 

If the former is assumed to have a width of 100 units, then the latter’s width is 129 

units. Therefore, the metric should be interpolated along with the glyphs as well. 

 

As a solution, every glyph’s width is measured when the files are loaded, and upon 

matching the glyphs, their ratio is calculated and stored with the interpolator object 

assigned to that letter. The ratio is calculated in the form of (Helvetica / Syntax). For the 

example of the letter ‘s’, the ratio is 1.29. 

 

Since Syntax and Helvetica are on each end of the interpolation, the multiplier for the 

metric of the glyph changes between the range, 1 and 1.29. In other words, while the 

interpolation is on the range of 0 percent to 100 percent, the interpolation of the metric 

should be mapped to the range 1 – 1.29. As an example, suppose the metric for %40 

Syntax - %60 Helvetica has to be generated. So the calculation is as follows: 

 

 



	   21 

 

1.29 – 1 = 0.29  Subtract the minimum value 

0.29 x 0.4 = 0.116  Apply the interpolation 

0.116 + 1 = 1.116  Add the minimum value back to find the multiplier 

100 x 1.116 = 111.6  Apply the multiplier to the metric of the Syntax ‘s’ 

 
Figure 14 Metric interpolation 

	  
	  

6.4.2  Spacing and Kerning 
	  
	  
 The last and the most appeasing approach depends on letter width interpolation, 

and thus it does not use predefined spacing between the letters. Therefore, this approach 

also introduces the spacing information back to the application. 

 

Without adding an extra spacing between the letters, they perfectly touch consecutive 

letter’s bounding box as seen in Figure 15. 

 
Figure 15 Using bounding boxes for spacing 



	   22 

By adding an arbitrary amount of space between the letters, the positioning of the letters 

become legible as follows: 

 
Figure 16 Using bounding boxes with extra spacing 

Although the overall positioning works for reading, the kerning information still does 

not exist. In order to simulate the left and the right bearing information, each letter 

combination is analyzed and these combinations are assigned either a positive or a 

negative value of extra spacing. This extra spacing information is added to the default 

one to compensate the negative space between the letters, such as the extra spacing that 

appears between o and x in Figure 16. Notice how this o-x pair or o-v-e letters appear to 

fill in the extra negative space in Figure 17. 

 
Figure 17 Taking bearings into consideration 

The last approach produces the most visually pleasing result. All these examples also 

demonstrate how the glyphs are generated every time they are typed, as each example 

feature a slightly different variations of the same letters, along the intermediate steps of 

interpolation between Syntax and Helvetica. Although it produces acceptable results for 

most of the letters, punctuations and numbers, the interpolation for the letter ‘g’ yields 

very awkward results. 

 

Letter ‘g’ for Helvetica and Syntax are fundamentally different as syntax has a double-

story armature whereas Helvetica’s ‘g’s are single-story. As a result, the following 

interpolation in Figure 18 needs too many design decisions and the intermediate steps 

are too distracting to be characterized in any category. 

 
Figure 18 Intermediate steps of the Franken-'g' 



	   23 

Therefore, as an exceptional rule, lowercase g is limited to either purely Helvetica or 

Syntax in order to solve this ambiguity.  

 
 

6.5  Exporting Usable Text 
	  
	  
	  
 The Frankenstein Application is an experimental environment to generate text 

with unique glyphs per each keystroke and not a full-fledged design environment. 

Therefore, the generated text should be exportable in a format that a standard design 

environment can interpret. 

 

One of Processing API’s pre-included libraries "PGraphicsPDF" is capable of drawing 

what’s on the application window into a PDF4 file in the form of a vector image. 

 

Using this library, every letterform that is drawn on the screen is also drawn into the 

final pdf file. As the interpolation process is completed, the application also generates a 

pdf file that contains everything that had been interpolated so far. 

 

Consequently, every piece of text that is written within the application is saved in PDF 

format as a vector image, which can be read and imported into all of the vector graphics 

applications for artistic use. 

 

 

 

 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Portable Document Format, PDF is an open-standard, operating system independent 
layout system for displaying and distributing documents and graphics. 



	   24 

	  
	  
	  
	  
	  

7  The Output 
	  
	  
	  
	  

Using the Frankenstein application generates the following text in Figure 19. 

The text, for now, cannot be easily inserted into a text file in editable text format. Due 

to the technical standardizations explained in previous chapters, the output text is an 

image file from the perspective of the computer and excludes the extra information a 

text field normally offers. 

 

To give an idea, if each letter had only a hundred interpolated steps, then it would 

require using a hundred fonts, containing a complete set of fonts for each interpolation 

ratio. At each letter, the user would have to select a random font from one of the 

hundred interpolated fonts to roughly mimic what the Frankenstein application does 

within a fraction of a second. 

 

 
Figure 19 The Franken-text 

 

 



	   25 

The readability of the generated text shows that the reading process does not necessarily 

depend on the consistency of the letterforms, at least to the degree of an interpolation 

between a humanist and a grotesque font. The brain does not notice the subtle 

differences between the interpolated glyphs of a specific letter, possibly due to the fact 

that it recognizes the words as a whole, instead of registering each and every letter first. 

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	   26 

	  
	  
	  
	  
	  

8  The Survey 
	  
	  
	  
	  

The proposed outcome of the Franken-thesis is a better understanding of the 

effect of varying glyphs on the legibility of a continuous text. Therefore the text 

generator, which is explained in detail in the previous chapters, is a necessary tool for 

the execution of the thesis, rather than the final product. 

 

Consequently, the survey’s aim is to see how preferable the Franken-font is, over a 

purely grotesque or a purely humanist font. 

	  
	  

8.1  The Specimens 
	  
	  
	  

To display the properties of the fonts, the longer version of the passage in Figure 

19, from Mary Shelley’s Frankenstein is used. 

 

The same piece of text is rendered in Helvetica, Syntax and the Franken-font. Since the 

nature of the Franken-font suggests that each instance of the same text would be 

different, more than one sample is used for the Franken-font specimen. 

 

In addition, there is a special specimen of Franken-font, which uses 50% interpolation 

for every instance of the letters. In other words, this version of the Franken-font is static 

and the glyphs are halfway between grotesque and humanist. This specimen will be 

regarded as a separate font and it will be called Franken50 for avoiding ambiguities. 

 



	   27 

Consequently, there are four different fonts used for the specimens of the survey. 

Namely Helvetica, Syntax, the Franken50 and the Franken-font (see Appendix B). 

Among these specimens, only Franken-font has multiple specimens, since it is a 

dynamic font unlike others.  

	  
	  

8.2  The Technique 
	  
	  
	  

The survey displays two renderings of the same text and asks the user to choose 

the one that looks more appealing in terms of the font used. Since the aim of the survey 

is to see how preferable the Franken-font is, one of the texts is always rendered in the 

Franken-font. In other words, the possible combinations are as follows: 

• Helvetica vs. Franken-font 

• Syntax vs. Franken-font 

• Franken50 vs. Franken-font 

• Helvetica vs. Franken50 

• Syntax vs. Franken50 

 

Before asking the participants to choose a text, the following information is asked to the 

test takers: how old they are, whether or not they are a designer and if they prefer 

reading from a book over reading from a screen or vice versa (see Appendix A). This 

information is later used to analyze how it affects the participants’ preferences. 

	  
	  

8.3  The Audience 
	  
	  
	  

The survey is executed online and it’s executed globally over the Internet. The 

survey executed 521 times by unique participants. The results are retrieved 18 March 

2013 from http://csc.im/frankensurvey2 and According to the questions asked at the 

beginning of the survey, the breakdown of the audience is as follows: 

 



	   28 

• The mean age is 26.94 

o The number of people younger or at the age 25 is 255 

o The number of people older than 25 is 266 

• The number of designers among the participants is 217; which makes up 41.65% 

of the entire set. 

• The number of people, who prefer to read from a book, is 315; which makes up 

60.46% of the entire set. Consequently, the number of people, who prefer to 

read from a screen, is 206 (39.54%) 

 
 

8.4  The Survey Results 
	  
	  
	  

The results of the survey show that, 45.9% of the 306 people, who were asked to 

choose between the Franken-font and Helvetica or Syntax, chose the Franken-font. 

 

The percentage of people, who chose Franken50 over Helvetica or Syntax, is 62% of 

146 people. As expected, the preference rate for the Franken-font shows that continuous 

text rendered in a dynamic font is not rejected, contrary to the classical notion of font 

design. 

 

However, the interesting finding is that the preference rate for a static hybrid font is 

higher than both a pure grotesque and a pure humanist font. In addition, the Franken-

font is generally more preferable to a pure humanist font, whereas a pure grotesque font 

is more preferable than the Franken-font. 

 

 

 

 

 

	  
	  
	  
	  



	   29 

	  
	  

8.4.1  Result Breakdowns 
 

 
Although the results are consistent in general, analyzing the statistics depending 

on the age, profession and medium preference yield results with notable variations. 

 

The following subsections focus on results divided based on the aforementioned groups 

of the audience. These groups are not mutually exclusive (i.e. there are overlapping 

participants in different groups), which makes it possible to do further analysis on finer 

subgroups. 

 
 

8.4.1.1  Age-Based Analysis 
 
 
The first of the three grouping methods is age-based division. The 521 test 

takers are divided into two by their age; people who are at the age 25 or younger and 

people who are older than 25. The reason for dividing the participants at the age 25 is 

that it is where these two groups have the closest number of people (i.e. 255 and 266 

respectively). 

 

As seen on the bar chart in Figure 20, the Franken-font preference rate over Helvetica is 

lower on both groups; 28% for people younger than 25 and 37% for people older than 

25%. 

 

The preference rate against Syntax, however, is above 50%. The preference rate is 

higher for older people, at 64% and 57% for young people. 

 

When compared to its static counterpart, Franken50, the acceptance rate for the 

Franken-font is lower in both groups: 47% for young people and 39% for older people. 

 



	   30 

Franken50 scores better than the Franken-font in general: a 36% acceptance rate over 

Helvetica among younger people and 58% for older people. This rate increases even 

more against Syntax, with a 71% rate for younger people and 85% for older people. 

 

 
Figure 20 Age-based result analysis 

 

8.4.1.2  Profession-based analysis 
 

 
The second of the three grouping methods is profession-based division. The 

participants are divided into two groups, depending on whether or not they are a 

designer. The amount of designers among the test takers is 207, which makes up the 41 

percent of the entire group, along with the other 314 non-designer test takers. 

 

Consistent with the overall results, both groups display almost no rejection against the 

Franken-font, at 45% and 46% among non-designers and designers respectively. 



	   31 

 
Figure 21 Profession-based result analysis 

 

The Franken-font preference rate over Helvetica is lower on both groups: 36% and 28% 

for non-designers and designers respectively. 

 

The preference rate against Syntax is again above 50%. The preference rate is higher for 

non-designers, at 58.4% and 63.3% for designers. 

When compared to its static counterpart, Franken50, the acceptance rate for the 

Franken-font is lower than the average at 38.3% for non-designers and 49% for 

designers. 

 

Franken50 again scores better than the Franken-font in general; with a 40.5% 

acceptance rate over Helvetica among non-designers and exactly 50% for designers. 

This rate increases even more against Syntax, with a 79.6% rate for non-designers and 

72.7% for designers. 

 

 



	   32 

 
 

8.4.1.3  Medium of reading based analysis 
 

 
The last of the three grouping methods is medium of reading based division. The 

participants are divided into two groups, depending on whether they prefer to read from 

a book or a digital screen. The amount of book readers among the test takers is 315, 

which makes up the 60.5 percent of the entire group, along with the other 206 screen 

reader test takers. 

 

Again consistent with the overall results, both groups display almost no rejection 

against the Franken-font, at 44.4% and 46.7% among book readers and screen readers 

respectively. 

 
Figure 22 Medium-based result analysis 

 



	   33 

The Franken-font preference rate against Helvetica is lower on both groups; 34.7% and 

29% for book readers and screen readers. 

 

The preference rate against Syntax is again above 50%. The preference rate is higher for 

screen readers at 66.7% and 56.8% book readers. 

When compared to its static counterpart, Franken50, the acceptance rate for the 

Franken-font is lower than the average at 39.7% for book readers and 47.2% for screen 

readers. 

 

Franken50 scores better than the Franken-font in general: a 33.3% acceptance rate 

against Helvetica among screen readers and exactly 50% for book readers. This rate 

increases even more against Syntax, with an 84.3% rate for book readers and 64% for 

screen readers. 

 
 

8.4.1.4  Joint analysis 
 

 
Although the results in every breakdown are more or less homogeneous and 

predictable as seen above, some combinations are worth noticing due to their marginal 

values for the Franken-font and Franken50 preferences. 

 

When compared to Helvetica, the Franken-font scores a 40.7% preference rate as a 

peak, for the group of book reading, non designer 27 individuals, who are older than 25. 

 

Preference rate drops to as low as 18.8%, among the 16 book reading, designer 

individuals, younger than 25. 

 

The Franken50 font scores as low as 27.3% and 37.5% for 11 screen reading non-

designer individuals and 8 book reading designer individuals younger than 25, 

respectively; unlike its high preference rates in general. 

 



	   34 

The Franken-font’s preference rate against Syntax peaks as high as a 100%, among 10 

screen reading individuals, who are non-designer and younger than 25 and 82.35% for 

17 book reading, designer individuals older than 25. 

 

Franken50 also goes up to a 100% for book reading, non-designer individuals older than 

25 and scores a 95.7% preference rate, both for the 23 non-designer individuals older 

than 25 and 23 book reading individuals older than 25. 

 
 

8.5  Further analysis 
 
 
 
The results of the survey show that: 

• The readers do not display a marginal rejection or acceptation for the Franken-

font. Although, the static version Franken50’s acceptance rate is slightly higher 

than that of the dynamic version in most of the cases. 

 

• A pure grotesque font is almost always more favorable than the Franken-font. 

 

• A pure humanist font is almost always less favorable than the  Franken-font. 

 

• The previous two statements show that preference is not directly based on 

whether or not a font is dynamic or static. In other words, a dynamic font is 

equally favorable as a static font. 

 

• The reason for the Franken-font to be preferred over a humanist font might be 

explained by an analogy of the "Uncanny Valley " theory. 

 

In robotics “subtle flaws in appearance and movement only seem eerie in very 

humanlike robots. This uncanny phenomenon may be symptomatic of entities 

that elicit a model of a human other but do not measure up to it. *** Uncanny 

robot elicits an innate fear of death and culturally-supported defenses for coping 

with death’s inability.” (MacDorman, 1). [11] 



	   35 

Just as the human visual perception is confused when it tries to comprehend the 

visual hints from what seems to be a human but in reality is not, the humanist 

font might possess a similar quality with a humanoid that falls within the 

“uncanny valley“. Humanist fonts’ armature imitates the wrist movement in 

hand writing. Yet in handwriting, the letters are never the same. Instead, they are 

consistent in each person’s own way of writing. Therefore, the human brain 

might in fact expect a level of irregularity in a written text, given that the 

letterforms seem to be the result of a wrist movement and prefer the Franken-

font to a static, humanist font. 

 

• Helvetica is always the preferred font when compared to the Franken font 

derivatives (i.e. the Franken-Font and Franken50). This can be explained in the 

light of Yazıcıgil’s survey results in Humanist Versus Grotesque Sanserif, which 

shows that people who prefer screen as the reading medium show an inclination 

towards a grotesque font. As the Franken-survey is executed online and 

therefore on screen, this can result in an eventual preference towards the 

grotesque specimen, Helvetica. 

 

• When compared to the results of the Franken-font, Franken50’s preference rates 

are distinctively higher than those of the Franken-font. This shows that although 

a dynamic font is not rejected, its static counterpart is still more preferable. This 

might be a result of a lot of factors; one being the fact that the interpolated fonts 

are originally static fonts, which are not expected to be dynamically created. 

 

The results might be radically different for root fonts, such as interpolating two 

different fonts from script font family or interpolating fonts that are specifically 

designed to be interpolated; much like an ingredient rather than a finished font 

(such as Helvetica and Syntax). 

 

 

 

 

 

	  



	   36 

	  
	  
	  
	  

9  Conclusion 
	  
	  
	  
	  

The results of the survey show that a font such as the Franken-font, which 

dynamically creates letterforms for each occurrence, is as preferable as a classical, static 

font such as Helvetica or Syntax. Especially when compared to Syntax (a humanist 

font), the Franken-font and Franken50 scores almost always above. This can be 

associated to a number of reasons such as the medium of the survey being digital or the 

fact that a dynamic font is more suitable to have humane features, because the armature 

of a humanist font is derived from the wrist movement and handwriting is by nature 

dynamic (i.e. random yet based on rules for each handwriting). 

 

The positive outcome of this experiment suggests that a dynamic typing environment is 

possible both in terms of technical feasibility and user acceptance. 

 

Although the generation is limited to a humanist and a grotesque font for this specific 

example, the system is virtually capable of interpolating an arbitrary number of fonts 

with any kind of form; including letterforms written by human hand and then 

reproduced in vector format. Consequently, it is possible for the user to prepare an 

arbitrary number of letter specimens of their own handwriting, use them as the input 

and create a dynamic font that generates interpolations of these specimens to imitate 

real handwriting. 

 

Eventually, the next step in the Franken-font project is to design a new dynamic font 

that is based not on existing commercial fonts, but authentic handwriting and explore 

the possibilities of creating letterforms that might truly imitate the aesthetics of the 

owner of the input letterforms. 

 

 



	   37 

	  
	  

9.1 Possible Uses 
	  
	  
	  

In addition to the main purpose of imitating authentic handwriting, the 

underlying system does not necessarily have to be used for this purpose only. 

 

As stated in earlier chapters, the Franken-font interpolates matching letterforms to 

create intermediate glyphs between Helvetica and Syntax. Yet, the fact that this 

interpolation takes place only once per letter or that it uses letterforms to do this 

interpolation are arbitrary constraints on the mechanism to better suit the needs of this 

project. Consequently, subtle changes in the algorithm can make it possible to cover a 

wider range of uses. 

 

The first constraint to be tweaked is the frequency of the interpolations. For the purpose 

of creating the letterforms, the system generates an intermediate glyph once and uses it 

in the rendered text. This is necessary, unless the glyphs are free or even required to 

change their forms during the runtime5 of the modified Franken-font application. Since 

the purpose of the modified executable is no longer to create the Franken-font, it will be 

referred just as the application from this point on. 

 

An example for a use case that requires morphing letterforms would be an animated 

child e-book, where the words are animated per letter to visualize specific events or to 

emphasize certain ideas in the text, such as letters randomly morphing back and forth 

between their distorted versions to create the effect of "shivering" to emphasize a 

context that is focused on the abstract notion of coldness. 

 

The next constraint that can be explored and enhanced is the pattern of animated 

interpolations. In order to randomly interpolate the letterforms, the application first 

generates a random number between 0 and 1 and then uses this value as the weighted 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Runtime of an application is the entire time that spans between the initial execution 
and the termination of a computer application. 



	   38 

mean to be used for the interpolation (e.g. 0.4 means 40% of the first form and 60% of 

the second form). Naturally, this number generation does not have to be random. It can 

be bound to a predefined pattern (e.g. beats of a tune) or mathematically defined (e.g. 

the sine curve). Binding the generation to a pattern would enhance the animation 

possibilities to cover time-bound events such as expanding and contracting, "breathing" 

or rippling letterforms. Although impossible to print, such modification would make it 

possible to create digital posters or titles, which utilizes this controlled animation 

infrastructure to emphasize the content (e.g. beating letterforms on a poster emphasizing 

cardiac health) 

 

Last but not least, the modification of the application does not necessarily have to be at 

the algorithmic level. Changing just the input forms can drastically change the nature of 

the end result. The system, for instance, can be used purely for artistic purposes to 

render a text in a way that appropriately reflects the required aesthetics. 

 

As a real life example, the Franken-font application is used in the artwork İhlal (2012) 

by Özlem Alkış, which is exhibited in the Commons Tense / Commons Tijd / 

Müşterekler Zamanı exhibition by Amber Platform. [12] İhlal visualizes the Human 

Rights Constitution in partially distorted letterforms, each article distorted in 

correspondence to how many times it is violated. The figure 23 below shows the Article 

18 from the artwork. 

 

 
Figure 23 Article 18 from "İhlal" 

Consequently, even though the existing Franken-font application is a prototype that is 

designed to test the usability and feasibility of a possible, dynamic handwriting font, 

subtle modifications on the underlying infrastructure widens the range of possible 

outcomes. This, by extension, makes the Franken-font a potentially flexible system that 

can address many previously impossible design challenges. 



	   39 

 

	  
	  
	  
	  
	  

References 

 
[1] Noordzij, G. (2005). The stroke: theory of writing. London: Hyphen Press. 

[2] Zapf, H. (2007). Alphabet stories: a chronicle of technical developments. 

Rochester, N.Y.: RIT Cary Art Graphics Press. 

[3] Bringhurst, R. (2002). The Elements of Typographic Style (v2.5). Vancouver: 

Hartley & Marks Publishers. 

[4] Hill, B (1999). The Magic of Reading. 

[5] "Haacke's Condensation Cube: The Machine in the Box and the Travails of 

Architecture," Thresholds 30: Microcosms (Summer 2005): 99-103. 

[6] Jacob, H. ed., Beatrice Warde, The Crystal Goblet: Sixteen Essays on 

[7] Roboto is a Four-headed Frankenfont. (n.d.). Typographica RSS. Retrieved June 

12, 2014, from http://typographica.org/on-typography/roboto-typeface-is-a-four-

headed-frankenstein/ 

[8] Yazıcıgil, O. (2014). Yazı sadece Okumak için değildir. Natama - Hayat Memat 

Dergisi, 6. 

[9] Yazıcıgil, O. (2009). Humanist Versus Grotesque Sanserif, MFA Thesis. Purdue 

University, Indiana. 

 [10] Fry, B. and Reas, C. (2014) Processing (Version 2.0) [Computer program]. 

Available at http://processing.org 

[11] Hanson et al. (2012) Upending the Uncanny Valley 

Typography, Sylvan Press, London, 1955. 

[12] Commons Tense / Commons Tijd / Müşterekler Zamanı. (2012, September 

15). Amber Platform |. Retrieved June 12, 2014, from 

http://www.amberplatform.org/tr/news/detail/2012/09/15/commons-tense-

commons-tijd-musterekler-zaman/23 

 

 



	   40 

Appendices 

Appendix A – Online Survey 
Welcome page of the survey 

 
 

Sample selection page 

 



	   41 

Appendix B – Survey Specimens 
 

 

 

 

 

 

 

 

 

Helvetica Specimen 

 

 
 

 

 

 

 

 

 



	   42 

 

 

 

 

 

 

 

 

 

 

Syntax Specimen 

 

  
 

 

 

 

 

 



	   43 

 

 

 

 

 

 

 

 

 

 

Franken 50 Specimen 

 

 
 

 

 

 

 

 



	   44 

 

 

 

 

 

 

 

 

 

 

A Franken-font Specimen 

 

 
 

 

 

 

 

 



	   45 

Appendix C – Franken Font Possible Sets 
The following sets are 5 consecutive, random generations of the Franken-font. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   49 

 

 

 


