Differences in absorption and distribution of foliarly-applied zinc in maize and wheat by using stable isotope of ⁷⁰Zn and Zn-responsive fluorescent dye Zinpyr

Raheela Rehman, Levent Ozturk, Ismail Cakmak

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul Turkey

Introduction Results Zinc (Zn) deficiency is an important health problem significantly higher than maize. worldwide especially in developing countries with Relative Absorption of leaf-applied ⁷⁰Zn Zn supply in staple food (Cakmak, 2008). cereals Zn as nutrient solution Wheat Maize concentration in cereals can be improved by genetic (%) or agronomic biofortification. Optimized applications of soil and foliar Zn fertilizers has been found very effective strategy to increase the grain Zn concentration for some cereals like wheat and rice but not significantly in maize (Cakmak and Kutman., 2017). However, no clear evidence exists about the mechanisms of limited response of maize to Zn foliar application compared to wheat. Aim of the current study was to elucidate the physiological reasons behind the poor response of maize to foliar Zn applications as compared to wheat.

Materials and Methods

Wheat and maize plants were grown in nutrient

Low Zn	12.9 B	16.5 A
Adequate Zn	13.4 B	17.3 A
Table 1. Relative absorption of leaf-applied ⁷⁰ Zn in maize and		
wheat plants grown in nutrient solution with low (10 ⁻⁸ M) or		
adequate Zn (10 ⁻⁶ M) supply.		
he increased le	af zinc uptake	and localization in
vheat was confir	med by a visua	I demonstration by
ising zinc-respor	nsive fluorescer	nt dye Zinpyr and
luoresce microsc	copy (Fig 1)	

. Sabancı

Universitesi

medium solution supplied with either low or adequate Zn in nutrient solution under greenhouse conditions. Second leaf of maize and wheat plants were treated with stable isotope of ⁷⁰Zn solution to trace the movement of foliarly applied Zn. ⁷⁰Zn concentration in roots ad shoots were measured after digesting the samples in a closed vessel microwave digestion system in the presence of concentrated HNO₃ and analyzed by ICP-MS for determination of ⁷⁰Zn.

To visualize the localization and remobilization of Zn in maize and wheat plants a soil culture experiment was conducted. Fully developed leaves of maize and wheat plants grown in low Zn soil were immersed in

Fig 1: Microscopic images (10X) cross section of (a) maize application leaf (b) wheat application leaf (c) maize 2nd younger leaf (d) wheat 2nd younger leaf (e) maize 3rd younger leaf (f) wheat 3rd younger leaf. Zinpyr inflorescence intensity indicates the translocation of absorbed Zn from foliar fertilizer application.

Conclusion

The main reason for poor response of foliar Zn spray in terms of low grain Zn accumulation is mainly reduced uptake capacity of maize leaves

ZnSO₄ solution. Following the foliar treatment, zincresponsive fluorescent dye Zinpyr and fluorescence microscopy was used to visualize the Zn localized in the cells of application leaf and younger shoots. Results The foliar application of ⁷⁰Zn solution increased ⁷⁰Zn concentrations in roots and shoots of wheat plants

compared to wheat.

References

Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? *Plant and Soil*. 302: 1 - 17Cakmak I, Kutman UB (2017) Agronomic biofortification of cereals with zinc-a review. Eur. J. Soil Sci. in press.