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ABSTRACT 

 

 

DECORATION OF GRAPHENE SHEETS BY METAL OXIDE PARTICLE: 
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STORAGE 
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PhD Dissertation, August 2017  

 

 

Supervisor: Prof. Yuda Yürüm  

 

 

Keywords: Hydrogen storage, Graphene, Adsorption, Nanocomposite. 

 

This is the thesis for a doctorate of Sabanci University and relates to the synthesis of 

graphene based nanocomposites as media to store hydrogen gas. The aim of this work is to 

develop such materials with improved hydrogen storage capacity at ambient temperature 

and pressures that can also provide the adaptability to onboard systems and public safety. 

In the first part of this work, graphene sheets were decorated by 2.8 wt% transition metal 

oxide (TiO2, NiO, Fe3O4, CuO) for hydrogen uptake. Among these nanocomposites, 

sample decorated with Fe3O4 showed the maximum hydrogen uptake of 0.4 wt% at room 

temperature while TiO2 showed the highest improvement in the isosteric heat of adsorption 

(12kJ/mol at a surface coverage of 50%) when normalized by maximum uptake at 298k due 

to the strong interaction between hydrogen molecules and substrate. Moreover, a series of 

graphene-based nanocomposites with different TiO2 contents (10, 12 and 15 wt%) have 

been prepared via a facile chemical method. The highest hydrogen uptake of 0.39 wt% was 

obtained for the sample with 12 wt% TiO2 nanoparticle that is 125% higher than the 
iv 

 



hydrogen adsorption of the parent graphene material. In the next part of this work, 

homogeneously distributed TiO2 nanoparticles with (001) reactive facets were grown over 

nitrogen-doped reduced graphene oxide sheets by a solvothermal method. Hydrogen 

storage capacity of the system was significantly improved to 0.91 wt% that is the highest 

hydrogen storage ever reported for graphene-based nanocomposites at room temperature 

and low pressures. Importantly, this nanocomposite exhibits ~91% capacity retention 

through 5 cycles with more than 88% release of the stored hydrogen at ambient conditions. 

In the last part of the thesis, we reported the development of a heterogeneous catalyst 

consisting of Al2O3 nanoparticle and low amounts of Pd that markedly enhances the 

hydrogen uptake of RGO. It was shown that incorporation of 1 wt% heterogeneous catalyst 

(<0.3 wt% Pd) significantly increased the hydrogen storage capacity of RGO from 0.17 

wt% to 0.31 wt%. This indicated a rise of hydrogen uptake by a factor of 1.8 in RGO 

nanocomposite. 
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Bu tez, Sabancı Üniversitesi doktora tezi olup hidrojen gazı depolaması için grafen esaslı 

nanokompozitlerin sentezi ile ilgilidir. Bu çalışmanın amacı, ortam sıcaklığında ve 

basıncında hidrojen depolama kapasitesi geliştirilmiş malzemelerin, yerleşik sistemlere ve 

kamu güvenliğine uyum sağlayacak şekilde geliştirilmesidir. 

 

Bu çalışmanın ilk bölümünde grafen tabakaları, hidrojen alımı için ağırlıkça %2.8 geçiş 

metal oksidi (TiO2, NiO, Fe3O4, CuO) ile yüklenmiştir. Bu nanokompozitlerden Fe3O4 ile 

yüklenen örnek, oda sıcaklığında %0,4 ile en yüksek hidrojen alımını gösterirken, izostrerik 

adsorpsiyon ısısındaki en yüksek miktardaki iyileşmeyi TiO2 (yüzeyin %50 kaplandığı 

durumda 12kJ/mol) göstermiştir. Bu değerler 298K’de maksimum alım için 

normalleştirilmiştir. Ayrıca, farklı TiO2  içerikli (ağırlıkça %10, 12 ve 15) grafene dayalı 

nanokompozitler kolay bir kimyasal yöntemle hazırlanmıştır. Bu nanokompozitlerde, en 

yüksek hidrojen alımı ağırlıkça %0.39 olmuş ağırlıkça %12 TiO2 nanoparçacıkları içeren 
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numune ile elde edilmiştir. Ulaşılan hidrojen alımı miktarı ana grafen maddesinin hidrojen 

adsorpsiyon miktarından %125 oranında yüksek olmuştur. 

Bu çalışmanın sonraki bölümünde, (001) reaktif fasetlere sahip homojen olarak dağıtılan 

TiO2 nanopartikülleri azot katkılı indirgenmiş grafen oksit tabakaları üzerinde solvotermal 

bir yöntemle yerleştirilmiştir. Sistemin hidrojen depolama kapasitesi, oda sıcaklığında ve 

düşük basınçlarda grafen bazlı nanokompozitler için şimdiye kadar rapor edilen en yüksek 

hidrojen depolama miktarı olan ağırlıkça % 0,91'e ulaşmıştır. Önemli biçimde, bu 

nanokompozit ortam koşullarında depolanan hidrojenin %88’den fazla salınması ile 5 

döngü boyunca ~% 91 kapasite retansiyonu sergilemektedir. 

Tezin son bölümünde, Al2O3 nanoparçacıkları ve az miktarda Pd içeren heterojen bir 

katalizörün, RGO'nun hidrojen alımını önemli ölçüde arttırdığı bidirilmiştir. Ağırlıkça %1 

oranında heterojen katalizör (ağırlıkça <%0.3 Pd) eklenmesinin, RGO’nun hidrojen 

depolama kapasitesini ağırlıkça %0,17’den %0,31’e arttırdığı gösterilmiştir. Gözlemlenen 

bu artışın, RGO nanokompozitinde hidrojen alımını 1,8 faktörü ile arttırdığı gösterilmiştir. 
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Chapter 1 : General Introduction 

1.1 Introduction 

Fossil fuels are non-renewable and finite resources of energy that became too 

expensive and environmentally damaging. In contrast, many types of renewable energy 

resources-such as wind and solar energy-are constantly replenished and will never run out. 

Renewable energies are important because they are clean sources of energy and they have a 

much lower environmental impact compare to conventional energies. Recently, climate 

changes arising from global warming has actuated scientists in search of environmentally 

friendly renewable energy resource [1-3].  

Hydrogen attracts a considerable attention in energy area since it holds the promise as 

a clean energy resource for the next-generation energy carriers in mobile and stationary 

power systems. In recent years, production, storage, and consumption of energy have 

become a serious problem that our world currently faces [4]. Although several systems 

have developed for hydrogen production and combustion, most of storage systems have 

encountered challenges. The biggest Issues related to the success of H2-based technologies 

for on-board technologies rely on the safe and efficient storage of hydrogen. Recently, 

several methods such as high-pressure tanks, liquefied H2 tanks, and storage in solid 

materials are examined to store hydrogen [5].  

• Compressed hydrogen storage technologies: Hydrogen can be stored in 

different types of pressure vessels including cylinders and polymorph. Normally the 

pressure of hydrogen gas changes between 25 MPa (compressed natural gas) and 30 MPa 

(oxygen and air for breathing apparatus) but recently 35-70 MPa vessels are developed and 

used to store hydrogen. The most important issues that should be considered during using 

hydrogen gas to prevent the risk of failure by leakage in service and guaranty the 

performance are storage, transportation, use (emptying, handling, etc), filling steps, 

periodic inspection, and maintenance [5]. 

• Cryogenic storage: Liquefying hydrogen is both time consuming and energetic 

process since it needs to be done at a low temperature such as -235 °C. In addition, it is 

difficult to store liquid hydrogen over a long period because evaporation from the system is 
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unavoidable and more than 40% of the energy content can be lost. Hence, it is not a 

preferred method to store hydrogen especially for on board applications. 

• Solid state storage: Hydrogen storage by solid compounds holds apparent 

advantageous compared to high-pressure tanks or liquefied hydrogen due to its safe and 

efficient utilization and also a gas can be stored reversibly in solid materials under pressure 

and temperature conditions [2]. The thermodynamic and kinetics of adsorption play an 

important role to determine a good storage media. The thermodynamic is defined by 

measuring the hydrogen pressure-composition characteristics under equilibrium conditions 

at a given temperature. In the case of kinetics, since adsorption of hydrogen is exothermic 

process therefore good management of heat transfer with the exterior is required to avoid 

penalizing the kinetics [5]. Finding materials for efficient hydrogen storage is one the most 

important components for the adoption of hydrogen in future of renewable energies [6, 7]. 

Several candidates such as metal–organic frameworks (MOFs), porous organic frameworks 

(POFs), porous carbon based materials, etc were studied during the last decades to provide 

safe and effective hydrogen adsorbents but none of them meets the storage targets set by 

the U.S. Department of Energy (DOE)( a gravimetric goal of 5.5 wt.% hydrogen storage for 

an on board system by 2020 and an ultimate target of 7.5 wt.%) [8-11].  

Among these options proposed as hydrogen storage media, carbon nanostructures, 

such as fullerenes, carbon nanotubes, and graphene have attracted wide attention due to 

large surface area, low density, inexpensiveness, high thermal stability and exceptional 

mechanical properties [12]. Graphene has been cited as a promising candidate for energy 

conversion and storage applications because it has high theoretically surface area, large 

microporosity, and good chemical stability [13-16]. 

Recently, much work has been focused on the synthesis of single layer and few layer 

graphene because the availability of graphene is a key factor for its use in research and 

development into possible applications. There are different methods to prepare graphene 

that can be grouped as follow: 

• Micromechanical cleavage of highly oriented pyrolytic graphite or natural graphite 

• Epitaxial growth of graphene on SiC and metal (Ru, Pt) 
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• Thermal- or plasma-enhanced chemical vapor deposition (CVD) of graphene from the 

decomposition of hydrocarbons at high temperatures on metal substrates (such as Ni, 

Cu, Pt) or metal oxide (Al2O3, MgO) particles 

• Chemical exfoliation of graphitic materials 

• A bottom-up synthesis strategy from organic compounds 

• Other methods such as electrochemical exfoliation of graphite, graphene growth from 

solid state carbon, direct arc discharge of graphite, reduction of ethanol by sodium 

metal, and the thermal splitting of SiC granules 

It is worth mentioning that among mentioned methods; currently, the chemical 

exfoliation method is the most common route to prepare the graphene at low cost and high 

quality. This procedure starts with oxidation of graphite to increase the d-spacing and 

intercalation between graphite layers as a result of the weak interaction between the sheets. 

After that, it continues for reduction of graphite oxide (GO) by chemical or thermal 

treatment to obtain reduced graphene oxide (rGO) [17]. 

With reference to hydrogen adsorption of pure graphene, the range of reported 

hydrogen uptakes of graphene at ambient conditions is low[18]. For example, Srinivas et 

al.[19] and Huang et al.[8] reached hydrogen uptake of 0.1 wt. % at 10 bar and 0.067 wt. % 

at 57 bar, respectively. Thermodynamically, hydrogen molecules are incapable of 

penetrating between the graphene layers in a graphitic structure whereby H2 adsorption 

generally restricts to the outermost sheets. The weak binding energy between carbon 

nanostructure and H2 at ambient conditions is also another key factor that leads to low H2 

adsorption capacity of this material [14]. For moderate storage conditions, i.e. temperature 

of ~300 K and pressures no greater than 100 bar, carbon nanostructures are yet to be found 

that can reproducibly store in excess of 2 wt.% [11]. Thus, surface modifications, such as 

doping and functionalization have been proposed to enhance gas adsorption property of 

graphene based materials [14, 20]. 

So far many theoretical studies, generally performed using standard density-

functional theory (DFT), have been devoted to functionalization of carbonous materials 

with appropriate species, such as transition metals, alkali metals, and alkali-earth metals as 
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energy storage media. For example, Lebon et al. [12] investigated the adsorption of 

molecular hydrogen on Ti-doped zigzag graphene nanoribbons (GNR). Hydrogen uptake of 

GNR decorated with Ti atoms at both sides of the nanoribbons was more than 6 wt% 

suggesting the potential of this system for hydrogen storage. Lu et al. [21] studied the 

hydrogen storage properties of Li, Ca, Sc, Ti on graphyne nanotubes and graphene 

monolayers. They found the hydrogen storage capacity of 4.82 wt%, 5.08 wt%, 4.88 wt%, 

4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes, respectively. Seenithurai et al. 

[22], used Al-decorated, single-walled carbon nanotube for hydrogen storage based on DFT 

calculations. They reported that each Al can bind four H2 molecules without clustering and 

corresponding storage capacity is 6.15 wt%. Experimental studies on this kind of systems 

have also been carried out, although they are scarcer than theoretical studies due to the 

challenges that have to be overcome. For instance, Hudson et al. [23] and Zhou et al. [24]  

have used Fe and Ni nanoparticles on reduced graphene oxide respectively to show that 

graphene sheets decorated with Fe and Ni nanoclusters are potential high-capacity 

hydrogen-storage media. The hydrogen uptake capacity of Fe-graphene was 2.16 wt.% at 

77 k and 50 bar while in the case of Ni-graphene hydrogen uptake was 0.14 wt %. at room 

temperature and a hydrogen pressure of 1 bar and it changed to 1.18 wt.% when hydrogen 

pressure increased to 60 bar. 

Regarding to the preparation methods of graphene-nanoparticle composites, different 

techniques such as in-situ (e.g., growing the nanoparticles on the graphene surface) and ex-

situ (e.g., attaching premade nanoparticles to the graphene surface) methods can be used to 

anchor nanoparticles to the sheets of graphene, rGO and GO to obtain graphene decorated 

nanoparticles [25]. GO and rGO are a promising template for anchoring nanoparticles due 

to the presence of oxygen containing functional groups on their surface and edges. These 

groups strongly influence the size, shape, and distribution of nanoparticles on the graphene 

[17, 25]. We briefly explained the techniques that we used in our work below. 

• Chemical impregnation method: In general, to the in-situ growth of 

nanoparticles on graphene sheets, a one step method is used in which metal precursor is 

mixed with GO in an aqueous solution. The oxygen functional groups such as alcohols, 

carbonyl groups, and acids with negative charge easies the attachment of positively charged 
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metal ions through electrostatic interactions and the growth of particles on the surface of 

GO. Although, this method is cost effective and easy to perform, controlling the 

morphology  of particles are difficult in this method [25]. 

• Hydrothermal/Solvothermal method: The hydrothermal/solvothermal 

method is also commonly used to synthesize inorganic nanoparticles that have a high 

crystallinity and narrow size distribution on graphene sheets. Generally, 

hydrothermal/solvothermal necessitate high pressure and long time allowing 

nucleation/growth of particles and reduction of GO to rGO at the same time. A major 

advantage of this method over other methods for the formation of graphene sheets 

decorated by nanoparticles is removing post annealing and calcinations [25].  

• Ex-situ method: Graphene-nanoparticle composites can also be produced by 

ex-situ method. In this method, nanoparticles are synthesized separately and added to the 

graphene suspension. While this method needs more time and steps to complete, it has 

advantageous compared to in-situ methods including controlling of shape and size of the 

particles [25].  

In all mentioned fabrication methods, keeping reduced graphene oxide from re-

stacking the layers is a key factor to retain surface dependent properties of graphene sheets. 

Metal oxide nanoparticles attached to both side of graphene sheets act as nanobarrier to 

separate the adjacent graphene layers because of the synergetic effect between graphene 

and metal oxide [17]. Due to various advantages e.g., suppressing the restacking of 

graphene layers, good bonding and interfacial interactions with oxygen-containing groups 

on graphene sheets, fabrication of graphene/metal oxide is expected to be an effective and 

practical method for increasing the hydrogen storage capacity of graphene [17, 20]. 
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1.2 Perspectives and challenges: 

In the work reported herein, an attempt was made to apply graphene-nanoparticle 

composites as a medium for hydrogen storage. For this aim, we synthesized graphene-

nanoparticle composites with different methods including in-situ such as impregnation 

(chapter 3 and 4), solvothermal (chapter 5) and ex-situ method (chapter 6) to investigate the 

hydrogen storage behavior of prepared composites. The goal was to develop a unique 

composite with fully dispersed transition metal oxide nanoparticles on the reduced 

graphene oxide exhibiting high hydrogen storage capacity. 

This thesis is presented in seven chapters. Chapter 1 serves as a general introduction 

based on previous studies and Chapter 2 presents experimental and different 

characterization methods that we used in this work. 

Chapter 3 (Hydrogen adsorption properties of RGO-MOx (M: Ti, Fe, Ni, and Cu) 

nanocomposites) discusses the hydrogen adsorption of reduced graphene oxide-metal oxide 

nanoparticles at a pressure of 9bar and two different temperatures of 298 and 328 k. The 

isosteric heat of adsorption which shows the strength of bonding between hydrogen and 

substrate is calculated for all samples. 

In chapter 4 (Significant improvement of the hydrogen storage capacity of reduced 

graphene oxide/TiO2 nanocomposite by chemical bonding of Ti–O–C), the synthesis of 

rGO-TiO2 with different amount of TiO2 nanoparticles is detailed. Hydrogen uptake of 

samples is measured at room temperature. 

Chapter 5 (Synthesis of anatase TiO2 with exposed (001) facets grown on N-doped 

reduced graphene oxide for enhanced hydrogen storage) involves the synthesis of nitrogen 

doped reduce graphene oxide (NrGO) and followed by decoration of NrGO with active 

TiO2 nanoparticles. Hydrogen storage measurements were done at ambient conditions. 

In chapter 6 (Decoration of graphene sheets with Pd/Al2O3 hybrid particles for 

hydrogen storage applications), Pd/Al2O3 hybrid particles are synthesized and used as a 

heterogeneous catalyst for enhancement of hydrogen storage capacity of rGO.   
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Chapter 7 presents conclusions and a general overview of study results and future 

prospects. 
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Chapter 2 : Experimental 

2.1 Materials 

Natural graphite flake (99%), sulfuric acid (H2SO4, 98%), sodium nitrate (NaNO3), 

potassium permanganate (KMnO4), hydrochloric acid (HCl, 37%), copper nitrate trihydrate 

(Cu(NO3)2·3H2O), hydrogen peroxide (H2O2, 30%), and N-Methyl-2-pyrrolidone (NMP, 

97%), and aluminum oxide (Al2O3, 99.8%) with primary particle sizes of 13 nm purchased 

from Sigma-Aldrich. The Al2O3 (99.9%) nanoparticles with primary particle size of 220 

nm were also purchased from Sumitomo, Jaban. Titanium chloride (TiCl3), nickel chloride 

(NiCl2), iron chloride (FeCl3), ethanol (C2H6O), hydrofluoric acid (HF), and titanium 

isopropoxide (C12H28O4Ti) were obtained from Merck. All reagents were analytical grade 

and used without further purification.    

2.2. Synthesis of graphite oxide 

Graphite flakes were first mixed with sulfuric acid (H2SO4) and sodium nitrate 

(NaNO3) and then potassium permanganate (KMnO4) was added slowly during 2 hours. 

After completion of oxidation stage, mixture was added to water, filtered, rinsed and, then 

re-dispersed in 5% HCl solution. Finally, mixture was washed with water till reaching 

neutral pH and dried at 60°C under vacuum or freeze-dried for further use. 

2.3. Synthesis of nanocomposites 

2.3.1 Synthesis of RGO-MOx (M: Ti, Fe, Ni, and Cu) nanocomposites 

GO was first sonicated (Vibra Cell 75041, Bioblock Scintific) in water for 2 h to 

obtain a homogenous dispersion of graphene oxide in aqueous medium. Different amounts 

of metal salts were then added to the mixture (impregnation method). After stirring for 24 

h, suspensions were filtered, vacuum-dried at 60 °C and reduced at 1000 °C for 12 min 

under argon atmosphere. 

2.3.2 Synthesis of TiO2 with exposed (001) facets and its RGO nanocomposites 

Nitrogen-doped graphene (N-rGO) was obtained by treating the as-prepared graphite 

oxide in a flow of ammonia gas at 1000 °C. In a typical synthesis, 100 mg of N-rGO was 

dispersed in 50 ml of a mixture of ethanol and NMP (25/1 vol/vol) by ultrasonication for 2 
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h. The required amount of titanium isopropoxide and HF was added to the solution drop-

wise under mechanically stirred conditions. Solvothermal treatment was performed at 150 

°C for 24h.  The same solvothermal treatment was applied to GO (without ammonia 

treatment, TiO2-rGO). Suspensions were filtered, washed by ethanol and vacuum-dried at 

60 °C. As a reference, GO was thermally reduced at 1000 °C to attain fully exfoliated 

reduced graphene oxide (rGO). Preparation of TiO2-N-rGO as well as TiO2-rGO 

nanocomposite was schematically shown in Figure 2.1. 

 

Figure  2.1 Schematic illustration for the fabrication of nanocomposites 

2.3.3 Synthesis of Pd/Al2O3 hybrid particle and its RGO nanocomposites 

The Al2O3 nanoparticles were first dispersed in water by ultrasonication. A certain 

amount of aqueous solution of palladium chloride was added dropwise to this dispersion. 

The mixture was sonicated for 30 minutes followed by stirring at room temperature for 24 

hours. To prepare Pd/Al2O3-decorated graphene sheets, GO was dispersed in water for 2 h  

to obtain a homogenous dispersion (2.25 mg/ml) and then, Pd/Al2O3 particles were added 

to the GO dispersion to reach Al2O3/GO of 1/300 (wt/wt). Subsequently, the mixture was 

sonicated for 30 min and magnetically stirred for 24 h at room temperature. Thereafter, the 

product was collected by centrifuge, washed with water and vacuum-dried at 60 °C for 3 

days. Thermal reduction was carried out with the products at 600 °C for 12 min under 

argon atmosphere to obtain Pd/Al2O3-graphene nanocomposites. As a reference, GO was 

thermally reduced at 1000 °C to attain fully exfoliated graphene oxide. 
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2.4 Characterization methods 

2.4.1 High resolution transmission electron microscopy (HR-TEM) 

HR-TEM was carried out by JEM-ARM 200CF JEOL, Japan with the accelerating 

voltage of 200 keV. Samples were mildly dispersed in acetone and placed on Cu grid (SPI 

200 Mesh Cu, USA). 

2.4.2 Scanning electron microscopy (SEM) 

SEM equipped with energy dispersive spectroscopy (EDS) was performed by Leo 

Supra 35VP field emission scanning electron microscope with an acceleration voltage of 

2‒20kV. 

2.4.3 X-Ray powder diffraction (XRD)  

XRD were performed using Bruker AXS diffractometer fitted with a Siemens X-ray 

gun using 0.15406 nm Cu Kα radiation.  

2.4.4 Raman spectroscopy 

Raman spectroscopic analysis was recorded from samples by using Renishaw inVia 

reflex Raman spectrometer with a 532 nm laser beam in the range of 100-3500 cm-1 while 

samples were loaded on silica wafer and focused with a 50× objectives.  

2.4.5 Specific surface area 

The Brunauer-Emmett-Teller (BET) specific surface area and porosity of samples 

were determined by analyzing the standard nitrogen adsorption-desorption isotherm at 77 K 

using nova 2200e, Quantachrome instruments.  

2.4.6 Hydrogen adsorption 

Hydrogen storage capacity of samples was measured by using Intelligent Gravimetric 

Analyzer (IGA 001, Hiden Isochema). All samples were degassed at 120 °C for 12h under 

high vacuum (~ 10-7 mbar) prior to measurements and then, the hydrogen adsorption 

isotherm were measured at room temperature and pressures up to 10 bar. 
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2.4.7 X-ray photoelectron spectroscopy (XPS)  

XPS analyses were conducted on a Thermo K-alpha X-ray photoelectron 

spectrometer with a monochromated Al Kα supported by a low energy electron/ion flood 

gun for charge neutralization. 

2.4.8 Dynamic light scattering (DLS) 

Particle size distribution and hydrodynamic radius (rh) of hybrid particles were 

measured in aqueous media by Zetasizer nanoseries (Malvern Instruments, Ltd.). DLS 

measurements were applied to the aqueous suspensions of 0.01 wt. % nanoparticles. 

2.4.9 Thermogravimetric analysis (TGA) 

TGA was carried out by heating up the nanocomposites at 10 K/min from room 

temperature to 1300 °C under air atmosphere followed by 3 hours of soaking step at this 

temperature. Concentration of TiO2 in each sample was calculated from the difference 

between residual mass of specimens and RGO and/or N-RGO (reference samples). 
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Chapter 3 : Hydrogen adsorption properties of RGO-MOx (M: Ti, Fe, Ni, and Cu) 

nanocomposites 

In this chapter preparation and hydrogen adsorption capacity of reduced graphene 

oxide-metal oxide nanoparticles (RGO-MOx M: Ti, Fe, Ni, and Cu) was reported. The 

hydrogen uptake was measured at 298 and 328 k and pressure up to 9 bar. This allows 

determination of isosteric heat of adsorption. Among nanocomposites, TiO2-incorporated 

RGO shows the highest heat of adsorption due to strongly bonds between hydrogen and 

substrate. 

3.1 Introduction 

Recently, graphene a single atomic layer sheet of sp2 bonded carbon atoms attracted 

many attentions for different applications due to presence unique properties such as high 

surface area, porous structure, good mechanical and electrical properties etc [1-4]. Various 

methods are suggested to prepare graphene sheets (single or few layers) in large quantities. 

As we explained in chapter 1, the most promising method is to use graphene oxide 

synthesized by the oxidation of graphite. With the reduction of graphene oxide, most of the 

properties of graphene are reportedly recovered [3]. In order to enhance the hydrogen 

uptake of graphene samples at ambient conditions, several routes such as functionalization 

by different species are theoretically investigated [2, 5]. Most of the theoretical works 

proposed hydrogen enhancement at room temperature and ambient pressures conditions. 

Because of weak binding of hydrogen molecules and graphene/graphite, many efforts have 

been devoted to increase both the binding strength and hydrogen storage capacity of 

graphene samples. Several simulation studies demonstrated the capacity of transition metals 

decorated on graphene sheets for hydrogen storage [5]. For example, Lu et al. [6] showed 

the chemical functionalization of graphene with different transition metals such as Sc and 

Ti and hydrogen uptake of 4.88 wt%, 4.76 wt% in metal decorated graphyne nanotubes, 

respectively. Ma et.al [4] investigated the structure and hydrogen adsorption behavior of 

Pd-decorated nitrogen-doped graphene using the DFT calculations. They showed double-

side Pd-decorated graphene with nitrogen defects can theoretically reach a gravimetric 

capacity of 1.99 wt.% hydrogen. Reunchan et al. [7] studied the role of various transition 

metal atoms such as Sc, V, and Ti on porous graphene for molecular hydrogen adsorption 
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by first-principles calculations. They reported that these metals can bind to porous graphene 

and are able to adsorb multiple hydrogen molecules. 

In this chapter, reduced graphene oxide was produced from exfoliation of natural 

graphite by the Hummers’ method. The resultant graphene was further decorated with 

transition metal oxide (TiO2, NiO, Fe3O4 and CuO) nanoparticles by a chemical 

impregnation technique for the hydrogen storage application. All hydrogen storage 

measurements were made at two different temperatures and pressures relevant for practical 

on-board storage systems. Among composites, TiO2 demonstrated the highest heat of 

adsorption due to the increased interaction between hydrogen molecules and exposed sites 

in the nanocomposite. 

3.2 Results and discussion 

3.2.1 Morphological and structural study 

The gas storage capacity of graphene-metal oxide nanocomposites is mainly 

governed by physical adsorption. This type of adsorption depends on i) distribution, size, 

and nature of nanoparticles and ii) accessible surface area and pore structure of graphene 

substrate [2, 13]. We first tracked the dispersion state of nanoparticles by energy dispersive 

spectroscopy (Figure 3.1). The elemental mapping analysis shows the well-defined spatial 

distribution of Ti (Figure 3.1i), Fe (Figure 3.1j), Ni (Figure 3.1m), and Cu (Figure 3.1n) 

confirming the good dispersion of nanoparticles throughout the nanocomposites.  
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Figure  3.1 Elemental mapping of nanocomposites: selected area (a‒f), C-mapping (e‒h), 
Ti-mapping (i), Fe-mapping (j), Ni-mapping (m), and Cu-mapping (n) 

Figure 3.2 shows size and distribution of nanoparticles in higher magnification. The 

RGO-Ti, RGO-Cu, and RGO-Fe displayed particle size of ~ 30 nm, ~ 50 nm, and 50‒100 

nm, respectively. On the other hand, nanoparticles with size of ~ 200 nm as well as 

connected networks of nanocrystals were detected in RGO-Ni (inset-top of Figure 3.2c). 
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Figure  3.2 SEM images of a) RGO-Ti, b) RGO-Fe, c) RGO-Ni, and d) RGO-Cu, insets 
show RGO-X nanocomposites in higher magnifications, inset of Figure 2.2c-top shows 
connected networks of nanocrystals in RGO-Ni 

In general, size of nanoparticles plays a key role in gas adsorption behavior of 

carbon-based nanocomposites—lower the particle size, higher the capacity of the system 

[14, 15]. Moreover, clustering of nanoparticles often occurs due to the strong cohesion of 

transition metals. Thus, in order to reduce the size and also avoid the agglomeration of 

nanoparticles, defects such as oxygen functional groups, structural disorders, and nitrogen 

doping are introduced to the substrate [11, 16-19]. These defective sites act as nucleation 

centers and results in formation and pinning of metal crystals onto the substrate [10, 20]. In 

our system, defective structures mostly comprise oxygen-containing functional groups such 

as C–OH, C (epoxy/alkoxy)/C=O and O=C–O (carboxylic) groups (Figure 3.3) that 

intercalate between graphene sheets during oxidation step of graphite flakes.  
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Figure  3.3 XPS spectra of GO a) O 1s scan and b) C 1s scan 

Given the similar degree of oxidation in GO substrate—same GO precursor was used 

for preparation of GO-X nanocomposites, varying size of nanoparticles can be attributed to 

the difference in tendency of metals ions to interact with oxygen functional groups of the 

substrate. To elucidate the effect of nature of metal species on their interaction with oxygen 
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functional groups, the structural change of GO after addition of metal ions was monitored 

by XRD (Figure 3.4).  

 

Figure  3.4 XRD patterns of GO and GO-X nanocomposites 

Upon addition of Fe, Ni, and Cu, the main peak of GO (2θ = 11.7° corresponding to 

(001) plane) shifted to higher 2θ values and also full width at half maximum (FWHM) of 

the peak increased (Table 3.1) suggesting that GO was partially deoxygenated in the 

presence of metal ions [21, 22]. This deoxygenation was more pronounced in GO-Cu in 

such a way that formation of reduced graphene oxide structures was detected through 

observation of a low intensity peak at 2θ ≈ 23°. On the other hand, Ti was found to 

strongly interact with oxygen groups of GO sheets such that a broad peak emerged at 2θ ≈ 

20° and GO main peak shifts to 2θ = 9.5° (d-spacing of 0.93 nm). While the former 

illustrates the formation of turbostratic graphite in the system, the latter simply reflects the 

expansion effect of Ti ion intercalation into GO sheets [23-25]. Therefore, the lower size of 

nanoparticles in RGO-Ti compared to that of RGO-Fe, Ni, and Cu is expected due to the 

strong interaction of Ti ions with functional groups of GO sheets.  
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Table 3.1 XRD parameters of GO and GO nanocomposites  

Sample Main peak 

(2θ°) 

Interlayer 

spacing (Å) 

Full width at half 

maximum (2θ°) 

GO 11.7 7.54 1.66 

GO-Ti 9.5 9.34 1.81 

GO-Fe 12.48 7.08 2.11 

GO-Ni 12.40 7.12 2.11 

GO-Cu 12.51 7.06 2.21 

  

 It is worth mentioning that neither GO-X (Figure 3.4), nor RGO-X nanocomposites 

(Figure 3.5) showed characteristic peaks of metal-containing components in XRD patterns 

that is attributed to the low metal content (Figure 3.6) and small size of nanoparticles 

(Figure 3.2) [26]. 

 

Figure  3.5 XRD patterns of RGO and RGO-X nanocomposites 
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The concentration of metal oxides in each sample was obtained from the difference 

between residual mass of RGO-X nanocomposites and RGO sample (reference sample) at 

the end of the thermogravimetrical analysis. TGA graph of all nanocomposites and 

references was shown in Figure 3.6. Results indicated the presence of 2.86±0.03 wt% 

nanoparticles in nanocomposites. 

 

Figure  3.6 Thermogravimetric analysis of RGO and RGO-X nanocomposites 

To characterize the structural properties of graphene sheets and nanoparticles, Raman 

spectroscopy was carried out on reduced graphene oxide samples (Figure 3.7). Raman 

spectra of graphene and its nanocomposites typically show two Raman shifts at ~ 1350 cm-1 

(D-band) and ~ 1600 cm-1 (G-band). The intensity ratio of the D and G bands (ID/IG) is 

often used to analyze the degree of disorder in graphene layers. The D-band is related to 

disorder structures in the sp2 lattice while G-band is attributed to vibration of the sp2 lattice 

of 2D hexagonal structure [27, 28]. Upon addition of nanoparticles, the ID/IG increased 

from 1.03 in RGO to 1.05 and 1.06 in RGO-X nanocomposites (Figure 3.7a). This 

observation illustrates the presence of higher density of defects in graphene substrate 

possibly originating from nanoparticle‒substrate interaction [29].  
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Figure  3.7 Raman spectra of RGO and RGO-X nanocomposites in the range of a) 
100‒3500 cm-1 and b) 1400‒1800 cm-1 b) 100‒800 cm-1 
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The observed blue-shifts in G-band of RGO-X nanocomposites (Figure 3.7 b) further 

supports the formation of graphene‒nanoparticle interactions [30] that also agrees with the 

XRD results of GO-X nanocomposites (Figure 3.4). In addition to D and G band, RGO-X 

nanocomposites display characteristic Raman peaks at 145 cm-1 in RGO-Ti, ~ 250 cm-1 and 

~ 640 cm-1 in RGO-Fe, 520 cm-1 in RGO-Ni, and 300 cm-1 in RGO-Cu (Figure 3.7 c). 

These peaks are respectively assigned to Eg mode TiO2 anatase phase [31, 32], Eg and A1g 

modes of Fe3O4 [33, 34], longitudinal optical phonon mode of NiO [35], and Ag mode of 

CuO [36] and demonstrate the formation of crystalline metal oxide structures in RGO-X 

nanocomposites. 

3.2.2 Gas adsorption behavior of RGO-X nanocomposites 

Although incorporated by nanoparticles, hydrogen adsorption behavior of carbon-

based nanocomposites is still influenced by accessible surface area and pore structure of the 

substrate. Porous materials with high surface area and micro-pores of 7‒12 Å are desired 

for H2 storage application due to high delivery efficiency and fulfilling the volumetric 

goals at room temperature [37-39]. To assess the specific surface area and pore 

characteristics of samples, nitrogen adsorption-desorption isotherms (Figure 3.8a) followed 

by Brunauere-Emmette-Teller (BET) and Barret–Joyner–Halenda (BJH) methods were 

applied to RGO and RGO-X nanocomposites.  
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Figure  3.8 a) Nitrogen adsorption-desorption isotherm of RGO and RGO-X 
nanocomposites and b) pore size distribution of RGO and RGO-X nanocomposites 

As seen in Table 3.2, introduction of nanoparticles to graphene sheets reduced the 

specific surface area and pore-size of samples. The pore-size distribution of RGO-X 

nanocomposites (Figure 2.8b) also displayed a depressed peak at ~ 12.7 Å compared to that 

of RGO while the shoulder at ~ 19 Å disappeared in RGO-Ti, Fe, and Ni (blocking effect) 

[9]. Furthermore, RGO-Ti and Ni showed additional peak at ~ 4 Å indicating that 
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utilization of Ti and Ni species favors the structural change of the substrate towards 

preferred pore size.  

To track the effect of nanoparticles on hydrogen adsorption behavior of samples, 

hydrogen adsorption isotherms were carried out. The results of hydrogen adsorption 

obtained from gravimetric analysis in room temperature and pressures up to 9 bar are 

summarized in Figure 3.9. As expected, the hydrogen uptake of all samples increased by 

hydrogen pressure. The maximum hydrogen uptake capacities were found to be 0.4, 0.38, 

0.34, 0.33, and 0.16 wt% for rGO-Fe, rGO-Cu, rGO-Ni, rGO-Ti, and rGO, respectively. 

 

Figure  3.9 H2 adsorption isotherms of RGO and RGO-X nanocomposites at room 
temperature 

In order to better evaluate the effect of nanoparticles on hydrogen capacity of 

nanocomposites, results of hydrogen adsorption were normalized with respect to the uptake 

value of samples at 9 bar and 298 K (Figure 3.10). The adsorption behavior of 

nanocomposites was found to strongly dependent on the nature of incorporated 

nanoparticles; for example, the pressure to reach 50% of uptake at 9 bar changed from ~ 4 

bar in RGO to ~ 1 bar in RGO-Ti. 
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Figure  3.10 Normalized hydrogen uptake RGO and RGO-X nanocomposites at room 
temperature  

To quantify the interaction of composite samples with hydrogen molecules, isosteric 

heat of adsorption (Qst) were calculated using the Clausius–Clapeyron equation (equation 

1) from isotherms measured at 298 K and 328 K. 

𝑙𝑛 𝑃2
𝑃1

= 𝑞
𝑅

( 1
𝑇1
− 1

𝑇2
)                                                  (1) 

where q is the isosteric heat of adsorption and R is the ideal gas constant. 

The isosteric heats of adsorption as a function of the surface coverage are shown in 

Figure 3.11a. The isosteric heat calculated for different coverages is corresponded to the 

strength of interaction between adsorbate and various adsorption sites in adsorbent, 

therefore, the increased heat of adsorption shows higher hydrogen uptake with lower 

temperature dependence [40, 41]. Among samples, RGO-Ti displays the highest Qst value 

due to enhanced interaction between H2 molecules and exposed active sites in the 

composite. A correlation between pressure and heat of adsorption at surface coverage of 

55% is shown in Figure 3.11b. It is clearly shown that high heat of adsorption leads to high 

hydrogen uptake at low pressures. 
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Figure  3.11 a) Isosteric heat of adsorption in dependence of the surface coverage, b) 
pressure as a function of heat of adsorption at surface coverage of 55% 

These results emphasize that incorporation of selected nanoparticles to RGO favors 

the stronger interaction of hydrogen molecules with the substrate (TiO2 >Fe3O4≅ NiO> 

CuO). These results are also in agreement with the pore structure of nanocomposites (Table 
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3.2) showing favorable chemical and structural changes of the substrate when Ti species are 

utilized. 

Table 3.2 Specific surface area, pore radius, and hydrogen uptake of RGO and RGO–X 
nanocomposites 

 SBET 

(m2/g) 

Pore diameter (Å) H2 uptake (wt. %) 

RGO 461 25.5 0.16 

RGO-Ti 171 8.3 0.33 

RGO-Fe 298 20.7 0.40 

RGO-Ni 226 8.0 0.34 

RGO-Cu 326 24.2 0.38 

 

3.3 Conclusions 

A series of reduced graphene oxide-metal oxide nanocomposites (RGO-MOx, M: Ti, 

Fe, Ni, and Cu) were prepared via a facile chemical impregnation method. Having 

interaction with the substrate, incorporation of nanoparticles was shown to improve the 

hydrogen uptake of the system. The highest storage capacity of 0.4 wt % was obtained by 

RGO-Fe nanocmposites. When normalized by uptake value of each sample at 9 bar, RGO-

Ti demonstrated the highest heat of adsorption due to the increased interaction between 

hydrogen molecules and exposed sites in the nanocomposite.  
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Chapter 4 : Significant improvement of the hydrogen storage capacity of reduced 

graphene oxide/TiO2 nanocomposite by chemical bonding of Ti–O–C 

In this chapter we report the preparation and characterization of TiO2-integrated 

graphene nanocomposites with different amount of TiO2 nanoparticles that is synthesized 

via facile chemical impregnation method [1]. Higher hydrogen uptake of nanocomposites 

compared to that of graphene sample was linked to strong attachment of highly distributed 

nanoparticles to the underlying graphene sheets. 

4.1 Introduction 

Finding materials for efficient hydrogen storage is one the most important 

components for adoption of hydrogen in future of renewable energies. Thus, introduction of 

metal/metal oxide components to graphene layers have been proposed to enhance gas 

adsorption property of graphene based materials [2, 3]. 

TiO2 has been widely studied due to its photochemical, catalytic and dielectric 

characteristics. Theoretical studies showed the potential of Ti/TiO2-anchored carbonaceous 

materials [4-6] as the hydrogen storage media for room-temperature applications. Recent 

experimental results on TiO2-decorated expanded graphite [7] and TiO2-carbon nanotubes 

(CNT) composites [8, 9] revealed the enhanced electrochemical hydrogen uptake of 

graphene and higher H2 gas adsorption of CNT after impregnation with TiO2 nanoparticles. 

In this chapter effects of content, dispersion state and size of TiO2 nanoparticles on 

hydrogen storage capacity of graphene nanocomposites (referred to GO-TX in case of 

graphite oxide nanocomposites and RGO-TX in case of reduced graphene oxide 

nanocomposites, X: 3, 5, and 7) were studied. 

4.2 Results and discussion 

4.2.1 Characterization of nanocomposites 

X-ray diffraction (XRD) was first carried out to determine the crystallographic 

structure of samples. As shown in Figure 4.1a, natural graphite flakes show a sharp peak at 

2θ = 26° that corresponds to (002) plane and an interlayer spacing (d-spacing) of 3.3 Å. 

Upon oxidation, the (002) peak disappeared and a low intensity peak, indexed as (001), 
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emerged at 2θ ≈  10.5° with d-spacing of 8.4 Å . This increase of the d-spacing after 

oxidation has been correlated with intercalation of oxygen-containing groups between 

graphene layers that leads to change of the crystallographic structure of graphite [10]. After 

inclusion of Ti, intensity and full width at half maximum (FWHM) of the characteristic 

peak of graphite oxide (2θ ≈ 10.5°) were changed. In addition, a new peak centered at 2θ ≈ 

25° was observed in GO-T5 and GO-T7 whereas no peak was detected at this region in 

GO-T3. Given the characteristic peak of TiO2 (101) at 2θ ≈ 25° [11], former observation 

can be attributed to formation of TiO2 in the samples. On the other hand, absence of this 

peak in GO-T3 can be related to the low metal content and/or small size of particles [10]. 

Besides, progressive increase of FWHM and decrease of the intensity of GO main peak by 

Ti content suggests that GO was partially deoxygenated in the presence of Ti and reduced 

to turbostratic graphite.[12] Consequently, appearance of the peak at 2θ ≈ 25° can also 

represent the formation of turbostratic graphite structures in the sample. Indeed, formation 

of turbostratic graphite coincides with the formation of TiO2 particle in specimens. 

According to Li et al. [13], increase of FWHM of graphene layers correlates with non-

uniformity in d-spacing, curvature and more importantly distortion of the layers. As a 

result, Ti component which intercalates between graphene oxide layers possibly forms 

structural defects in the system. Figure 4.1b shows XRD patterns of thermally reduced GO 

samples before and after addition of Ti. Observation of a broad and low-intensity (002) 

peak in the absence of (001) peak in RGO indicates the complete reduction of graphite 

oxide sheets and formation of poorly ordered graphene-like structure along the stacking 

direction. On the same basis, absence of GO peak at ≈ 10.5° was used as a clear indication 

of reduction of graphite oxide sheets in RGO-T nanocomposites [11, 14]. 
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Figure  4.1 XRD patterns of a) GO and b) RGO samples with increasing amount of Ti 
addition 

Raman spectroscopy was used to study the structural properties of particles and 

quality of graphene sheets, particularly defects and ordering in the system [15]. Figure 4.2 

displays the Raman spectra of graphite oxide, RGO and RGO-T nanocomposites with 

typical characteristic bands at ~1600 cm-1 and ~1350 cm-1, known as G-band and D-band, 
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respectively. G-band corresponds to vibration of the sp2-bonded carbon atoms in a 2D 

hexagonal lattice while D-band represents in-plane stretching motion of symmetric sp2 C−C 

bonds [16, 17]. To analyze the degree of disorder in graphitic layers, intensity ratio of the D 

and G bands (ID/IG) has been widely used in literature [16-18]. The ID/IG of 0.88 was 

calculated from Raman spectrum of GO sample while higher ID/IG was observed in Raman 

spectra of RGO and RGO-T nanocomposites. This increased ID/IG points out the formation 

of higher density of defects during the deposition of particles that is a result of the 

interaction between particles and graphene sheets [18, 19].  

Besides the G and D bands, a low intensity peak emerged at 151±1 cm-1 in RGO-T 

nanocomposites. This peak was assigned to Eg mode of TiO2 and arises from the external 

vibration of anatase phase [20-23]. Inset of Figure 3.2 magnifies the wavenumber of 100–

900 cm-1 in RGO-T7 that shows two vibration peaks at 400 cm-1 (B1g(1)) and 635 cm-1 

(Eg(2)) in addition to Eg mode of TiO2. This observation confirms the formation of anatase 

TiO2 in RGO-T nanocomposites after thermal reduction process [20-23]. However, a large 

frequency blue-shift of Eg was detected in RGO-T nanocomposites compared to Eg of 

anatase single crystal (144 cm-1). A similar large frequency shift was also reported by 

Zheng et al. [24] for TiO2 nanocrystals fabricated by solution chemical process. They 

showed when dimensions of TiO2 crystallites decrease to nanometer scale, frequency shift 

occurs in Eg mode as a result of phonon confinement.  
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Figure  4.2 Raman spectra of graphite oxide, RGO and RGO-T nanocomposites, from 
bottom to top: graphite oxide, RGO, RGO-T3, RGO-T5 and RGO-T7. Inset magnifies the 
wavenumber of 100–900 cm-1 in RGO-T7 

Distribution and size of the particles in RGO-T nanocomposites were studied using 

scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and 

transmission electron microscopy (TEM). Figure 4.3a‒c show high magnification SEM 

images of samples demonstrating the parent graphene sheets are coated with TiO2 

nanoparticles. RGO-T3 and T5 display homogenous dispersion of nanoparticles while 

excess amount of Ti led to inhomogeneous deposition, growth and formation of submicron 

aggregation of nanoparticles in RGO-T7. The elemental analysis of RGO-T3 was provided 

in Figure 4.3d‒f as representative EDS results of RGO-T nanocomposites. Detection of 

distributed patterns of Ti and O in the elemental mapping confirms the homogeneous 

deposition of TiO2 nanoparticles throughout the sample. 

 

40 
 



 

 

 

Figure  4.3 a) SEM images of RGO-T3, b) RGO-T5, and c) RGO-T7, d) SEM image of 
RGO-T3 with low magnification, e) Ti and f) O elemental mapping of same area shown in 
Figure 3.3d 

TEM micrographs of RGO and RGO-T nancomposites were presented in Figure 4.4 

a‒d. Wrinkled structured graphene sheets were clearly observed that indicates the formation 

of few layer graphene layers in all samples after thermal exfoliation. Homogeneous 

dispersion of TiO2 nanoparticles was detected as dark spots in TEM micrographs shown in 

Figure 4.4 b‒d. Size of TiO2 nanoparticles in RGO-T3 was found to be 10±5 nm whereas 

higher amounts of Ti addition introduced higher average of particle sizes in RGO-T7. 
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According to Wu et al.[4] and Wang et al. [25] size, morphology and anchoring of 

nanocrystals are dependent on the degree of oxidation of the underlying substrate. It is 

thought that Ti component could use the oxygen functional groups as nucleation centers. 

As a result, highly oxidized GO surface with high concentration of defects interacts 

strongly with particles and this strong pinning force hinders the diffusion and growth of 

formed particles [19, 26]. Tsao et al. [27] showed that size of the catalyst particles plays an 

important role in H2 uptake in which Pt nanoparticles of 1‒2 nm remarkably increased the 

H2 storage capacity of Pt/activated carbon nanocomposite. Therefore, formation of fine and 

distributed nanoparticles is highly preferred in order to increase the hydrogen adsorption 

capacity of RGO-T nanocomposites. 

 

 
Figure  4.4 TEM micrograph of a) RGO, b) RGO-T3, c) RGO-T5, and d) RGO-T7 

X-ray photoelectron spectroscopy (XPS) was performed to elucidate the chemical 

state of elements present in GO, RGO and RGO-T nanocomposites. Figure 4.5a depicts a 

representative XPS survey spectrum (RGO-T5) that shows specimens mainly consist of C 

and O with no trace of contamination. The presence of Ti was detected in RGO-T 
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nanocomposites with a weak signal at ~ 459 eV that corresponds to Ti 2p electrons [28]. 

Figure 4.5b depicts C 1s XPS spectrum of GO with four peaks centered at 284.56, 285.02, 

286.8 and 288.8 eV. These peaks were assigned to the C–C (aromatic) [29], C–OH [19], C 

(epoxy/ alkoxy)/C=O[30] and O=C–O (carboxylic) [23] groups respectively that imply the 

highly oxidized state of graphene sheets. After thermal reduction, the intensity of 

components associated with oxygenated functional groups significantly decreased (Figure 

4.5c). This decrease illustrates that most of the oxygen-containing functional groups are 

removed and GO is transformed to graphene [23]. In Figure 4.5d, Ti2p XPS spectra of 

RGO-T nanocomposites exhibited two peaks centered at 464.7 ± 0.1 and 459 ± 0.2 eV 

assigned respectively to the Ti 2p1 and Ti 2p3 spin−orbital splitting photoelectrons in the 

Ti4+ state. The splitting energy between two Ti-bands was 5.69 ±  0.02 eV that is in 

agreement with the normal state of Ti4+ [11, 31, 32]. As TiO2 content was increased, Ti 2p3 

peak narrowed (decrease of FWHM) and binding energies of Ti 2p feature shifted toward 

higher binding energies. According to Oh et al. [33] increasing thickness of deposited TiO2 

leads to the blue shift of Ti core level and decrease of FWHM of the Ti 2p3 peak. 

Therefore, observation of shifting and narrowing Ti 2p3 peak with Ti content can be related 

to change of the dimensions of nanoparticles that is in agreement with TEM micrographs of 

RGO-T nanocomposites.  
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Figure  4.5 a) XPS survey spectra, b) C 1s XPS spectrum of GO, c) C 1s XPS spectrum of 
RGO, d) Ti2p XPS spectra of RGO-T, e) C 1s XPS spectra of RGO-T nanocomposite, and 
O 1s XPS spectra of GO and RGO-T nanocomposites 
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The C 1s XPS spectra of RGO-T nanocomposite was presented in Figure 4.5e with 

superimposition of C 1s XPS of RGO for comparison. All RGO-T nanocomposites showed 

the main peak at 284.7 ± 0.2 eV (C–C aromatic band) in which the FWHM of the peak 

increased from 1.02 eV in RGO to 1.3, 2.01 and 1.9 eV in RGO-T3, T5 and T7, 

respectively. The FWHM of the C1s core level band has been used to evaluate the degree 

of chemical and structural heterogeneity in environment of carbon atoms [34, 35]. 

Therefore, it can be concluded that environment of carbon atoms becomes more 

heterogeneous through the addition of Ti suggesting the bonding of TiO2 nanoparticles 

with C atoms in graphene sheets. To further support the presence of this bonding, O 1s XPS 

spectra of graphite oxide and RGO-T nanocomposites were depicted in Figure 4.5f. The O 

1s spectrum of graphite oxide shows a peak centered at 532.5 eV that is closely related to 

the hydroxyl groups on the surface of graphite oxide sheets. However, this peak was shifted 

to 530.6 ±  0.1 eV in RGO-T nanocomposites. In agreement with previous reports in 

bonding of Ti atoms with any available oxygen to form TiO2 [36, 37] this peak was 

assigned as bonding energy of O in Ti−O−C bond [38, 39]. As a result, bonding between 

Ti, O, and C confirms the integration of nanoparticles into graphene sheets. 

4.2.2 Gas adsorption behavior 

Nitrogen adsorption-desorption isotherm was employed to characterize the specific 

surface area and pore structure of nanocomposites (Figure 4.6a). According to the IUPAC 

classification, all samples showed a nature of type IV curve, that is, a low N2 adsorption 

capacity at low relative pressure (P/P0) followed by a hysteresis loop at high P/P0. The 

former indicates the presence of small number of micropores while the latter reflects the 

formation of mesoporous structures in the system [40]. Higher N2 adsorption of pristine 

graphene than that of RGO-T illustrates the lower adsorption capability of RGO after 

deposition of nanoparticles when physical adsorption is the dominant process [41]. 
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Figure  4.6 a) N2 adsorption isotherms and b) pore size distribution of RGO and RGO-T 
nanocomposites 

The Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) methods were 

applied to determine the specific surface area and pore structure, respectively. The pore-

size distribution isotherm of RGO (Figure 4.6b) displayed one peak concentrated in 2‒5nm. 
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After incorporation of nanoparticles, the main peak was weakened and an extra peak 

emerged at lower radius (~ 1 nm). Moreover, significant decrease in average pore size was 

detected after addition of Ti to the samples (Table 4.1). As a result, the reduction in specific 

surface area and average pore size can be attributed to the partial blockage of mesopores by 

TiO2 nanoparticles [42]. 

Table 4.1 Specific surface area and pore diameter of RGO and RGO-T nanocomposites 

 Specific surface area 

(m2/g) 

Pore diameter  

(Å) 

RGO 461.76 25.5 

RGO-T3 371.31 8.1 

RGO-T5 219.35 8.3 

RGO-T7 207.50 7.8 

 

Figure 4.7 presents the hydrogen adsorption isotherms of RGO and RGO-T 

nanocomposites at 298 K. As expected, the hydrogen uptake of all samples increased by 

hydrogen pressure. The parent graphene sample shows hydrogen uptake of 0.17 wt. % at 10 

bar. After TiO2-integration, the hydrogen storage capacity of 0.39 wt. % was obtained by 

RGO-T5 that is 125% higher than that of pristine graphene. Further addition of Ti (RGO-

T7) caused decrease of hydrogen adsorption, possibly owing to aggregation of 

nanoparticles and losing porosity/surface area.  
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Figure  4.7 Hydrogen adsorption isotherms RGO and RGO nanocomposites 

The enhanced hydrogen storage capacity of nanocomposites is not attributed to 

differences between the surface areas of samples since all nanocomposites displayed lower 

BET specific surface area than RGO (Figure 4.6a). In addition, comparison of hydrogen 

adsorption isotherms at 298 K reveals the change of the shape of the adsorption curves 

from concave in pristine graphene to relatively linear in RGO-T samples. Li et al. [43] 

found that linear adsorption isotherm is the characteristic behavior of hydrogen spillover on 

nearly all adsorbents and is very different from that of physical adsorptions characterized 

by an isotherm concave to the pressure axis. Thus, the higher hydrogen adsorption capacity 

of RGO-T nanocomposites originates from a process other than physical adsorption. Wang 

et al. [5, 44] have shown by the first-principle computations that strongly anchored Ti 

atoms on surface of GO template are superior sites for hydrogen adsorption whereby each 

Ti atom can bind multiple H2 with the binding energies of 14‒41 kJ/mol-H2. Results of 

Hydrogen storage measurement obtained by Mishra et al. [45] Zhang et al. [8] and Lueking 

and Yang [46] suggest the contribution of chemical adsorptions in hydrogen uptake of 

different carbonaceous materials after incorporation of TiO2. They showed that this 

contribution can be attributed to non-classical s‒p‒d hybridization [8]. As a result, higher 

hydrogen storage capacity of RGO-T nanocomposites compared to pristine graphene can be 
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linked to the activation of processes usually grouped as chemisorption. Lueking and Yang 

[46] have also underscored the role of  catalyst-support interaction for improvement of 

hydrogen uptake of composites in which simple mixing of metal particles with support does 

not improve the hydrogen uptake of the system. Besides, Choucair and Mauron [47] 

reported decrease in hydrogen uptake of graphene at 77 K and 1 atm H2 pressure after 

mechanical mixing with 1/1 weight ratio TiO2 nanoparticles. Given the importance of 

particle size[27] and dispersion of nanoparticles [48] strong attachment of highly 

distributed nanoparticles to the underlying grapehene sheets was found to be essential to 

improve the hydrogen uptake of graphene/metal oxide nanocmposites. 

4.3 Conclusions 

A series of TiO2-integrated reduced graphene oxide composites with different 

amounts of TiO2 were prepared via a facile chemical impregnation method. Observed by 

TEM, TiO2 nanoparticles with diameter of < 20 nm were homogeneously dispersed on the 

graphene sheets. It was shown that strong interaction of metal oxide nanoparticles with the 

support, smaller particle size, and high dispersion of nanoparticles are necessary to promote 

the hydrogen storage capacity of nanocomposites. The highest storage capacity of 0.39 wt. 

% was obtained among all nanocomposites that is 125 % higher than hydrogen uptake of 

parent graphene material. This significant improvement of hydrogen adsorption compared 

to decrease of hydrogen capacity of RGO-TiO2 after mechanical mixing of components 

(reported by ref [47]) was correlated with the formation of Ti–O–C bonding between 

nanoparticles and graphene substrate.  
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Chapter 5 : Synthesis of anatase TiO2 with exposed (001) facets grown on N-doped 

reduced graphene oxide for enhanced hydrogen storage 

In this chapter we report the preparation and characterization of TiO2-decorated N-

doped graphene nanocomposite (hereafter referred to as TiO2-N-RGO) via a solvothermal 

method [1]. Enhanced hydrogen capacity of this nanocomposite compared to graphene 

sample was linked to i) formation and stability of (001) reactive facets on nanoparticles and 

ii) strong attachment of fully dispersed and fine nanoparticles to the underlying substrate. 

5.1 Introduction 

The realization of innovative hydrogen storage materials has worldwide strategic 

importance. In the viewpoints of onboard storage applications, practical materials require 

efficient hydrogen adsorption at room temperature and pressures relevant for mobile 

systems. Among the various options for hydrogen storage technologies, much effort has 

been devoted to graphene-based systems due to their outstanding properties such as large 

specific surface area, chemical stability, and low mass density [2-9]. However, the weak 

binding between carbonaceous structures in any form and H2 is an important parameter that 

leads to low H2 adsorption of these materials [7]. Therefore, surface modifications such as 

functionalization by metal or metal oxide nanoparticles have been proposed to enhance gas 

adsorption property of graphene substrates [10]. In order to exploit all potentials of 

graphene decorated by nanoparticles, one has to cope with (i) the tendency of clustering 

and (ii) low catalytic activity of nanoparticles at ambient temperature. 

To eliminate clustering of nanoparticles, one strategy is to introduce chemically 

active sites to graphene substrate [10-14]. Theoretical and experimental studies have shown 

that incorporation of substitutional atoms such as nitrogen and boron to carbonaceous 

structures gives rise to the formation of polarized bonding between carbon and 

substitutional atom and thus, improvement of the bonding between nanoparticles and the 

substrate occurs [10, 14, 15]. In the case of nitrogen, its higher electronegativity compared 

to carbon develops positive charge on carbon atoms. These positively charged centers pin 

nanoparticles to the surface of the support and derive the dispersion of nanoparticles [16, 

17]. 
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Apart from dispersion state, nature and particularly reactivity of nanoparticles are 

critical factors in hydrogen storage capacity of graphene-based nanocomposites. Titanium 

dioxide (TiO2) has been widely studied due to its photochemical and catalytic 

characteristics. Theoretical studies have shown the potential of TiO2-anchored 

carbonaceous materials as a promising hydrogen storage media for room-temperature 

applications [18, 19]. Recent experimental findings revealed a higher H2 gas adsorption of 

carbon nanotube (CNT) and improved electrochemical hydrogen uptake of graphene after 

impregnation with TiO2 nanoparticles [20, 21]. Since the reactivity of nanoparticles is 

directly related to their surface chemistry [22, 23], the stability of highly reactive crystalline 

planes rather than the stable ones in equilibrium state would further improve the hydrogen 

adsorption capacity of graphene-nanoparticle systems. In the case of TiO2 (anatase), the 

(001) facets are the most reactive surfaces which are rapidly eliminated during the crystal 

growth to minimize the total surface free energy of the crystal [22, 24]. Therefore, 

utilization of chemical agents such as hydrofluoric acid (HF) that can bind to (001) facets 

would favor the occurrence of (001) rather than (101) planes in the synthesis of TiO2 

nanocrystals [24]. 

Here we report the preparation and characterization of TiO2-decorated nitrogen-

doped graphene nanocomposite via a solvothermal method (as explained in experimental 

chapter). The role of dispersion state of nanoparticles on hydrogen adsorption properties of 

the nanocomposite was examined through the cyclic stability and kinetic studies. 

5.2 Results and discussion 

5.2.1 Characterization of nanocomposites 

Figure 5.1 shows thermogravimetric analysis of all samples indicating the presence of 

11.3 wt. % and 11.26 wt. % TiO2 particles in TiO2-RGO and TiO2-N-RGO 

nanocomposites, respectively. 
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Figure  5.1 TGA of a) RGO and TiO2-RGO and b) N-RGO and TiO2-N-RGO 
nanocomposites as a function of time and temperature 

Figure 5.2 displays nitrogen adsorption-desorption isotherms of synthesized 

specimens giving the specific surface area of 461, 95, 170, and 132 m2/g respectively for 

reduced graphene oxide (RGO), nitrogen doped-RGO (N-RGO), TiO2 doped RGO (TiO2-

RGO), and TiO2-N-RGO. 
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Figure  5.2 N2 adsorption isotherms of RGO, N-RGO, TiO2-RGO and TiO2-N-RGO 
nanocomposites 

The XRD patterns of as-prepared samples are shown in Fig 5.3. In GO, the 

characteristic peak of (001) emerged at 2θ ≈ 10.5° that corresponds to d-spacing of 8.4 Å. 

This peak demonstrates the presence of oxygen-containing functional groups on graphene 

sheets [25]. After thermal reduction, a broad peak was observed in the range of 2θ = 

18°‒30° that is indexed as (002). The appearance of (002) peak in the absence of (001) 

peak in RGO and N-RGO implies the complete removal of oxygen functional groups from 

GO sheets and formation of poorly ordered graphene-like structure along the stacking 

direction [26]. Upon decoration of TiO2 nanoparticles, a low intensity peak indexed as 
(004) appeared at 2θ = 37.9º and full width at half maximum (FWHM) of the (002) peak 

were changed. The latter observation suggests that the restacking of graphene nanosheets 

was prevented during the solvothermal process and TiO2 nanoparticles act as a barrier to 

prevent agglomeration of graphene layers [27, 28]. It is noticeable that the main peak of 

TiO2 at 25.3° and RGO at 24° are at the same region and thus, the characteristic peak of 

anatase TiO2 may be screened by the main peak of RGO. The same observation has also 

been reported by Shah et al. [29] and Dhanabalan et al. [30] for TiO2-RGO and SnO2-

Graphene composite, respectively.  
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Figure  5.3 XRD patterns of a) GO, N-RGO, TiO2-GO and TiO2-N-RGO and b) magnified 
XRD patterns of TiO2-GO and TiO2-N-RGO in higher magnification, the red dotted circle 
is the location of (004) planes of the anatase TiO2 

Formation of fine and distributed nanoparticles is highly preferred to improve the 

hydrogen uptake capacity of graphene-based materials [31]. To track the dispersion state of 

nanoparticles firstly, FE-SEM and EDS were performed on nanocomposites. As seen in 

Figure 5.4a, TiO2-N-RGO displays almost complete coverage of uniformly distributed 
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nanoparticles on graphene layers with no sign of agglomeration. The corresponding 

elemental mapping analysis (Figure 5.4c–f) shows the well-defined spatial distribution of 

O, Ti, and N, validating the good dispersion of nanoparticles throughout the 

nanocomposite. On the other hand, agglomerated colonies are clearly observed (Figure 

5.4b) when pristine graphene (without nitrogen doping, named as TiO2-RGO 

nanocomposite) is utilized for the decoration of nanoparticles. 
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Figure  5.4 FE-SEM images of a) TiO2-N-RGO, b) TiO2-RGO, and c) selected area of 
TiO2-N-RGO nanocomposite for elemental mapping analysis and corresponding elemental 
mapping for d) oxygen, e) titanium, and f) nitrogen 
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To elucidate the effect of nitrogen doping on distribution of nanoparticles, Raman 

spectroscopy was performed on reduced graphene oxide (RGO) and its nanocomposites 

(Figure 5.5a). The corresponding results of graphite and GO were also shown for 

comparison. Raman spectra of samples show two bands at Raman shifts of ~1350 cm-1 (D-

band) and ~1580 cm-1 (G-band). G-band corresponds to vibration of the sp2- bonded carbon 

atoms in a 2D hexagonal lattice and D-band represents the in-plane stretching motion of 

symmetric sp2 C−C bonds. Higher intensity of the D-band (ID) compared to G-band (IG) 

generally indicates the formation of defective structure in graphene layers [32, 33]. The 

growth of ID/IG from 1.02 in RGO to 1.04 in N-RGO and 1.05 in TiO2-N-RGO points out 

the increase of density of defects upon nitrogen doping and presence of graphene-

nanoparticles interaction, respectively [28, 32]. It is worth mentioning that all 

nanocomposites exhibit characteristic Raman peaks at 151 cm-1, 390 cm-1, 515 cm-1 and 

629 cm-1 (Figure 5.5b) that are attributed to Eg, B1g(1), A1g + B1g(2), and Eg(2) modes of 

TiO2, respectively [34-36]. In agreement with results of XRD (Figure 4.3), this observation 

confirms the formation of TiO2 anatase phase throughout nanocomposites. 
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Figure  5.5 Raman characterization of a) graphite, GO, RGO, N-RGO, TiO2-RGO, and 
TiO2-N-RGO and b) TiO2-RGO and TiO2-N-RGO in the range 100−9000 cm-1 

X-ray photoelectron spectroscopy (XPS) was performed to determine the elemental 

quantification in TiO2-N-RGO nanocomposite. Figure 5.6a shows the core level XPS 

spectrum of C 1s orbital. The peaks centered at 284.43 eV and 291.94 eV are assigned to 

graphite-like sp2 C and satellite peak of π-π* interaction, respectively. This indicates that 

most of the C atoms are arranged in a conjugated honeycomb lattice. Carbon atoms bonded 
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to nitrogen-substituted sites depict two peaks at the bonding energies of 285.98, 287.38 eV 

that show the formation of N–sp2 C, N–sp3 C in graphene structure, respectively [37-39]. 

Various types of nitrogen functional groups like graphitic N, pyridinic-N, and pyrrolic-N 

can be present in nitrogen-doped carbon system [10, 32]. The pyridinic groups refer to the 

N atoms at the side of graphene layers that make two chemical bonds with C atoms and 

donate one π-electron to the carbon network. The pyrrolic-N atoms make bonds with two C 

atoms and contribute to the π system with two π-electrons [17, 32, 37]. XPS spectrum of N 

1s orbital shown in Figure 5.6b confirms the formation of these three functional groups; 

pyridinic-N (397.9eV, 0.9 atom%), pyrrolic-N (399.04 eV, 2.12 atom%), and graphitic N 

(401.14eV, 1.44 atom%) [10, 32]. These groups are schematically demonstrated in Figure 

5.6c. Since the development of a high number of polarized sites on graphene sheets (Figure 

5.4f) coincides with the high distribution of nanoparticles (Figure 5.4a), it can be concluded 

that nitrogen-containing functional groups act as nucleation centers for the growth of 

nanoparticles. This observation is in agreement with previous reports illustrating that 

doping heteroatoms promote dispersion of nanoparticles in carbonaceous materials [10, 

40]. 
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Figure  5.6 High-resolution XPS results of a) carbon and b) nitrogen, and c) schematic 
showing the bond structure of nitrogen-doped graphene 

When core level XPS spectrum of Ti is considered (Figure 5.7a), two peaks are 

observed at 464.8 eV (Ti 2p1/2) and 459.1 eV (Ti 2p3/2). The splitting energy of 5.7 eV 

shows the normal state of Ti4+ in TiO2 nanoparticles [27, 29]. The presence of oxygen is 

also detected at 532 and 530 eV (Figure 5.7b) that are attributed to the adsorbed oxygen on 

the surface of TiO2 [41] and oxygen bonding energy in Ti−O−C structure, respectively 

[42]. The latter observation confirms the attachment of TiO2 particles to the graphene 

substrate. In order to understand the interaction between Ti and F, XPS spectrum of F 1s is 

presented in Figure 5.7c. The measured bonding energy of 684.7 eV originates from ligand 

exchange between F‒ and surface hydroxyl groups. Since, no peak was observed at 688.5 

eV—F in a solid solution of TiO2‒xFx [41], it can be concluded that diffusion of F species 
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into the lattice of TiO2 and subsequently lattice substitution of F‒ for O‒2 is ruled out [22, 

41, 43]. 

 

 

Figure  5.7 High-resolution X-ray photoelectron spectra of a) titanium, b) oxygen, and c) 
fluorine in TiO2-N-RGO nanocomposite 

HR-TEM was used to characterize the morphology and crystal structure of TiO2 

nanoparticles. As shown in Figure 5.8a, square-shaped nanoparticles are clearly detectable 

with their well-defined edges and corners. Figure 5.8b and 5.8c display the lattice fringes 

with a spacing of 0.355 and 0.231–0.235 nm that correspond to the d-spacing of the (101) 

and (004) planes of TiO2 anatase phase, respectively. The observed (004) planes are 

parallel to the surface of the particles and present a direct evidence for the existence of 

(001) exposed facets. The d-spacing of (004) planes is also in well agreement with the 

results of XRD (2θ = 37.9° with d-spacing of 0.235 nm, Figure 5.3b) and previous reports 

[44, 45]. Inset of Figure 4.8c schematically illustrates the truncated octahedral structure of 
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TiO2 nanoparticles. The top and bottom surfaces represent (001) facets which are shown in 

Figure 5.8b and 5.8c. 

 

 

Figure  5.8 a) Low-magnification TEM, and b) and c) HR-TEM images of TiO2-RGO (Inset 
shows a 3D model of the truncated TiO2 nanoparticles.) 

5.2.2 Hydrogen adsorption 

Figure 5.9a shows the hydrogen adsorption isotherm of nanocomposites measured in 

the pressure range of 0‒8 bar at room temperature. The hydrogen uptake of the specimens 

increased with hydrogen pressure. While RGO has the lowest hydrogen uptake among all 

specimens (~ 0.15 wt. %), incorporation of TiO2 nanoparticles to N-doped RGO 

significantly increased hydrogen capacity of the system to 0.91 wt. % that is ~ 500%, ~ 
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400%, and ~ 130% higher than the hydrogen uptake values of RGO, N-RGO, and TiO2-

RGO, respectively.  

The interaction between gas molecules (here H2) and carbonaceous materials is based 

on the Van der Waals interactions. Therefore, tailoring the charge distribution of the 

substrate can improve the strength of C–H bond [10]. When carbon atoms are substituted 

by heteroatoms (e.g., N, S), the p orbital of the substitute atom and the 1s orbital from the 

hydrogen atom contribute to form a bond that results in the elongation of H‒H bond in 

hydrogen molecules. This elongation indicates the activation of H2 and leads to migration 

of hydrogen molecules to a carbon site [46]. In our system, presence of nitrogen atoms 

(Figure 5.4f and 5.6b), especially pyrrolic N that donates two electrons to honeycomb 

lattice of carbon changes the asymmetry of electron charge cloud of the substrate lattice and 

thus, enhances the polarity of the system. This enhanced polarity increases the strength of 

C–H bond and gives rise to higher hydrogen capacity of N-RGO than that of RGO. 

However, high hydrogen uptake of TiO2-N-RGO nanocomposite cannot be solely 

explained by hydrogen uptake of N-doped graphene and TiO2 nanoparticles. Theoretical 

studies on TiO2-decorated graphene have shown that strongly anchored Ti atoms on the 

surface of the template are superior sites for hydrogen adsorption whereby each Ti atom 

can bind multiple H2 with the binding energies of 14‒41 kJ/mol-H2 [18]. We demonstrated 

that strong attachment of TiO2 nanoparticles (without exposed facets) to the underlying 

graphene substrate through Ti‒O‒C bond is crucial to enhance the hydrogen storage of the 

nanocomposite. In our previous study, we reported an uptake of 0.32 ± 0.03 wt. % for 

RGO-TiO2 nanocomposites [47] whereas a mechanical mixture of graphene and TiO2 

nanoparticles (1/1 wt/wt) showed lower hydrogen uptake compared to that of parent 

graphene [48]. Therefore, the significant enhancement of hydrogen uptake of TiO2-N-RGO 

nanocomposite compared to that of RGO was attributed to the formation of; i) highly 

reactive (001) exposed facets on TiO2, ii) evenly distributed TiO2 nanoparticles on the 

graphene sheets, and iii) the strong interaction of substrate and nanoparticles through 

Ti‒O‒C bonding. 
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Figure  5.9 a) Hydrogen adsorption isotherms of RGO, N-RGO, TiO2-RGO, and cyclic 
performance of TiO2-N-RGO and b) kinetic curves of hydrogenation at 1 bar (first 
isotherm point) for TiO2-N-RGO 

The cyclic performance of TiO2-N-RGO nanocomposite was studied through 5 

cycles and the adsorption isotherms are shown in Figure 5.9a. Hydrogenation was 

performed at room temperature with 12 h degassing stage under vacuum of 10-7 mbar 

before the pressurizing step. Later equilibration time was set to 180 min for isothermal 

points of each cycle.  
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Hydrogen re-loading with constant equilibration time led to a notable reduction in H2 

uptakes of the nanocomposite at the first isothermal point (1 bar). However, at the last 

isotherm point (8 bar) the hydrogen capacities display a minimal reduction; changing from 

0.91 wt. % in the first cycle to 0.81 at 5th cycle. After degassing stage, 88% of the stored 

hydrogen was released at ambient conditions and a residual mass of ~ 0.1 wt. % retained at 

very low pressures. This retaining hydrogen can be attributed to the interaction of hydrogen 

with defects such as holes and edges that leads to reduction of available sites for hydrogen 

adsorption [49]. The relevant kinetic curves of adsorption isotherm at 1 bar are shown in 

Figure 4.9b. It is interesting to note that no induction period is required to initiate the 

process of adsorption as high hydrogen uptake is detected even before reaching the 

equilibration period (dashed line in Figure 5.9b). Altogether, these observations imply that 

almost all the binding sites do not degenerate upon cyclic hydrogenation [50]. 

To provide further insight about the effect of reactive (001) facets on the cyclic 

stability of nanocomposite, the morphology, size, and distribution of TiO2 nanoparticles 

were investigated after 3rd cyclic H2-loading. As shown in Figure 5.10a, homogeneous 

dispersion of nanoparticles is clearly detectable on the graphene sheets. Visual observation 

in Figure 5.10b reveals the rectangular shaped crystallites within a size range of 5.5–6.5 nm 

which is highly beneficial for the H2 gas adsorption [51]. This rectangular morphology was 

originally observed in nanocomposite before hydrogen storage measurement and found to 

be stable after cyclic hydrogen uptakes. Lattice fringes (magnified in Figure 5.10c) 

confirmed the stability of (001) exposed nanofacets after cyclic gas adsorption.  
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Figure  5.10 FE-SEM a) and HR-TEM b) and c) images of TiO2-N-RGO sample after 3rd 
cycle of hydrogen adsorption 

The corresponding elemental mapping shown in Figure 5.11a‒d further validates the 

uniform distribution of TiO2 nanoparticles throughout the nanocomposite. These 

observations demonstrate that cyclic stability of TiO2-N-RGO nanocomposite can be 

mainly ascribed to the high stability of reactive (001) exposed facets and dispersed TiO2 

nanoparticles in the hydrogen storage system. 
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Figure  5.11 Elemental mapping analysis of TiO2-N-RGO nanocomposite sample after 3rd 
cycle of hydrogen adsorption: a) selected area, b) oxygen, c) titanium, and d) nitrogen 

5.3 Conclusions 

TiO2 (anatase) with exposed (001) facets were decorated on nitrogen-doped graphene 

by a solvothermal method. Nitrogen doping was found to be an effective method to obtain 

an excellent dispersion of nanoparticles. Highly dispersed nanoparticles with strong 

interaction with the support are crucial to promote the hydrogen storage capacity of the 

system. Incorporation of TiO2 nanoparticles with exposed (001) facets to graphene sheets 

significantly enhanced the hydrogen uptake of the systems at room temperature and low 

hydrogen pressures (0.8 MPa). Simultaneous utilization of nitrogen doped graphene and 

reactive TiO2 nanoparticles were also found to be an effective method to enhance the cyclic 
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stability of nanocomposite. These results provide an efficient and convenient way to design 

high-performance graphene-based nanocomposites for hydrogen storage systems that can 

also be used for applications that necessitate high reactivity and stability.  
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Chapter 6 : Decoration of graphene sheets with Pd/Al2O3 hybrid particles for 

hydrogen storage applications 

In this chapter we report the preparation and utilization of Pd/Al2O3 hybrid particles 

as a heterogeneous catalyst for enhancement of hydrogen storage capacity of reduced 

graphene oxide [1]. This study, to the best of our knowledge, is the first of its kind to utilize 

a hybrid particle with low Pd loading for hydrogen storage applications. All measurements 

were made at room temperature and pressures relevant for practical on-board storage 

systems. 

6.1 Introduction 

Weak binding energy between graphene sheets and H2 at ambient conditions is the 

key factor that leads to low H2 adsorption capacity of pristine graphene. To achieve higher 

H2 uptake, chemical and structural modifications have been performed to exploit all the 

potentials of graphene [2]. One of the promising methods is decoration of graphene sheets 

with transition metals such as Pd [3], Pt [4], V [5] and Ti [6]. Given the high catalytic 

activity of Pd, it is the material of choice for decoration of graphene to improve the 

hydrogen uptake at ambient temperatures [3, 7]. Although Pd has strong potential to serve 

as a catalyst for hydrogen conversion, control of particle size, excessive hydrogen 

adsorption strength, scarcity and expensiveness restrict the utilization of Pd as a 

homogenous catalyst in hydrogen storage applications [8, 9]. In addition, high amount of 

catalyst that is needed to increase the hydrogen storage capacity is another confining 

parameter for usage of Pd. Huang et al [4], Chen et al [10] and Vinayan et al [5] reported 

that more than 50% increase in hydrogen uptake of different carbonaceous materials can be 

achievable when 2.2 wt. %, 7.78 wt. % and 30 wt. % Pd is added to the support, 

respectively. Different methods have been suggested to overcome these restrictions such as 

synthesizing Pd-based nanoalloys and using supporting materials. In the latter, the 

supporting material functions as nucleation seeds and enables growth and size control of 

noble metals. Additionally, this gives rise to enhanced activity and stability of the hybrid 

system [11-14]. 
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Alumina (Al2O3), due to showing a wide range of catalytic reactions, is one of the 

most commonly used support materials for metal and metal oxide catalysts [15]. As a 

metallic catalyst support, various active sites such as surface defects and A1–OH groups 

provide high metal dispersion compared to most other metal oxide support materials [16]. 

Besides, formation of different coordination of Al3+ and migration of protons or OH groups 

upon dehydroxylation (450-700 °C) provide opportunity for different Lewis acid sites and 

OH groups to interact with adsorbed species [15].  

Here, we report the preparation and utilization of Pd/Al2O3 hybrid particles as a 

heterogeneous catalyst for enhancement of hydrogen storage capacity of RGO. All 

hydrogen storage measurements were made at room temperature and pressures relevant for 

practical on-board storage systems. 

6.2 Results and discussion 

6.2.1 Characterization of nanocomposites 

Characteristic properties of samples were summarized in Table 6.1. 

Table 6.1 lists the primary particle size and molar ratio of Pd/Al2O3 for different 

RGO nanocomposites.  

Name Primary particle 

size of Al2O3 (nm) 

Al2O3/Pd 

(mol/mol) 

Al2O3/GO 

(wt/wt) 

Al-220-10 220 10 1/300 

Al-13-10 13 10 1/300 

Al-13-3 13 3           1/300 

 

X-ray diffraction (XRD) was first performed to determine the crystallographic 

structure of graphite oxide (GO), RGO and RGO nanocomposites. As shown in Figure 6.1, 

natural graphite flakes showed a sharp peak at 2θ = 26° that corresponds to (002) plane and 

an interlayer spacing (d-spacing) of 3.3 Å. Upon oxidation, the (002) peak disappeared and 

a low intensity peak, indexed as (001), emerged at 2θ = 10.5° with d-spacing of 8.37 Å. 

This increase of the d-spacing after oxidation has been correlated with intercalation of 
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oxygen-containing groups between graphene layers which leads to a change of the 

crystallographic structure of graphite. Upon thermal reduction, a broad and low-intensity 

(002) peak was observed with no sign of (001) peak showing that GO sheets are completely 

reduced and free graphene-like sheets with poorly ordered structure are formed. The XRD 

patterns of RGO nanocomposites showed no characteristic peaks for Pd and Al2O3 (data 

not shown) which can be attributed to the low material content and/or small size of hybrid 

particles [17]. The XRD pattern of Al-13-3 was shown in Figure 6.1 as a representative 

XRD graph of RGO nanocomposites. 

 

Figure  6.1 XRD pattern of graphite, GO, RGO and Al-13-3 

Next, we tracked the distribution and size of the particles by using scanning electron 

microscopy (SEM) and energy dispersive spectroscopy (EDS). Figure 6.2a and b exhibit 

distributed nanoparticles with a size of 20 ± 15 nm and well-defined peaks of Al and Pd in 

EDS spectrum of RGO nanocomposite, respectively. The elemental mapping of this sample 

was provided by Figure 6.2c‒f. Detection of similar distribution patterns for Al and Pd in 

elemental mapping shows strong evidence of the presence of hybrid particles in RGO 

nanocomposite. Although the exact form of hybrid particles cannot be determined in these 
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figures, it is more likely that very fine Pd/Al2O3 nanoparticles have been impregnated into 

graphene sheets [18]. 

 

  

Figure  6.2 a) SEM image in high magnification and b) EDS spectrum of Al-13-3, c) SEM 
image in low magnification (scale bar shows 2.5 μm), d) Al elemental mapping and e) Pd 
elemental mapping of area shown in Figure 5.2c 

In order to analyze the morphology of hybrid particles, a representative transmission 

electron microcopy (TEM) micrograph was shown in Figure 6.3. Homogeneous dispersion 

of hybrid particles was found on the transparent few layer graphene sheets. Closer 

observation, presented in the inset of Figure 6.3, shows two partially overlapped 

nanoparticles in which Pd (bright cluster) is deposited on the surface of Al2O3 nanoparticle 

(dark region). Cabria et al. [19] demonstrated that transition metals such as Ti, Pd, and Pt 

doped on carbonaceous materials suffer from agglomeration and particle growth. Since H2 

molecule dissociates easily on the surface of catalyst, agglomeration reduces the number of 
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active sites for the hydrogen adsorption [20]. According to Wang et al. [21], size and 

anchoring of nanocrystals to graphene substrate are dependent on the degree of oxidation of 

underlying sheets. Highly oxidized GO interacts strongly with particles and gives rise to 

strong pinning force which hinders the diffusion and growth of formed particles [22, 23]. 

Thus, incorporation of fine and distributed nanoparticles is highly preferred in order to 

obtain higher H2 uptake of RGO nanocomposite. 

   

Figure  6.3 TEM micrograph of RGO nanocomposite, inset shows deposition of Pd (bright 
particle) on Al2O3 nanoparticle (darker particle) 

X-ray photoelectron spectroscopy (XPS) was carried out to elucidate the chemical 

state of RGO nanocomposites. A wide energy scan was carried out on Al-13-3 that gives an 

XPS survey spectrum with Al (2p), Pd (3d), O 1s and C 1s with no trace of contaminations 

(data not shown). The spectrum was dominated by the O 1s and C 1s signals which are 

typical for this kind of graphene nanocomposites. Figure 6.4a depicts C 1s XPS spectrum 

of GO with four peaks centered at 284.56, 285.02, 286.8 and 288.8 eV. These peaks were 

assigned respectively to the C–C (aromatic), C–OH, C (epoxy/ alkoxy)/C=O and O=C–O 

(carboxylic) [24-27] groups that imply the highly oxidized state of GO sheets. After 

thermal reduction, the intensity of components associated with oxygenated functional 

groups decreased, (Figure 6.4b) demonstrating that most of the oxygen-containing 

functional groups were removed and GO mostly was transformed to graphene [24]. In order 
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to determine the oxidation state of Pd and Al species, Pd (3d) and Al (2p) spectra were 

analyzed and shown in Figure 6.4c and 6.4d, respectively.  

Two spin–orbit split peaks of Pd(3d) spectrum were resolved in RGO nanocomposite, 

where Pd(3d5) is clear at the binding energy of 337.08 eV. Previous studies showed that 

oxidized Pd (PdOx) presents binding energies of 336.4 eV (PdO) and 337.6 eV (PdO2) [28, 

29]. Therefore, it can be concluded that PdOx species with x>1 are formed on the surface of 

the hybrid particles.  In case of Al, the Al (2p3) peak located at 74.3 eV was assigned to 

Al–O in Al2O3 compound. This value was shifted to lower binding energies compared to 

the data reported in the literature [30, 31] that suggests the electron transfer to Al3+ species. 

Figure 6.4e depicts the O 1s spectrum of GO with the peak centered at 532.3 eV. After 

addition of catalyst, this peak was shifted to the high binding energy side of the spectrum 

(532.9 eV) indicating formation of electron-deficient species on graphene sheets. 

Subsequently, simultaneous presence of Pdx+ x>2, lower bonding energy of Al3+ and higher 

bonding energy of oxygen in RGO nanocomposite illustrate that electrons could be donated 

from GO and Pd to Al2O3 component [28]. Indeed, development of these interactions in 

RGO nanocomposite is desired as forming pinning force between PdOx/Al2O3 and 

graphene sheets [32]. 

 

 

 

 

 

80 
 



 

 

 

Figure  6.4 a) C1s scan of GO, b) C1s scan of RGO, c) Al2p scan of Al-13-3, d) Pd3d scan 
of Al-13-3, and e) O1s scan of GO and Al-13-3 

To further support the interaction between catalyst and graphene sheets, Raman 

spectroscopy was performed on RGO and RGO nanocomposite. As shown in Figure 6.5, 

two characteristic bands were observed at ~1600 cm-1 (known as G band) and ~1350 cm-1 

(known as D band). The D band is attributed to disorder in the symmetrical hexagonal 
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graphitic lattice, while the G band originates from the in-plane stretching motion of 

symmetric sp2 C−C bonds [33-35]. Compared to Raman spectrum of RGO, the G band of 

RGO nanocomposite was shifted to lower wave number by ~3 cm−1. In addition, the 

intensity ratio of the D and G (ID/IG) of RGO nanocomposite became lower than that of 

RGO that can be ascribed by the interactions between the hybrid particles and graphene 

sheets [36]. 

 

 

Figure  6.5 Raman spectra of RGO and RGO nanocomposites a) entire spectrum and b) 
between1400‒1800 cm-1 (G band) 
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6.2.2 Gas adsorption behavior of nanocomposites 

To characterize the specific surface area and pore structure of samples, N2 

adsorption−desorption isotherm was measured (Figure 6.6a). According to the IUPAC 

classification, specimens showed a nature of type IV curve, that is, a low N2 adsorption 

capacity at low relative pressure (P/P0) followed by a hysteresis loop at high P/P0. The 

former indicates the presence of small number of micropores while the latter reflects 

formation of mesoporous structures in the system [37-39]. Lower nitrogen adsorption of 

RGO nanocomposites than that of RGO illustrated the lower adsorption capability of the 

nanocomposite when physical adsorption is the dominated process [40]. Moreover, Barret-

Joyner-Halenda (BJH) method was applied to determine the pore structure of samples. The 

pore-size distribution isotherm of RGO (Figure 6.6b) displayed a sharp peak concentrated 

at ~2.5 nm followed by a shoulder at ~3.7 nm. After incorporation of hybrid particles, the 

main peak was depressed significantly and another shoulder emerged at higher radius (~ 50 

nm). The BET surface area and total pore volume of samples were listed in Table 5.2. 

These indicate the decrease of BET surface area and total pore volume after addition of the 

catalysts. In the view of aforementioned results, the loss of the BET surface area and total 

pore volume of RGO nanocomposites are connected with changes in the pore structure and 

occupation of the most of the free spaces between graphene sheets by hybrid particles [18, 

41].   
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Figure  6.6 nitrogen adsorption-desorption isotherms, b) pore size distribution of RGO and 
RGO nanocomposites, and c) particle size distribution of hybrid particles 

In addition, changes in the BET surface area of RGO nanocomposites were found to 

be inversely proportional to the size of hybrid particles during mixing process. Figure 6.6c 

depicts the particle size distribution of particles before adding to GO mixture. As a 

reference, particle size distribution of Al2O3 nanoparticles (with primary particle size of 13 

nm) after sonication was shown in Figure 5.6c and referred to as Al2O3-13nm. Increase of 

rh and width of size distribution curves can be correlated with the size of Al2O3 

nanoparticles as well as surface coverage of Pd components. As a result, decreasing BET 

surface area with increment of rh of hybrid particles can be related to increasing blockage 

of micropores [18, 41]. 
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Table 6.2 BET surface area, total pore volumes and hydrogen uptakes at 298 K of RGO and 
RGO nanocomposites 

Sample SBET (m2/g) Vtotal (cm3/g) H2 uptake (wt. %) 

RGO 461.8 1.72 0.17 

Al-220-10 47.2 0.09 0.18 

Al-13-10 319 1.363 0.24 

Al-13-3 62.8 0.24 0.31 

 

Hydrogen adsorption isotherms of RGO and RGO nanocomposites at 298 K were 

shown in Figure 6.7. RGO presents a H2 uptake of 0.17 wt. % at 10 bar, slightly higher 

than reported values under the similar conditions [42]. Addition of hybrid particles with 

larger Al2O3 particle size introduced negligible effect on the enhancement and behavior of 

hydrogen uptake. On the other hand, Al-13-3 exhibited a significantly higher hydrogen 

storage capacity of 0.31 wt. % and increasing the slope of the isotherm in the intermediate 

and high pressure regimes.  

 

Figure  6.7 Hydrogen adsorption isotherms RGO and RGO nanocomposites 

Four different mechanisms have been proposed to explain the hydrogen uptake of Pd-

doped carbonaceous materials: i) physisorption on carbon support, ii) hydride formation in 
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large Pd particles, iii) H spillover to carbon substrate, and iv) Kubas-type bonding to 

isolated Pd atoms [43]. Higher hydrogen capacity of the RGO nanocomposite cannot be 

attributed to the differences in the surface area and pore volume since both of them were 

lower in RGO nanocomposites compared to that of RGO (Table 6.2). Furthermore, since 

Pd content of samples is < 0.3 wt. % formation of Pd hydrides has negligible contribution 

to enhancement of hydrogen uptake. Given the assumption that the entire Pd atoms were 

converted to β-PdH0.67, which saturates quickly at room temperature and low H2 pressures, 

hydrogen uptake of samples via formation of metal hydrides cannot exceed 0.005 wt. %. 

Kubas-type bonding necessitates the presence of single atom metal centers and clustering 

changes the mechanism to chemisorption on larger crystals (Figure 6.3) [43]. Therefore, the 

improving hydrogen storage capacity of RGO nanocomposites by decrease of particle size 

of Al2O3 nanoparticles and increase of Pd content can be attributed to the activation of 

other processes, usually grouped as spillover. In addition, increasing slope of the isotherms 

may be an evidence of activation of spillover process. According to Li and Yang [44], 

observation of non-linear shape of isotherms can be explained by pressure dependent 

diffusivity of spillover hydrogen. Khoobiar [45] demonstrated the dissociation of hydrogen 

molecules on Pt at room temperature followed by migration of active H atoms from parent 

Pt/A12O3 particles to substrate indicator particles. 

Li et al [46] demonstrated that hydrogen atoms from the dissociation of H2 at noble 

metal donate electrons to Lewis acid sites of the supporting material. Since surface 

diffusion of hydrogen atoms is the rate-determining step in hydrogen spillover [47], strong 

interaction between H atom and Lewis acid sites reduce the diffusion of hydrogen atom on 

the surface of supporting material. Therefore, presence of weak Lewis acid sites, like five-

coordinate Al3+ in γ-Al2O3, facilitates diffusion of hydrogen atoms on the surface of the 

supporting materials [46]. As a result, we can conclude that higher hydrogen uptake of 

RGO nanocomposites can be a result of concomitant activity of physical absorption and 

chemical adsorption of dissociated H2 on the graphene sheets [48]. The low loadings of Pd 

(< 0.3 wt%) in RGO nanocomposites compared to that of reported in literature for Pd-RGO 

[4, 5, 49] suggests a strong potential for these hybrid particles to be used in hydrogen 

storage application. 
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6.3 Conclusions 

The Pd/Al2O3-reduced graphene oxide nanocomposite (Pd<0.3 wt. %) was 

successfully prepared by incorporation of Pd/Al2O3 hybrid particles with graphite oxide 

followed by thermal reduction in controlled atmosphere. The results from this work 

demonstrated that size of the support material in heterogeneous catalyst plays an important 

role to enhance the hydrogen storage capacity of RGO. The hydrogen uptake of 0.31 wt. % 

at room temperature and pressure of 10 bar was obtained for the sample containing Al2O3 

primary particle size of 13 nm and Pd/Al2O3 of 1/3 wt/wt (Al-13-3 nanocomposite). The 

significant improvement of hydrogen storage capacity of RGO after addition of 1 wt. % 

Pd/Al2O3 hybrid particles (Pd<0.3 wt. %) was connected with activation of processes 

usually grouped as spillover. The present findings may give rise to a pathway for 

development of new type of catalysts with low loadings of noble metals for preparation of 

high-performance hybrid particles–RGO nanocomposites. 
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Chapter 7: General Conclusions 

This thesis examined the feasibility of using reduced graphene oxide based nanocomposite 

as hydrogen storage media in ambient conditions.   

In chapter 3, graphene sheets were decorated by transition metal oxide (TiO2, NiO, Fe3O4, 

CuO) by a chemical method for hydrogen storage capacity. All hydrogen isotherms were 

measured at ambient pressures and temperatures of 25 and 55 °C.  As expected, hydrogen uptake 

increased by pressure and decreased by temperature in all composites. Moreover, hydrogen 

capacity improved after addition of metal oxide nanoparticles in the case of nanocomposite 

compare to RGO. The highest storage capacity of 0.4 wt. % was obtained by RGO-Fe 

nanocomposites while RGO-Ti demonstrated the highest improvement in the isosteric heat of 

adsorption when normalized by maximum uptake at 298k. 

As reported in chapter 4, a series of graphene-based nanocomposites with different TiO2 

contents have been prepared via a facile chemical method. All nanocomposites were employed 

as hydrogen gas adsorption materials at room temperature and pressure up to 10 bar. The effect 

of dispersion state and size of the particles on the hydrogen storage capacity of nanocomposites 

was studied. The highest hydrogen uptake of 0.39 wt% was obtained among prepared 

nanocomposites and it is 125% higher than the hydrogen adsorption of the parent graphene 

material. This improvement can account for the presence of a high number of active sites needed 

for hydrogen molecules and the strong interaction between nanoparticles and graphene sheets. 

In chapter 5 of the thesis, homogeneously distributed TiO2 nanoparticles with (001) 

reactive facets were grown over nitrogen-doped reduced graphene oxide sheets (N-RGO) under 

solvothermal conditions. Hydrogen storage capacity of the system was significantly improved to 

0.91 wt% at room temperature and pressure of 0.8 MPa that is the highest hydrogen storage ever 

reported for graphene-based nanocomposites at room temperature and low pressures. 

Importantly, this nanocomposite exhibits ~91% capacity retention through 5 cycles with more 

than 88% release of the stored hydrogen at ambient conditions. Enhanced hydrogen uptake and 

capacity retention were attributed to the synergistic effect of i) reactive facets of TiO2, ii) high 

dispersion of nanoparticles with the average size of 6 nm, and iii) strong interaction between the 

substrate and TiO2 nanoparticles through polarized C−N bonding of N-rGO sheets. 
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In chapter 6, we reported the development of a heterogeneous catalyst consisting of Al2O3 

nanoparticle and low amounts of Pd that markedly enhances the hydrogen uptake of RGO. The 

Pd/Al2O3 hybrid particles were prepared by ultrasound-assisted impregnation of PdCl2 in an 

aqueous suspension of Al2O3 nanoparticles. Hybrid particles were immobilized onto the RGO 

support, giving Pd/Al2O3−RGO nanocomposites. It was shown that incorporation of 1 wt% 

heterogeneous catalyst (<0.3 wt% Pd) significantly increased the hydrogen storage capacity of 

RGO from 0.17 wt% to 0.31 wt%. This indicated a rise of hydrogen uptake by a factor of 1.8 in 

RGO nanocomposite. The improving hydrogen storage capacity of RGO nanocomposites by the 

change of Al2O3 particle size and Pd content was linked to activation of processes usually 

grouped as spillover. 

Through this thesis, we have demonstrated that size of nanoparticles, dispersion state, and 

interaction between nanoparticles and substrate plays an important role to increase the hydrogen 

storage capacity of the nanocomposite. Additionally, we illustrated that particles with active 

facets can improve the activity of the composites toward adsorption of hydrogen gas molecules. 

We achieved hydrogen uptake of 0.91wt% which is the highest amount of hydrogen storage 

capacity reported for graphene based nanocomposites in the literature in moderate conditions. 

Through these Chapters, reduced graphene oxide can be expected to function as a substrate 

for new composite material for energy storage applications. In this study, the effect of the 

substrate with different surface area and porosity on hydrogen storage behavior of composites 

was not examined. I believe the next step to further enhance the performance of graphene will be 

synthesizing the three-dimensional architecture of graphene materials. Graphene−single walled 

carbon nanotube (SWCNT) integrated 3D materials with a pillared structure can be produced by 

chemical and/or CVD method. These scaffolds provide high surface area, low density, and 

chemical−mechanical stability, as they have micro, meso, and macro porous structures. These 3D 

graphene architectures can serve as ideal scaffolds for depositing inorganic materials. 3D 

structural composites of transition metal oxide doped reduced graphene oxide/CNT would 

suggest an alternative and novel material for possible applications in energy storage devices. 

Together with an additional study regarding desorption properties of graphene based 

nanocomposites, such studies should allow the practical realization of graphene scaffold as eco-

friendly energy storage systems. 
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