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Abstract

Partition theory has been studied more extensively during the last century, athough
it has been around since Euler. It is not only because its combinatorial or classical
analytical aspects, but also because of the opportunities number theorists saw in ap-
plications of modular forms in a different and deep view. In this thesis, we study exact
formulas for the number of various partitions. For each one, we need to prove a modu-
lar transformation formula, and use Farey dissection to avoid the essential singularities
of the generating functions. After that, we need to control or estimate the resulting
integrals which are rooted from Cauchy integral formula.

In this way, we first study an exact formula for the number of ordinary partitions
of any given integer. This formula is a famous result by Ramanujan, Hardy, and
Rademacher. Also, we studied another well-known result by Hao, which gives an
exact formula for the number of partitions into odd parts. This partition can also be
considered for the partitions with distinct parts, thanks to Euler’s partition identity.
The generating function is a modular form which needs Kloosterman’s estimates to
handle the integrals.

Next, we propose a result which is aimed at the colored partitions with parts of the
form 10t +a or 2t £ 1. This is a continuation of recent works to generalize to partitions
into parts in certain symmetric residue classes modulo a given integer. Finally, we will
explain about possible future plans to find exact formulas for various other partition

functions.



SONLU CISIMLER UZERINDEKI INDIRGENEMEZ POLINOMLARIN BAZI ALT
SINIFLARI UZERINE

Seyyed Hamed Mousavi
Matematik, Yiiksek Lisans Tezi, May 2017

Tez Damigmani: Assoc. Prof. Dr. Kagan Kursungoz

Anahtar Kelimeler:

(")zet

Tamsay1 parcalaniglar1 teorisi Euler’den beri bilinmesine ragmen son yiizyilda daha
yogun caligilmigtir. Bunun sebebi sadece kombinatorik veya klasik analizden beslen-
mekle kalmayip modiiler fonksiyonlarin bu alana farkli ve derin uygulamalarini say1
teorisyenlerinin farketmeleri ile olmustur. Bu tezde bazi parcalanig fonksiyonlarinin
kesin formiilleri tizerine ¢aligtik. Her biri igin 6ncelikle bir modiiler dontigiim formiili
ispatlamamiz gerekti, ve sonrasinda Farey ayrigimi kullanarak tiretec fonksiyonlarin
esas tekilliklerinden kagindik. Bundan sonra Cauchy integral formiiliinden tiireyen
integrallerin biiytimesini kontrol ettik veya degerlerini tahmin ettik.

Bu sekilde, ilk once adi pargalanig sayilari i¢in bir kesin formiil {izerinde galigtik.
Bu formiil Ramanujan, Hardy ve Rademacher’in bir sonucudur. Bunun yanisira yine
iyi bilinen bir sonug olan, Hao'nun tek kisimlara parcalanig sayisini veren kesin formiilii
tizerine caligtik. Euler’in tamsay1 parcalanig ozdesligine gore bu ayni1 zamanda farkh
kisimlara parcalanig sayisidir. Burada tirete¢ fonksiyon modiiler bir fonksiyondur ve
intregrallerin hesaplamak icin Kloosterman’in tahminleri gerekir.

Bundan sonra, kisimlar1 10¢ +a veya 2t+1 olan renkli parcalaniglarla ilgili bir sonug
ortaya attik. Bu, eldeki sonuglar simetrik denklik siniflarindan kisimlara pargalaniglar:
ele alan, yakin zamandaki aragtirmalarin devami niteligindedir. Son olarak, cesitli diger
parcalanig fonksiyonlarina kesin formiiller bulmak i¢in ileride yapilabilecek caligmalardan
bahsettik.
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CHAPTER 1

Introduction

In this chapter, we explain some basic notions, which are useful in this thesis, in a

brief way.
Y 1.1. Partitions and their properties

In the first place, we will explain the basic notions of partitions. Assume that
n € N. We want to find the number of ways that n can be writen as a summation
of positive integers. For example p(4) = 4; since 4 =1+14+1+1ord=1+3or
4=14+1+20r4=2+2(1+3 and 3+ 1 are regarded as the same partitions). The

generating function of such partitions is

F(q) = ]O_O[ ( 3 q’”") : (1.1)

We can use the equality

LI iq”. (1.2)

So

For brevity, we define

n—1 00
(@:¢)= [0 —aq™) and  (a;9) =[] (1 —ag™) (1.4)
m=0
For the second case, the definition is for |¢g| < 1, to make it convergent. Also, in
order to simplify the explanations, when we write an infinite series or product, we
do not mention the proper radius ¢, but we assume the convergent neighborhood. In

fact, |¢| < 1 makes all series and products in the thesis converge absoulutely (see for

1



example [1] for the proof). So we need to find p(n) which is the nth coefficient of ﬁ
We will study a proof of an exact formula for p(n) in chapter 2.

There are other kinds of partitions. One of the most important one is the partition
with odd parts (we call it odd partitions). One can see that its generating function F,

is as follows (see [I]).

1

Fo(q) = @) (1.5)

We will study an exact formula for this function in chapter 3. Also, one can see that

o0 [ee] 1_q2n o0 .
Fy(g) = (q H :EW:E““ ). (16)

So F,(q) is also the generating function of the partitions into distinct parts. In general,

the generating function of partitions with parts Mt + a can be writen as

= 1 1
FM” - H Mn:l:a - (qa; qM>OO <qM—a; qM>oo. (1-7)

We can also generalize the partition into the union of a set A of parts in the forms

Mn + +ay or Mn + ay or ... or Mn + a;. In this way the generating function is

Faalg HH gMnEar) (1.8)

tlnl

We will discuss the properties of the generating function for different kinds of the set
A in chapter 4 and 5. Another interesting partition is the one with parts which are

not divisible by r for some r. This partition has the following generating function.

- L—q™ - n n r—1)n
FT(Q)IHWZH(MLQ +g g0, (1.9)
n=1 n=1

We can show that this Fj(q) is also the generating function of the partitions in which
parts are repeated at most r—1 times. One of the most general case is to find partitions
with parts of the form Mt + a; or Myt £+ as or ... or Myt + a for some k, M;, a;. We
tried to find a special case of this for M; = 10, My = 2, ay = 1 in chapter 4.

1.2. Modular forms

Modular functions are a category of functions from upper half complex plane to
complex numbers, which can fix the set of translation and rotation. A modular function

f of wieght k satisfies the following equation.

az+b
cz+d

A

)= (cz+ d)_kaC,df(z) (1.10)



where a,b,c,d € Z, ad — bc = £1, and w, 4 is a root of unity, which is called multiplier
system. Now we explain the necessary properties of a multiplier system. First, we need
to see the transformation ‘cljis as a group action. Recall that PSLy(Z) is the class of
2 x 2 matrices with determinant 1 and integer entries; when A ~ B for A = +B. One

can see that the following action of PSLy(Z) over upper half plane is a group action.

For every matrix

a b
M = (1.11)
c d
we define an action as follows.
az+b
= . 1.12
i cz+d ( )

We can show that it transfers the upper half plane to the uper half plane. Now, if
we define a function from PSLy(Z) to roots of unity with the relation w(M) = weq
and the property that w(M;Ms) = W, 4y © Weyp ., We can prove that PSLy(Z) can be

generated by the matrices

0 -1
M = (1.13)
1 0
and
1 1
M = (1.14)
10

We call a modular function as a modular form, if f is holomorphic in upper half plane.
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Figure 1.1: Fundamental domain of a modular form

For each modular form, there exists a subset of upper half plane which is invariant over

3



PSLy(Z). This region is called as fundumental region and is like the figure . There
are different categories for modular forms. We introduce two important ones. The first

one is Eisenstein series which are in the following form.

Bz = 3 m (1.15)
(m,n)#(0,0)

which have weight k. One can see that this also corresponds to the extended series of
an elliptic curve (see [30]). So this category is very important. One of the most famous
property of this category is the fact that the set of {Ej} forms a finite generated

C-algebra. In fact this C-algebra is C[Es, E3] (see [30] for a proof).
Another important category is theta functions. First, we define lattices over Z. A
lattice L is a subgroup of aZ @ pZ, where a, 8 € C are linearly independent (see for

example [26]). Then one can define a theta function as follows.

@(2) _ Zem'HAHQZ _ Z eﬂi(m2+n2)z. (116)

A€l (m,n)#(0,0)

mim?z

This function is in fact equal to G(2)?, where G(z) = > | 40€ . From number-
theoretic point of view, this function can be seen in a beatiful way as follows.

o0

(G))™ =D rm(n)e™). (1.17)

n=1
where r,,(n) is the number of ways that we can write n as the sum of m squares.
This function is extensively studied (for more information, reader can see [19]). There
is another famous function which has a very close relationship with G. It is called

Dedkind eta function which is defined as follows.

T mir - 1
0™ =¥ || 7 (1.18)
n=1
and has the following relation with G.
2(  mi(t+1)
2miTN __ n (6 )

This function is a half-weight modular form and is very useful in the discussion of this
thesis. In fact, a lot of modular forms can be writen based on this function. We can

write n as
n(z) = (3 Un)e™™) (1.20)
n=1
Then,

()™ = (D ln(n)e™™) (1.21)



where [,,(n) is the number of ways that n can be writen as the sum of triangular

numbers (i.e. the numbers of the form @) The coefficients [,, are completely
identified as follows in [I9].
—mim m m_ ] 00 _
Inn) = 2o 3 wnles e (1.22)
c=1 0<h<2c

where vy, (¢, h) is the multiplier system for 1 as follows. For every M € PSLy(Z) with

a b
M = (1.23)
c d
According to [19], we have
(%) o 55 ((a+d)e—bd(c*~1)—3c) ¢ odd

(M) = (1.24)

(c=1)(d=1) i
( d) (_1)f61—5((a+d)cfbd(c271)+3d7373cd) ¢ even

fel
In the same way, we can find the multiplier system of G. For an extensive sdiscussion,

please see [19]).
1.3. Kloosterman’s sum

In this section, we try to cover basic notions of the Kloosterman’s sum. Klooster-
man’s sum is a generalization of Ramanujan sum which is as follows.

K(a,bym)= Y e (@), (1.25)

0<h<m—1
ged(h,m)=1

where hh/ = 1(modm). These sums are very useful to study Bessel functions and
also have various applications in Fourier extension of modular forms. Kloosterman
sums have multiplicative property. In another words, for m = mymsy where my, my are

coprime, nymy = 1(modms), and noms = 1(modm, ), then
K(a,b;m) = K(nsa,nob;my) K (nia, nab; ms). (1.26)

So it is enough to find K (a, b; p*). Sato-Tate conjectured that there is no exact formula

for K(a,b,p). But we have a very useful formula for the following special case

p_l m2 — 4&2 2wim
K<a7a;p) = Z T e r, (127)

=0

where (#) is Jacobi’s symbol. We need some estimations for an incomplete
Kloosterman’s sum in the thesis. There are different bounds to estimate a Klooster-
man’s sum. The best known bound for these sums goes back to Weil bound which

18

|K (a,b;m)| < 7(m)y/mged(a,b,m). (1.28)



As a result, there is the following straightforward bound for the Kloosterman’s sum.

K (a,a:p)] < 2y/p. (1.29)

27

By an incomplete Kloosterman’s sum, we mean hede m (@) where A is a subset
of Zx,,. Thus an incomplete Kloosterman’s sum runs over a subset modulo m. One of
the best bounds for an incomplete Kloosterman’s sum which the number of summands
is less than m¢, is e(log(m))%s. So we can estimate an incomplete Kloosterman’s sum

R(a,b;m, €) with length m¢ as

Rla,b;m,e) < mite. (1.30)

1.4. Bessel functions and Mellin transformation

Bessel function are nothing but the contious version of Kloosterman’s sum. They
are the solutions of the forllowing differential equation.
d’y  dy
2 2 2y, _
We call a order the Bessel function. There are two different kinds of solutions for each
Bessel differential equation. In general, the first kind of the Bessel function of order «

18

o —1)y™ T\ 2mta
Jalr) =3 m!F(gn +)a 1) 5) (1.32)

m=0

If we view a first kind Bessel function of order zero in the following way,

L[> 2d
Jo(x) = 5/0 e T 7t (1.33)
then it can be considered as the solution of the analouge of the equation ([ZZ3). As
modular forms are connected to Kloosterman’s sum, it is natural that Maass forms can
be controlled by Bessel functions. They also have a relation with hypergeometric ser-
ries; which are a generalization of geometric serries. So it is natural that the geometric
serries can be end up to Kloosterman sums.

We also need to take care of the assymptotic properties of Bessel functions. In

z

small amounts of z, Bessel function of order a is behaving like (i)a. In fact, for

0<z<<a+l1, wehave J,(z) = m (%)a Finally, we mention a useful property
of Bessel functions.
e(B)t—=1) — Z Jo(2)t". (1.34)



Now, we explain Mellin transformation briefly. It can be considered as the multiplica-
tive version of two-sided Laplace transformation. It is mainly because of the following

relations with Laplace transformation.

M (f (=1log(t))) (s) = L (f(?)) (1.35)

Finally, one of the most important properties of Mellin transformation is that for ¢ > 0,
Re(y) > 0, and y~* on the principle branch, we have
1 c+io0

eV =— L(s)y—*ds. (1.36)

o

c—100

1.5. Farey dissection and Lipshitz summation formula

Farey dissection is a recurrence sequences of numbers which are generated as follows.
4h @ — 0O co _ 1. if Gn Cn On+l __ Gntcn
Start with e =1 and T =1 and if g € A, then e = i € Ani1. So the

cardinality of the sequence F), can be found inductively as follows.

|F| = |Fza| + ¢(n). (1.37)

So one can see that |F,| ~ ?;%2 It has a close relation with Ford circles which can be

seen at [].
Now, we introduce Lipschitz summation formula. Let Im(z) > 0, N € N, and
0 <a<1. Then
—la

m=0

where E(1,p, N + %) ia an error term and given by

Ly [T k=) — b+ )
(N +3)) / e (1.30)

[e.9]

and

627r$(N+%)oc

h(z) = (1.40)

(@ + 775y )

This formula will be very useful for us in the next chapetrs. It can help us to find a

way to use analytic continuation of a complex function.



1.6. Organization

In this thesis, the first chapter is for familiarizing the notions and basic constructions
like partitions, modular forms, Kloosterman sums, Mellin transforms, and Bessel func-
tions. In the second chapter, after a brief historical explanation, we study Rademacher’s
proof for the exact formula for the number of partitions. There are three main steps
to do this. First, we should find a modular transformation for the generating function
of number of partitions. Then we have to take care of singularities of the generating
functions, which is adressed by Farey dissection. Finally we will bound the Cauchy
integral and find an exact formula for the partitions.

In the second chapter, we plan to study the proof by Hao for the number of parti-
tions into odd parts (or the number of partitions with distinct parts; see [1]). We also
need a modular transformation for the first step as well. Then we use Farey dissec-
tion to find an incomplete Kloosterman’s sum. Then we will control the integral by
bounding the Kloosterman’s sum. The fourth chapter is on a modular transformation
for the number of partitions with parts of the form 10t + a or 2t + 1. We will find
this transformation by dividing the whole case to four ones based on the ged(10, k).

Finally, in the last chapter, we suggest some of possible directions for future research.



CHAPTER 2
The Hardy-Ramanujan-Rademacher expansion of p(n)

2.1. Introduction

One of the most amazing results in the theory of partitions goes back to the joint
efforts of Hardy and Ramanujan to find an asymptotic formula for p(n). At first, it
seemed highly unlikely that p(n) has a relationship with modular forms. But in one
of the most surprising proofs in the analytic number theory, Hardy and Ramanujan
could offer a very technical analytic proof to find an almost exact formula for p(n).
The story begins from one of Ramanujan’s conjectures. He could find an asymptotic

formula as follows for p(n).

1 — ! —2npmi 2.\/1
PO ~ 575 VT D e L2 (2.)

where w,;, is a root of unity which will be explained explicitly. It is unknown that how
Ramanujan was sure that this formula is an almost exact approximate for p(n). But
He believed that there is a formula with O(1) for p(n) (see for example [, [23]). So
he tried several times to find the formula. After a joint work with Hardy, they could
find a similar formula to (E71).

They used an indirect way, which is using the Cauchy integral to find the generating
function of p(n). In this way, they could use complex analytic techniques. The first
problem which occured was to find a proper contour, which can avoid the poles of the
generating function of p(n). As one can see, the generator function F'(¢) = > .~ p(n)q"
is [102,(1 —¢™)~" (see [m]). This function has infinitely many essential singularities in
the unit circle. So the wisest idea seems to avoid this circle. Hardy and Ramanujan
avoided this circle and considered a circle inside the unit circle. In this way, they had
an integral and after a proper parametrization, they needed to partition the circle. It
was because of the fact that they had to avoid rational points in the contour, which are
the essential singularities. Hardy and Ramanujan used the function cosh, and obtained

a divergent series which gives an asymptotic formula. But Rademacher used sinh and



the Farey partition and obtained a convergent series. This led to an exact formula.
This was the main contribution in the Rademacher’s proof. Using Farey dissection gave
a better shape to the proof. Also, this idea has been used in almost all of the similar
results about the partition that came later. The next step was the most important
one. Hardy and Ramanujan found out that there is a modular transformation for the
generating function F'(q). After using different ideas like Lipschitz summation formula
( [21]) and analytic continuation, they proved a modular formula. The next necessary
step was to control the growth of some integrals. Then they divided the integral to
two parts. One of them was significant, which leads to the asymptotic formula. The
small integral could be bounded by considering a proper contour.

One of the best ways to prove this theorem can be found in [5]. Berndt proposed
a simpler proof, which is similar to the one that we will give in this chapter. Also, he
proved similar results for various other modular forms. For example he proved transfor-
mation formula for generalized Dedekind eta function and a large class of generalized
Eisenstein series. For more information, one can see [?,7?].

One interesting point about the asymptotic formula is its pace in the convergence.
In fact, this formula is one of the sharpest formula in the area of analytic number
theory and modular forms. To justify this claim, consider the figure ??. This figure
shows the first 10 terms of Ramanujan’s estimate for the number of partitions of 200
and p(200). One can see that the difference is negligible even for 10 terms, which is a
small portion of the sum in the scale of analytic number theory. Also, the asymptotic

formula of partitions needs only 17 steps to have an error less than 1 for p(750).
2.2. The modular transformation formula

In the first place, we try to view the generating function of partitions as a modular

function. We aim at finding an asymptotic formula for p(n) which is as follows.

F(q) = H (1—q") Zp (2.2)

We try to view F(q) as a complex function. Also, we consider that ¢ = ™. So We
have F(z) = > 07 p(n)e*™*. Before we find the formula, we try to justify that why
we need such modular equation. Cauchy integration formula immediately implies that
p(n) = ﬁ fC (f)%ds, where C' is a contour inside the unit circle. We choose this to
avoid the possible essential singularities over the unit circle (In fact, we are dealing
with Hfj:l(l —¢")7!, so we have to avoid the poles in our computations). To be more
precise, I has poles in all points > for large enugh N, where ¢ is a rational number.
So we need to avoid computing unnecessary residues. The next natural question which
arose here is to find the zeroes of F' inside the region for C'. This is the first place that
modularity of F' helps us to estimate place of poles in the integral. After that, we try

10



to avoid the poles by using Farey dissection. Then we need to compute the integral
by finding the residues. In order to compute it, we use the modularity again. We will
discuss it in more details in the next part.

Now we prove the modularity of F. Let 1 be the Dedekind eta function defined as

follows

iz

e 12

n(z) = m. (2.3)

Also, for Im(z) > 0,

_ Z n371€2m’mnz (24)

m,n>1

In the first step, we want to show that A(z,0) = 22 — log(n(z)). One can see

2mimnz e
I I
m=1n=1
—1 271'sz — P 2miz\) — y o ) 2.5
og L[l 0g(P(e*™)) = = —n(2) (2.5)

Let G(z,5s),9(z,s) be defined as follows. For all —7 < arg(s) < m, Im(z) > 0, and
Re(s) > 2

> 1
G(Z,S) = mng_oo (mZ+n)8
(m,n)£(0,0)
1
9z9= D,

m<0

ne”
(m,n)#(0,0)

dm—cn>0
Jju Jjd
—(cz+d) 2 +{ & }udu

Z S Z/ 1 — e—czu— du)(eu _ 1) (26)

There are similar relations for Eisenstein series (See for example [G]).

In order to continue, first we prove the following equality. Consider that arg of
every complex number is between —7 and 7. Let A, B,C, D € R, w € C, A, B are non
zero, C' > 0, and Im(w) > 0. Then

Aw+ B
arg(m) = arg(Aw + B) — arg(Cw + D) + 27k (2.7)

where k£ can be defined as follows.
) A<0,AD —BC >0

k= (2.8)
0, otherwise

11



So one can see
(cz+d)*G(Vz,s) = G(z,5) + (e72 — 1)g(z, 5). (2.9)

On the other hand, we know that

<0 =—00 m<0
ne” nez
(m,n)#(0,0) (m,n)#(0,0)
dm—cn>0 n<dm/c
> Loy L e ahe) (210)
(e™n)s (—mz —n)*
n=1 m>0
nel
n>dm/c

where h(z,s5) =) nez - for all —7 < arg(s) <m, Im(z) > 0, and Re(s) > 2
n>dm/c

Now we try to find I'(s)h(z, s). We have

F(s)h(z,s):/ u* e du Z mz+mn)”° / Z mz +n) " *u* e du

mz+n

0 m>0 m>0
n>dm/c n>dm/c
(2.11)
Now, we change the parameter u to —*—. So
(z,8) / Z ut~temumE) gy (2.12)
m>0
n>dm/c

In order to start the sum with m,n = 0, we change m to m — 1 and n to n — [24] — 1.

So we will have

et =33 [Tt =, 1

n=0 m=0
Next, we try to simplify the term [(mtl ]. So we consider m=pc+j—1,0<p< o0
and 1 < j <e¢. Then for Re(z) > —d/c, Im(z) > 0,

c
_ _ L
Z 8 2 E E :/ us 1 (pet+i)zu—(n+1+pd+[Z udu

7j=1 p=0 n=0
oo oo
1 —(4 Jd
— § / u® 1e (Gzut[L Jutu) 2 § e Peru— (n+pd) v du
7j=1 0 p=0 n=0
3] o0
— id — —
_E / s5— 1 (Gzut L Jutu) —pczu pduE e " du (214)
p=0 n=0

We have to justify the last two equalities. Since Re(z) > —d/c, one can see |e~(¢*+)u| =

e feleztdju 1 So both the series Do PP and 3T e are uniformly
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convergent. So we can change the order of integral and summations. So after using

the geometric series formula, one can see

us—1 —]Zu+[J Jutu) w1 —(Jzu+[ u ) du

h(s, z) Z/ — e—cu—du) (] — ) Z/ — e—cru—du)(gu — 1)

us—Le—(cztd) Ju—f—{]d}udu
_Z/ 1—6 czu— du)(eu_l)

(2.15)
where the last equality is followed from ¢ = [£4] 4 {24},
So one can see that for Re(z) > —d/c,Im(z) > 0, Re(s) > 2
[(s)h(s,2) = (1 — ™) L(z, s). (2.16)
So according to (210),
oz 5) = emoc(s) + CoL =)Lz 8) (2.17)

[(s)
Hence, by (279)

(cz4+d)*G(Vz,8) = G(z,8) + (e72™ — 1) <6mSC(S) n e™s (1 — ™)1 L(z, s))

I'(s)
(2.18)

Thus
(cz+d)*G(Vzs)[(s) = T(s)G(z,s) — 2isin(rs)[(s)((s) + e ™ L(z,s). (2.19)

According to Lipschitz summation formula from chapter 1, we can view G(z,s) as

follows.
G(z,s) = Z (mz+mn)~° Zn —|—ZZ mz+mn)” —|—ZZ mz+n)”*
(mn:;)n;(% 0 ng;(;)o m<0n=—o0 m>0n=—o0
—Zn +Zn +Z Z mz+n)” +ZZ mz+n)~°  (2.20)
n=-—00 m<0n=-—oco m>0n=—oo

Now we try to find the values of these series. First

o0

Z n —-s _ Z Zns TS __ eﬂiSC<S). (221)
Second
0 s <—27m')5 S (_27m->s .
mzwnzz_oo(szrn) Wgo T(s) ;0 = Ts) Az, s). (2.22)

13



Also

Z Z (mz+n)™* = Z Z (—mz—n)"° = Z Z (mz +n) "™
(—2mi)®
['(s)

TS
=€

A(z,8). (2.23)

So according to (2220), (2220), (2222), (2223), for Re(z) > —d/c,Im(z) > 0, and Re(s) >
2

G(z,8) = (1+e™)(¢(s) +

A(z,s)). (2.24)

We know that A(z) is analytic for every complex s and Im(z) > 0. So by analytic
continuation, we can define G(z, s) as an analytic function for every s and Im(z) > 0.
Thus by definition of H(z, s)

H(z,s). (2.25)

Hence, by (E19) and (E225)

L(s)C(s)(cz + d)~5(1 + €™*)

(cz+d)°H(Vz,s)=H(z,s) —

(—2mi)®
L(s)(14e™)((s) e ™ L(z,s)
L (7 P W

=H(z,s) — T(s)C(s)(cz + d)*(1 + ™) (2mi)
+T(s)(1 4 e™)((s)(2mi) ™ + L(z, s)(2mi) 5. (2.26)
Now we put s = 0. One can see
H(Vz,0)=H(z0)—2I'(0)¢(0) + 2I'(0){(0) + L(2,0) = H(2,0) + L(2,0). (2.27)
So the remaining thing is to find L(z,0). We have to find the residue of
3 o (cztd) L4 {18}y

7j=1 u(l_efczufdu)(eu_l
1s

j over the contour C'. It is shown that the residue of this function

C A]
Z —12(cz + d) (2.28)

=1

where

Ay == (2 +d) — (<6(~(ez + D)+ {22)) +-3)(—ez — )

—6(—(cz+d)%+{%l})2+6(—(cz+d)%+{%i}) —1 (2.29)

14



Which after some computations (see for example [1]), it will become as follows.

c—1 cz—i—d)ju—i—{Jd}u
R
€s ZU — p—czu— du)(eu_l))
7=1

- (120(;21+ d (ngcd) - i) +Cz_§ (% - %> (%d - [%d] - %) -2

—(cz+d) ]"—i-{]d}u

He0) Z/ (1 = e fer — 1)

, -1 (cz+d) 1 ~ (j 1\ [jd Gd, 1
=2 - — ) +2 Lo (E o=,
& <120(cz+d) 12¢ 4) e — (c 2) ( c | c ] 2

J

So

This and (227) leads to the following

H(Vz,0)=H(z,0)+ L(z0)

—H(z,0) + 2ni <120(C_Z1+ 3 (Ci;d) - }L) + 27?2'2 (% - %) (%d - [‘%d] - %) .

(2.32)
Since H(z,0) = 2A(z,0) = 2(Z£ — log(n(2))), one can see that
2miVz 2miz
N alog(n(V2) — T 4 2log(n(2)
_ —1 (cz+d) 1 o~ (j 1\ [jd jd, 1
=2 - ~2) 42 oV (2292, e
B (126(62 +d) 12¢ 4) m; (c 2 c [ c ] 2 (2:33)
Hence,

%i(Vz — 2) + 2log(

L -1 (cz+d) 1 ~(j 1\ [(jd Gd, 1

= 2mi (uc(cz T 120 z) S (; - 5) <? —I1- 5) - (239
Let s(d,c) = 3757 (L= 5) (¥ = [&]—3). So

n(z) = n(V2) exp (_T i (126 (C_Zl+ 5 (Ci;d) - i) 4 ris(d, c)>

P(eV%) = P(e*) exp (m <120(c_zl—|— 3 (Ci;d) - i) + mis(d, c)) (2.36)

15



Now we try to change the parameters. Let a = —h/, b = hh;_l, c=k,and d = —h.

Suppose that hh' = —1( (mod k)). Also, assume that
a b
V= eT(1). (2.37)
c d

Now it is easy to see that

. h+iz —1+4+hh' ; ;
o AN _h/<+7>+1+ _ —zh’;—l _ —h’z+z‘ (2.38)
L k(M2) — h kiz kz
So according to (E238), we have
P<62mh+”) _ P@Qm’#)emsw k)elgk(zfl—Z)effi. (2'39)
So if w(h, k) = ™k then
iz 12 !
P(em5) = P2 (b, ke 0/ (2.40)

2.3. Farey Dissection

As we discussed earlier, we have F(q) =32 ,p(n)q". Cauchy integration formula

immediately implies that p(n) = 5~ f o Snfi ds, where C' is a contour inside the unit

circle. We planned to avoid the essential singularities of F'. As we will see, choosing a
disk as large as possible inside the unit disk is very helpful to compute the integral. We

know that F' has essential singularities on rational points e2mi%, According to (240),

. z —in/ =21 T —
F(eX72m8) = F(eX "% w(h, k)emr & =2 /7. (2.41)
one can see for small enough z,
—2mih!  —27z "1 —2mz— 1
ek e k ~e F —0. (2.42)
So for small 2
F(e2™%27%) ~ w(h, ke &' =2 /7, (2.43)

We choose this to avoid the possible essential singularities over the unit circle. Suppose
that s = re*™ and 0 < t < 2m. So if for the rational number %, the cut of Farey

dissection of order NV is denoted by [0}, ,, 0} ,],

1 it 1 ot 2mih 4 9t
F(re®™*) 1 F(re*™) he Fre & )
p(n) = /0 rneQﬂ-mt dt = 7"_" 0 eZm'nt dt ~n Z / 2”Z"h+27rmt dt

0<h<k

(2.44)
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Now we choose a proper amount for r to simplify our computations. We know that r
should be close enough to 1. We pick r = e_%; so as when N becomes large enough,

r becomes close enough to 1. Thus

9// 27rzh+27”t_7)
dt 2.45
, 27r]7.€nh +2mint ( )
eh k

0<h<k

If we define z = k(N2 — it), then

N -2_; 2mih _ 27z
k(N 16’;1’,9) F<€ ih 27 )
us . 2min(iz —iN—2)
ezv? : k(0 ,—N-2) €
h<_k
Using (240), one can see
. N 2__ ol 2ri(h’+iz” 7) 1 2zt —
—i 1 RN Fe™ 7 )zze™ %
p(n) = 21mn 2mwinh in(12—iN—2 d’z (247>
z Z 2 o, L ean(zk iN—2)
en? 1 e k(i) ,—N=2)
(h,k)=1
0<h<k

M tends to zero exponentially, F'(e )

tends to 1 rapidly. So we can consider F'(z) =1+ F(z) — 1 so as to have a couple of

Since for small enough z, the term z

negligible parts. So

—3 N 1 k(N 2_19;:,1@) Z%€W7Z k_z
p(”) = [1 + [2 = 27mn § 2mwinh 27TZ7Z(’L%—2N72)dZ
k
k

enN? 1 e k (0}, ,—N-2) €

(h7 ):1

0<h<k

. N —2 _on 2mi(h +iz 1) 1z 2
—i 1 RN (Fe™ & ) —1)zz€” g
+ I g Zrinh . . p2min(iz —iN=2) z.

en? 7 e & Jk@g, . —N-2)

(h,k)=1

0<h<k

Now we need to find Iy, I.
2.4. Integral estimates

So far we have seen that finding the asymptotic formula for p(n) reduced to finding
I; and I,. We will prove that the dominant part is /3 and the integral I is negligible.

It was predicted, since F'(z) — 1 tends rapidly to zero for small enough z.

2.4.1. Estimation of I,

17



We prove that I5 is negligible in this part. First, one can see that

"2k | = |eTz ("IN TPi)| — oz (2.49)
Also, since p(0) =1,
|6W%(F(627m(h +iz" _ 1 | _ | Zp 27ri(h’:iz_ ﬂ_zlgk |
<3 plm)fen = et
m=1
> —27rRe(271)+ Re(—z" )
= Z p( 12k
m=1
> Re(z1)(m— g
C S g
m=1
So
P iz Re(zil)(m_ Y )
Bl (F( ity 1) | < |2|2e N2 Zp 20 (2.51)
So we need to compute Re(z7!). One can see that
N72
Re(z7!) = . 2.52
G(Z ) kZ(N—4 +t2) ( )
It is a Well known fact in Farey dissection that 55 < Oy < 3. Moreover, —0,; <
Re(=1) N2 - N—2 - N—2 1 S k
e(z77) = — e
K2(N-4+12) = K2N-4+ (kt)2 " K2N-44 N2 Ek2N-241" 2
(2.53)
The last inequality follows from the fact that & < N2. Also,
2]z = (KN4 +2)2 < (N4 4+ N 2)2 < V2NL. (2.54)
This and (253) lead to
wi(h! 1271 z s o (m~— 1)
(F(e™F ) —1)z3e Slemmv Y p(m)etrE (2.55)
m=1
This and (Z50) leads to
_ N 1 k(N_inGZJC) (F(€27ri(h/k+iz_1)> o 1)2%671]7}1@ z
|I2| | T2m Z 2minh 2min(iZ—iN—2) dz
eN? T e Kk Jk(ig), ,—N-2) € i
(hk)=1 ’
0<h<k
1 K(N=2—i0y \/_N e Y p(m)e g M2
<—m / m=1 dz (2.56)
€2N72 ; Kt} | 2min(iZ—iN~ )l
(h,k)=1
0§h<k
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_ P PSP
We need to discuss about | =N "7)| = |e=2m™(E+N")| - One can see

|6727m(%+N | _ efﬁgne_%nkm(z) — eiﬁgn (257)
So
1 N k(N=2—=i0}/ ) (m— )
| < —= Z / \/_N e TInT ZP 7’” Fodz
e n? k—l k(i;, ,,—N~2)
(h,k)=
0<h<k
00 719//
= 621\7’%_12?\72 \/§N71 Z p(m)e Z /
m— k(z@
! (h k
0<h<k
2 > N
™ s 1
=en EvIVANTY Cp(m)e ™M) N (R(NT2 =6 ) — ki), + kN 7))
m (hik)=1
0<h<k
(2.58)
We know k(6 . — 0}, ) < 55 So
. > AN
2mn__m -1 _W(m_i) b
|[2| < e'N? TNz \/§N mX:lp(m)e 24 Z 2N (2.59)

According to [], p(m) < 2™. So > >*_, p(m)e~™m=21) converges. This implies that
there exists 0 < C' < oo such that

I, < ON7len? (2.60)

So for a fixed n, I, tends to zero as N tends to infinity. This demonstrates that we
can control amount of I, for large enough N. Thus I, will be assumed as a negligible
term.

2.4.2. Estimation of I;

Now, we compute ;. According to (248), we know that

_2 . 1 _17
k(N 7102’,,@) Zieﬂ—iz T

. N
—1 1
L = 2mn E , 2minh in(iZ—iN—2 dz (261)
pusg z ) L 627T’Ln(7,k iN—2)
ent 17, e k(i6), . ~N~2)
(hk)=1
0<h<k
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Now assume that w = N72 —it. So w = 7. This implies that

1 Tr((kw)il—kw)

. N —2__;pl 1
, —i 1 N7T2—10), (kw) 2¢ 12k d
1 21n I; 2mwinh ) k627rn(7w+N72)

enz T € k& Jig, —N—2
(h.k)=1
0<h<k
. N —2__
— 1 N L I om(n—)w
=g E —_— (w)zerrZoe 21Ydw (2.62)
€ N2 k=1 \/Ee k ie;'L,k_N72
(h7 ):1
0<h<k

radie: UN#2 '\C

NI

Figure 2.2: The contour of Cauchy integral

theorem for a proper contour. Let C' be a contour as in the figure 2. For small enough

€, one can see that

2miRes(g) :/ g(w)dw

c
—€ 7549;;’,@ N_27i9;1’7k
:/ g(w)dw +/ g(w)dw —I—/ g(w)dw
) —e —e—ib}
N’Z—i-ib?;hk —e+i9;1,k —€ —o0
+/ g(w)dw + / g(w)dw + / g(w)dw + / g(w)dw
N*Q—iQ;Lk N*Z—I—i@;hk _E+i9;7,,k —€
(2.63)
We consider the main branch for the square root function. So
N~=2+i0}, —e —e—i0}
/ g(w)dw = 2miRes(g) — / g(w)dw — / g(w)dw
N-2-i0y/ —o0 —€
N=2—if}/ —e+ib], —e —00
— / g(w)dw — / g(w)dw — / g(w)dw — / g(w)dw.
7672’9;:’k N_2+i9;z,k 7e+i9;l’k —€
(2.64)
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So

enNz T € k N—2—49)!
(h,k)=1
0<h<k
—i =1
== D o (L =S = o= Ty = Ji= =) (2.69)
ENT k=1
(h,k)=1
0<h<k

Now we bound J, Js, Jy, J5. We assume that € < N~2 as it is clear in the figure 222
In particular, we are only interested in the case that ¢ — 0. First we discuss I5. Let
w = € +iv. We know that |w|?> = € + v? on this line. Also

s us _—Te
|€12k2 27r(n = w| _ BR (m)GQW(n——)Re(w) _ 612,@2(62_,_1,2)62%(71—2—14)6. (266)

Thus one can see

—e—i0} |
/ g(w)dw| <

. _—Te 1
Since e22(+?) < 1 and e?™™~31)¢ > 1, we have

—0il e
| J2| < / (€ + %) 2257 2 () gy, (2.67)
0

1 ) 1
kN2 kN~

N|=

[ Ja| < (2467 ,2)20, , < (2 + (2.68)

One can show that as ¢ — 0, then (€ + ﬁ)%ﬁ — k~2N~2. In a similar way, we

|J5| = / dw
e+19
1 1

1
</9;Lk(e + ) dv| = (€ +«9;17k2)20;17k < (2 + W} N (2.69)

have

0
</ (€2 + v?) e T (2r(n= )|
9,

NI

So as € — 0, | Js| < (kN)~=.
For J3, let w = u — i} ;. Then

N~ 2—19% &
= [ w)d
€— 10;1’ k

One can see that

N 2—20;{ k Re( 1
’ 12K2 VN e -1
< / (U + 9// 2) 12k 0h7k)e27r(n )Re(u 0y k)du

=N
E_Zeh,k

(2.70)

1 R ( 1 ) U < N2
— 6 p— .
k2 U — i@;{}k k2 (u? + 0;{7,92) - k;%;;,f

(2.71)
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By the definition of #”, one can see that kge,, s < 4. So
5] < (N~ 407 2)eSe ™ (e + N72). (2.72)
Since 0}, < 7%, one can see
| J5] < (N~ + (kN)2)ie5 T8 (e + N72) (2.73)
We know k < N; thus
| J5| < (e + N"2)2ik 2N 2¢5+ 3% (2.74)
If e — 0, then J3 < 25k~ s N~3e5T5% . For Iy, w= u—i—z@hk for —N72 <u < —¢, we
have
_E+Z0;Lk € 2Re( 1// ) 19"
|J4| — / dw _/ ( 9// 2) 12k u—i6}/ 627r( )Re(“_wh»k)du
N- 2+z9;1,€ —N-2
B W
:/ ( +9// 2)7 12k2 (u2 46}/, 2) 27r(n )udu (275)
—N*2+z’9;hk

s 27rn
With similar reasoning as .J;, one can see |J;| < 2k 2N~ 3¢5 n%

Now, we discuss J; and Jg. We have

J1+J6 :/ \/ ]u\e 2612k2 +2m(n— “du+/ «/]ue2el2k2 +2m(n—sz “du
=— 22'/ Vie® emim 2 (st gy (2.76)

Let us denote H, = f:o \/Ze%ieﬁf%("*?%l)tdt. In the next step, we prove that

~iVkLgy, +2VEH, = vk

il . 2.77
24
We start with Ly ;. One can see
—iLgy = —i / w2 emTs t2T 3D g (2.78)
c
since e* =Y "2, ZS—, Taking z = {575-, one can see
o0 s 0 ( s )s
—lLk B = / w2€27r(n Jw Z 12k2w - 4 Z 122w / w%—se%r(n—i)wdw
c s=0 s=0 S! c

(2.79)



Let z = 2m(n — 57 )w. Then

3
. — () 1Ly 1 2, —s+
—iLpy = QWZO % 2m(n — ﬂ) i . e*z7%"z, (2.80)

where C” is the corresponding path for z according to the definition of C'. Now, Hankel’s

loop integral formula (see [6]) tells us that

1 1 1
— = — Y| 2.81
I(s—3) 2mi /Ce y : (2.81)

for the mentioned contour C. So

7r2(n %1 )
—iLyy = 6k - 2.82
Pk Z sil(s — % (282)
Also, we know from the definition of I' that
1 S|

(s — 5) =2 F(é)(2s —-3)(2s—=5)---3- 1. (2.83)

We know that I'(3) = /7. So for each Y, we have

e’} (Y_Q)s [e’s) (YTQ)S [e’s) YQS s—1 1

Z S[F(;l -0 - Z s19—s+1r3 I2i2n—1) B ; dsy/m L% 2n(2n — 1)

s=0
25—1 Y25 2 1 d = Y21
= —14+Y%2— . (2,84
2fz 2\/%< Ty 2 (25)!> (284)

We know that cosh(Y) =", (Yz—i), So

- (%2)5 1 5 d cosh(Y)—1
= —1+Y' . 2.
;0 Ty P S N R S (2.85)
Considering (Z82) and assuming Y = WQ(GHT;Z%*), we have
1 n )
, 1 w(n — )5 d cosh(¢) -1
—ilgp =4/ ——= [ -1 21 2.86
bk 2m(n — 5;)° * 6k Y ay ay n(n—L)? (2.86)
6k
By applying the chain rule, one can see that
h(Z\/2/3(x —1/24
k3 =/2/3(x —1/24)

Finally, for Hy, we have for real a, c

o , d —2ac
/ —c?t—a? \/_dt — 2/ e_c2u2_a2u%du — ﬁe—Zac — _ﬁ_ (6 > . (288)
0

c 2¢ dc
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If we consider a = 27(n — &) and ¢ =

5 we will see that

2R
1 d e—ﬂ'\/2/3\/{1}—1/24/k
Hy, = -5 T=n
: o2 \dv  \Jr —1/24

Now, the equations (2289), (22X1), (2271), (2564), and (2Z78) and considering the fact
that Jo, Js, Jy, J5 are negligible for large N leads to

(2.89)

p(n) = ——= ZAk(n)\/E e : (2.90)

r=n
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CHAPTER 3

An asymptotic formula for the number of odd partitions

3.1. Historical background

After what Ramanujan, Rademacher, and Hardy did for the asymptotic formula,
a lot of mathematicions tried to find asymptotic formulas for similar functions. These
cases, which are almost all of the partitions with parts of the form at 4+ b, needs
different categories of modular forms. In another words, if we are interested in number
of partitions with parts of the form at+ b, we have to define a proper subgroup of I'(n).
So what we need is to prove a modular transformation as well as approximating the
integrals. We mention some of the important results here so if the reader wants know
more, he can see these works.

First, Hao in [I4] proposed an asymptotic formula for the number of odd partitions.
He used the same idea which Rademacher suggested for the general case. The main
difference are two things. First the modular form is not defined over I'(1). Also,
the summation over the Farey dissection leads to a Kloosterman’s sum, while it was
a simple geometric sum for p(n). After that, Haberzetle in [I2], proposed another
asymptotic formula for the number of partitions into parts which are not divisible by
either p or ¢; where p,q are two primes such that 24|(p — 1)(¢ — 1). In order to do
this, she wisely chose a proper way to describe generating function for such partitions;
which was based on the generating function which proposed by Rademacher. Then she
suggests four different modular transformations for the generating function; depending
on the ged(pg, k), where k is the denominator of Farey dissection. Then she could
approximate the integrals using geometric series for different cases of ged(pg, k).

The next work is by Lehner in [20], which is an asymptotic formula for the number
of partitions into parts that are not divisible by 5. The main issues to solve this

problem goes back to the Kloosterman’s sum which is not complete. He addresed this
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problem using Bezout’s theorem cleverly and computing a term in two different ways.
For the modularity part, he also assumed different cases and find the transformation
by the properties of zeta-function and gamma-function. Finally, he approximated the
integrals. As an expected natural step, next is the work by Livingood in [22], who
proposed an asymptotic formula for the number of partitions into parts which are in
the form pt + a for prime p and 0 < a < p. What he did is a generalization of the
method which was applied by Lehner. He first generalized the Kloosterman’s sum for
an arbitrary prime number. He also proved the modular transformation. The following
steps are almost the same as Lehner’s.

After the formula for the partitions of the form pt + a, it took more than 10 years
to find the asymptotic formula for the number of partitions into parts of the form
Mt + a. Isako in [I'7], [T5] proposed an approximate for an incomplete Kloosterman’s
sum in general and an asymptotic formula for the number of partitions into parts of
the form Mt + a. The method of the Kloosterman’s sum needs to change the order of
two sums, which he justified. The idea for the asymptotic formula is almost the same
as the preceding ones. The same author in [I6], proved an asymptotic formula for the
partitions into parts which are coprime with a number M. The idea was based on the
fact that if ged(a, M) = 1, then ged(M — a, M) = 1. The rest is contributed by taking
a sum over all such a < —, and some analytic methods.

As we discussed in the last chapter, Berndt in [3], [4] generalized the results concern-
ing the modular transformation for a bigger category. He also found similar results for
a more general class of Eisenstein series. Bringmann and Ono in [[@], proposed an exact
formula for harmonic Maass forms which are a generalized category of modular forms
with negetive weight. They also have found a result for these forms of half weight.
This work can be considered as an alternative solution for the generalized problem
which Hardy-Ramanujan proposed. Recently, Laughlin in [24] proved an asymptotic
formula for the number of partitions into parts which are coprime with both numbers
r,s simultanously. It is worth to mention that the main idea is almost the same as
in [I2] with a very advanced procedures.

In this section, we will discuss the steps of the proof by Hao for the number of odd
partitions. In fact the goal is to prove the following exact formula for the partions into
odd parts p,(n) (Note that p,(n) is also the number of partitions into distinct parts

(see for example [H])).

—2mihn d Zﬂ— 2 ]_
po(n Z Z wpre %Jo (?“ §<n+ ﬂ)> . (31)

k: 1,odd (h,k)=
O<h<k

where Jj is the Bessel function of the Oth order and wy, j is a certain root of unity.
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3.2. Farey dissection

The first steps of the proof is almost the same as Rademacher’s method. Let p,(n)

be the number of odd partitions. So one can see that

D=1+ po(n)g" = ——. (3.2)

(¢ 4% oo

As f(q) is the generating function, we can use Cauchy integral formula to get

po(n) = — Mdm

21 C :C”+1 (33)

We again choose a path very close to unit circle; the circle with the center at origin and
radius e 2™ This path is inside the unit circle. Again, we have essential singularities
on the unit circle at e2™=1. So we need to choose proper Farey dissection to avoid
these essentil singularities, when NV — oo. Let us use the Farey dissection of order n.
Then if we have £(h, k) as an arc, then £(h, k) is as follows

h+hy h h+hy h
<9< —Z = 9y(h k). 3.4
k+k k— " k+k k 2(h, k) (3-4)

_ﬁl(ha k) =

for three consequtive points of dissection. As we discussed in the previous chapters,
we have the following inequalities.

1 1

So

— > /Mk et (3.6)

gcd(h k)=1" ~V1(h:k)
O<h<k<N

We know that 2 t h; so it is important whether 2 | k. This makes two possible cases:
2| kor 2t k. Lets call the integral for the first case as I; and for the second case as Is.

In the next step, we need to use the modular transformation to substitute with f in
the integrand. It is mainly because of the fact that if the variable of integrand is in the
numenator, then we will have an ordinary integral in real variables, when N — oc.

That is our motivation for the next section.
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3.3. The elliptic modular transformation formula

In this section, we are seeking a modular transformation. The motivation is almost
the same as the general case; and fortunately the modularity property is almost saved
in the odd partitions. In fact, the generating function f(z) is a modular function.
First, we assume that 2 | k. We start from a changing of parameter in the integral in

BH. One can see in similar way of the previous chapter that

27z | 2wih 2n _ 2mih/
-t /

where hh' = 1(modk). So x = M.z'; where M € I'(2). Let wy, is defined as follows.

w(h, k) = €h,k€7%(h+h/)7 (3.8)

where

h = e_m<(h’2871) (I—I?h’_1)+h/(187khh/)+i(lflgh’ +k:) (hh’Z—h’—h)). (39)

Then we claim that z21 f(z) is a modular form of weight zero. In fact, the following

modular transform holds.

f(z) = wh7k6_127;€z+%f(x’). (3.10)

So if we define g(z) = x2 f(z), then

2 2mih 2 2mih/ 2 2mih! 2 2mih
Glem T = oy e T T g (e BT Yo S B S
_2n _ 2mih’  2mik) | 2wih
:Wh,kg(e k2 k )6 21k 24k | (3'11)
So
2mih! | 2mwih
g(M.z) = wy pe 2k T2k g(z) (3.12)
where
/ 1—hh’
_ h k
M = (3.13)
-k h

This implies that g is a modular form of wieght zero with multiplier system wh7ke%+2§: :

Now we prove the equation (BIZ). Let us define

r=q¢ =" and 2 =Q*=e"T (3.14)
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where

h+i —h' + 1
t = ZZZ and T = ——=. (3.15)
So
1—hh' 1 h+iz 1+ih/ 2 / .
+h -
Mt=—k Mo g (3.16)

h—kEE T ek

Now we have to prove that g(e?™) has the modularity property. One can see that

2t mit 1 juss et 271—””

mity T o

g(e™™) = et (e2mit; gdmit) —er H e47rznt (3.17)
But according to [19], we know that the function h(t) = etz [[2, (1 —e*™) is a

modular function with the following relation

h(M.t) = vyp(M)N =kt + hh(t) = vy,(M)y/—izh(t) (3.18)
where

(M) = i<%)€’f§(—(h’+h)k—hlkhh/(k2—1)+3h—3+3hk>' (3.19)

Also, one can see that
s

a ) it
H 167%(1 _ 62m’n(M.1E)> :16 L ¢(6 . )
8 8 X(emt)

hh!—1 /2 /
ot r_p2 (—k+ R =Ly p/2 Rl gy
1 7”( (P2 =1)(* l?h 1)+n 8Zh b )
—€

&

—miM.t (b(€27rit)
12— 3.20
xe X(€27rzt) ( )

Thus

7T1M t :
e27rzn(M.t))

OOIH

oIl

/7
ﬂ(é(h'?—l)(l,?h 1) gl “’“*hhkl”h”'%h,_h))
(&

24

=€

This proves (B12).
Now we need to calculate an incomplete Kloosterman’s sum. The Kloosterman’s
sum in the integrand is based on h and it is bounded by k. We will do this step in the

next section.
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3.4. Kloosterman’s sum

In this case, we want to prove some materials in order to cope with a special

Kloosterman’s sum. In the first place, we produce an identifier function as follows

1 —0y(h, k) <9 < Oa(h, k
g(N, 9, h, k) = 1A F) 2(h F) (3.22)

0 Otherwise

2mirh’

Now we find its Fourier transformation. So let g(N, v, h, k) = Zle b.e” k , where
hh' = 1(modk). So the Fourier transformation is itself a Kloosterman’s sum. We can
show that |b.| < log(k), according to [21].
The other helpful point for the proof is the following equality.
S ) = Okt (ged(n, k)7)). (3.23)
1<h<ak

ged(h,ak)=1
h=l(moda)

The proof of the general case is by Kartsuba at [I8].
The next useful point is the following relation, which holds for even k.

S w(h, k)eErmi) (3.24)

1<h<k
ged(h,k)=1
hh!=1(modk)

Let k = 24t 4 2r. Thus

ST w(h, 24t + 2r)emirE (hmh)

1<h<24t+2r
ged(h,24t+2r)=1
hh'=1(mod2ht+2r)

N Z w(h, 24t + 2r)eziriz: (MhEmh)

1<h<24t+2r
ged(h,12t+7r)=1,r:0dd
ged(h,2)=1
hh!=1(mod2ht+2r)

" Z w(h, 24t + QT)Q%(nhﬁ-mh’)

1<h<24t42r
ged(h,6t+r/2)=1,r/2:0dd
ged(h,4)=1
hh'=1(mod2ht+2r)

* Z w(h, 24t + 2r)e%(nh+mh')

1<h<24t4+2r
ged(h,3t+r/4)=1,r/4:0dd
ged(h,8)=1
hh!=1(mod2ht+2r)

+ Y w(h, 24t)e i (hemh) (3.25)
1<h<24t
ged(h,t)=1

ged(h,24)=1
hh!/=1(mod24t)
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We only compute the last one. The others can be found from the fact that w(l +
or, 24t + 2T)624t+gr(n(l+2r)+mh’ w(l — 24t, 24t + 2T)€24t+2r(n(l 2004mk) | — o4g 4 1

we can show that

ORI R VD SR e

1<h<24t 1<1<24 1<h<t
ged(h,t)=1 ged((,24)=1 gcd(h,t)=
ged(h,24)=1 h= 24s+l
hh!=1(mod24t) hh/=1(mod24t)
= Y Ok (ged(n.k)5)) = O(k5*(ged(n, k)9)).
1<l<24
ged(l,24)=
(3.26)
If k is odd, since h = 2s + 1; then
> wWh, 2t + 1) T OMmi) — Ny e E I (3.97)
1<254+1<2t+1 1<h<2k
ged(2s+1,2¢4+1)=1 ged(h,2k)=1

! —
hh/=1(mod2t-+1),':0dd hh'=1(mod2k)

This implies that the sum is of order O(v/4k2y/gcd(h, k)). So the Kloosterman’s sum
can be controlled by O(v/k2) in all of the cases.

3.5. Approximating the integrals

Now we come back to the integral (B335). As we have discussed

1 92(h,k)
p =ty [,

1 T
ged(hk)=1" ~V1(hK)
0<h<k<N
k(N+1) 27r1h 27z —27ih(n+1)427(n+1)z
=D g(N, 9, h, k) f(e e : 4o
1<k‘<N ged(h,k)= k(N+1)
0<h<k<N

(3.28)

where we change the parameter from k(N~2 — i) to 2. As we discussed previously,
and according to (B12),

Z Z /k(N+1) N 19 h k-)f( 2mih— 27rz) —27rzh(n+1)+27r(n+1)zd19 (3 29)

1<k<N 2|k ged(h,k)= E(N+1)
0<h<k<N

31



So,

— Y ¥ /“N“) (N, 9, h, k)w(h, k)edG—)

Y i<hen 2|k ged(h,k)=1" " RNTD
0<h<k;<N

2nh! =27/ 2 —2mih(n+1)427(n+1)z

X flem ® e k dv (3.30)

If we substitute f with its definition, we will have

Sl DR /) (N, 9, b, k)w(h, k)ers =)

1<k<N 2|k ged(h,k)= E(N+1)

0<h<k<N
27rh —2mi/z —2mwih(n+1)+27(n+1)z
(§ q(m F >>e ; d9  (3.31)

We can show that

— Y ¥ /WH) (N, 9, h, K)o (h, k)

Y i<hen 2|k ged(h,k)= RNTD)

0<h<k<N
2rh! —27i/ 2mih(n+1)+2mw(n+1)
E q Lk —2)+m( 3 )+ k dy.

m=0
(3.32)
Then we replace g with its Fourier series. One can see that
k(N+1) wir
EDID O I > e b
1<k<N 2|k ged(h,k)= k(N+1) r=1
O<h<k<N
s 2rh/ —2 2mih 1)42 1
<Z q Lk er( T 7I"L/Z) —2mih(n+ ])c+ (n+ )z) d,ﬁ
0
(3.33)

Now we start to bound I; helping from a formula for b, in [8]. According to this
formula, since > |b,| < log(4k), we have

EECEDS /”(Zq ﬂm+242|b|ks>cw<zlog

1<k<N2|k" ~k(N+1) \m=0

CO\M

1L
k=1
(3.34)
So |I;| = O(N~*3) = O(N 3).
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Now we will find an aproximation for I5. We know that

/ﬁQ(h )
= 2 o),
b cd(hg)=1 J —01(hk) anr

0<h<k:<N
2k

We substitute w = # —41}. Then,

N ~— tiv1

—2mihn ERYEE R
g E / Wp e F 2 (ntag) 3k w gy,

1<k<N2’(kgcd (hk)=1 7 — 5z 2
0<h<k<N

If we consider a contour as in figure B=3, then

AN
K

K

k%

Figure 3.3: The contour of Ky, K5, K3, K4, K.

“24ik~Y(N4+1)"1 ~N724ik~ Y (N+1)~ 1 N—2—jk~
=1 SD O v f v/
' N

—N=24ik~1(N+1)—1

1<k<N2+kgcd(h k)=1 ity 24 k=1 (N41)~!
0<h<k<N
N724ik~ Y (N+1)~! N—2_i95
+/ +/ —27iRes
—N=2—ik=}(N+1)~'  JN—2—ik=}(N+1)~!

=K1+ Ko+ Ky + K+ K5+ L

The integrand for all of K is

—27wihn 27TOJ(TL+ k2w

wpre ko€

24)+24
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(3.36)

1(N+1)—1

(3.37)
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One can see that

N2k~ Y (N+1)~1

|K1| < QL Z k2/3+e/ eZﬂw(n+i)Re(w)+ﬁRe(%)dw
T k<N 2tk N=2+id,
N —l(N+1)~1
— O(Z k2/3+€€27rnN_2/ dlg) _ O(Nfl/SJre)'
k=1 kil(N“l‘h)il
(3.39)
For K5, we have
1 N72_Z’192 1 ™ 1
|K5| < — Z k2/3+6/ 62ﬂw(n+ﬂ)Re(w)+mRe(;)dw
211 <k N 20 N—2—ik—1(N+1)—-1
N, L, DT .
=0 (Y kateemN / d9 | = O(N5 ™). (3.40)
k=1 kil(N“l‘k')il
Now we have
1 N2
Re(k%}) = AN TN (3.41)
So,
1 —N724ik~1(N+1)~! ) i L
Kg - Z k,2/3+e/ 627rw(n+ﬂ)Re(w)+mRe(§)dw
e 1<k<N.21k N—24ik—1(N+1)-1
—N7244k—Y(N+1)"1 _
_ i + (N+1) e?ﬂw(n+i)R€(w)+i4N2ﬁ2?\]72 dw
21 N2 4ik-1(N+1) -1
N
2 1
=0 N k3™) = O(N 5. (3.42)
k=1
The same goes for K. Finally we have
1 6_13? -1/3
Ksl <o ), O(5) =07, (3.43)
1<k<N,2fk
Finally, we find L. One can see
]_ —2mihn s
L= Res | o >y wppe R el 3+ ke ) | ) (3.44)
1<k<N,2tk ged(h,k)=1
0<h<k<N
We have
00 1 \\r o0 s l
p2mw(ntap)+ gk _ (Z (2WW<T;;F 21)) ) (Z (241;?40) > (3.45)
r=1 =1
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So the residue can be found as follows.

= 1 T 1o, ldgs 1 T\ 1.,
;l!(l— 11 gz G+ 5 = %EZW (317) 2o+ 57)
1d w1 1

\}i Z Z whke_Q?hn—Jo ( “ ) +O N 3 +€

1<k<N,2tk ged(h,k)=
0<h<k<N

Therefore

(3.47)

And for N — oo, we have

]_ —27rzhnd
po(n)zﬁ Z Z Whie F d_ < \/ 5 n+24> (3.48)

1<k<00,2tk ged(h,k)=1
0<h<k<oo
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CHAPTER 4

An attempt for asymptotic formula for another kind of partitions

4.1. Introduction

In the first place, we need to explain about the exact formula that Loughlin proved
n [24]. He proved an exact formula for the number of partitions with parts which are
coprime with 7 and s. If = e*", then the generating function for this aim is as

follows.

00 1 00 1
<Hk:]_ 1—e2mikT > <Hk:]_ 1—e2mikrsT )

o) 1 o0 1 '
(Hk:l 1,627m'k7"7—> (Hk:l 1—e2miksT )

Py(x) =) prs(n)a” = (4.1)

We can see that

P, (e2ikT) = o~ PR n(r7)n(st)

’ HD(rsT) (4.2)

where 7 is the Dedekind eta function as defined in [T9]. According to [T9],the coefficients
of the function 7 are completely identified. But at the same time, it is not easy to work
with them to find the coeffiecints of P, ;. That is why this result is interesting. In
fact it can lead to a formula on Bessel functions. In this chapter, we try to compute a
modular transformation formula for a similar, but colored partition for the case r = 10
and s = 2. What we mean by colered partition is that some odd parts may appear in
two different copies (or colors).

Let p,(n) be the number of partitions which are in the form 5t+a or 2¢+1. We know
the exact formula for the generating function Gy .(x) for the partitions with parts of
the form Mt + a from [I5]. But in order to find the coefficients for the function p,(n),
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we have to use Chinese remainder theorem to find 0 <! < 10 such that | = a(modb),
and [ = 2t + 1. Then we need to compute

G57a (x)GZl (ZL‘)

4.3
G(ZL‘)GlO’l (ZE) ’ ( )
which is very hard to compute. So p,(n) has a generating function as follows.
$>:1+Zpa(n)x”: 1
(% 25) o0 (257 2°) oo (@5 %) oo
¥ 1
H 1 — $5m+a 1 _ m5m+5—a)(1 _ x2m+1) : (44)

We will attempt to find a modular transformation for the generating function of p,(n).
4.2. The modular transformation

One can see that
—TiT

Fu(e) = o) (45)

where G, is as defined in [20]. It seems natural to find a modular transformation for

G4(27). One can see that
2(5m+5—a)n

H,(z) = Z Z o +3 Z : (4.6)

n=1 m=0 n=1

2(5m+a)n

h+i .h/+i/z
) and 2’ = T.x = ™% . We have four cases.

4.2.1. Case 1: 10|k

Let 10|k. Assume the following definitions.

10m+2a=gk+p, , 0<p,<k , qeNU{0}

n=rk+v , O<v<k , reNU{0}. (4.7)
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Since 10|k, it is easy to show that 10|u, £ 2a. So

. > 1 —27z
H, — 2mi(gk+pa) (rk+v) == (ak+p)(rk+v) 4.8
Ha==12a(mod10) q,r=0
O<v<k
So in the same way as in [20], we have
1 27rh,uy 27r)\u / C(1—s,2)C(1+s,%)ds
H,(x) = ——
(z) 4rik? Z cos( k 28 cos( %)
ta==+2a(mod10)
O<v<k
0<A <k
1 i 27rh;u/ ) 27r)\u ¢(1 )C(1+s,7)ds
. (4.9
- Amk? Z sin( k / A sm( 5) (4.9)

pa==%2a(mod10)
O<v<k
0<A<k

where (a) means the line a + iy for y € R. Let hh/ = —1(modk). Since ged(h, k) = 1,
so ged(h,10) = 1. If b = £1(mod10), then A" = F1(mod10). On the other hand, if
h = £3(mod10), then h' = F3(mod10). If we define b as follows,

a h = £1(mod10)
b= (4.10)

3a h = £3(mod10).

then one can see that the equation p, = h'pg(modk), and 0 < p, < k results in the
fact that p, = pe( mod 10), if h = +1(mod10); and p, = 3p,(modl0). Since the
possible amount for j,, pp, are 2,4, 6,8, then we can conclude that if h = £1(mod10),
then p, = £2(mod10) iff p, = £2(mod10) and p, = £4(mod10) iff u, = £4(mod10).
On the other hand if h = £3(mod10), then u, = £2(mod10) iff u, = +4(mod10) and
ta = £4(modl0) iff p, = £2(mod10). So in the similar way as in [20], one can see
that

H,(z) = Hy(z') — 2miRes. (4.11)

where Res is the residue of the path C' which is a rectangle with edges Im(z) = £

N

So this is the first case modular transformation.

4.2.2. Case 2: k=10t +5

Let k = 10t 4+ 5 for some ¢ € Z. Assume again the definitions of (E=7). We know
that
10m+2a)n 10m—2a)n

® ® 2
Hy(x) =YY" + . (4.12)

n n

n=1 m=0

38



Since gk + po = 10m %+ 2a and 5|k, we can conclude that 5|u, + 2a. So we can show
again that

27rih((2q+l)k+ua)('rk+u)

Ha(m) = Z Z i e*i"z((2q+1)k+u)(rk+u)

rk +v
=+2a+5(mod10) ¢,r=0

0<V<k
e’ 2wih(2gk+pa) (rk+v)
e k —27z (2 k
=% (2qk+p) (rk+v)
+ E E T ek . (4.13)
ta=%2a(mod10) q,r=0
O<v<k

So by using the Mellin transformation, we have

27mihpqv F(S>k8d8
H,(z) = e k /
iZU;S(modlo) quO 2mi Tk +v) Jsy @rz)3((2q + 1)k + pa)*(rk + v)*
O<v<k

27'rzh,uau F(s)ksds
* Z Z 27i( rk +v) / (272)%(2qk + pa)*(rk +v)* (4.14)

«=+2a(mod10) q,r=0
O<v<k

By using the definition of the hurwitz-zeta function and considering the convergence,

we will see that

1 2mihpqv F(S) /,l/ + k 1%
H,(x) = o , 1, %)
D=5 2 /(g) ey & g ol T L g

ta=12a(mod10)
O<v<k

1 2mihpar I'(s) 1
" ok 2. ¢ /(g) (47Tkz)5<(8 o (s +1 %)d (4.15)

Ha=12a+5(mod10)
O<v<k

Now, we want to use the following property of hurwitz-zeta function

2I'(1 — s . TS b T\ g A
330 = gt (3005 oGl o)

and

pw+k 201 —s) ([ . 7s i T Al A
50 = o (05 D eos TGt =3, )
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So (EIH) will transform as follows.

1 2rihpgqy 2I(s)C(s + 1, H)I'(1 — s)
H,(z) = Z ek /(3)

2mik (4rk)z®
Ha=12a(mod10) 2
O<v<k
k
() S eost -5 2
7rs 7T>\,ua A
1 —
+ cos(— Zsm ’ )C(1 — s, 2k)ds
]_ Z esz}L,uau / QF( )C(S —|— 1, %)F(l - S)
2mik (2) (4rk)z*
Ha=12a+5(mod10) 2
O<v<k

TS TAL A
X (sin(;) cos( ? 9¢(1 - s, ﬁ)
A=1

k
25) sin(m“a)m— A )ds (4.18)

+ cos(ﬁ— —)
= k "2k

. . 2nithpqr
We know that sin and cos are orthogonal; so if we change e™ % to cos(%h““”)
T

i sin(2™#e2) then we can use this orthognality and use the relation I'(s)['(1—s) =

sin(7s)
to get the following equation.
1 27rh,ua 7r)\ua / C(s+1,5)¢(1 —s,5) (=1
Hy(z) = —+ d
(z) Amik? Z cos( k zs cos( 2) °
Ha==%2a+5(mod10)
O<v<k
0<A<k
1 . 27rh,ua ) W)\Ma Cs—i—l 2) s,ﬁ)
d
* 4k? Z sin( k 28 sin( ) §
Ha==E2a(mod10) 2
O<v<k
0< A<k
1 2rhptaV, T C(s+1,9)¢(1 — 5, 2)(—1)
— d
+ 1ok Z cos( ’ ) cos( 2 ) ) 2 cos() s
ta==12a+5(mod10) 2
O<v<k
0<A<k
1 b, e, [ G5+ 1,0C(1 =5, 2)
— ds.
* 4rik? Z sin( k )sin k ) (2) 2% sin(Z2) °
ta==%2a(mod10) 2 2
O<v<k
0<A<k
(4.19)
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So

1 2mhpav T\ b
Ha(ff)zm Z cos( ? ) cos( ? )
pa==12a(mod5)
o<y, A<k
0<A<k
/ (s + 1, £)C(1 = 5, g ) (=1)*rat?
2% cos(5)
2rhpav, . T,
+47rk2 Z sin( - ) sin( k )
pa==£2a(modb)
o<v, <k
0<A<k
(s +1,2)C(1— s, 4) (—1)hett

(2 28 sm(%)

(NI

ds

ds.

(4.20)

Assume again that p, = h'uy(modk) and hh' = —1(modk). If h = £1(mod5) and
considering 5|k, we can conclude that 5|’y F 2a. So 5| F pp £ 2a. This implies that

ty = +2a(modb). Similarly, we can show that if h = £2(mod5), then puy

This shows that

) a h = +1(mod5)

ax h = £2(mod5)

Thus if we change s to —s, we have

1 27 v TAh
Ha(x)—mo<;<kcos( - ) cos( k )
/ C(=s+ 1 ¢ + 5 5) ()Mt
X
;3

z7* cos( %)

ds

/
Z sin(27wby) sin(ﬂ)\h pdb)

e k 2
Wy, 0<v, A<k
0< A<k
L S LC £ s ) ()M
s s.
(22) z7*sin(%)
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= +a(modb).

(4.21)

(4.22)



On the other hand, one can see that

, 1 27h/ uyv T
Hy(2") = Py Z cos( - ) cos( k )

up==2a(mod5)

o<v, <k
0<A<k
. s+ 1,91 =5, )11
25 cos(5) °
. 2mh gy . T
+47T]{22 Z sin( 7 ) sin( k )
up==2a(mod5)
0<v A<k
0<A<k
F1,0)C(1 — s, 2)(—1) Mt
(3) 2% sin(%)

Since ged(2,k) =1and 0 < v < k, 0 < A < k, we can replace 2v with v and % with \.
So

1 wh' v 27 Ay
Hy(2') = e Z cos( - ) cos( . )
up==+2a(mod5)
0<v,A<k
0<A<k
(s +1, )01 — 5, DDAttt
3) 25 cos(%)
1 . mh gy 2w A
+47Tl€2 Z sin( ’ ) sin( ? )
pp==12a(mod5)
O<v, <k
0<A <Lk
(s + L gp)C(1 = 5, 2) (=)ot
/ 2k fﬁmé) ds. (4.24)
2
If we replace v, A and consider that A’ is odd, we will get
1 wh' A 27V Ly,
Hy(2') = e Z cos( . ) cos( . )
up==2a(mod5)
O<v, <k
0<A<k
C(S + 17 2)}c)<(1 - S, %)(_1)21/4-}1’;%—}—1 ds
3) 2% cos(%)
1 o mh A . 2T
+47rk2 Z sin( ? ) sin( ? )
up==12a(mod5)
o<, A<k
0<A<k
1.2 1 — s Y)(—1)2v+h s+l
C(S + ) Qk)C( : 87 k)( ) dS. (425)
(%) A Sln(%)
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Now we define

1 2mhpav T A g
Hy\(7) = y— Z cos( ) ) cos( ’ )
Ha==E2a(mod5)
O<v<k
/ C(s+1,7)¢(1 —s, 2k)(—l)“““d
s
2% cos(%)
. 2Tmhpav . . T\
+47rk2 Z sin( ’ ) sin( ’ )
ta==E2a(mod5)
O<v<k
L)1 = s, 3 ) (—1)ratt
C('S_I_ ) )g( 8 Qk)( ) dS. (426)

(2 2% sin(%)

(NI

Then we have H,(z) = >.5_, H,x(x)(—1)*. Comparing (E=23), (E20), we have
H, () = Hy(b,\)(2") + 2miRes) (4.27)

where Res), is the residue in the same mentioned path C' in case 1. Thus

H,(x) = Hy(a') + 2mi Yy Resy(—1)™. (4.28)

4.2.3. Case 3: ged(k,5) =1 and k is even

Assume that 5t k. Let K = 5k and H = 5h. We define

10m+2a=gK +p, , O0<pu, <K , qeNU{0}

n=rk+v , O0<v<k , reNU{0} (4.29)
Also
HH' = —1(modk) , hh' = —1(modk) (4.30)
So we have
2 _(10m+2a)n 0 (10m+10—2a)n
x xr
) Gy = 33 S A
n=1 m=0 m=0
_ Z eQﬂ"i(h(qKJru;:)(Tker)) i e%(QK+/La)(Tk+V)‘ (431)
rk + v
Ha==E2a(mod10) q,r=0
o<v<k
0<Na<K
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By using a Mellin transformation

o)

B Jamitiar ['(s)k*ds
H,(z) = Z Z rk +v) /(‘;‘) (K + pa)*(rk +v)3(272)

ta==£2a(mod10) r=0

o<v<k
1 627ri hﬂkau F(S) lla
= 1, —-)ds. 4.32
2mik Z rk+v /(3) (QWZK)sg(S k RN k:) (432)
Ha==%2a(mod10) 2
o<v<k

Again, using the property of hurwitz-zeta function [20], one can see that

1 hpa 27T)\Ma C$+1 (1 — s,2)ds
Ha(w) = Amik K Z cos(2m k ) co 28 cos( 2) :
ta==%2a(mod10)
o<v<k
0<pra, A\ <K
1 , h,uay , 27T)\Ma C(s+1,%)¢(1 —s,2)ds
2
+47TkK Z sin(2m k / zssm( 2)
ta==12a(mod10)
o<v<k
0<ppa, A<K
(4.33)

If we define p, = 5H'uy(modk), then since p, = £+2a(modl0) and k is even, we can
show that p, = 10H 1 £+ ak for some a such that ak = +2a(mod10). Also, since p,

runs over a residue system modulus £ twice, one can see that p;, runs over the same
modulus k. Thus

v _g 2
Ho(z) = : Z cos( 27r— Z / 270\'% (s LE)CL = 5, 7)ds

Amik K 2% cos(%)
ta==£2a(mod10) 0<A<K
o<v<k
0<#a<K
1 27T)\,u C(s+1,9)¢(1 —s,2)ds
(2m— ) k k)77
* Ak K Z sin( " Z / 2% sin(%2)
Ha=%2a(mod10) 0<A<K 2
o<v<k
(4.34)
By using property of the hurwitz-zeta function again; and replacing s by —s, we will
have
1 o\ 2*T(s)C(s + 1, 2)((s, £)ds
H,(x) = 2R ALY 4.35
(z) 2mi K Z ‘ /(—3) (2mk)® (4:35)
Ha==E2a(mod10) 2
0<ptg, A\ <K
In the first place, we know the following equations.
pa = 10H py(modk) ,  po = £2a(mod10). (4.36)

We know that ged(k, 10) = 2; so we can find o' such that ak = £2a(mod10). So it is
easy to see that there exists o such that p, = 10H i, £ ak(modK). Assume that

o htiz ” 2mi(H' +i/z)

r=e""k | x'=e K (4.37)
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If we define J, as

© 2mima  (10m-+2a)n *2’”"“* 2(10m+10—2a)n

Ja(ZL’)Z Z e 10 ajn I Z 10 7 (438)

m,n=1 m,n=1

then

s A Hb
To(a") = — 3 e?ﬂ“f“?/ : F(S)C(SH’KS)C(S’i)dS_ (4.39)
(

2mi K 3 (27k)
ta==%2a(mod10) 2
0<ptg,A\<K
So one can see that
H,(z) = Ju(2") — 2miRes. (4.40)

4.2.4. Case 4: gcd(k,10) = 1.

Assume that 10 1 k. Let K = 5k and H = 100h. We define
10m+t2a=¢K +p, , 0<p, <K , qeNU{0}
n=rk+v , O<v<k , reNU{0}. (4.41)
Also
HH' = —1(modk) , hh' = —1(modk) (4.42)

So we have
(10m+2a)n > x(10m+10—2a)n

Ha(w) = Gola®) = 33— —+ 3 ————

n=1 m=0 m=0

=272 (2K +pua) (rk+v)

S
_ Z e27ri(h(2qK+Hka)(Tk+V)) Z e k
rk+v

ta==%2a(modl0) q,r=0
o<v<k
O<Ma, <K

=272 (2K + K +pa) (rk+v)

[oe)
(W(2qK+K +pa)(rk+v)) e
4 § : 6271'1 5 E
rk + v

Ha==%2a+5(mod10) q,r=0
o<v<k
0<,Uza. <K

(4.43)
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By using a Mellin transformation

[e.9]

- hpqv 1 F(S)ksds
Ha(a) = ey e | T G
ua:iga(;nodlo) q;o 2mi(rk +v) (3) (20K + pa)*(rk + v)*(272)
o<v<k

+ Z eZﬂzh“ka” Z : 1 / F( )kst

Ha=12a+5(mod10) q,7r=0 27T2(Tk + I/) (%) <2QK + K + ua)s(rk + V)s(2ﬂ-z)s
o<v<k

hpqv

1 271'1 7 F(S) lla y

ta==x2a(modl0)
o<v<k

hpqv

1 27

¢ * F(S) ,ua + K 1%

3
Ha=%t2a+5(mod10) 2
O0<v<k

Again, using the property [20] of hurwitz-zeta function, one can see that

1
H = E 2
o) = LK cos(2m

ta==E2a(modl0)
O<v<k
0<ppa ,A<K

/ (5—1—11’ (1—s,5)ds
z)% cos(%’)
2
fptav ) sin( 7T)\'ua)

2
+47rkK > sin(ry 2K
Ha==E2a(mod10)

huay) (27r)\ua)
kN ok

Oo<v<k
0<pta,\<K
/ CS—l—l” (1—s,55)ds
)% sin (%)
hptav 2T A\ g N
—1—4ka Z cos(2m ) cos( e )(—1)

Ha==E2a+5(mod10)
o<v<k
0<praq ,A<K

/ Cs—l—l” (1—s,5)ds
005(2)

huav, . 27\, A
+47rk:K Z sin(2m ’ ) sin( )(—1)

2K
Ha=12a+5(mod10)
0<z/§k

C s+ 1 Y)C(1 = s, 5 )ds
/ sm( 5 )2K . (4.45)

Let 10H y = po(modk) and 0 < pp < k. Then —u, = HH'py = 100hH'py, =
10h i, (modk). Also, 10H uy, = pe(modk) and 10H' 1, = 0(mod10). This implies that
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by the Chinese remainder theorem, 10H’;, = p,(modK). So by changing s to —s,

1 pV 2H' Ay
H,(z) = 77 A o
(x) e :ﬂz(: " cos(m e ) cos( k: )
N <Lk
0<,U«a,)\<K
C(=s+ 1, )C(1 + 5, 5 )ds
(22) (22)=% cos(%)

1 v, . 2H ' mAp,
+47T]{3K Z sin(m 7 ) sin( ’ )

ta==+2a(mod10)

Oo<v<k
0<pra, A\ <K
x/ C(=s+1,5)¢(1+ s, 5 )ds
(22) (22)7% cos()
1 LV 2r ANH' 1y, A
+47rik’K Z COS(W?) COS(T)(—l)
ta==E2a+5(mod10)
o<v<k
0<prag, A\<K
X/ C(=s+ 1, )¢ + 5, 5)ds
() (22) 7% cos(%)
1 2mAH'
e DS sin(yr“}”(”)sin( T - Foy
ta=12a+5(mod10)
o<v<k
0<pta ,A<K
/ (( s+1 ”)<(1+s,§)d8
z)~% cos(%) '

47
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On the other hand,

1 2H
Hy(2') = p—— Z cos(w%) COS(%)
1p==£7(mod10)
o<v<k
0<pp,A<K
/ ¢( s+1”Cﬂ+S@%Ms
z)=% cos(%)

v . 2H T\
+47rkK Z sin(m K)sm( ? )

up==£7(mod10)
0<v<k
0<pta A <K

/ ¢( s—i—l U)C(1+ s, 5 )ds

)75 cos(%)

2 \H'
Z COS(W%) COS(FTMI])(—I)/\
Ha==%?(mod10)

Jr47rsz

o<v<k
0<praq, A\<K
L[ Ses L+ s, 5 )ds
) (22)7% cos(5)
1 2 \H'
e 2L s sin(FEE ()
Ha=x7(mod10)
o<v<k
0<prg,A\<K
_ 1,4)¢(1 ,id
o f SEEt LOCU s g)ds (4.47)
3 (22)7* cos(%)
Hence,
Hy o (2) (=) + 2miRes = H, x,(2). (4.48)
So

> Hyao (@) ()M +) 2miRes = > Hopu(z). (4.49)
A\ AV AV

This is the modular transformation. So we have the following theorem.

Theorem 4.2.1 Let H,(x) is defined as (B8). Then we have four cases.
If 10|k, then

H,(z) = Hy(z') + 2miRes ( > = s,5)60 ;r i %)> : (4.50)

0<v, A<k

If k =10t 4+ 5, then

H,(x) = Hy(a') + 27i Yy _ Res ( (4.51)

A=1

C(=s+ 1LY+, ﬁ><—1>A+h'ub+1> |

48



If ged(k,5) =1 and k is even,

v — g 2
H,(z) = Jo(2") + 2miRes (cos(2ﬂl/zﬂa)€(s +21; ggsg((;) ’ k)> : (4.52)

where Jo(x") is defined in (B239), p, = 10H' uy, £ ak(modbk), and H = 5h.
If ged(k,5) = 1 and k is odd,

Z Hy o (2) (=) + Z 2miRes (C(_S +1,5)¢d +)S’ ﬁ)) = Z Hoxo(x). (4.53)
AV A\v

(22)7% cos(% —

where K = 5k and 100h = H.
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CHAPTER 5

Future research

In this chapter, we will explain an outline of the possible future research. There are
two different categories for the continuation of this work. The first class are the ones
which deal with a subset of N containing symmetric residue classes. In the latest work,
Loughlin proved an exact formula for the case that the parts are not multiples of r, s
for some square-free coprime integers. One can see if r t n and s { n, then —n { r and
—n t s for n € Zy. So this set is a symmetric one. We also had some results about
the modularity of partitions with parts of the form 10t + a or 2¢ + 1. So in the first
step, we can prove an exact formula for the partitions with parts of the form rt 4+ a or
st +b for some square-free coprime integers r, s. This is also a symmetric subset. Also,
we can prove an exact formula for the partitions with parts which are not divisible by
1 square-free and coprime numbers rq,--- ,r;. This set is also a symmetric sequence.
Also the generating function can be seen as follows.

i

P(r) =TTU/CT] rom (5.1)

J=0  1<I<j

where

1O =Tl 5.2

k

This idea is achievable, since the function f can be computed based on the Dedekind
function . We know the modularity transformation and coefficients of Dedekind func-
tions explicitely. Thus we can use help from the properties of Dedekind functions to
show an exact formula for the number of such partitions.

We can also aim for a more general case. We can generalize chapter 4 for more than
two moduli. So we need to prove an exact formula for the number of partitions with
parts r; = a; where r; are square-free and pairwise coprime numbers. Another idea is
to find a function to prove an exact formula for the number of partitions with parts
rt &+ a and st = b where r, s are not coprime. This is also doable, because we can write

inclusion-exclusion formula to filter the greatest common divisor and use the formula
() for ¢ = 2.
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One of the best way to continue this research, which is the second category, is
to find the number of partitions with parts in a non symmetric residue classes. The
simplest example is to find the number of partitions with parts of the form Mt + a. If
we can find the number of this partition, then it may be possible to find the number of
any non symmetric collection of residue classes. In particular, we can find the number
of partitions with residue parts in Z,. It means that we can count the number of ways
to represent n € Z, as aj + -+ + a;. So we can find out that locally-speaking, how
many ways do we have to represent n by the quadratic form z% + - - - + z3. If we know
that this number is positive for every prime number, we can conclude that n can be

represented by 3 + -+ + 7 in @, according to Hasse-Minkowski Theorem.

Theorem 5.0.1 [30, Hasse-Minkowski Theorem for quadratic forms] In order that f
represent 0, it is necessary and sufficient that, for all v € V', the form f(v) represent

0. (In another word, f has a global zero, if and only if f has everywhere local zero).

So n can be represented in Z by z7 + --- + z7. Also, we can compute the number of
representing n by z3 + --- + 22 according to [19, Chapter 5]. So if we compare this
number with the same number in every Z,, we will get a new view about the tightness
of Hasse-Minkowski theorem (obviously this number in finite fields is bigger than this

number in 7Z).
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