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Abstract

We study quantum stabilizer codes and their connection to classical block codes. In
addition, different constructions of quantum stabilizer codes and methods of modifying
them are presented. Two-dimensional cyclic codes are recalled and a new method of
obtaining quantum codes from 2-D cyclic codes is given. We also present a method of

obtaining quantum stabilizer codes using additive codes over [Fy.



KUANTUM SABITLEYEN KODLAR

Reza Dastbasteh
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Tez Danigmani: Prof. Dr. Cem Giineri

Anahtar Kelimeler: Kuantum sabitleyen kodlar, toplamsal kodlar, kendine dik kodlar,

iki boyutlu devirsel kodlar.

Ozet

Bu tezde kuantum sabitleyen kodlar ve klasik blok kodlarla iligkileri caligilmigtir. Cesitli
kuantum sabitleyen kod ingalar1 ve bu kodlar1 doniigtiirme metotlar: sunulmugtur. Iki
boyutlu devirsel kodlar yoluyla kuantum sabitleyen kodlar insa edilmisg, bunun yani sira
[, tizerinde toplamsal kodlar kullanilarak kuantum sabitleyen kod insasi sunulmustur.
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CHAPTER 1

Introduction

1.1. History and Overview

The correspondence between quantum codes and the classical code is a topic which
has been studied during the past two decades. There are some similarities between
quantum codes and classical codes and we can find a construction for quantum codes
by using classical codes. As well as similarities, there are also some substantial differ-
ences. [6,/16] are good references that describe the physical and information theoretic
motivations behind quantum codes.

In 1995, Shor showed the existence of quantum error-correcting codes [12]. Then,
Calderbank and Shor showed that quantum codes can be obtained by using self-
orthogonal classical quaternary codes [2]. Around the same time, Steane in [14,/15]
discovered the existence of good quantum codes with a similar construction. In 1998,
Calderbank et al. proposed the exact relation and introduced a wide range of con-
structions of quantum codes by using classical codes over Fy [3]. At the same time,
Gottesman independently studied the quantum codes in his Ph.D. thesis and presented
some new ideas of constructing quantum codes |7]. In 2001, Ashikhmin and Knill ex-
tended the construction and introduced non-binary quantum stabilizer codes (quantum
codes obtained from classical self-orthogonal codes) [1]. The motivation for studying
quantum stabilizer codes is due to available simple encoding and decoding algorithms.
Finally, Lisonek and Singh proposed a slightly different method of constructing quan-
tum stabilizer codes from linear codes over Fy in 2014 [10].

In this work, we only consider the quantum stabilizer codes which can be con-
structed from classical codes. We mostly use [1;|3,/10]. This thesis is organized as
follows:

In Section 1.2, we briefly review cyclic codes and the connection between cyclic codes
and polynomial rings. Section 1.3 is concerned with 2-D cyclic codes, a generalization
of cyclic codes. We study the connection of 2-D cyclic codes with the polynomial
rings, how to find zeros of a 2-D cyclic codes, and a method of finding the Euclidean
dual of a 2-D cyclic codes. In section 1.4, we investigate the Hermitian dual of 2-D
cyclic codes. Then, in Section 1.5, we give a characterization of all 2-D cyclic codes.
Our contribution in this chapter is Section 1.4. The main references of this chapter
are [4,9,11].

In chapter 2, we study the connection between quantum stabilizer codes and self-
orthogonal classical codes. The definition of binary stabilizer codes is presented in
Section 2.1. Next, we introduce some general methods of modifying and constructing



binary quantum stabilizer codes in Section 2.2. In Section 2.3, we explain a method
of obtaining quantum codes from an arbitrary linear code over F4. Finally, in the
last section, we generalize the quantum stabilizer codes construction to the non-binary
case, and propose a method of constructing non-binary quantum stabilizer codes. Our
main references of this chapter are [1,|3}5,/10].

In Chapter 3, we present some new constructions of quantum stabilizer codes. For
example, we define 2-D cyclic quantum stabilizer codes and characterize all the 2-D
cyclic quantum codes in Section 3.1. In Section 3.2, a new method of obtaining quantum
codes from 2-D cyclic codes is proposed. Finally, we present a general method of
constructing quantum stabilizer codes (both binary and non-binary) from any additive
code.

1.2. Cyclic Codes

Let F, be a finite field with characteristic p. A g-ary linear code C' of length n and
dimension k is a k-dimensional subspace of Fy. Each element of a linear code C' is
called a codeword. The weight of the codeword v € C' is defined as the number of non-
zero coordinates of v. The minimum nonzero weight of code C' is called the minimum
distance of C'. We denote a linear code of length n, dimension k, and minimum distance
d as [n, k,d] code. Finally, the set of elements in Iy which are orthogonal to all members
of C, with respect to the usual (Euclidean) inner product on F?, is called the dual of

q Y
the code C and is dented by C*.

Definition 1.2.1 A linear code is called cyclic if for every ¢ = (cp,c1,- -+ ,cn1) € C,
(Cn—1,Coy "+ yCn_g) is also in C'.

In other words, a linear code which is closed under cyclic shift is called cyclic.
Obviously, dual of a cyclic code is also a cyclic code. We assume (n,p) = 1.
Note that the following map is an F,-vector space isomorphism:

¢ :Fr — Fylz]/ <a"—1>

n—1
(b((aOa ag, - 7an71)) — Zalxl
=0

Now, we have the following useful criteria for cyclic codes.

Proposition 1.2.1 A linear code C' in ¥y is cyclic if and only if ¢(C) is an ideal of
Folz]/ <a™—1>.

Proof: Being closed under cyclic shift in Fy is equivalent to being closed under mul-
tiplication by  in Fy[z]/ < 2" — 1 >. O

Note that the ring Fq[x]/ < 2" — 1 > is a principal ideal ring, so its ideals can
be generated by a single polynomial. The generator polynomial of each ideal, which
is a unique monic polynomial of the lowest degree, is called the generator polynomial
of the cyclic code. If g(z) is the generator polynomial of the code C, then dim(C) =

n — deg(g(x)).

Remark 1.2.1 Let g(x) be the generator polynomial of the code C. Then the roots
of g(x) in extensions of F, are called zeros of the code C, which are the common zeros
of all codewords. The assumption (n,p) = 1 guarantees that 2" — 1, hence g(x), is
separable. Hence, the number of zeros is equal to the degree of g(z).
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1.3. Two Dimensional (2-D) Cyclic Codes

Consider the set

( T 3
.0 Qo,1 Qg,2 T apny—1
Q1,0 i 1,2 T A1,ny—1
mn Xn _ b b b b
]Fql 2 = Qi € Fq ,
L _Gn1—1,0 Api—-11 Apy—12 * anl—l,ng—l_ )

where n, and ny are positive integers. This set is an nins-dimensional vector space
over [F,.

Definition 1.3.2 A linear code C' C F,"*""* is called a 2-D cyclic code of area ny X ny
if (aits,j+¢) is also in C' for all s and ¢, where i + s and j + ¢ are taken modulo n; and
ns, respectively.

In other words, a two dimensional (2-D) cyclic code of area ny X ny is an F, linear
code C' C F,"*" where C is closed under both column and row shifts. Note that
similar to the cyclic case, the dual of a 2-D cyclic code is a 2-D cyclic code and also
we have an alternative representation for 2-D cyclic codes. Consider the following
[F,-vector space isomorphism:

¢ :Frxm — Folr,y]/ <a™ —1,y" — 1>
ni—1ns—1

O(aig)) — D> > ai 'y

i=0 j=0

Proposition 1.3.2 A linear code C' C Fp*™ s 2-D cyclic if and only if $(C') is an
ideal of Fylz,y]/ <a™ —1,y" — 1 >.

Proof: Being closed under row and column shifts are equivalent to being closed under
multiplication by x and y, respectively. Rest of the proof is clear. O

From now on we assume that n; and ny are relatively prime to p = char(F,). Let
a1 be a primitive nyth root of unity and as be a primitive nsth root of unity. We take
both of these elements in the smallest extension F,s of F, such that n; and ny divide
q° — 1. Consider the following set:

Q:{(ali,agj)|O§i§n1—1,0§j§n2—1}.
The F,-conjugacy class of (a1’ ap?) is defined as
(1, aa?)] = {(an?, aa?), (a1, ), (™, T, -+ (g )},

where § is the least common multiple of the degrees of ;" and ay’ over F,. We can
write € as a disjoint union of these F -conjugacy classes [4].

From now on, U C  will be the union of some conjugacy classes. The ideal
corresponding to the set U is defined as I(U) = {f(x,y) € F,[z,y] | f(a) = 0 for any
acU}.



Remark 1.3.2 Note that for any U C 2, both of ™ —1 and y"2—1 are in I(U). There-
fore, < z™—1,y"2—1 >C I(U) and we can consider [(U) = [(U) /< 2™ — 1,y" — 1 >.
The ideal I(U) is called the 2-D cyclic code associated to U C Q.

Definition 1.3.3 Let J = J/< ™ —1,y™ — 1 > be a 2-D cyclic code. Then the set

Z(J) = {(.p) € Q| f(a, B) = 0 for any f € J}
is called the zero set of the 2-D cyclic code J.

Example 1.3.3 Let ¢ = 2, ny = 3, and ny = 5. We fix a primitive root of unity
a € Fig which satisfies the equation z* +2 +1 = 0. So a® and o® are 3rd and 5th
roots of unity, respectively. Put o; = o® and ay = a®. Then Q is

0= {(061,052)|0<Z<20<j<4}
Let C' be a 2-D cyclic code with the polynomial representation
[=<@+)@'+¥¥+y¥+y+1), g+ D@ +2+1)> /<2’ —1,5° —1>.
Then
Z(C) =[(1, D] U [(a1, a2)] U [(a1?, a2)].

Now, we present the following statements without proof. See [4,9] for further details
and proofs.

Proposition 1.3.4 Let U C Q. Then Z(1(U)) = U

Theorem 1.3.5 Let U be a subset of Q and U = Q —U. Consider the 2-D cyclic code
Cy corresponding to the ideal 1(U)/< 2™ —1,y" — 1 >.Then dimension of the code
Cy is equal to | U |.

Proposition 1.3.6 Let Cy be the 2-D cyclic code with the zero set U and polynomial
representation I(U)/< 2™ —1,y"™ —1>. Then its dual is the 2-D cyclic code Cg-1,
which has the zero set

Z(CUL) = Z(CU—l) =U1=0- U_l,

where U~" = {(u ™" ™) | (p, p2) € U}

1.4. Hermitian Dual of 2-D Cyclic Codes

In this section, we assume that F, is a finite field, where ¢ = p* and p is a prime
number. Denote the conjugate of a € F, by @, where @ = a?. For a,b € F} we denote the

Hermitian inner product of a and b with < a,b >= Z aib;. If f(z,y) Z Z a; 2"y

zl =0 7=0

is a polynomial in IF [z, y| we define f x,y) Z Z a;r'y’ .
=0 7=0



Lemma 1.4.7 Let f(x,y) and g(x,y) be polynomials in Fy[z,y]. Then the following
hold:

1. f(z,y) + g9(z,y) = f(z,y) + 9(,y).
2. f(x,y).9(x,y) = f(z,y).9(7,y).

8. flz,y) = f(x,y)

Corollary 1.4.8 For any ideal I in Fylz,y], T = {f | f € I} is also an ideal of
Fylz,y).

It is clear that 271 — I = 2™ — 1 and y™ — 1 = y™ — 1. So, if I(U) is an ideal of
Fylz,y]/<a™ —1,y" — 1 >, then I(U) is also an ideal of Fylz,y] /< a™ —1,y" — 1 >.

Lemma 1.4.9 Let I(U) be an ideal of Flz,y] /< a™ —1,y™ — 1> . Then I(U) and

I(U) are isomorphic as ideals, hence as linear codes.
Proof: Consider the map

O I(U)/<a™ — 1y —1>— I{U)/<a™ —1Ly™ —1>
flay)+ <a™ -1,y —1>— f(z,y)+ <a™ —1,y" — 1 >.

Assume that f(x,y) and g(z,y) € Fylz,y] and f(z,y)+ < 2™ — 1L,y"™ — 1 >=
gz, y)+ < 2™ — L,y"™ — 1 >. Then f(z,y) — g(z,y) €< 2™ — 1,y™ — 1 > and
consequently we can consider it as f(z,y) —g(z,y) = h(x,y)(z™ — 1)+ k(z,y)(y"* — 1)
for some h(z,y) and k(z,y) in F,[z,y]. Hence f(z,y) — g(z,y) = h(z,y)(a™ — 1) +
k(z,y)(y™ — 1) which means that f(z,y)+ < 2™ — 1,y™ — 1 >= g(z,y)+ < 2™ —
1,y™ — 1 >. This shows that the map ¢ is well defined. By similar steps we can
also show that ¢ is one-to-one. Moreover, according to Lemma [I.4.7 ¢ is a ring
homomorphism. Finally, ¢ is onto since the conjugation operator is an automorphism

of F,. O

Theorem 1.4.10 Let I(U) be an ideal of Fglz,y] /< a™ —1,y" — 1 >. Then the zero
set of the ideal I(U) is the set UP? = {(aP, ") | (a, B) € U}.

Proof: By Lemma [1.4.9, dim(I(U)) = dim(?(U)). Also, since p is relatively prime

to both ny and ng, |UP| = |U|. So it is enough to show that UP C Z(I(U)). Let

f(x,y) € I(U), where f(z,y) € I(U). We have

ni—1ng—1 ni—1ng—1
— Tl d . Pl g
floy) =D aga'y’ =D > a ey,
=0 75=0 =0 7=0

Now, suppose (aF, 5P) € UP. Then,

ni—1ns—1 ni—1ns—1
flar, ey =3 aPa®B? = (Y Y aa’ BV = (f(a, B)P = 0.
=0 j=0 =0 j=0
Therefore, U? C Z(?(U)) O

Now, we present the main theorem of this section which allows us to find the
Hermitian dual of an arbitrary 2-D cyclic code.
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Theorem 1.4.11 Let Cy be the 2-D cyclic code with the zero set U. Then, the Her-
mitian dual of Cy is the code Cg-», which has the zero set U'=Q-U>,

Proof: Let ](U)/< x™ —1,y™ — 1 > be the polynomial representation of the 2-D
cyclic code Cy. By Proposition|1.3.6, the Euclidean dual of Cyy is the code C-1, which
has the polynomial representation [ (U_l) / <z" —1,y" —1>. Now, let Cz-1be the
code corresponding to the conjugate of the ideal I(U_l)/< ™ —1,y? —1>. By

Theorem |1.4.10, we conclude that Cz-1 = Cy-».

Now, we claim that the Hermitian dual of the code Cy is C5-1. It’s because of that

U ) mod < z™ — 1,y — 1 >

and since I(Uﬁl)/< z™ —1,y" — 1 > is the Buclidean dual of I(U) /< 2™ — 1,y — 1 >,
we have:

I(U).](Uﬁl) =0 mod < x™ —1,y™ —1>.

O
Note that in the proof of the last theorem, the fact (U ")? = U ' is used which
can be easily verified.

Example 1.4.12 Let ¢ = 4 and ny = ny = 3. We fix a primitive root of unity
a € Fy = {0,1,a,a} which satisfies the equation 2 + x + 1 = 0. So we can put
a1 = g = . Then Q is

Q={(a',0y) [0<i<20<5<2}.
Let C be the 2-D cyclic code over F4 with the polynomial representation
[=<@+1)P+ay+1),(y+1)(@®+z+1)>/<a™ -1y —1>
Then
Z(C) ={(1,1), (a1, a2%), (a1, 1), (%, 1), (ar®, a2®) }.

Note that all of these elements have a singleton conjugacy class. Now, according to
Theorem [1.4.11} the zero set of the Hermitian dual of C' is

Z(Clh) =0 - (Z(C))_Q = {(1,0&2), (1,0[22), (a17a2)7 (0412,a2)}.
Also, this set is the zero set of the ideal
<y+a)(r+1),@®+z+D)(+y+1) > /< ™ —1,y" —1>.

Therefore, Ctn =< (y+a)(z + 1), (2> +z+ 1)1 +y+1) > /<a™ — 1,y —1 >,

Now, we state another theorem which plays a critical role in finding quantum sta-
bilizer codes in Chapter 3.

Theorem 1.4.13 If Cy is the 2-D cyclic code with the zero set U, then dim/(Cy™") —
dzm(C’U N CULh) = |U N U_p|.



Proof: By Theorem [1.3.5] dim(Cy) = |U| = |Q — U|. Also, from Theorem [1.4.11] we
can see that Z(Cy™*) =T ". Tt is clear that Z(Cy N Cytt) =UUT . So,

dim(Cy*?) —dim(Cy N Cyte) = Q-U |- Q- (UuT ")
= MNing — |U7p| — (n1n2 — |U UU7P|)
= | UuU | =0 "

= U-U"|=|UnU|.

The last equality follows from the fact that U = (UNU?) U (UNT ).

1.5. Characterization of 2-D Cyclic Codes

In this Section, we give a characterization of 2-D cyclic codes using the polynomial
representation of the codes [11]. For this purpose, we assume that I is an ideal of the
ring Fylz,y]/ < 2™ — 1,y™ —1 > and f(z,y) € I. Then f(z,y) can be written as

ngo—1

= Z fi(z)y", where each fi(z) belongs to R = F,[z]/ < 2™ — 1 >. We define

the set
na—1
Iy = {go(x) € R| there exists g(x,y) € I such that g(x,y) = Z g:i(x)y'}.
i=0

Clearly I is an ideal of the ring R. Since R is a principal ideal ring, we can write
Iy =< pY(z) >, where p)(z) € R and p)(x)|z™ — 1. So for each f(z,y) € I, we have
fo(z) € Iy and therefore p§(z)|fo(x). On the other hand, p)(z) € Iy which implies

no—1

that there exists po(z,y) Z pY(z)y" € I. Hence, for every f(z,y) € I we can find

¢o(x) € R such that h(x,y) = f( ,Y) — qo(z)po(z,y) belongs to I and has no constant

no—1

term relative to y. This means that if h(z,y) Z hi(x)y", then ho(z) = 0. Now, put

no—1

I = {g1(x) € R| there exists g(z,y) € I such that g(z,y) Z gi(x

Again, I; is an ideal of R which is generated by pi(x), where p}(z) € R and p}(z)]z™ —1.
Moreover, pi(z) € I; which means that there exists pi(z,y) € I such that pi(x,y) =
no—1

Zpl x)y". Now, for each f(z,y) € I we can find go(z) and ¢;() € R such that
h’(a: y) = f(z,y) — qopo(x,y) — q1p1(x.y) has no constant and degree one term relative

no—1

to y. In other words, if A'(z,y) Z h)(x)y’, then hj, = b = 0. Repeating this idea,
we can construct p;(z,y) € I for i = O, 1,2,--+ ,my — 1. Now, it is clear that

I =< p0($ay)>pl(zay)7"' apn2—1($ay) >

7



The polynomials p;(x,y) are called the generator polynomials of /. By the above
construction, we can find some conditions on p;(z,y).

Proposition 1.5.14 Let p;(z,y) € I for i = 0,1,2,--- ;ny — 1 be the polynomials
obtained from the above construction. Then we have the followinng properties.
(i) pS(z) | pl(x) for all 0 <i,5 < mg—1.

(it) pi_1(x) | pilz).
(iii) pi(z) | =t @)y ().

P

Proof: (i) By the definition of Iy, we have p(z) € I, for all 0 < 4,5 < ny — 1. Since

pg(z) is the generator polynomial of the ideal Iy, we have pg(x) | pl(x).
(i4) For i < j, we have I; C I;, hence p.~|(x) | pi(z).

no—1
(173) Let Pi_q(z,y) Z P . Consider the polynomial
j=i—1
no—1 1
s(r,y) = £ Pa(a,y) Py v
1_1( Z pz 1( )
We have, s; = S=r=spl_ (z) € Iy so pi(x) | i+ (2)p]~ (). O
z i—1

Theorem 1.5.15 Let I be an ideal of the ring Fylz,y]/ < z™ — 1,y™ — 1 >(a 2-D
cyclic code). Then we have

I =< p0<x7y)7p1(x7y)7 e 7pn271<x7y) >
where p;(x,y)’s are defined as above. Moreover, the set
no—1
S = -!0 {P’L(I7 y)v x-Pz(:L‘7 y)a I2Pi(x7 y)a e 7xnliaiilpi(x7 y)}
where a; = deg(pi(x)) for 0 <i < ng—1, is an F,-basis for the 2-D cyclic code.

Proof: Elements of S generate I. It is enough to show that they are linearly indepen-
dent. Assume that they are linearly dependent. So there are ko(x), ki (), -+ , kny—1(2) €

no—1

z]/ < a™ —1 > such that deg(ki(z)) < ny —a; — 1 and Z ki(z)pi(z,y) = 0 in

F,[z]/ < 2™ —1 >. This means that ko(z)p)(z) = 0 in IF < ™ —1 >. So,
ko(z)pd(x) = t(z)(x™ — 1) for some t(z) € F,[x ] but deg(ko(x ) <ni—1andit
implies that ko(x) = 0. Similarly we can show that k;(x) = 0 for O § 1 <ng—1and
this completes the proof. |



CHAPTER 2

Quantum Error Correction Codes

2.1. Binary Stabilizer Quantum Codes

Let 4 be the finite field of the elements {0, 1, w,w?}, with w? = w + 1. We define
the trace map T'r : Fy — Fy with Tr(z) = x + T where T = z2. An additive subgroup
of F} is called an additive code. Let C' C I} be an additive code over [, then the
Hamming weight of v € C' is the number of nonzero components of v. Consequently,
the distance of two vectors u,v € C'is dist(u,v) = wt(u — v). Now, we can define the
minimum distance of the code C with min{dist(u,v)|u # v € C}.

We define the symplectic inner product of u,v € C' with

uxv="Tr(uv)= (uv)+ (uv) = z:(u,v_Z + T;v;).

=1

If C is an (n,2*) code its symplectic dual will be C*+* = {u € F}|u v = 0 for all
v € C}. Tt is clear that C+ is an (n, 22" %) additive code. We say C is self-orthogonal
if C C C*s. Also, if C = C** we call the code C a self-dual code.

Lemma 2.1.1 Suppose C' C F7? is an (n, 2" %) additive self-orthogonal code such that
d = min{wt(u)|lu € C+\C}. Then C can be used to construct a binary [[n, k,d]]
quantum stabilizer code. [3]

Definition 2.1.1 From now on, for simplicity, if the block code C' satisfies the con-
ditions of Lemma [2.1.1} we call C as [[n, k,d]] quantum (stabilizer) code. 1f the block
code C'is linear, wel call the code linear quantum code.

We call C' pure if there is no nonzero vector in C*+ with weight less than d, otherwise
it called impure. Note that the quantum code C' with parameters [[n,0,d]] is a pure
quantum code. In this special case, k = 0, we define d = min{wt(u)|u € C\{0}}. In
the next theorem, we show that Hermitian dual and symplectic dual are the same if C
is an [F4 linear code.

Theorem 2.1.2 An F, linear code C' is self-orthogonal with respect to the symplectic
inner product if and only if it is self-orthogonal with respect to the Hermitian inner
product.



Proof: Suppose that C' is self-orthogonal linear code with respect to the symplectic
inner product. Then we have ux v = Tr(u.v) = 0 for all u,v € C. If u.T = o+ pw
with a, 8 € Fy, then w.v = u.v = a+ (w+1)3. Therefore, u* v = u.v+.v = 8 which
means that § = 0. Moreover, since C' is Fy linear, wv € C and uxwv = Tr(u.wv) = 0.
Using the same argument we see that a = 0 and consequently v.v = 0 for all v and
v € C. Proof of the other direction is straightforward. ]

An (n,2%) additive code over [y is called even if the weight of each codeword in C
is even. Otherwise, C' is called odd.

Theorem 2.1.3 An even additive code is self-orthogonal. The converse is correct for
linear codes.

Proof: Let C' be an additive even code and u,v € C. Let S; and Sy be subsets of
coordinates such that v and v have the same entries at each place of S; and different
components of them occur in all the places of S;. Then,

wt(u +v) = wt(u) + wt(v) — 2k —r,

where k is the number of coordinates of S; such that v and v are nonzero in those
places, and r is the number of places of Sy such that u and v are both nonzero and
different. By definition of the symplectic inner product, we see that r = u * v. So

wt(u+v) = wt(u) + wt(v) — 2k — r = wt(u) + wt(v) + u*v (mod 2).

Since the code is even, u v = 0. Conversely, if C' is a linear code, then uw € C for all
u e C. Also,

0=wux*wu=wt(u) (mod 2)

and this completes the proof. O
2.2. General Constructions of Quantum Stabilizer Codes

In this Section, we will introduce some general methods of constructing and mod-
ifying quantum codes over Fy. We define the direct sum of two quantum codes as
CaC"=A{uwlu e Cjv e C'}. Clearly, if C and C" are [[n, k,d]] and [[n/, k', d']] quan-
tum codes respectively, then C' @ C is an [[n + n/,k + K, d"]] quantum code, where
d" = min{d,d'}. Additive codes which cannot be expressed as a direct sum are called
indecomposable. The next theorem introduces other construction methods for quantum
codes.

Theorem 2.2.4 Suppose C' is an [[n, k,d]] quantum code.

(i) If k > 0, then there exists a quantum code C' with parameters [[n + 1, k, d]].

(i) If C is pure and n > 2, then an [[n — 1,k + 1,d — 1]] quantum code ezists.

(iii) If k> 1 orif k=1 and C is pure, then an [[n,k — 1,d]] quantum code exists.
(iv) Ifn > 2, then an [[n — 1,k,d — 1]] quantum code exists.

(v) If n > 2 and C contains a codeword of weight 1, then an [[n — 1,k,d]] quantum

code exists.
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Proof: (i) Let C be an (n,2"*) quantum code, where k& > 0. Consider C' = C & C,
where C7 = {0,1}. Obviously, C" is self-orthogonal with respect to the symplectic
inner product, it has 2% elements, and its dual can be written as C'* = C+ @ ().
Therefore, it is an [[n + 1, k, d]] quantum code. Not that this construction dose not
hold when £ = 0. Since otherwise we can construct an [[n+ 1, 0]] code. Moreover, since
0@ 1 € " and the code is pure, the minimum distance is 1.

(ii) Since C'is a pure code, by deleting the first coordinate of the code C* we obtain
B~ with parameters (n—1,2"**) and minimum distance at least d— 1. So, it is enough
to show that B C B+. We claim that B = {v|0v € C}. By definition of symplectic
inner product {v|0v € C} C B. Also, if u € B then Ou* ¢ = 0 for all ¢ € C* and this
means that B C Bt.

(ii1) First, suppose that k > 1 and v € C*+\C. Then the code C’ generated by
C' =< C,v > has parameters (n, 2" %*1) and it is self-orthogonal with respect to the
symplectic inner product. Since C’ L\C’ C C*+\C, it has minimum distance > d. So,
(" is an [[n, k — 1,d]] quantum code. Now, in case k = 1, since the construction ends
in an [[n, 0]] quantum code, which is a pure code and we cannot grantee the minimum
distance d (in pure code we calculate minimum distance differently).

(iv) Take B = {u|0u or 1u € C'}. We show that B+ = {v|0v or 1v € C*}.It is clear that
if Ov or 1v € C*, then for any u € B we have v* u = 0. So {v|0v or 1v € C*+} C B*.
Conversely, suppose that v € B+ and, both of Ov and 1v are not in C*. First, since
Ov € C*, then there exist s = (81,82, ,5,) € C such that s; € {w,w + 1} and
Ovks=1 mod 2. So (s9,83.+++,8,)*v =1 mod 2. Next, since 1v & C* | there ex-
ists r = (ry,re, -+ ,1,) € Csuch that 1y € {w,w+1} and lvxr =1 mod 2. Therefore,
(ro,rg.-++ ,ry) *v =0 mod 2. Now, s +1 = (21,29, -+ ,2,) € C, where z; € {0, 1}.
Hence, (22,25, - ,2,) € B, which means that v * (29,23, -+ ,2,) = 0 mod 2. But,
U (29,23, ,2n) = Ux (S, 835+ ,8y) + vk (ro,r3.--+ ;7)) =14+ 0=1 mod 2, and
this is a contradiction. So, B+ = {v|0v or 1v € C*}.

Now, if there is a vector with first coordinate w or w + 1 in C, then |B| < 2n~*=1,
Otherwise, if Ou (1v) is a vector in C, then 1u (Ov) is also a vector of C* and again we
conclude that |B| < 2"*~1. Moreover, since C' C C* we can see that |B+| < 2nTF1,
On the other hand, dim(B) + dim(B*) = 2n — 2. Hence, |B|] = 2"*~1. Now we
consider the minimum distance. If t € C*+\C, t starts with 1, and has weight d, then
t after truncation is a codeword in B+\ B and has weight < d — 1. This is why we the
minimum distance of new code is d — 1.

(v) Suppose v € C such that for some 1 < i < n, v; =a # 0 and v; = 0 for i # j.
Note that for any u € C*, u; = 0 or a. So by deleting the ith coordinate of C' and C*,
we obtain subspaces B and B’ such that B’ = B*. This is because of the fact that
if s € C and t € C*, the symplectic inner product of ith coordinate is always equal
to zero. Also, dim(B) < dim(C) — 1 and dim(B*) < dim(C*+) — 1. On the other
hand, dim(B) + dim(B*) = 2n — 2. So B is an [[n — 1, k]| quantum code. Moreover,
If t € CH\C with wt(t) = d, then ¢t + v € C*+\C, so the ith coordinate of ¢ is zero and
this means ¢ € B\ B. This completes the proof.

O

Lemma 2.2.5 Let C' be a linear quantum code over Fy. Suppose that S is a subset of
coordinates such that S meets each vector of C' in an even weight vector. Then, the
code obtained by deleting the coordinates S is also a linear quantum code.

Proof: By Theorem [2.1.3) C is an even code. Therefore, deleting coordinates cor-
responding to S, we obtain another even code, which is self-orthogonal by Theorem
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2.1.3] Hence, the resulting code is a quantum code again. O

Theorem 2.2.6 Suppose C' is a linear quantum code with parameters [[n, k,d]]. Then
there exists an [[n — m, k', d']] linear quantum code, where k' > k —m and d' > d, if
there exists a codeword of weight m in the dual of the binary code which is generated
by the support coordinates of the code C'.

Proof: Let v be the mentioned codeword in the dual of the binary code generated by
the supports of the code C'. Assume that the set of nonzero coordinates of v is equal to
S. Then by Lemma [2.2.5], the code C’ obtained by deleting the coordinates of S is self
-orthogonal and has more than 2"~**™ vectors. Moreover, if there exists a codeword
u € C+\C with wt(u) = d’, then we replace the removed coordinate with zero in u
and clearly it is a codeword in C' with weight < d’. Therefore, d < d'. O

Now, we present another result which generalizes the direct sum construction of
two quantum stabilizer codes.

Theorem 2.2.7 Let C; and Cy be two quantum stabilizer codes with the parameters
[[n1, k1, di]] and [[ne, ke, ds]], respectively. If ko < ny, we can construct an [[ny + ny —
ko, k1,d]] quantum stabilizer code with d > min{dy,dy + dy — ks }.

Proof: Let C|, Ci be additive codes with parameters (ny, 2" %), (n;,2m+*) and
Cy, C5 be additive codes with the parameters (ng, 2727%2), (ng, 2"2152) respectively.
Let N be the natural map from C5* to Cy*/Cy and F be a bijection from Cy /Cy to
FZQ that preserves the inner product. Let ¢ = F o N be the composition of F' and
N. Consider the code C' = {uv|v € C3,up(v) € C1}. Obviously, the length of C' is
no+ny—ks. dim(C) = na+ny—ke—ky because if v € Cy, then 0v € C so we have ny—ks
linearly independent vectors. Also, since ¢(Cy™/Cy) = F¥* then we can find new ny —k;
linear independent vectors. We easily see that C+ = {uv|v € Cs-, up(v) € C;*}. Now,
if uv € C+ and ¢(v) # 0, wt(v) > dy and wt(u) > dy — ky. So wt(uv) > doy + dy — k.
If p(v) =0, wt(u) > dy and consequently wt(uv) > dy. This completes the proof. O

For example, if Cy and Cy are [[ng, k1, d1]] and [[1,0, 1]] quantum stabilizer codes,
respectively, then the code obtained by Theorem is an [[ny + 1, kq,dq]] which is
the same as the code obtained by Theorem [2.2.4] part i.

Now, we present another construction which is based on combining binary linear
codes.

Theorem 2.2.8 Let Cy be an (n,2"), Cy be an (n,2%?) binary linear codes such that
Cy C Cy, and w # 0,1 be an element of Fy. Then the code C = wCy + WOy is an
([n, kg — Ky, d]] quantum stabilizer code, where d = min{d(C5\C1), d(C1\Cy™)}.

Proof: Since C; is a binary code, dim(Cy™) = n—ky. Therefore, dim(C) = ky+n—ks.
Let wz + wy and wx’ + wy’ be elements of C'. Then

(wx +wy) * (wr' +wy') = wrxwr' +wr xwy + Wy * wr' + wy * wy'

= wrxwy +wyrwr' =x*xy +a *y.

Since €} C Cy we can conclude that (wz + wy) * (wz’ + wy') = 0. Therefore, C is
an [[n, ky — ki]] quantum code and C*+ = wWC,* + wCy. Now, if u € C+\C, then
u = (up,uz), where u; € wCy\wC; U {0} and uy € wC,-\wCy™ U {0}. Thus, d =
min{d(Cy\C1), d(C1-\Caob)}.
a
In the next theorem, we explain an analog of the (u|u+v) construction for quantum
codes. This construction is also known as the Plotkin sum of two codes.
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Theorem 2.2.9 Suppose that Cy is a pure [[n, ki, d;]] stabilizer code, and Cy is a pure
[[n, k2, ds]] stabilizer code such that Cy C Cy. Then the code C' = {(u|lu +v) : u €
Cyt v € C} is an [2n, k1 — ko, d]] stabilizer code, where d = min{2dy,8}, § = d(Cs).

Proof: Let C; C Cy. Then, dim(C) = n+ ky +n — ky. Also, if (uju + v) and
(z|z +y) € C, then

(ulu+v)* (zlx+y) =usr+usxr+usxytvskr+ovsy=uxy+tovxr+ovxy=0.

Thus, C is an [[2n, k, — k]| stabilizer code and C+ = {(u|u +v) : u € C1h, v € Cy}.
Assume that (ulu+v) € C+. If u # 0, wt(ulu + v) > 2d; and if u = 0, wt(ulu +v) >
d(Cy). O

For instance, by combining the pure codes [[14, 8, 3]] and [[14, 0, 6]], we obtain an
[[28, 8, 6]] quantum stabilizer code.

2.3. Quantum Stabilizer Codes from Nearly Self-orthogonal Quaternary
Linear Codes

In this Section, we introduce another method of constructing new quantum codes.
The construction is based on construction X and its variants [13], and we use linear
codes as our source code. So, we will apply the Hermitian inner product which is
equivalent to the symplectic inner product in the case code is linear 2.1.2] We will
denote the Hermitian inner product of u,v € F} by < u,v >.

For u € F7}, note that the norm of u is ||u|| =< u,u >= Zuﬁ. If w; # 0 then
i=0

u;® =1, so wt(u) = |Ju|| and by the proof of Theorem we see that
lu + ol = [lul] + [|v]| + Tr(< w0 >).

A set S C F} is called an orthonormal set if < u,v >=0 for u # v € S and ||u]| =1
forall u e S.

Proposition 2.3.10 Let D be a linear subspace of F} and the set M be a basis for
DN D*. Then there exists a set B which is orthonormal and M U B is a basis for D.

Proof: First, suppose that R is a subspace of [} and there exist u,v € R such that
< u,v ># 0. Then, for v € F},

[lyu + ol = [yull + [[v]] + Tr(y <u, 0 >).
So we can find 7 such that ||[yu + v|| = 1. Now, let W be a subspace of F} such that

D=(DNnDHaow. (2.1)

We will assume that W is not self-orthogonal, since otherwise D = (DN D) and in this
case we can turn M into an orthonormal basis as described above. Let r := dim(W).
For each 0 < 7 < r we will construct a set .S; which is an orthonormal basis of T}, where
T; is a subspace of W with

W=T,o (T NW). (2.2)

The steps are iterative. Take Sy = () and suppose that for some 0 < i < r there is an
orthonormal basis S; of T}, where dim(7T;) = i and it satisfies (2.2). Let u be a nonzero
vector in Ty N WW. Then there exists a vector v € T;- N W such that < u,v >%# 0.
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Note that there exists such v, because W is not self-orthogonal. According to the first
paragraph of the proof, there exists v € Fj such that ||yu + v|| = 1. Let z = yu + v.
Then the set S;.1 = S;U{z} is an orthonormal set and z ¢ T}, hence dim(T;41) = i+ 1.
Now, we show that

W =Ty @ (Tis - NW). (2.3)
First we prove that Tj,, N (Ty ™ N W) = {0}. Suppose x € Tipy N (Ti™ N W).
Since z € T;;;, we have © = y + az where y € T; and a € F;. Moreover, since
a::y—l—ozzeTiHL for all w € T; and 5 € Fy, we have

0=<y+az,w+pBz>=<y,w>+B <y z>+a<zw>+af|z|| =<y, w > +ap.

Therefore, o = 0, because otherwise we can find a 8 € F, such that < y,w > +af # 0,
which is a contradiction. So, < y,w >= 0 and since w € T;, we conclude that
y € Ti*. Moreover, z = y also belongs to T;. Hence, z € T, N T+ = {0} and it shows
Ti1 N (T - N W) = {0}. Next we prove that W = Ty 1 + (Tjy - "W). Let w € W.
Since W = T; @ (T;- N W) there are 2 € T; and y € T;= N W such that w = z + y.
Now, let ' =2+ < y,z > z and ¥ = y— < y,z > z. Obviously 2’ € T;;; and for any
s=u+az €T withu e T;,a € Fy. We have

<y,s> = <y—<y,z>z,u+az>
= <yu>+a<yz>-—<yz><zu>-a<yz>|z]
= a(<y,z>—<y,z>)=0.

Therefore, v € T,"NW and 2’ +y' = 2+y = w. So (2.2) implies (2.3) and by repeating
this approach we can achieve the desired goal.
O

Now we state the main theorem of this Section.

Theorem 2.3.11 Suppose that C is an [n, k], linear code and e :==n — k — dim(C' N
C*s). Then there exist a quantum code with parameters [[n + e,2k — n + e, d]] with
d > min{d(C),d(C + C*+s) + 1}.

Proof: First, note that dim(C*<) = n — k and we have dim(C + C*+) = dim(C) +
dim(C*=) — dim(C N C*+). So e = dim(C + C*+=) — dim(C). Let s := dim(C N C*s).
Consider the block matrix G

MSXTZ OSXE

G = A(TL*e*QS)Xn 0(n7672s)><e )
Bexn Texe

where the indices show the size of blocks, and 0, I are the zero and identity matrices,
respectively. We denote the rows of a matrix P by r(P). The matrix G is constructed
such that r(M) is a basis for C'N C*s, r(M)Ur(A) is a basis for C and (M) Ur(B)
is a basis for C*s. Note that according to Proposition we can choose B as an
orthonormal set and (M) Ur(A) Ur(B) is a basis for (C + C*).

Let E be the linear code of length n + e generated by the matrix G. Now consider
the matrix T’

MSX’I’L OSXS
B€><7’L ]€><€

T —
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By construction, each row of T is orthogonal to every row of G. So r(T) C E*s.
Moreover, since the vectors in r(T) are self-orthogonal and dim(E+*) = n+e—(n—s) =
e + s, we conclude that r(T) is a basis for B+ and consequently E+ C E. So E*s
generates a self-orthogonal code. Since E+s has 22(+¢) elements, by Definition it
yields a quantum stabilizer code of dimension n+e —2(s+e€) =2k —n +e.

Now let x be a nonzero vector in E. So z is linear combination of rows of G and
we can write x = (x1|z2) where z; € F} and x5 € F§. If there is no vectors from the
last e rows of G, then z; € C and xs = 0 and therefore wt(z) > d(C). Otherwise,
some of the vectors in the last e rows of GG are included in the linear combination and
wt(xy) > d(C + C*+) and wt(xy) > 1. Hence, wt(z) > d(C + C*+) + 1. This completes
the proof. O

In Theorem [2.3.11] the construction is based on a linear source code. So it is
possible to choose our source code from any class linear codes. For example, we can
replace linear codes with cyclic codes or 2-D cyclic codes. We will explain the cyclic
construction in this Section and 2-D cyclic code construction in the next Chapter.
First, we need the following proposition.

Proposition 2.3.12 Suppose C' is a quaternary cyclic code with length n, where n is
an odd number. Let Z be the defining set of the code C. Then dim(C*+) — dim(C N
C*) =1Zn—2Z|, where =27 := {—2z (mod n)|z € Z}.

Proof: Let /3 be a primitive nth root of unity, Z := Z, — Z and
g(@) =[] (= -8
keZ

be the generator polynomial of code C'. Then its Hermitian (symplectic) dual generator
will be

ke—-2Z
and the generator polynomial of C'N C*s is
ko= I @6
kezu—-2Z
Then,
dim(C+) —dim(CNC*H) = (n—|—-2Z|)— (n—|ZU-2Z|)

ZU—-2Z| — | —2Z|

= |Z-2Z|=|Zn-2Z|.

O

Note that if n is an odd number which is divisible by 3, then {0}, {#}, and {%*}
have singleton cyclotomic cosets modulo n and are closed under multiplication by —2
modulo n. So if C is a cyclic code with defining set Z C {0, 2, 22}, then by Proposition

) 393
2.3.12 dim(C*s) — dim(C N C*) =|Z|.

Theorem 2.3.13 Suppose that n is an odd integer which is divisible by 3 and let C' be
an [n, k|, cyclic code with the defining set Z where Z N —2Z C {0, %,%}. Then there
exists a quantum code with parameters [[n + e, 2k —n + e, d]] with
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d > min{d(Cy) +|U|}
where U C Z N =27, Cy is a cyclic code with defining set Z\U, and e = |Z N —2Z|.

Proof: Let r:= % and 8 be a primitive nth root of unity in Fym, where m is order of
4 modulo n, then w = " is a primitive cube root of unity in Fy. We define

r—1

_ox"=1 _ z"-1 __ E 3i+2 t,.3i+1 2t .31

bt(l') TRt T ot Xz +wx +wox
=0

where ¢t € {0,1,2}. So, we can consider each b; as a codeword in the form (ag, a1, -+, a,_1)
in F}. Since n is odd, < b;,b; >=n =1 mod 2 . By construction, if ¢ # ¢’ then
< by, by >= 0. So the set {b1,bs,bs3} is an orthonormal set. Now, we can use the
construction in Theorem [2.3.11l The difference here is that in the last e rows we use
b;’s. Therefore, using Proposition [2.3.12] and Theorem [2.3.11] we have the matrix G

My Osxe
G = A(n—e—2s)><n O(n—e—Qs)Xe ’
Bexn Texe

where r(M) is a basis for C' N CLs, r(M) Ur(A) is a basis for C, and r(M) U r(B)
is a basis for C*ts. Let E be the code generated by the matrix G. Clearly, the code
generated by the matrix

MSXTL OS><€
BEX’I’L IEXE

T —

is £+ and therefore Ets C E. Let z be a nonzero codeword in E. We can write
x = (x1|xe) where z; € F} and zy € F{. If no row from r(B) occurs in the linear
combination of rows defining x, then wt(z) > d(C). If there are some rows of r(B) in
the linear combination, then wt(z) > d(Span(C,U) + |U|), where U = {b;} for all b;
occurring in the linear combination, and Span(C, {b;}) is exactly the cyclic code Cy.
Therefore, wt(x) > min{d(Cy) + |U|}, where U C Z N —2Z.

O

2.4. Non-binary Quantum Stabilizer Codes

Denote by F,n the finite field of p™ elements, where p is a prime number and m is

a positive integer. Let T'r : F,m — F, be the standard trace function which is an F,
m—1

7

linear map and defined by Tr(a) = a”. Let a,b € F},., and consider the Euclidean
i=0
inner product of a and b

n
<a,b>= Zaibi.
i=1

Definition 2.4.2 Let (a,b), (d/,V') € Fi%. We define the symplectic inner product of
(a,b) and (a',V') as
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(a,b) x (a',b') =Tr(<a,bl >— <ad,b>).
Also, the symplectic weight of (a,b) will be denoted by
For an F, additive code C' C IFZQ)ZZ we denote the symplectic dual of C' with
C*s = {(c,d) € F2|(a,b) * (c,d) = 0 for all (a,b) € C}.

Remark 2.4.1 If there exists an additive code C' C Fg” such that |C| = ¢" %, C C
C*s, and d = swt(CH+\C, then an [[n, k, d]], quantum stabilizer code exists.

Similar to the binary case if k = 0, which implies C = C*+, then we define d =
min{swt(u)|0 # u € C}. Let u, v be elements of F},, then the Hermitian inner product
of u and v is defined as follow

n
<Uu,v>= Zaib_i7
i=1

where T = 2P. The following analogue of Theorem hold for characteristic p too.

Theorem 2.4.14 AnF . linear code C' is self-orthogonal with respect to the symplectic
wnner product if and only if it is self-orthogonal with respect to the Hermitian inner
product.

Theorem 2.4.15 If there exists an F2-linear [n,k,d],2 code C' such that C*+» C C,
then there exists an [[n,2k —n,d]] quantum stabilizer code where d = swt(C\C*")

For proofs of Theorem [2.4.14] and [2.4.15] we refer to [1].

Now, we extend the construction X to obtain quantum stabilizer codes over finite
fields of order p?. Almost all of the results will be generalizations of the results in
Section 2.3, so we skip some of the proofs. For more information we refer to [5]

Lemma 2.4.16 Let D be a linear subspace OfIFZ2 and M be a basis for DN D*". Then
there exists an orthonormal set B such that M U B s a basis for D.

The proof is a generalization of the proof of Theorem2.3.10| and therefore we omit
it. In the rest of this chapter we assume that p is a prime number such that p —1 = 4k
for some integer k.

Theorem 2.4.17 Suppose that C' is an F2 linear code with parameters [n, k]pz. Let
e =n—k—dim(CNC*). Then there exists an [[n + e,2k —n + e, d]] » quantum code
where d > min{d(C),d(C + C*+*) + 1}.

Proof: First, we prove that there exist a nonzero element +y in F,2 such that 4*+1 = 0.
We know that IF;Q is a cyclic group. Let 8 be a generator for this group. Then,

2_
BP°~1 = 1. Moreover, p? — 1 = 4k, where k is an integer. Therefore, ﬂ% = —1. Now,

consider the matrix

MSXTL OSXG

G = A(n—e—?s)xn 0(n—e—25)><6 ’

p—1

B€><7L /8 4 IEXC
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where s = dim(C N C*#). The size of each block is determined by the index, and 0
and I denote the zero matrix and identity matrix, respectively. Here, for matrix P,
r(P) denores the rows of matrix P. In G, r(M) is a basis for C N C*n, r(M)Ur(A) is
a basis for C, 7(M) U r(B) is a basis for C*#, and finally r(B) is the orthonormal set
which is obtained by Lemma [2.4.16]

Let E be the linear code with the generator matrix G. Now, consider the matrix S
which is defined as follows:

MSX’n OSXG

p—1

Bexn BT Lexe

S:

By construction, each of the first s vectors in r(S) is orthogonal to each row of G.
Also, if v = (v, v2) is one of the vectors from the last e rows of S, then v is orthogonal
to first n — e — s rows of G. Now we consider the inner product of v = (vy,v2) and
u = (u1,uz), where u,v are in the last e rows of S. If u # v, then by construction
< u,v >= 0. Otherwise, if u = v,

n-+e n n+e
<u,v> = <vv>=||vl|= Zvi”l = va“ + Z e
i=1 i=1 i=n+1
p—1p+1 (p=1)(p+1) p2-1
= 1+p31 =1+p5 1 =1+ =1-1=0.

So, each vector from S belongs to E+». Rest of the proof is similar to the proof of
Theorem 2.3.111 O

Next, we will explain another method of constructing quantum codes using cyclic
codes. First, we need the following Lemma.

Lemma 2.4.18 Let C be a cyclic code over F,2 with the defining set Z C Z,,. Then,
dim(C*r) — dim(C N CH) = |Z N —pZ|.

Proof: Similar to Proposition [2.3.12] O

Theorem 2.4.19 Assume that n is divisible by p* — 1 and C be an [n, kl,» cyclic

code with the defining set Z where Z N —pZ C T = {p;‘]jl|1 <k <p*—1}. If

e = |Z N —pZ|, then there exists an [[n +e,2k —n +e,d]] » quantum code with d >
min{d(C),d(C,) + 1,d(C + C*+) + 2}, where w € Z N —pZ and C,, is a cyclic code
with defining set Z\{u}.

Proof: First we show that each element in T  has a singleton cyclotomic coset. Assume
that 1 < k < p? —1. Then

2 2 7.
pnk:pnk nk+nk:nk+ nk nk

nk 2 __ —
p2,1p - p2,1 p2,1 p2,1 — p2,1

mod n.
Next, let ¢ = p? — 1, n = (p* — 1)l = gl and w be a (p? — 1)th root of unity. Consider
the polynomials

-1
n_1 i+q—1 t qitq—2 1)t qi
bi(r) = T—% = E (2L tprita=2 oy e Digaty
i=1

for 0 <t <. We show the corresponding codewords with b;. Now, we show that the
set {b;]0 < j <} is an orthonormal set. This is because

18



-1 -1
< by, by >= qzwi(u+1}p) _ qzwi(u—vp) _
=0 =0

Rest of the proof is similar to the proof of Theorem [2.3.13]
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CHAPTER 3

New Constructions of Quantum Stabilizer Codes

In Chapter 2, we presented some methods of constructing new quantum codes using
classical codes or extending primary quantum codes. In this Chapter, first we will
introduce 2-D cyclic quantum stabilizer codes and construct new quantum codes based
on classical 2-D cyclic codes. Next, we introduce a method of constructing quantum
codes over > by using arbitrary classical additive codes over F,2, where p is an odd
prime number.

3.1. 2-D Cyclic Quantum Stabilizer Codes

By Theorem [2.4.15| for an [n, k],2 linear code C' such that C*+ C C' we can find a
quantum code with parameters [[n, 2k — n, d]], where d = min{wt(u)|u € C\C*»}.

Definition 3.1.1 Suppose there exists a 2-D cyclic code C' with the parameters
[ny X g, k, d]pz such that C*+» C C. Then we call C a 2-D cyclic quantum code.

Now, let C = I(U)/< 2™ —1,y4™ —1 > be a 2-D cyclic code with the zero set U.
Then by Theorem we can find G = {po(z,y), p1(z,y), -+ , Pny—1(x,y)} which is
the set of the generator polynomials for C'. Then C'is a 2-D cyclic quantum code if
and only if

pi(z,y).pj(x,y) =0 mod < z™ — 1,y — 1 > for all p;(x,y),pj(z,y) € G.
So we have the following Proposition.

Proposition 3.1.1 Suppose that C = [(U)/< ™ —1,y" — 1> is a 2-D cyclic code

which is generated by the polynomials po(x,y), p1(T,y), + , Pny—1(2,y), and pd(x).pd(x) =
0 mod < ™ —1>. Then C is a 2-D cyclic quantum code.

Proof: By Proposition |[1.5.14} p)(x) | p!(z) for all 0 < i,j < no—1. Then p! (z).p! (z) =
0 mod < x™ —1 > forall 0 <i,5 <ng— 1. It means that for all 0 < i < ny — 1 we
have

pi(l‘,y).pi(x,y) =0 mod <z™ —1>.
Therefore, C C C**, which means that C is a 2-D cyclic quantum code. O

Example 3.1.2 Consider the quaternary 2-D cyclic code C with the parameters [15, 8],
and the generator matrix
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[ 1 0 1 w>w 0 0 0 0 0 w 0 w 1 1 ]
w 0O w 1 1 0 0 0 0 0 w 0 w? w w
0 1 w>w? 1 0 0 0 0 0 0 w 1 w
oo 0O w 1 1 w 00 0 0 0 0 w w w w
00 0 0 0 1 0 1 w w w 0 w w
0o 0 0 0 0 wO w 1 1 1 0 1 w w
00 0 0 0 0 1 w>w 1 0 w w w w?
_0 0o 0 0 0 0w 1 1 w 0 1 w w 1 |

where w # 0,1 is an element of F4. The code is self-orthogonal with respect to the
Hermitian inner product and consequently we can find a [[15, 7]] quantum code. Using
Magma, we can see that min{wt(u)|lu € C+*\C} = 3. Therefore, C is an [[15, 7, 3]
quantum code. According to the best known quantum code’s table [8], this code reaches
the optimum minimum distance.

3.2. New Quantum Stabilizer Codes Construction Using 2-D Cyclic Codes

Now, we introduce a new method of constructing quantum stabilizer codes which
is based on construction X. Our main aim is to replace the code C' in Theorem [2.4.17
with a 2-D cyclic code. In this Section, we assume that p is a prime number such that
p = 4k + 1 for some integer k.

Lemma 3.2.3 Let ny,ny be two positive integers such that p*> — 1 divides both n, and

ny. Then the Fpz conjugacy class of (i’ as?) is a singleton, if i € Ty = p@l_kl\k €
2 . _ nak 2
{1,2,---,p*=1}} and j € T, = {p22_1|k: e{1,2,--- ,p°—1}}.
. s 02 :n2 ; . . .
Proof: It is enough to show that (o, a?’?") = (ay", ap?) for all i € T7 and j € Ts.
- nik _ nok’ .
Suppose ¢ = . = iy we have:
.o .o nik pg ngk, pg pQAnlAk p2n2k/
(™, 0?”) = (oq 7?17 17 ) = (o 1 P71
2 2 ’ / / /
p“.ny.k+ny.k—ny.k pnok'+ng.k'—ng.k nik 9o , nok’ o
(an pi-1 ; Qg pi-1 ) = (a1 Fay 17 ™ a1
.
= (Oél ,QQJ).

Theorem 3.2.4 Suppose that ny and ny are divisible by p*> — 1 and let C be an
[n1 X ng, k] » 2-D cyclic code with the zero set U such that UNU™? C {(au’, ao’)|(i, j) €
Ty xTv}, where Ty, Ty are defined as in Lemma . Ife =|UNUP|, then there exists
an [[n1 x ny +e,2k —ny x ng + e,d|], quantum code with d > min{d(C),d(Cv) + r},
where the minimum is taken over all the 2-D cyclic codes Cy with the zero set V' C

UNnUPandr=|V].
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Proof: We prove the theorem in two steps. First step: Let ¢ = p?> — 1,n; = gh,ny =
qh’, and w be a (p? — 1)th root of unity. Then, we claim that the set of codewords
corresponding to the elements of the set 7' = {b;; = % X ?5_2—;}\0 <i<h0<j<
h'} is an orthonormal set.

Let b; ; € T be of the form

h—1

bi’j = (Z(xqurqfl 4 oigptsta—2 _i__”_i_w(q,l)ixqs)) y
s=0
n -1
(Z(yqlﬁ-q—l_|_wquk’+q—2+_'__|_w(q—1)jqu))‘
k=0

We can express all the coefficients of the product
(0sFa=1 p igasta2 ... e igas) (yaktaml 4 yigakta=2 4oL g (@ 1)igak)

as a ¢ X g matrix

w@=Viyla=i  Ga=1)j ,a=2)i @D ,@=3)i .. ,@=1)j
w2 yla=Di - (a-2)j ,(a=2)i  ,a=2)i,(¢=3)i ... ,@=2)j
Wi,j —
w(q_l)i w(q_Q)i w(q_g)i . e 1

So we can represent each b; ; as a matrix with hh' blocks, where all of the blocks
are W; ;. We will show that

=0, if Wi; # Wiy

< VV,’J, VV,’/J/ > ,
# O, lf Wi,j == VV,L'/J/

and consequently
= 0, lf bi,j # bi/J/
< b@j, bi’,j’ >=h.h < Wi,ja Wi/,j/ > ,
7é 0, if bi,j = bi’,j’
which completes the proof.

Let w(q_t)j (w(q_l)i’ w(q—?)i) e ’wi) and w(q_t)j, (w(q_l)i,’ w(q_2)i/’ e ’wil> be the t-th
rows of W; ; and Wy ;. Then

w(qft)jw(qfl)i, Ww(a=2)i

e wh) @D (WD @27 )

= (w(qft)j)w(qfl)i w2 7wl’).(w(qft)j’p)(w(qfl)i’gw(q72)i’p7 e ’wi’p)_

Now since the conjugacy class of b, ; = (w”,w’") is a singleton class and U N UP C
{(a1?, a?)| (4, 7) € Ty x Ty}, we can replace w''P and w?'? with w™" and w™", respectively.
Therefore, we have

(w(q—t)j)(w(q—l)i’ LL}(q—2)i7 . ’wi).(w(q—t)j’p)(w(q—l)i’p’ w(q—z)z"p’ - ’wi’p)

_ (w(q—t)j)(w(q—l)i’ w(q—2)i7 o ’wi)'(w(q—t)_j’)(w(q—l)—i’7w(q—Q)—i” . ’w—i )
0 i £

q
- (w(q—t)(j—j’)) Zw(q—s)(i—i’) _
s=1 q(waOG=1) =
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So if i # ', < W, ;, Wy j >= 0. Finally, if i = ¢ we have

q 0 it
< W’Lj7 Wi/ 5! >= Zw(qfk)(jfj/) — J 7& J .

k=1 @ j=7
Again if j # j/, < W, ;, Wi ;o >= 0. Otherwise, < W, ;, Wy j» >= ¢* and consequently
0 i &g £ 5

hWg* =niny i=i&j=7

< b,"j, bi/J/ >=h.h < I/Vz"j, VVZ'/J'/ >=

In the case i = ¢ and j = j', nyny is a non zero element and if we multiply each b, ; by
a proper constant we can change the norm to 1.

Second step: Let s = dim(C N C**), 3 be a (p? — 1) = (4k)th root of unity, and G
be the matrix

Msx(nlxng) Osxe
G = A((nlxng)—e—Zs)X(nlxnz) 0((n1Xn2)—e—25)><e )
-1
Be><(n1><n2) /BPTIeXe

where the rows of M are basis for C'N C*#, rows of A and M are basis for C, and the
set of rows of B is a subset of codewords corresponding to T'. Moreover, the union of
rows of B and M is a basis for C*#. Let E be the linear code generated by the matrix
G. By the first step of the proof, one can easily see that all the rows of matrix

Msx(nlxnz) 0s><e

p—1

Be><(n1><n2) /BTIeXe

S:

are orthogonal to each row of G. For example, if b; and b; are rows in matrix B, then
the Hermitian inner product is

o iy
< bi, bj >= Z bz‘,k'bj,k = .
1 i=y
1 -1 _ — 2_
Now since ﬁpTlﬂpTl = 5%1.517@4 2 ﬁpTl = —1, we can guarantee the orthogonality

of the last e rows of S. Therefore, we are left to show the claim on the minimum
distance.

Suppose that = is a codeword generated by the matrix G. We have 3 cases:
1. If no row from B occurs in the linear combination of z, then wt(z) > d(C).
2. If exactly one row of B, for example b; ;, is in the linear combination with a non-zero
coeflicient, then wt(x) > d(Span(C,b;;)) and Span(C,b; ;) is exactly the 2-D cyclic

Jny o gng
code with the zero set U\{(a1?*-1, ap»*-1)}.

3. Finally, if more than one row of B occur in the linear combination, we can extend
case 2 in order to find the appropriate result. O
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3.3. General Quantum Stabilizer Codes Construction Using Classical
Additive Codes

In this Section, we introduce a new method of constructing additive quantum codes,
which is a generalization of Theorems [2.3.11] and [2.4.17]

Lemma 3.3.5 Let C be an [n,l] additive code over Fy such that dim(C) — dim(C' N
Cts) = 2k + i, where i € Zy. Then, we can extend C to a new code Q, where Q is an
[n + k, 1] self-orthogonal (Q C Q**) additive code over Fy.

Proof: Case 1: i = 0. Suppose C' is an additive code with the mentioned properties
and dim(C)—dim(CNC*s) = 2k. Let M be the matrix generator of the code C, where
the last 2k rows are in C\C'NC*+ and other rows form a basis for C N C*+. We denote
the last 2k rows of M with my, mso,- -+, mok. Since my ¢ C'N Cts, there exists at least
one m;, 2 < i < 2k such that my, x m; = 1. Without loss of generality, let us assume
that my xmgy = 1. If there is another m; where 3 < j < 2k such that m, xm; = 1, then
we change m; with m; 4+ my. Moreover, if there exists m, where 3 < z < 2k such that
m, * mg = 1, we change m, with m, + m;. Now, by considering these changes we can

find a new format for the last 2k rows of M, such as my, mo, my, mb,---,ms, , such
that m; xmg = 1 and for any m; where 1 <t < 2k — 2 we have m; *m; = m}*xmgy = 0.
Now, we repeat the above method on m}, mj, - -- ,m,,_,. By continuing this procedure

we can find vectors My, My, - -- , My in the last 2k rows such that My;_1 * My; = 1 and
Moy x My, = My My =0for 1 <i <k, p#2i and ¢ # 2i — 1.

Now, let T" be a matrix such that Ths_; ;s = 1 and Ths s = w for 1 < s <k, and the
other entries of T are zero. The matrix

G _ Msxn Osxk ’

Aoksen Togxk

where s = dim(C' N C*+) is the generator matrix of an [n + k, ] additive code Q over
F, and one can easily see that Q C Q.

Case 2: i = 1. Let us assume that dim(C) — dim(C NC*+) = 2k + 1. Using similar
steps, we are able to find the vectors My, My, - - | Moy, Mogq for the last 2k + 1 rows
such that My, * My, =1 and Moy * M, = My x M, =0 for 1 <7 <k, p # 2i, and
q # 21 — 1, and My 1 is orthogonal to all other vectors. In this case, let 7" be the the
vertical join of matrix 7" and one zero row. Now, the matrix

G — Msxn Osxk
Aski1xn Toriixn
is the generator matrix of the code @ and clearly Q C Q*=. O

Now, we state our main result.

Theorem 3.3.6 Let C be an [n, k| additive code over Fy and e = [2”_k_(di7;(cmcLs))].
If2n — k — (dim(C N C*+)) is an odd integer, then there exists an [[n+e, k—n+e+1,d|]
quantum code over Fy with d > min{d(C' + v), (d(C' + C**) + 1)} for all v # 0 € C*=.
If2n — k — (dim(C N C*+)) is an even integer, then there exists an [[n+e,k—n+e,d)|

quantum code over Fy with d > min{d(C), (d(C + C*+) +1)}.
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Proof: Let C be an additive code with dimension k& and C*+ be its dual with respect to
2n7k7(dim(CﬂCLS))]

the symplectic inner product (dim(C*#) = 2n—k over Fy). Let e = | 5

and dim(C' N C++) = s . We consider two cases.
Case 1. Assume that 2n — k — (dim(C' N C*t)) is an odd integer. Consider the matrix

Msxn Os><e
Ak—sxn Ok—sxe
G= ,
BQeXn T2€><6
v 01><e

where (M) is a basis for CNCLs | r(A)Ur(M) is a basis for C, r(B) = My, My, -+ , My,
and v = My, 1, where M;’s satisty in second part of the proof of Lemma 3.3.5] Finally,
the set r(B)U{v}Ur(M) is a basis for C*++, and T is the matrix which was introduced
in the proof of Lemma [3.3.5] Let E be the additive code generated by the matrix G.
Now, consider the code generated by

MSXTL OS><€

S = :
B2@><n T2e><e
By the construction and the above lemma, rows of S are orthogonal to the rows of G.
Moreover, dim(E) = 2n — s and dim(E+*) = s + 2e. Therefore, S is the generator
matrix of the code E+s and E'+s C F.

Assume x = (x1,23) € E where z; € F} and 25 € F{. So z is linear combination of
rows of G. If no row of B appears in the linear combination, then wt(z) > d(C + v).
If some of the rows of B enter this linear combination wt(z) > d((C' + C*+) + 1.

Case 2. Assume that 2n — k — (dim(C N C*+)) is even. then

Ms><n Osxe
G = Akz—sxn Ok—sxe
B26><n T26><e

is the matrix generator of the code E and its dual is generated by the matrix S. Rest
of the proof is similar to the case 1.

U

Using Theorem [3.3.6| we are able to construct a quantum code from an additive

code. Note that this construction can easily be extended to IF, additive codes over ..

Corollary 3.3.7 Let C' be an [n, k|, additive code over Fyz and e = [2"_k_(d”2n(COCLS))].

If2n — k — (dim(C N C*)) is an odd integer, then there exists an [[n + e,k —n + e+ 1,d]],

quantum code over F 2 with d > min{d(C+v), (d(C+C**)+1)} for somev # 0 € C*=.
If2n — k — (dim(C N C*+)) is an even integer, then there exists an [[n + e,k —n + e, dll,

quantum code over F o with d > min{d(C), (d(C + C*+<) +1)}.

Corollary 3.3.8 Let C be an [n, k|, linear code over Fpo and €’ =n —k — (dim(C N
C*+)). Then there exists an [[n+e€', 2k—n-+¢’, d]] quantum code with d > min{d(C), (d(C+
C*) +1)}.
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Proof: Let C'and C'N C** be [n, k] and [n, s] linear codes over F,2, respectively. We
can consider them as [n, 2k] and [n, 2s] additive code over F 2. Now, by Corollary

we have

2nfkf(dim(CﬁC’Ls))] _ [2n—2k—25

5 =l =n—-k—-s=¢,

e=|

and there exists an [[n + €¢/,2k —n + €, d]] quantum code with d > min{d(C), (d(C +
Ct)+ 1)} O

Example 3.3.9 In this Example we explain how to use Lemma and Theorem
to obtain a quantum stabilizer code with a good minimum distance. Let us start
with an [33,16, 11] linear code C' which is the best known linear code over F, with
these parameters.

Using Magma, we see that CNC*+ is a [33, 15] linear code which means that e = 1.
By Theorem we can obtain a [[34, 2, 10]] quantum code which has the optimum
minimum distance (see [8]).

Example 3.3.10 The following table presents some good quantum codes obtained
from Theorem [3.3.6l

Parameters of the codes
Codes over Fy Codes over Fy
[[34,2,10]] [[10, 1, 4]]
[[35, 1, 11]] [[11,1, 5]]
[[46, 8,9]] [[28, 22, 3]]
[[47,7,10]] [30, 22, 3]]
[[51,3,13]] [32, 20, 4]]
[[52,2,14]] [32, 22, 4]]
[[53,1,15]] [34, 18, 6]]
[[58, 4, 14]] [41, 25, 6]]
[[61,1,17]] [[41, 33, 4]]
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