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The field of Natural Language Processing (NLP) examines how computers can be made to do

beneficial tasks by understanding the natural language. The foundations of NLP are diverse

and include scientific fields such as electrical and electronic engineering, linguistics, and

artificial intelligence. Some popular NLP applications are information extraction, machine

translation, text summarization, and question answering.

This dissertation proposes a new methodology using Answer Set programming (ASP) as

our main formalism to predict Interpretable Semantic Textual Similarity (iSTS) with a

rule-based approach focusing on hard-coded rules for our system, Inspire. We next propose

an intelligent rule learning methodology using Inductive Logic Programming (ILP) and

modify the ILP-tool eXtended Hyrbid Abductive Inductive Learning (XHAIL) in order to

test if we are able to learn the ASP-based rules that were hard-coded earlier on the chunking

subtask of the Inspire system. Chunking is the identification of short phrases such as noun

phrases which mainly rely on Part-of-Speech (POS) tags. We next evaluate our results using

real data sets obtained from the SemEval2016 Task-2 iSTS competition to work with a real

application which could be evaluated objectively using the test-sets provided by experts.

The Inspire system participated at the SemEval2016 Task-2 iSTS competition in the sub-

tasks of predicting chunk similarity alignments for gold chunks and system generated chunks

for three different Datasets. The Inspire system extended the basic ideas from SemEval2015
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iSTS Task participant NeRoSim, by realising the rules in logic programming and obtaining

the result with an Answer Set Solver. To prepare the input for the logic program, the

PunktTokenizer, Word2Vec, and WordNet APIs of NLTK, and the Part-of-Speech (POS)

and Named-Entity-Recognition (NER) taggers from Stanford CoreNLP were used. For the

chunking subtask, a joint POS-tagger and dependency parser were used based on which an

Answer Set program determined chunks. The Inspire system ranked third place overall and

first place in one of the competition datasets in the gold chunk subtask.

For the above mentioned system, we decided to automate the sentence chunking process

by learning the ASP rules using a statistical logical method which combines rule-based and

statistical artificial intelligence methods, namely ILP. ILP has been applied to a variety of

NLP problems some of which include parsing, information extraction, and question answer-

ing. XHAIL, is the ILP-tool we used that aims at generating a hypothesis, which is a logic

program, from given background knowledge and examples of structured knowledge based

on information provided by the POS-tags.

One of the main challenges was to extend the XHAIL algorithm for ILP which is based on

ASP. With respect to processing natural language, ILP can cater for the constant change in

how language is used on a daily basis. At the same time, ILP does not require huge amounts

of training examples such as other statistical methods and produces interpretable results,

that means a set of rules, which can be analysed and tweaked if necessary. As contributions

XHAIL was extended with (i) a pruning mechanism within the hypothesis generalisation

algorithm which enables learning from larger datasets, (ii) a better usage of modern solver

technology using recently developed optimisation methods, and (iii) a time budget that

permits the usage of suboptimal results. These improvements were evaluated on the subtask

of sentence chunking using the same three datasets obtained from the SemEval2016 Task-2

competition.

Results show that these improvements allow for learning on bigger datasets with results

that are of similar quality to state-of-the-art systems on the same task. Moreover, the

hypotheses obtained from individual datasets were compared to each other to gain insights

on the structure of each dataset. Using ILP to extend our Inspire system not only automates

the process of chunking the sentences but also provides us with interpretable models that

are useful for providing a deeper understanding of the data being used and how it can be

manipulated, which is a feature that is absent in popular Machine Learning methods.
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ÖZET

İstatistiksel Yöntemler Kullanarak Doğal Dil İşleme Amacıyla

Mantıksal Kural Öğrenmesi

Mishal Kazmi

Doktora Tezi, Haziran 2017

Tez Danışmanı: Prof. Dr. Yücel Saygın

Ortak Tez Danışmanı: Yrd. Doç. Dr. Peter Schüller

Anahtar Kelimeler: Çözüm Kümesi Programlama, Tümevarım Mantık Programlaması,

Doğal Dil İşleme, Yorumlanabilir Anlamsal Metin Benzerliği, Cümle Parçalama

Doğal Dil İşleme (NLP) alanı bilgisayarların doğal dili anlayarak nasıl yararlı işler yapa-

bileceğini inceler. NLP’nin temelini elektrik ve elektronik mühendisliği, dilbilimi ve yapay

zek gibi birçok bilim dalı oluşturur. Bilgi çıkarımı, makine bazlı çeviri, metin özetleme ve

soru cevaplama, popüler NLP uygulamalarından bazılarıdır.

Bu tez, Çözüm Kümesi Programlama’yı (ASP) temel alan, Inspire isimli sistemimizde

sabit bir şekilde kodlanmış kurallara odaklanan, Yorumlanabilir Anlamsal Metin Benzer-

likleri’ni (iSTS) kural bazlı bir yaklaşım ile öngören yeni bir metodoloji önermektedir. Bu

metodolojinin yanı sıra, Tümevarımla Mantık Programlama’yı (ILP) kullanarak zeki bir ku-

ral öğrenme yöntemi öneriyor ve de Inspire sisteminin parçalama alt görevine sabit bir şekilde

girilmiş ASP bazlı kuralları öğrenip öğrenemeyeceğimizi test etmek için bir ILP aracı olan

Genişletilmiş Hibrit Dışaçekimsel Tümevarımsal Öğrenme’ın (XHAIL) üzerinde değişiklik

yapıyoruz. Parçalama, isim tamlaması gibi kısa sözcük öbeklerinin ağırlıklı olarak Konuşma-

Bölümü (POS) etiketleri kullanarak tanımlanmasıdır. Sonuçlarımızı, SemEval2016 Task-2

iSTS yarışmasından elde ettiğimiz gerçek veri setlerini ve uzmanlar tarafından verilmiş test

setlerini kullanarak değerlendiriyoruz.

Inspire sistemi, SemEval2016 Task-2 iSTS yarışmasında, üç farklı veri setinde altın parçacık-

ları ve sistem tarafından üretilen parçalarda yığın benzerliği hizalamalarını tahmin etme alt

görevlerinde katıldı. Inspire sistemi, SemEval2015 iSTS katılımcısı NeRoSim’in temel fikir-
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lerini, mantık programlamadaki kuralları gerçekleştirerek ve de sonuçları bir Çözüm Kümesi

Çözücü ile elde ederek devam ettirdi. Mantık programı için veriyi hazırlarken, PunktTo-

kenizer, Word2Vec ve NLTK’nin WordNet API’ları ve Stanford CoreNLP’nin Konuşma-

Bölümü (POS) ve Adlandırılmış Varlık Tanıma (NER) etiketleyicileri kullanıldı. Parçalama

alt görevi için, Çözüm Kümesi Programlama tarafından belirlenmiş parçalara dayalı ortak

bir POS-etiketleyici ve bağımlılık çözümleyici kullanıldı. Inspire sistemi yarışmada genel

kategoride üçüncülüğü, altın parça alt kategorisinde verilerden birinde birinciliği elde etti.

Yukarıda bahsedilen sistem için, ILP adında, kural bazlı ve istatistiksel yapay zek yöntem-

lerini birleştiren bir istatistiksel mantık metodunu kullanarak ASP kurallarını öğrenmeye ve

cümle yığınlama sürecini otomatikleştirmeye karar verdik. ILP yöntemi çözümleyici, bilgi

çıkarımı, soru cevaplama gibi çeşitli NLP problemlerine uygulanmıştır. XHAIL, verilen arka

plan bilgisinden ve POS etiketleri tarafından sağlanan bilgilere dayanan bir hipotez üretmeyi

amaçlayan bir mantık programı olan ILP aracıdır.

Temel zorluklardan biri, XHAIL algoritmasını ASP’yi temel olan ILP için genişletmekti.

ILP, doğal dil işlenmesi kapsamında, dilin günlük kullanımdaki sürekli değişimini takip ede-

bilir. Aynı zamanda, ILP diğer istatistiksel yöntemler gibi büyük miktarda eğitim veri setine

ihtiyaç duymaz ve yorumlanabilen, analiz edilebilen ve gerektiğinde düzeltilebilen kurallar

üretir. Katkı olarak, XHAIL, (i) daha geniş veri setlerinden öğrenmeyi sağlayan, hipotez

genelleme algoritması içerisinde bir budama mekanizması, (ii) yakın zamanda geliştirilmiş

optimizasyon yöntemlerini kullanarak modern çözücü teknolojisinin daha iyi kullanılması ve

(iii) optimal olmayan sonuçların kullanımına izin veren bir zaman bütçesi ile genişletildi. Bu

iyileştirmeler, SemEval2016 Task-2 yarışmasından elde edilen aynı üç veri seti kullanılarak,

cümle yığınlama alt-görevinde değerlendirildi.

Sonuçlar, bu iyileştirmelerin büyük veri kümelerinde öğrenme konusunda, son teknoloji sis-

temlerle benzer sonuçlar elde ettiğini göstermiştir. Ayrıca, her bir veri kümesinden elde

edilen hipotezler veri kümelerinin yapısını kavrayabilmek için birbirleriyle karşılaştırılmıştır.

ILP’yi kullanarak Inspire sistemini genişletmek, yığınlama sürecini otomatikleştirmenin yanı

sıra verilerin daha derinleşmesine anlaşılmasını ve nasıl manipüle edilebileceğini yorumla-

maya yönelik modeller sağlamıştır; bu da popüler Makine Öğrenme yöntemlerinde bulun-

mayan bir özelliktir.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a multi-disciplinary research area that focuses on

a computer’s comprehension of natural language text or speech. NLP researchers gather

insight on human understanding to develop systems for computers that can learn these traits

of the natural language for multiple tasks such as Machine Translation, Summarization,

Information Extraction and Retrieval, and Artificial Intelligence.

In order to understand language, a system must usually first build layers of representation

by going to the word-level to gain insight about the morphological structure and nature of

the word which usually involves detailed system annotations, then a representation should

be made known by going to the sentence-level and determining the overall meaning of

the sentence and then finally using world knowledge to determine the context and overall

domain. This gives us an overall structured representation of the text. Researchers extract

different kinds of information from text for the analysis of NLP systems. In this work,

the Stanford Core NLP (Manning et al., 2014) tool is used in order to gather lexical and

syntactic information from text.

However, adding more knowledge is not necessarily always useful as it may result in a

contradiction, ambiguity, inconsistency or change in a previous belief. This is common in

both human reasoning and NLP. We here use Answer Set Programming (ASP) as the formal

reasoning language due to its ability to perform common-sense reasoning which includes

non-monotonic reasoning (ability to invalidate some conclusions based on the addition of

more knowledge) with exceptions. This allows us to formulate such exception based rule

formalisms in this work.
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1.1 Statistical Methods in NLP

As more knowledge is utilised in structures that represent linguistic expressions, the rule

formalisms start getting more rigid. Therefore, using systems purely based on rules proved to

be impractical, as it is not possible to give exact and complete characterization to distinguish

between a well-formed and an ill-formed utterance. As humans tend to stretch the ‘rules’,

NLP researchers found the need to provide some flexibility to account for the neologisms

and the informality of natural language. Hence, due to these constant changes in how we

use language these days, a need for statistical models arose.

An example of this seen frequently these days is when people say ‘I have to google this

information.’ instead of saying they would like to search for this information on the Internet.

Therefore a need for statistical models of language emerged. Recently, people have placed

great emphasis on this which even led to the field Language Engineering instead of NLP

(Manning and Schütze, 1999). They tend to place greater importance to Statistical NLP

approaches as they are robust in practice.

One example of a model in NLP for text classification is the bag-of-words model. In this

model, a text is represented as a bag (multiset) of its words, disregarding grammar and even

word order but keeping multiplicity. The bag-of-words model is commonly used in methods

of document classification, where the (frequency of) occurrence of each word is used as a

feature for training a classifier.

A classifier is a function that maps an input attribute vector to a confidence that the input

belongs to a class:

f(
→
x) = confidence(class)

Some popular classifiers used in NLP include Naive Bayes, Decision Trees, Neural Networks

(NNs), Support Vector Machines (SVMs). These are probabilistic so confidence(class) is a

probability distribution (Dumais et al., 1998). Such classifiers associate a vector of fixed

length with one of a fixed set of classes. This is a single non-relational knowledge represen-

tation without complex internal structure.

2



1.2 Statistical Logical Methods in NLP

In order to find a middle ground between statistical and logical processing of language,

combinations of both paradigms were created. However, purely statistical NLP approaches

are better for classification from a small set of alternatives. As mentioned earlier, in NLP

tasks we normally require a well-structured representation of the text and are sometimes not

provided with large amounts of data for training or annotations. Keeping these notions in

mind we here incorporate Inductive Logic Programming (ILP) as our statistical method in

order to learn part of the program automatically for our system. Inductive Logic Program-

ming (ILP) uses expressive representation and makes uses of logically encoded background

knowledge to learn a hypothesis. We include ILP in this work as a means of learning an

ASP program that solves an NLP task and investigating the limits of ILP for this task

empirically.

1.3 Motivation and Scope of this Dissertation

One of the problems NLP researchers come across when faced with new languages or fastly

developing vocabulary is the lack of annotated data available. Acquiring such data takes

time and effort. In such cases, hand-coded rules which grasp the linguistic characteristics of

the task may be more cost-effective compared to annotating and expecting to obtain similar

results indirectly from a Machine Learning (ML) system. This work provides a union of the

concepts of ML and rules by using ILP.

We make use of ASP as our main formalism due to its ability to perform common-sense

reasoning. By adding more knowledge ASP can add or remove rules for a given ASP

program. Our first methodlogy predicts Interpretable Semantic Textual Similarity (iSTS)

using hard-coded rules in ASP for the Inspire system. We next propose learning these hard-

coded rules intelligently for the basic subtask in the Inspire system of sentence chunking

using ILP. In order to achieve this we present the modifications we made to XHAIL which is

our ILP-tool that is being used to learn an ASP rule-based model. We would like to compare

whether or not an ILP-based system can outperform or do as good of a job as a ML system

without requiring the additional cost of annotations for large amounts of data. We use a

small set of training data obtained from the SemEval2016 iSTS Task to develop our proposed

3



methodology of learning rules to obtain an interpretable solution via ILP in order to chunk

sentences. We extend our system, Inspire, with our method in order to evaluate it with real

data provided by experts. These results are then compared to other state-of-the-art systems

in the sentence chunking subtask which make use of ML or hard-coded rules individually

for chunking. We observe that our proposed method of using ILP, which combines logical

rules with ML, is able to reach competitive results to the state-of-the-art ML methods in

the NLP task of sentence chunking.

The SemEval2016 iSTS Task focuses on systems that are able to explain the similarities and

differences between sentence pairs. An additional informative layer is added to formalise

chunk alignments present in these sentence pairs. This provides the relation and similarity

score of each alignment. The similarity alignment in the Inspire system is based on ideas

of SemEval2015 NeRoSim (Banjade et al., 2015) entry, however, we reimplemented the

system and realise the rule engine in Answer Set Programming (ASP) (Brewka et al., 2011;

Lifschitz, 2008) which gives us flexibility for reordering rules or applying them in parallel.

For the chunking subtask, the Inspire system is based on a joint POS-tagger and dependency

parser (Bohnet et al., 2013) and an ASP program that determines chunk boundaries. We

use ILP to extend the Inspire system by learning this ASP program that determines the

chunk boundaries.

Not many applications using ASP-based ILP exist in NLP to the best of our knowledge.

Hence, we propose a system incorporating statistical methods such as ILP; capable of learn-

ing a program that generates rules which can be utilised by ASP solvers; and to analyse the

performance of this technique on a sentence chunking task in NLP. We utilise the datasets

provided at SemEval2016 (Agirre et al., 2016). These included three datasets on which we

could test our system: Headlines, Images and Answers-Students. For our proposed work we

currently had only three tools available to us: Incremental Learning of Event Definitions

(ILED) (Katzouris et al., 2015), eXtended Hybrid Abductive Inductive Learning (XHAIL)

(Ray, 2009) and Inductive Learning of Answer Set Programs (ILASP) (Law et al., 2015).

The ILED and ILASP systems were not feasible for us due to incompatibility (ILED) and

scalability (ILASP) issues. XHAIL is the least expressive system but is the most scalable

system which also dealt with the negation term in logic programming, which is why we

opted to continue our work using the XHAIL system.

We extended XHAIL with the WASP solver which realises modern ASP optimisation al-
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gorithms and may result in the utilisation of suboptimal answer-sets by interrupting the

solver. Pruning mechanism was also added to XHAIL to learn from larger amounts of data

and was evaluated on how it affects results in the chunking task based on how close the

results were to the optimal solution.

Our empirical results confirm that our contributions are worthwhile. The addition of pruning

allows handling of larger datasets which does not diminish predictive power in most cases.

The incorporation of a time budget provides suboptimal solutions that are able to show

reasonable predictive power within shorter time frames than otherwise possible.

1.4 Structure of the Dissertation

This Dissertation is organised into six chapters.

Chapter 2: Provides a comprehensive background of the programming language, and tools

used.

Chapter 3: Describes in detail the datasets used and the methodologies adapted for each

contribution made towards this Dissertation.

Chapter 4: Details the experiments carried out for the Inspire system and for the Chunking

task using ILP.

Chapter 5: Mentions the results obtained from the Inspire System and from Chunking with

ILP. The results obtained from chunking with ILP are compared to the state-of-the-art

systems for this task. We also discuss the results obtained in this chapter.

Chapter 6: Discusses the related work.

Chapter 7: Concludes the findings and discusses possible ideas for extending our work in

future research.

1.5 Published Work

The following publications are completely or partially an outcome of this Dissertation:
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� Kazmi, Mishal, and Schüller, Peter. ”Inspire at SemEval-2016 Task 2: Interpretable

semantic textual similarity alignment based on answer set programming.” Proceedings

of SemEval (2016): 1109-1115.

This paper describes our system, Inspire, for the task on Interpretable Semantic Tex-

tual Similarity (Section 3.2).

� Kazmi, Mishal, Schüller, Peter, and Saygın, Yücel. ”Improving Scalability of Inductive

Logic Programming via Pruning and Best-Effort Optimisation” Expert Systems with

Applications, 2017 (under review).

This work explains in detail how we extended the chunking subtask of iSTS and

automated it for the sentence chunking to be learned automatically (Section 3.3).

� Kazmi, Mishal, and Schüller, Peter. ”Best-Effort Inductive Logic Programming via

Fine-grained Cost-based Hypothesis Generation.” Machine Learning Journal, 2017

(under review).

This paper mentions some of the related work done in reference to this Dissertation

(Section 6.2.3).
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Chapter 2

Background

2.1 Answer Set Programming

A logic program theory normally comprises of an alphabet (variable, constant, etc), vocabu-

lary, and logical symbols (Lloyd, 2012). An ideal of logic programming is for it to be purely

declarative so it may express the logic of a computation without a rigid control over the flow

description. The popular Prolog (Clocksin and Mellish, 2003) system evaluates rules using

resolution, which makes the result of a Prolog program depending on the order of its rules

and on the order of the bodies of its rules. Answer Set Programming (ASP) (Brewka et al.,

2011; Gebser et al., 2012a) is a more recent logic programming formalism, featuring more

declarativity than Prolog by defining semantics based on Herbrand models which are more

expressive (Gelfond and Lifschitz, 1988). Hence the order of rules and the order of the body

of the rules does not matter in ASP. Most ASP programs follow the Generate-Define-Test

structure (Lifschitz, 2002) to (i) generate a space of potential solutions, (ii) define auxil-

iary concepts, and (iii) test to invalidate solutions using constraints or incurring a cost on

non-preferred solutions.

An ASP program consists of rules of the following structure:

a← b1, . . . , bm,not bm+1, . . . ,not bn

where, a and bi are atoms from a first-order language, a is the head and b1, . . . ,not bn is the

body of the rule, and not is negation as failure. Variables start with capital letters, facts
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(rules without body condition) are written as ‘a.’ instead of ‘a← ’. Intuitively a is true if

all positive body atoms are true and no negative body atom is true.

The formalism can be understood more clearly by considering the following sentence as a

simple example:

Computers are normally fast machines unless they are old.

This would be represented as a logical rule as follows:

fastmachine(X)← computer(X),not old(X).

where, X is a variable, fastmachine, computer , and old are predicates, and old(X ) is a

negated atom.

Syntax. Let C and V be mutually disjoint sets of constants and variables, which we denote

with first letter in lower case and upper case, respectively. Constants are used for constant

terms, predicate names, and names for uninterpreted functions. The set of terms T is recur-

sively defined, it is the smallest set containing N∪C ∪V as well as tuples of form (t1, . . . , tn)

and uninterpreted function terms of form f(t1, . . . , tn) where f ∈C and t1, . . . , tn ∈T . An

ordinary atom is of the form p(t1, . . . , tn), where p∈C, t1, . . . , tn ∈T , and n ≥ 0 is the arity

of the atom. An aggregate atom is of the form X = #agg{ t : b1, . . . , bk } with variable X ∈V ,

aggregation function #agg ∈{#sum,#count}, with 1<k, t∈T and b1, . . . , bk a sequence

of atoms. A term or atom is ground if it contains no sub-terms that are variables.

A rule r is of the form α← β1, . . . , βn,not βn+1, . . . ,not βm where m ≥ 0, α is an ordinary

atom, βj, 0≤ j≤m is an atom, and we let B(r) = {β1, . . . , βn,not βn+1, . . . ,not βm} and

H(r) = {α}. A program is a finite set P of rules. A rule r is a fact if m= 0.

Semantics. Semantics of an ASP program P are defined using its Herbrand Base HBP and

its ground instantiation grnd(P ). An aggregate literal in the body of a rule accumulates

truth values from a set of atoms, e.g., N = #count{A : p(A)} is true wrt. an interpretation

I ⊆HBP iff the extension of p/1 in I has size N . Using the usual notion of satisfying a rule

with respect to a given interpretation, the FLP-reduct (Faber et al., 2011) fP I reduces a

program P using an answer set candidate I: fP I = {r∈ grnd(P ) | I |=B(r)}. Finally iff I

is a minimal model of fP I .
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Syntactic Sugar. Anonymous variables of form ‘ ’ are replaced by new variable symbols.

Choice constructions can occur instead of rule heads, they generate a set of candidate

solutions if the rule body is satisfied; e.g., 1{p(a); p(b)}≤ 2 in the rule head generates all

solution candidates where at least 1 and at most 2 atoms of the set {p(a), p(b)} are true

(bounds can be omitted). If a term is given asX..Y , whereX, Y ∈N, then the rule containing

the term is instantiated with all values from {v ∈N |X ≤ v≤Y }. A rule with α= βn+1, and

α not occurring elsewhere in the program, is a constraint. Constraints eliminate answer sets

I where I |= B(r) \ {not βn+1}, and we omit α and not βn+1 for constraints.

We refer to the ASP-Core-2 standard (Calimeri et al., 2012) and to books about ASP

(Baral, 2004; Gebser et al., 2012a; Gelfond and Kahl, 2014) for a more elaborate description

regarding the syntax and semantics.

Adding more knowledge results in a change of a previous understanding, this is common in

human reasoning. Classical First-Order Logic does not allow such non-monotonic reasoning,

however, ASP was designed as a commonsense reasoning formalism: a program has zero or

more answer sets as solutions, adding knowledge to the program can remove answer sets as

well as produce new ones. Note that ASP semantics rule out self-founded truths in answer

sets. We use the ASP formalism due to its flexibility and declarativity.

ASP has been applied to several problems related to Natural Language Processing, see for

example Mitra and Baral (2016); Schüller (2013, 2014, 2016); Schwitter (2012); Sharma

et al. (2015), an overview of applications of ASP in general can be found in Erdem et al.

(2016).

2.2 Inductive Logic Programming

Processing natural language based on hand-crafted rules is impractical, because human

language is constantly evolving, partially due to the human creativity of language use. An

example of this was recently noticed on UK highways where they advised drivers, ‘Don’t

Pokémon Go and drive’. Pokémon Go is being informally used here as a verb even though

it was only introduced as a game a few weeks before the sign was put up. To produce

robust systems, it is necessary to use statistical models of language. These models are

often pure Machine Learning (ML) estimators without any rule components (Manning and
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Schütze, 1999). ML methods work very well in practice, however, they usually do not

provide a way for explaining why a certain prediction was made, because they represent

the learned knowledge in big matrices of real numbers. Some popular classifiers used for

processing natural language include Naive Bayes, Decision Trees, Neural Networks (NNs),

and Support Vector Machines (SVMs) (Dumais et al., 1998).

In this work, we focus on an approach that combines rule-based methods and statistics

and provides interpretable learned models: Inductive Logic Programming (ILP). ILP is

differentiated from ML techniques by its use of an expressive representation language and

its ability to make use of logically encoded background knowledge (Muggleton and De Raedt,

1994). An important advantage of ILP over ML techniques such as neural networks is, that a

hypothesis can be made readable by translating it into a piece of English text. Furthermore,

if annotated corpora of sufficient size are not available or too expensive to produce, deep

learning or other data-intense techniques are not applicable. However, we can still learn

successfully with ILP.

Formally, ILP takes as input a set of examples E, a set B of background knowledge rules,

and a set of mode declarations M , also called mode bias. As output, ILP aims to produce

a set of rules H called hypothesis which entails E with respect to B (Otero, 2001).

B ∧H |= E

The search for H with respect to E and B is restricted by M , which defines a language

that limits the shape of rules in the hypothesis candidates and therefore the complexity of

potential hypotheses.

Example 1. Consider the following example ILP instance (M,E,B) (Ray, 2009).

M =


#modeh flies(+bird).

#modeb penguin(+bird).

#modeb not penguin(+bird).

 (2.1)

E =



#example flies(a).

#example flies(b).

#example flies(c).

#example not flies(d).


(2.2)
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B =



bird(X) ← penguin(X).

bird(a).

bird(b).

bird(c).

penguin(d).


(2.3)

Based on this, an ILP system would ideally find the following hypothesis.

H =
{

flies(X) ← bird(X), not penguin(X).
}

(2.4)

2.2.1 eXtended Hybrid Abductive Inductive Learning

The eXtended Hybrid Abductive Inductive Learning system (XHAIL) is an ILP approach

based on ASP that generalises techniques of language and search bias from Horn clauses to

normal logic programs with full usage of Negation as Failure (NAF) (Ray, 2009). Like its

predecessor system Hybrid Abductive Inductive Learning (HAIL) which operated on Horn

clauses, XHAIL is based on Abductive Logic Programming (ALP) (Kakas et al., 1992).

XHAIL finds a hypothesis using several steps. Initially the examples E plus background

knowledge B are transformed into a theory of Abductive Logic Programming (Kakas et al.,

1992). The Abduction part of XHAIL explains observations with respect to a prior theory,

which yields the Kernel Set, ∆. ∆ is a set of potential heads of rules given by M such that

a maximum of examples E is satisfied together with B. An overview of the XHAIL system

can be seen in Figure 2.1

Example 2 (continued). Given (M,E,B) from Example 1, XHAIL uses B, E, and the

head part of M , to generate the Kernel Set ∆ by abduction.

∆ =


flies(a)

flies(b)

flies(c)


The Deduction part uses ∆ and the body part of the mode bias M to generate a ground

program K. K contains rules which define atoms in ∆ as true based on B and E.

The Generalisation part replaces constant terms in K with variables according to the mode
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Abduction

Examples E
Background Knowledge B

Mode Bias M (Head)

DeductionMode Bias M (Body)

Generalisation

Induction

Hypothesis

∆ (Kernet Set)

ground K program

non-ground K’ program

Figure 2.1: XHAIL architecture

bias M , which yields a non-ground program K ′.

Example 3 (continued). From the above ∆ and M from (2.1), deduction and generalisation

yield the following K and K ′.

K =


flies(a) ← bird(a), not penguin(a)

flies(b) ← bird(b), not penguin(b)

flies(c) ← bird(c), not penguin(c)


K ′ =


flies(X) ← bird(X), not penguin(X)

flies(Y) ← bird(Y), not penguin(Y)

flies(Z) ← bird(Z), not penguin(Z)


The Induction part searches for the smallest part of K ′ that entails as many examples of E

as possible given B. This part of K ′ which can contain a subset of the rules of K ′ and for

each rule, a subset of body atoms is called a hypothesis H.

Example 4 (continued). The smallest hypothesis that covers all examples E in (2.2) is

(2.4).

We provide details of our work done with XHAIL in Chapter 3.3.

12



Chapter 3

Materials and Methods

In this chapter we mention the datasets used in our work. We also explain in detail each

contribution made towards this Dissertation. We first discuss our system Inspire which

predicts Interpretable Semantic Textual Similarity (iSTS) using hard-coded rules in ASP.

Next we discuss how we extend the Inspire systems subtask of sentence chunking by using

ILP in order to automate the task and learn the previously hard-coded rules. We also

discuss how we modified the ILP-tool XHAIL in order to achieve the latter contribution.

3.1 Datasets

We are using the datasets from the SemEval2016 Task-2 iSTS (Agirre et al., 2016), which

included two separate files containing sentence pairs. Three different datasets were pro-

vided: Headlines, Images, and Answers-Students. The Headlines dataset was mined from

various news sources by European Media Monitor. The Images dataset is a collection of

captions obtained from the Flickr dataset (Rashtchian et al., 2010). The Answers-Students

corpus consists of the interactions between students and the BEETLE II tutorial dialogue

system which is an intelligent tutoring engine that teaches students in basic electricity and

electronics.
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3.2 Predicting Interpretable Semantic Textual Simi-

larity based on ASP

Semantic Textual Similarity (STS), refers to the degree of semantic equivalence between

a pair of texts. This helps in explaining how some texts are related or unrelated. In

Interpretable STS (iSTS) systems, further explanation is provided as to why the two texts

are related or unrelated. Finding these detailed explanations helps in gathering a meaningful

representation of their similarities.

The competition at SemEval 2016 for Task-2 (Agirre et al., 2016) was run on three different

datasets: Headlines, Images and Student-Answers. Each dataset included two files contain-

ing pairs of sentences and two files containing pairs of gold-chunked sentences. Either the

gold chunks provided by the organisers or chunks obtained from the given texts would be

used as input to the system. The expected outputs of the system are m:n chunk-chunk

alignments, corresponding similarity scores between 0 (unrelated) and 5 (equivalent), and a

label indicating the type of semantic relation. All relations shall be considered in the given

context. Possible semantic relations include:

� EQUI: Semantically equal

� OPPO: Opposite

� SPE1/SPE2: Chunk 1/2 is more specific than chunk 2/1

� SIMI: Similar but none of the relations above

� REL: Related but none of the relations above

� NOALI: Not aligned, e.g., punctuation

� FACT: Whether the chunk is a speculation or not

� POL: Whether the chunk is positive, negative or neutral

So for the sentence pair inputs:

Former Nazi death camp guard Demjanjuk dead at 91
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John Demjanjuk, convicted Nazi death camp guard, dies aged 91

or for the chunked sentence pair inputs:

[ Former Nazi death camp guard Demjanjuk ] [ dead ] [ at 91 ]

[ John Demjanjuk ] [ , ] [ convicted Nazi death camp guard ] [ , ] [ dies ] [ aged 91 ]

we would obtain the following output for our iSTS system:

<sentence id =”1” s t a t u s=””>

// Former Nazi death camp guard Demjanjuk dead at 91

// John Demjanjuk , conv ic ted Nazi death camp guard , d i e s aged 91

<source>

1 Former :

2 Nazi :

3 death :

4 camp :

5 guard :

6 Demjanjuk :

7 dead :

8 at :

9 91 :

</source>

<t r a n s l a t i o n >

1 John :

2 Demjanjuk :

3 , :

4 conv ic ted :

5 Nazi :

6 death :

7 camp :

8 guard :

9 , :

10 d i e s :

11 aged :

12 91 :

</t r a n s l a t i o n >

<alignment>

8 9 <==> 11 12 // EQUI // 5 // at 91 <==> aged 91

1 2 3 4 5 6 <==> 1 2 4 5 6 7 8 // SPE1 FACT // 3 // Former Nazi death camp

guard Demjanjuk <==> John Demjanjuk conv ic ted Nazi death camp guard
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7 <==> 10 // EQUI // 5 // dead <==> d i e s

0 <==> 3 // NOALI // 0 // −not a l igned− <==> ,

0 <==> 9 // NOALI // 0 // −not a l igned− <==> ,

</alignment>

</sentence>

3.2.1 Preprocessing

Facts that represent the input are created using lemmatization via NLTK (Bird, 2006),

POS- and NER-tagging from Stanford CoreNLP (Manning et al., 2014), lookups in Word-

Net (Miller, 1995), and similarity values obtained using Word2Vec (Mikolov et al., 2013).

The following explains the input representation of the sentence pair:

[ A tan puppy ] [ being petted ] [ . ]

[ A tan puppy ] [ being held and petted ] [ . ]

Sentences, chunks, and words in chunks are first represented with POS-tags, NER-tags, and

lowercase versions of words as follows:

sentence(1 ).

chunk(sc(1 , 0 )).

chunk(sc(1 , 1 )).

chunk(sc(1 , 2 )).

mword(cw(sc(1 , 0 ), 1 ), ”A”, ”a”, ”DT ”, ”O”).

mword(cw(sc(1 , 0 ), 2 ), ”tan”,

”tan”, ”NN ”, ”O”).

mword(cw(sc(1 , 0 ), 3 ), ”puppy”,

”puppy”, ”NN ”, ”O”).

· · ·

sentence(2 ).

chunk(sc(2 , 0 )).

· · ·
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A function term sc(sentenceID , chunkIdx ) is built from an integer sentence ID, and a chunk

ID, and a function term cw(chunkID ,wordIdx ) is additionally built from a word ID.

Punctuation, cardinal numbers, and dates/times are detected using regular expressions and

are represented as facts punct(wordID), cardinalnumber(wordID), and datetime(wordID),

resp., e.g.,

punct(cw(sc(1 , 2 ), 0 )).

Synonyms, hypernyms, and antonyms are looked up in WordNet and added as facts.

synonym(”a”, ”a”).

synonym(”a”, ”vitamin a”).

synonym(”tan”, ”burn”).

hypernym(”puppy”, ”dog”).

hypernym(”puppy”, ”domestic dog”).

hypernym(”puppy”, ”canis familiaris”).

· · ·

Distributional similarity with the Word2Vec tool (Mikolov et al., 2013) is used to train on

the One Billion Word1 benchmark (Chelba et al., 2014) with SkipGram context represen-

tation, window size 10, vector dimension 200, and pruning below frequency 50. Word-word

similarity sim(v, w) is computed using cosine similarity from scikit-learn (Pedregosa et al.,

2011), between vectors of words v and w. Chunk-chunk similarity is computed as

best(1 , 2 ) + best(2 , 1 )

2 min(n1, n2)
, where (3.1)

best(x , y) =
nx∑
i=1

ny

max
j=1

sim(wxi , w
y
j )

with nα the number of words in chunk α and wαβ the word of index β in chunk α. This

method for calculating chunk similarity is based on Banjade et al. (2015, Section 2.2.2).

1http://www.statmt.org/lm-benchmark/
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Chunk-chunk similarity is represented as atoms chunksimilarity(chunk1Id , chunk2Id , S ),

where S, denotes the similarity score. In our example, this creates, e.g., the following

facts.

chunksimilarity(sc(1 , 0 ), sc(2 , 0 ), 101 ).

chunksimilarity(sc(1 , 0 ), sc(2 , 1 ), 22 ).

chunksimilarity(sc(1 , 0 ), sc(2 , 2 ), 2 ).

chunksimilarity(sc(1 , 1 ), sc(2 , 0 ), 34 ).

· · ·

Note that similarity can be above 100 due to dividing by the shorter chunk length.

3.2.2 Architecture

For each sentence pair, chunks are aligned according to the following architecture:

� chunked input sentence pairs are preprocessed (POS, NER, Word2Vec, WordNet) and

represented as a set of ASP facts,

� a generic set of rules represents how alignments can be defined and changed,

� alignments are represented based on the description of the NeRoSim engine, and

� the above components are evaluated in an ASP solver, obtaining answer sets containing

a representation of alignments which then generates the system output file.
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3.2.2.1 Rule Engine

To make POS, NER, word, and lowercase words more accessible for manipulation, we project

them to new facts with the following rules

word(Id ,W )←mword(Id ,W , , , ).

lword(Id ,L)←mword(Id , ,L, , ).

pos(Id ,P)←mword(Id , , ,P , ).

ner(Id ,N )←mword(Id , , , ,N ).

where the arguments of mword are word ID, word, lowercase word, POS and NER tag.

Recall from Section 2.1 that variables of the form ‘ ’ are anonymous, intuitively these values

are projected away before applying the rule.

POS and NER tags, and mark nouns, verbs, contentwords, proper nouns, cardinal numbers

and locations are interpreted based on tags from the Penn Treebank (Marcus et al., 1993).

noun(Id)← pos(Id , ”NNS”).

noun(Id)← pos(Id , ”NNP”).

verb(Id)← pos(Id , ”VB”).

verb(Id)← pos(Id , ”VBD”).

· · ·

location(Id)← ner(Id , ”LOCATION ”).

Symmetry of chunk similarity, synonyms and antonyms, and transitivity of the synonym

relation is ensured.

chunksimilarity(C2 ,C1 , S )← chunksimilarity(C1, C2, S).

synonym(W ,W ′)← synonym(W ′,W ).

antonym(W ,W ′)← antonym(W ′,W ).

synonym(W1 ,W3 )← synonym(W1 ,W2 ), synonym(W2 ,W3 ).
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Pairs of chunks that can be matched together with their sentence indices are defined. This

is useful because this way helps define conditions on potential alignments without specifying

the direction of alignment (1 to 2 vs. 2 to 1).

chpair(S1 , S2 , sc(S1 ,C1 ), sc(S2 ,C2 ))← chunk(sc(S1 ,C1 )), chunk(sc(S2 ,C2 )), S1 6=S2 .

Alignments are represented as follows:

(i) alignment happens in steps that have an order defined by atoms nextStep(S , S ′) which

indicates that S happens before S ′,

(ii) a chunk can be aligned to one or more chunks only within one step, afterwards align-

ment cannot be changed,

(iii) program modules can define atoms of form chalign(C1 ,R, Sc,C2 , St) which indicates

that chunks C1 and C2 should be aligned with label R (e.g., ”EQUI”) and score Sc

(e.g., 5) in step St .

Defining an alignment is possible if the chunks are not yet aligned, it marks both involved

chunks as aligned, and they stay aligned.

aligned(C , S ′)← not aligned(C , S ), chalign(C , , , , S ), nextStep(S , S ′).

aligned(C , S ′)← not aligned(C , S ), chalign( , , ,C , S ), nextStep(S , S ′).

aligned(C , S ′)← aligned(C , S ), nextStep(S , S ′).

Final alignments are represented using predicate final , these atoms include raw chunk sim-

ilarity (for experimenting with other ways to define the similarity score). Moreover, only

steps that are used (in nextStep(·, ·)) are included.

usedStep(S )← nextStep(S , ).

usedStep(S ′)← nextStep( , S ′).

final(C1 ,Rel , Score,C2 , S , Simi)← chalign(C1 ,Rel , Score,C2 , S ),

not aligned(C1 , S ),not aligned(C2 , S ),

usedStep(S ), chunksimilarity(C1 ,C2 , Simi).
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This system gives us flexibility for configuring the usage and application of the order of rules

by defining nextStep accordingly.

3.2.2.2 NeRoSim Rules

All that remains is to realise the NeRoSim rules, labeled with individual steps, and add

them to the program.

In the following, we list how we realise NeRoSim’s conditions (Banjade et al., 2015, Section

3.1) that are checked before rule application:

� condc1: “One chunk has a conjunction and other does not”

condc1 (C1 ,C2 )← chpair( , ,C1 ,C2 ),#count{W1 : conjunction(cw(C1 ,W1 ))}= 0,

#count{W2 : conjunction(cw(C2 ,W2 ))}≥ 1.

Intuitively, the #count aggregates become true if the appropriate number of atoms in

the set becomes true.

� condc2: “A content word in a chunk has an antonym in the other chunk”

condc2 (C1 ,C2 )← chpair( , ,C1 ,C2 ), contentword(cw(C1 ,WI1 )),

lword(cw(C1 ,WI1 ),W1 )#count{WI2 : lword(cw(C2 ,WI2 ),W2 )}

antonym(W1 ,W2 ).

� condc3: “A word in either chunk is a NUMERIC entity”

condc3 (C )← chunk(C ),#count{W : cardinalnumber(cw(C ,W ))}≥ 1.

� condc4: “Both chunks have LOCATION entities”

condc4 (C )← location(cw(C , )).
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� condc5: “Any of the chunks has a DATE/TIME entity”

condc5 (C )← datetime(cw(C , )).

� condc6: “Both chunks share at least one content word other than noun”

condc6 (C1 ,C2 )←match(cw(C1 ,W1 ), cw(C2 ,W2 )), contentword(cw(C1 ,W1 )),

contentword(cw(C2 ,W2 )),not noun(cw(C1 ,W1 )),

not noun(cw(C2 ,W2 )).

� condc7: “Any of the chunks has a conjunction”

condc7 (C )← chunk(C ), conjunction(cw(C , )).

We next detail the different NeRoSim rules (Banjade et al., 2015, Section 3.1.1-7) that we

realise in ASP:

� no1: “If a chunk to be mapped is a single token and is a punctuation, assign NOALIC.”

no1 (C )← chunk(C ), pos(cw(C ,WID),Pos), punct(Pos), len(C ,w , 1 ).

� eq1: “Both chunks have same tokens (5)”

eq1 (C1 ,C2 )← chpair( , ,C1 ,C2 ),not word extra(C1 ,C2 ),

not word extra(C2 ,C1 ).

� eq2: “Both chunks have same content words (5)”

eq2 (C1 ,C2 )← chpair(1 , 2 ,C1 ,C2 ), contentword match(C1 ,C2 ),

not contentword extra(C1 ,C2 ),not contentword extra(C2 ,C1 ).
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� eq3: “All content words match using synonym lookup (5)”

eq3 (C1 ,C2 )← chpair( , ,C1 ,C2 ),not contentword extra notsynonym(C1 ,C2 ),

not contentword extra notsynonym(C2 ,C1 ).

� eq4: “All content words of a chunk match and unmatched content word(s) of the other

chunk are all of proper noun type (5)”

eq4 (C1 ,C2 )← chpair( , ,C1 ,C2 ),not cond1to5 (C1 ,C2 ),

not contentword extra(C1 ,C2 ),

not contentword extra notpropernoun(C2 ,C1 ).

� eq5: “Both chunks have equal number of content words and sim-Mikolov(A, B) >0.6

(5)”

eq5 (C1 ,C2 )← eqcontentw(C1 ,C2 ),not cond1235 (C1 ,C2 ),

chunksimilarity(C1 ,C2 , S ), S > 60 .

� op1: “A content word in a chunk has an antonym in the other chunk (4)”

op1 (C1 ,C2 )← chpair( , ,C1 ,C2 ), condc2 (C1 ,C2 ),

not cond3or7 (C1 ),not cond3or7 (C2 ).

� sp1: “If chunk A but B has a conjunction and A contains all the content words of B

then A is SPE of B (4)”

sp1 (C1 ,C2 )← chpair( , ,C1 ,C2 ), condc1 (C2 ,C1 ), contentword subset(C2, C1).

� sp2: “If chunk A contains all content words of chunk B plus some extra content words

that are not verbs, A is a SPE of B or vice-versa. If chunk B has multiple SPEs, then
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the chunk with the maximum token overlap with B is selected as the SPE of B. (4)”

sp2candidate(A,B)← chpair( , ,A,B), contentword subset(B ,A),

has contentword or dontcare(A),

has contentword or dontcare(B),

0 == #count{WId : contentword extra w(A,B ,WId),

verb(WId).}

sp2overlap(A,B ,Overlap)← sp2candidate(A,B),

Overlap = #count{WAId : match(cw(A,WAId),

cw(B ,WBId)).}

{sp2choose(A,B)}← sp2bestoverlap(A,Highest), sp2overlap(A,B ,Highest).

← sp2candidate(A, ),not 1 = #count{A : sp2choose(A,B).}

sp2 (A,B)← sp2choose(A,B).

� sp3: “If chunks A and B contain only one noun each say n1 and n2 and n1 is hypernym

of n2, B is SPE of A or vice versa (4)”

sp3 (C2 ,C1 )← sp3onenouneach(C1 ,C2 ), noun(cw(C1 ,W1 )), noun(cw(C2 ,W2 )),

lword(cw(C1 ,W1 ),W1String), lword(cw(C2 ,W2 ),W2String),

hypernym(W1String ,W2String).

� si1: “Only the unmatched content word in each chunk is a CD type (3)”

si1 (C1 ,C2 )← si1candidate(C1 ,C2 ),

contentword extra w(C1 ,C2 ,W1 ), cardinalnumber(W1 ),

contentword extra w(C2 ,C1 ,W2 ), cardinalnumber(W2 ).

� si2: “Each chunk has a token of DATE/TIME type (3)”

si2 (C1 ,C2 )← chpair(1 , 2 ,C1 ,C2 ), condc5 (C1 ), condc5 (C2 ).
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� si3: “Each chunk has a token of LOCATION type (3)”

si3 (C1 ,C2 )← chpair(1 , 2 ,C1 ,C2 ), condc4 (C1 ), condc4 (C2 ).

� si4sim: “When both chunks share at least one noun then assign 3 if

sim-Mikolov(A,B) > 0.4 and 2 otherwise.”

si4 sim(C1 ,C2 , S )← chpair(1 , 2 ,C1 ,C2 ),match(cw(C1 ,W1 ), cw(C2 ,W2 )),

noun(cw(C1 ,W1 )), noun(cw(C2 ,W2 )),

chunksimilarity(C1 ,C2 , S ).

� si5sim: “This rule is applied only if C6 is not satisfied. Scores are assigned as : (i)

4 if simMikolov(A, B) ∈ [0.7, 1.0] (ii) 3 if sim-Mikolov(A, B) ∈ [0.65, 0.7) (iii) 2 if

sim-Mikolov(A, B) ∈ [0.60, 0.65) ”

si5 sim(C1 ,C2 , S )← chpair(1 , 2 ,C1 ,C2 ), has contentword or dontcare(C1 ),

has contentword or dontcare(C2 ),not condc6 (C1 ,C2 ),

chunksimilarity(C1 ,C2 , S ).

� re1sim: “If both chunks share at least one content word other than noun then assign

REL relation. Scores are assigned as follows : (i) 4 if sim-Mikolov(A, B) ∈ [0.5, 1.0]

(ii) 3 if sim-Mikolov(A, B) ∈ [0.4, 0.5) (iii) 2 otherwise.”

re1 sim(C1 ,C2 , S )← chpair(1 , 2 ,C1 ,C2 ), has contentword or dontcare(C1 ),

has contentword or dontcare(C2 ), condc6 (C1 ,C2 ),

chunksimilarity(C1 ,C2 , S ).

We define chunk alignments chalign by using the above rules in our stepwise alignment

engine in the following manner:

chalign(C1 ,RULENAME , Score,C2 , rule)← chpair(1 , 2 ,C1 ,C2 ), rule(C1 ,C2 ).
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where RULENAME can be NOALIC, EQUI, OPPO, SIMI, and REl paired with the corre-

sponding rule to use for alignment (no1,eq1,etc). See Appendix A for the full ASP code.

3.2.2.3 Interpretation of Answer Sets

After the evaluation of the above rules with the facts that describe the input sentences the

solver returns a set of answer sets (in our case a single answer set). This answer set contains

all true atoms and we are interested only in the final predicates.

word(cw(sc(1 , 1 ), 4 ), ”being”).

word(cw(sc(1 , 1 ), 5 ), ”petted”).

word(cw(sc(2 , 1 ), 4 ), ”being”).

word(cw(sc(2 , 1 ), 5 ), ”held”).

word(cw(sc(2 , 1 ), 6 ), ”and”).

· · ·

final(sc(1 , 0 ), ”EQUI ”, 5 , sc(2 , 0 ), equi1 , 101 ).

final(sc(1 , 1 ), ”SPE2 ”, 4 , sc(2 , 1 ), sp1 , 106 ).

Using Python and these predicates we create the required output which is a single continuous

line of the following form:

4 5 6 <==> 4 5 6 7 // SPE2 // 4 // being petted <==> being held and petted

the above shows, the particular word tokens in a chunk from sentence 1 that are aligned to the

corresponding word tokens from a chunk in sentence 2, the label given for similarity which in this

case is specific to sentence 2, the similarity score and the actual chunks alignments of sentence 1

and 2.

3.2.2.4 Chunking based on ASP

For the sentence chunking subtask, the system has to identify chunks and align them.

The Inspire system realises chunking as a preprocessing step: sentences are tokenised and
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% prepo s i t i o n s are chunk s t a r t e r s
i n f r o n t o f (X) :− form (X, ” in ”) , form (X+1,” f r o n t ”) , form (X+2,” o f ” ) .
% ignore the ” o f ” i f i t i s par t o f ” in f r on t o f ”
chunk (pp ,X) :− pos (X, ” IN ”) , not i n f r o n t o f (X−2).
chunk (pp ,X) :− form (X, ” ’ s ” ) .
chunk (pp ,X) :− pos (X, ”TO” ) .

% determiners are chunk s t a r t e r s , un l e s s a f t e r p r e po s i t i on
chunk (dp ,X) :− pos (X, ”DT”) , not pos (X−1,”IN ” ) .

% see annotat ion g u i d e l i n e s (Abney 1991) ,
% extended to inc l ude e v e r y t h in g t ha t i s not a new chunk

% PPs have dependencies t ha t the head depends on the %pr epo s i t i on (= s t a r t )
chunkAtLeastUnti l ( Start , Token ) :− chunk (pp , Sta r t ) , head ( Token , Sta r t ) .
% DPs have dependencies t ha t the DP (= s t a r t ) depends on the head
chunkAtLeastUnti l ( Start , Token ) :− chunk (dp , Sta r t ) , head ( Start , Token ) .
% chunks extend to c h i l d tokens u n t i l the next chunk s t a r t s
chunkAtLeastUnti l ( Start , Token ) :− chunkAtLeastUnti l ( Start , Unt i l ) ,
head ( Token , Unt i l ) , Unt i l < Token ,
0 = #count { T : chunk ( ,T) , Unt i l <= T, T <= Token } .
% end o f the chunk i s the r i gh tmos t token
endOfChunk (Type , Start , End) :− chunk (Type , Sta r t ) , token (End) ,
End = #max { Unt i l : chunkAtLeastUnti l ( Start , Unt i l ) } .

% punctua t ions are chunk s t a r t e r s and enders
chunk ( pt ,X) :− pos (X, ” . ” ) .
chunk ( pt ,X) :− pos (X, ” , ” ) .
chunk ( pt ,X) :− pos (X, ” : ” ) .
chunk ( pt ,X) :− pos (X, ” ; ” ) .
chunk ( pt ,X) :− pos (X, ” ‘ ‘ ” ) .
chunk ( pt ,X) :− pos (X, ” ’ ’ ” ) .
chunk ( pt ,X) :− pos (X, ”\\\” ” ) .
% and so are VBZ/VBP ( most ly )
chunk ( pt ,X) :− pos (X, ”VBZ” ) .
chunk ( pt ,X) :− pos (X, ”VBP” ) .
endOfChunk ( pt ,X,X) :− chunk ( pt ,X) .

% cer t a i n r e l a t i o n s s t a r t a chunk
chunk ( preverb ,X) :− head (X, Parent ) , r e l (X, ”APPO” ) .
chunk ( preverb ,X) :− head ( Parent ,X) , r e l ( Parent , ” SBJ ” ) .

% adverbs s t a r t chunks
chunk ( adv ,X) :− pos (X, ”RB” ) .

chunk (X) :− chunk ( ,X) .
endOfChunk (C,X) :− endOfChunk ( ,C,X) .

% s p l i t between token X and X+1
s p l i t (X) :− token (X) , chunk (X+1).
s p l i t (X) :− endOfChunk ( ,X) , token (X+1).

Figure 3.1: Manual Rules created for Sentence Chunking
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processed by a joint POS-tagger and parser (Bohnet et al., 2013). Tokens, POS-tags, and

dependency relations are represented as ASP facts and processed by a program that roughly

encodes the following:

� chunks extend to child tokens until another chunk starts, and

� chunks start at

(i) prepositions, except ‘of’ in ‘in front of’;

(ii) determiners, unless after a preposition;

(iii) punctuations (where they immediately end);

(iv) adverbs;

(v) nodes in an appositive relation; and

(vi) nodes having a subject.

These rules were hard-coded by us to obtain a result close to Abney (1991). These can be

seen in detail in Figure 3.1 which mentions where a chunk begins and ends. The presence

of a chunk results in sentence splitting.

3.3 Chunking based on ILP with ASP

We extend the subtask of chunking in the Inspire system that was discussed in Section 3.2 by

using ILP to learn the rules that were previously manually encoded for sentence chunking as

mentioned in Section 3.2.2.4. We also introduce a best-effort strategy to extend the XHAIL

system mentioned in Section 2.2.1 in order to make it computationally more efficient to use

as our ILP solver. We then learn a rule based ASP program based on the knowledge and

constraints provided by us; our ASP solver then utilises these rules in order to chunk the

sentences.

Chunking (Tjong Kim Sang and Buchholz, 2000) or shallow parsing is the identification of

short phrases such as noun phrases or prepositional phrases, usually based heavily on Part

of Speech (POS) tags. POS provides only information about the token type, i.e., whether
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Figure 3.2: General overview of our framework

words are nouns, verbs, adjectives, etc., and chunking derives from that a shallow phrase

structure, in our case a single level of chunks.

Our framework for chunking has three main parts as shown in Figure 3.2. Preprocessing is

done using the Stanford CoreNLP tool from which we obtain the facts that are added to

the background knowledge of XHAIL or used with a hypothesis to predict the chunks of an

input. Using XHAIL as our ILP solver we learn a hypothesis (an ASP program) from the

background knowledge, mode bias, and from examples which are generated using the gold-

standard data. We predict chunks using our learned hypothesis and facts from preprocessing,

using the Clingo (Gebser et al., 2008) ASP solver. We test by scoring predictions against

gold chunk annotations.

Example 5. An example sentence in the SemEval iSTS dataset (Agirre et al., 2016) is as

follows.

Former Nazi death camp guard Demjanjuk dead at 91 (3.2)

The chunking present in the SemEval gold standard is as follows.

[ Former Nazi death camp guard Demjanjuk ] [ dead ] [ at 91 ] (3.3)

3.3.1 Preprocessing

Stanford CoreNLP tools (Manning et al., 2014) are used for tokenisations and POS-tagging

of the input. Using a shallow parser (Bohnet et al., 2013) we obtain the dependency relations

for the sentences.

Our ASP representation contains atoms of the following form:
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pos (c NNP , 1 ) . head ( 2 , 1 ) . form (1 , ”Former” ) . r e l (c NAME, 1 ) .
pos (c NNP , 2 ) . head ( 5 , 2 ) . form (2 , ”Nazi ” ) . r e l (c NMOD, 2 ) .
pos (c NN , 3 ) . head ( 4 , 3 ) . form (3 , ” death ” ) . r e l (c NMOD, 3 ) .
pos (c NN , 4 ) . head ( 5 , 4 ) . form (4 , ”camp” ) . r e l (c NMOD, 4 ) .
pos (c NN , 5 ) . head ( 7 , 5 ) . form (5 , ”guard” ) . r e l ( c SBJ , 5 ) .
pos (c NNP , 6 ) . head ( 5 , 6 ) . form (6 , ”Demjanjuk” ) . r e l (c APPO , 6 ) .
pos (c VBD , 7 ) . head ( root , 7 ) . form (7 , ”dead” ) . r e l (c ROOT, 7 ) .
pos ( c IN , 8 ) . head ( 7 , 8 ) . form (8 , ” at ” ) . r e l (c ADV , 8 ) .
pos (c CD , 9 ) . head ( 8 , 9 ) . form (9 , ”91” ) . r e l (c PMOD, 9 ) .

(a) Preprocessing Output

postype (X) :− pos (X, ) .
token (X) :− pos ( ,X) .
nextpos (P,X) :− pos (P,X+1).

(b) Background Knowledge

#modeh s p l i t (+token ) .
#modeb pos ( $postype ,+ token ) .
#modeb nextpos ( $postype ,+ token ) .

(c) Mode Restrictions

goodchunk (1 ) :− not s p l i t ( 1 ) , not s p l i t ( 2 ) , not s p l i t ( 3 ) ,
not s p l i t ( 4 ) , not s p l i t ( 5 ) , s p l i t ( 6 ) .

goodchunk (7 ) :− s p l i t ( 6 ) , s p l i t ( 7 ) .
goodchunk (8 ) :− s p l i t ( 7 ) , not s p l i t ( 8 ) .
#example goodchunk ( 1 ) .
#example goodchunk ( 7 ) .
#example goodchunk ( 8 ) .

(d) Examples

Figure 3.3: XHAIL input for the sentence ’Former Nazi death camp guard Demjanjuk dead
at 91’ from the Headlines Dataset

� pos(P ,T ) which represents that token T has POS tag P ,

� form(T ,Text) which represents that token T has surface form Text ,

� head(T1 ,T2 ) and rel(R,T ) which represent that token T2 depends on token T1 with

dependency relation R.

Example 6. Figure 3.3a shows the result of preprocessing performed on sentence (3.2),

which is a set of ASP facts.

We use Penn Treebank POS-tags as they are provided by Stanford CoreNLP. To form valid

ASP constant terms from POS-tags, we prefix them with ‘c ’, replace special characters with

lowercase letters (e.g., ‘PRP$’ becomes ‘c PRPd’). In addition we create specific POS-tags

for punctuation (see Section 5).

30



Abduction

Examples E
Background Knowledge B

Mode Bias M (Head)

DeductionMode Bias M (Body)

Generalisation

Induction

Hypothesis

Generalisation
(counting)

Pruning

∆ (Kernet Set)

ground K program

non-ground K’ program

ground K program

non-ground K’ program with support counts

subset of K’

Replaced
Modified

Figure 3.4: XHAIL architecture. The dotted line shows the replaced module with our
version represented by the thick solid line.

3.3.2 Extension of XHAIL

Initially we intended to use the state-of-the-art ILP systems (ILASP2 or ILED) in our work

. However, preliminary experiments with ILASP2 showed a lack in scalability (memory

usage) even for only 100 sentences due to the unguided hypothesis search space. Moreover,

experiments with ILED uncovered several problematic corner cases in the ILED algorithm

that led to empty hypotheses when processing examples that were mutually inconsistent

(which cannot be avoided in real-life NLP data). While trying to fix these problems in

the algorithm, further issues in the ILED implementation came up. After consulting the

authors of (Mitra and Baral, 2016) we learned that they had the same issues and used

XHAIL, therefore we also opted to base our research on XHAIL due to it being the most

robust tool for our task in comparison to the others.

Although XHAIL is applicable, we discovered several drawbacks and improved the approach

and the XHAIL system. We provide an overview of the parts we changed, and then present

our modifications. Figure 3.4 shows in the middle the original XHAIL components and on

the right our extension.

We next describe our modifications of XHAIL.
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3.3.2.1 Kernel Pruning according to Support

The computationally most expensive part of the search in XHAIL is Induction. Each non-

ground rule in K ′ is rewritten into a combination of several guesses, one guess for the rule

and one additional guess for each body atom in the rule.

We moreover observed, that some non-ground rules in K ′ are generalisations of many differ-

ent ground rules in K, while some non-ground rules correspond with only a single instance

in K. In the following, we say that the support of r in K is the number of ground rules in K

that are transformed into r∈K ′ in the Generalisation module of XHAIL (see Figure 3.4).

Intuitively, the higher the support, the more examples can be covered with that rule, and

the more likely that rule or a part of it will be included in the optimal hypothesis.

Therefore we modified the XHAIL algorithm as follows.

� During Generalisation we keep track of the support of each rule r∈K ′ by counting

how often a generalisation yields the same rule r.

� We add an integer pruning parameter Pr to the algorithm and use only those rules

from K ′ in the Induction component that have a support higher than Pr.

This modification is depicted as bold components which replace the dotted Generalisation

module in Figure 3.4.

Pruning has several consequences. From a theoretical point of view, the algorithm becomes

incomplete for Pr> 0, because Induction searches in a subset of the relevant hypotheses.

Hence Induction might not be able to find a hypothesis that covers all examples, although

such a hypothesis might exist with Pr= 0. From a practical point of view, pruning realises

something akin to regularisation in classical ML; only strong patterns in the data will find

their way into Induction and have the possibility to be represented in the hypothesis. A

bit of pruning will therefore automatically prevent overfitting and generate more general

hypotheses. As we will show in Experiments in Section 4, the pruning allows to configure

a trade-off between considering low-support rules instead of omitting them entirely, as well

as finding a more optimal hypothesis in comparison to a highly suboptimal one.
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3.3.2.2 Unsat-core based and Best-effort Optimisation

We observed that ASP search in XHAIL Abduction and Induction components progresses

very slowly from a suboptimal to an optimal solution. XHAIL integrates version 3 of

Gringo (Gebser et al., 2011) and Clasp (Gebser et al., 2012b) which are both quite outdated.

In particular Clasp in this version does not support three important improvements that have

been developed by the ASP community for optimisation:

(i) unsat-core optimisation (Andres et al., 2012),

(ii) stratification for obtaining suboptimal models (Alviano et al., 2015b; Ansótegui et al.,

2013), and

(iii) unsat-core shrinking (Alviano and Dodaro, 2016).

Method (i) inverts the classical branch-and-bound search methodology which progresses

from worst to better solutions. Unsat-core optimisation assumes all costs can be avoided

and finds unsatisfiable cores of the problem until the assumption is true and a feasible

solution is found. This has the disadvantage of providing only the final optimal solution,

and to circumvent this disadvantage, stratification in method (ii) was developed which allows

for combining branch-and-bound with method (i) to approach the optimal value both from

cost 0 and from infinite cost. Furthermore, unsat-core shrinking in method (iii), also called

‘anytime ASP optimisation’, has the purpose of providing suboptimal solutions and aims

to find smaller cores which can speed up the search significantly by cutting more of the

search space (at the cost of searching for a smaller core). In experiments with the inductive

encoding of XHAIL we found that all three methods have a beneficial effect.

Currently, only the WASP solver (Alviano et al., 2013, 2015a) supports all of (i), (ii), and

(iii), therefore we integrated WASP into XHAIL, which has a different output format than

Clasp. We also upgraded XHAIL to use Gringo version 4 which uses the new ASP-Core-2

standard and has some further (performance) advantages over older versions.

Unsat-core optimisation often finds solutions with a reasonable cost, near the optimal value,

and then takes a long time to find the true optimum or prove optimality of the found solution.

Therefore, we extended XHAIL as follows:

� a time budget for search can be specified on the command line,
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� after the time budget is elapsed the best-known solution at that point is used and the

algorithm continues, furthermore

� the distance from the optimal value is provided as output.

This affects the Induction step in Figure 3.4 and introduces a best-effort strategy; along

with the obtained hypothesis we also get the distance from the optimal hypothesis, which

is zero for optimal solutions.

Using a suboptimal hypothesis means, that either fewer examples are covered by the hypoth-

esis than possible, or that the hypothesis is bigger than necessary. In practice, receiving

a result is better than receiving no result at all, and our experiments show that XHAIL

becomes applicable to reasonably-sized datasets using these extensions.

3.3.2.3 Other Improvements

We made two minor engineering contributions to XHAIL. A practically effective improve-

ment of XHAIL concerns K ′. As seen in Example 3, three rules that are equivalent modulo

variable renaming are contained in K ′. XHAIL contains canonicalization algorithms for

avoiding such situations, based on hashing body elements of rules. However, we found that

for cases with more than one variable and for cases with more than one body atom, these

algorithms are not effective because XHAIL

(i) uses a set data structure that maintains an order over elements,

(ii) the set data structure is sensitive to insertion order, and

(iii) hashing the set relies on the order to be canonical.

We made this canonicalization algorithm applicable to a far wider range of cases by changing

the data type of rule bodies in XHAIL to a set that maintains an order depending on the

value of set elements. This comes at a very low additional cost for set insertion and often

reduces size of K ′ (and therefore computational effort for Induction step) without adversely

changing the result of induction.

Another improvement concerns monitoring the ASP solving progress. The original imple-

mentationof XHAIL starts the external ASP solver and waits until the complete result is
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received. During ASP solving, no output is processed, however ASP solvers provide output

that is important for tracking the distance from optimality during a search. We extended

XHAIL so that the output of the ASP solver can be made visible during the run using a

command line option.
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Chapter 4

Experiments

In this chapter we discuss the experiments carried out for iSTS and sentence chunking in

ILP. For predicting the interpretable semantic textual similarity we set up three different

runs based on optimising parameters for different criteria. For sentence chunking with ILP,

the first step is to learn a model for each each sentence pair file present in each dataset

obtained from the SemEval2016 Task-2 iSTS. The second step mentions the scoring that is

used for our experiments, we have decided to use Precision, Recall and F1-score. Next we

evaluate our results from the experiments for each dataset.

4.1 Predicting Interpretable Semantic Textual Simi-

larity based on ASP

Our system does not require training, so we tested and optimised it on the training data for

Headlines (H), Images (I), and Answers-Students (A-S) datasets. As criteria for accuracy,

the competition used the F1 score based on alignments (Align), alignments and alignment

type (Align+Type), alignments and alignment score (Align+Score), and full consideration

of alignment, type, and score (Align+Type+Score).

Our optimisation experiments showed us, that there are significant differences in annotations

between datasets. In particular, A-S contains spelling mistakes, verbs are often singleton

chunks in H, and ‘to’ and ‘’s’ often start a new chunk in H, while they are annotated as

part of the previous chunk in I and A-S.
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Therefore we decided to configure our system differently for each dataset, based on a Multi-

nomial Naive Bayes Classifier trained on input unigrams and bigrams implemented using

scikit-learn (Pedregosa et al., 2011). F1-score obtained on training data with 10-fold cross-

validation was 0.99.

Our dataset configuration is as follows: we exclude stopwords from the calculation of sim-

ilarity (3.1) for datasets H and I by using the NLTK corpus of stopwords; we remove

non-singleton punctuation for dataset A-S; and we add rules to handle verb types (VBP,

VBZ) as punctuation and ‘’s’ as a preposition in chunking.

We optimised parameters for 3 runs according to different criteria and compared them to

the Baseline (BL) provided by the organisers of the task.

4.1.1 Run 1

This run is optimised for the full label (Align+Type+Score). We used our implementation

of NeRoSim rules in the same order, except SI4, SI5, and RE1 (Section 3.2.2.2), which we

excluded. In ASP this is configured by defining facts for nextStep(s, s′) where

(s, s′)∈{(noalic, equi1), (equi1, equi2), (equi2, equi3), (equi3, equi4),

(equi4, equi5), (equi5, oppo), (oppo, sp1), (sp1, sp2), (sp2, sp3),

(sp3, simi1), (simi1, simi2), (simi2, simi3), (simi3, result)}.

4.1.2 Run 2

This run is optimised for prediction of alignment (Align), this is done by using all NeRoSim

rules in their original order: we define nextStep(s, s′) for

(s, s′)∈{(noalic, equi1), (equi1, equi2), (equi2, equi3), (equi3, equi4), (equi4, equi5),

(equi5, oppo), (oppo, sp1), (sp1, sp2), (sp2, sp3), (sp3, simi1), (simi1, simi2),

(simi2, simi3), (simi3, simi4), (simi4, simi5), (simi5, rel1), (rel1, result)}.

In addition, for dataset A-S we perform automated spelling correction using Enchant.1

1http://www.abisource.com/projects/enchant/
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4.1.3 Run 3

This run is based on the observation, that the scorer tool does not severely punish overlap-

ping alignments in the F1-score of Align. Hence we allow SIMI4, SIMI5, and REL1 to be

applied simultaneously by defining nextStep(s, s′) for

(s, s′)∈{(noalic, equi1), (equi1, equi2), (equi2, equi3), (equi3, equi4), (equi4, equi5),

(equi5, oppo), (oppo, sp1), (sp1, sp2), (sp2, sp3), (sp3, simi1), (simi1, simi2), (simi2, simi3),

(simi3, simi4), (simi3, simi5), (simi3, rel1), (simi4, result), (simi5, result), (rel1, result)}.

Accordingly, we expected Run 1 to perform best with respect to the Align+Type+Score

(and Align+Type) metric, Run 2 to perform best with respect to Align (and Align+Score)

metrics, and Run 3 to sometimes perform above other runs. These expectations were con-

firmed by the results shown in the next section.

4.1.4 Scoring

The official evaluation (Melamed, 1998) uses the F1 of precision and recall of token align-

ments same as the case of Machine Translation. For each pair of chunks that are aligned,

any pairs of tokens in the chunks are also aligned with some weight. The weight of each

token-token alignment is the inverse of the number of alignments of each token (Agirre et al.,

2016). Precision and recall are evaluated separately for all alignments of all pairs as follows:

Precision =
TP

SYS

Recall =
TP

GOLD

where TP is the number of system token-token alignments that are also present in the gold

standard token-token alignments; SYS stands for the number of system alignments and

GOLD stands for the number of gold standard alignments.

Participating runs were evaluated using four different metrics:
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� F1 where alignment type and score are ignored

� F1 where alignment types need to match, but scores are ignored

� F1 where alignment type is ignored, but each alignment is penalised when scores do

not match, and

� F1 where alignment types need to match, and each alignment is penalised when scores

do not match.

The type and score F1 is the main overall metric. The evaluation procedure does not

explicitly evaluate the chunking results.

4.2 Chunking based on ILP with ASP

In this section we explain in detail how we automate the previously discussed (See Sec-

tion 3.2.2.4) subtask of sentence chunking in iSTS by learning the rules that were hand-

crafted earlier in the Inspire system.

4.2.1 Model Learning

We are using the same datasets from the SemEval2016 Task-2 iSTS (Agirre et al., 2016),

which included two separate files containing sentence pairs. In the following we denote S1

and S2, by sentence 1 and sentence 2 respectively, of sentence pairs in these datasets.

Regarding the size of the SemEval training dataset, Headlines and Images datasets are larger

and contained 756 and 750 sentence pairs, respectively. However, the Answers-Students

dataset was smaller and contained only 330 sentence pairs. In addition, all datasets contain

a test portion of sentence pairs.

We use k-fold cross-validation to evaluate chunking with ILP, which yields k learned hy-

potheses and k evaluation scores for each parameter setting. We test each of these hypotheses

also on the test portion of the respective dataset. From the scores obtained this way we

compute mean and standard deviation, and perform statistical tests to find out whether

observed score differences between parameter settings is statistically significant.
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Dataset Cross-Validation Set Test Set
Size Examples S1 S2

H/I

100 S1 first 110 all *
500 S1 first 550 all *
100 S2 first 110 * all
500 S2 first 550 * all

A-S
100 S1 first 55 + S2 first 55 all all
500 S1 first 275 + S2 first 275 all all

Table 4.1: Dataset partitioning for 11-fold cross-validation experiments. Fields marked with
* are not applicable, because we do not evaluate hypotheses learned from the S1 portion of
the Headlines (H) and Images (I) datasets on the (independent) S2 portion of these datasets
and vice versa. For the Answers-Students (A-S) dataset we need to merge S1 and S2 to
obtain a model size of 500 from the training examples.

Table 4.1 shows which portions of the SemEval training dataset we used for 11-fold cross-

validation. In the following, we call these datasets Cross-Validation Sets. We chose the

first 110 and 550 examples to use for 11-fold cross-validation which results in training set

sizes 100 and 500, respectively. As the Answers-Students dataset was smaller, we merged

its sentence pairs in order to obtain a Cross-Validation Set size of 110 sentences, using the

first 55 sentences from S1 and S2; and for 550 sentences, using the first 275 sentences from

S1 and S2 each. As test portions we only use the original SemEval test datasets and we

always test S1 and S2 separately.

Background Knowledge we use is shown in Figure 3.3b. We define which POS-tags can exist

in predicate postype/1 and which tokens exist in predicate token/1. Moreover, we provide

for each token the POS-tag of its successors token in predicate nextpos/2.

Mode bias conditions are shown in Figure 3.3c, these limit the search space for hypothesis

generation. Hypothesis rules contain as head atoms of the form, split(T), which indicates,

that a chunk ends at token T and a new chunk starts at token T + 1. The argument of

predicates split/1 in head is of type token.

The body of hypothesis rules can contain pos/2 and nextpos/2 predicates, where the first

argument is a constant of type postype (which is defined in Figure 3.3b) and the second

argument is a variable of type token. Hence this mode bias searches for rules defining chunk

splits based on POS-tag of the token and the next token.

We deliberately use a very simple mode bias that does not make use of all atoms in the
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facts obtained from preprocessing. This is discussed in Section 5.

4.2.2 Scoring

We use difflib.SequenceMatcher in Python to match the sentence chunks obtained from

learning in ILP against the gold-standard sentence chunks. From the matchings obtained

this way, we compute precision, recall, and F1-score as follows.

Precision =
No. of Matched Sequences

No. of ILP-learned Chunks

Recall =
No. of Matched Sequences

No. of Gold Chunks

Score = 2× Precision× Recall

Precision + Recall

To investigate the effectivity of our mode bias for learning a hypothesis that can correctly

classify the dataset, we perform cross-validation (see above) and measure correctness of all

hypotheses obtained in cross-validation also on the test set.

Because of differences in S1/S2 portions of datasets, we report results separately for S1

and S2. We also evaluate classification separately for S1 and S2 for the Answers-Students

dataset, although we train on a combination of S1 and S2.

4.2.3 Evaluation

We use Gringo version 4.5 (Gebser et al., 2011) and we use WASP version 2 (Git hash

a44a95) (Alviano et al., 2015a) configured to use unsat-core optimisation with disjunctive

core partitioning, core trimming, a budget of 30 seconds for computing the first model and

for shrinking unsatisfiable cores with progressive shrinking strategy. These parameters were

found most effective in preliminary experiments. We configure our modified XHAIL solver

to allocate a budget of 1800 seconds for the Induction part which optimises the hypothesis

(see Section 3.3.2.2). Memory usage never exceeded 5 GB.

Tables 4.2–4.4 contains the experimental results for each dataset, where columns Size, Pr,

and So, respectively, show the number of sentences used to learn the model, the pruning
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parameter for generalising the learned hypothesis (see Section 3.3.2.1), and the rate of how

close the learned hypothesis is to the optimal result, respectively. So is computed according

to the following formula:

So =
Upperbound− Lowerbound

Lowerbound

which is based on upper and lower bounds on the cost of the answer set. An So value of

zero means optimality, and values above zero mean suboptimality; so the higher the value,

the further away from optimality. Our results comprise of the mean and standard deviation

of the F1-scores obtained from our 11-fold cross-validation test set of S1 and S2 individually

(column CV). Due to lack of space, we opted to leave out the scores of precision and recall,

but these values show similar trends as in the test set. For the test sets of both S1 and S2,

we include the mean and standard deviation of the Precision, Recall and F1-scores (column

group T).

When testing ML based systems, comparing results obtained on a single test set is often not

sufficient, therefore we performed cross-validation to obtain mean and standard deviation

about our benchmark metrics. This gives a better impression about the significance of the

measured results. To obtain even more solid evidence, we additionally performed a one-

tailed paired t-test to check if quality of results (e.g., F1 score) is significantly higher in one

setting than in another one. We consider a result significant if p < 0.05, i.e., if there is a

probability of less than 5 % that the result is due to chance. Our test is one-tailed because

we check whether one result is higher than another one, and it is a paired test because

we test different parameters on the same set of 11 training/test splits in cross-validation.

There are even more powerful methods for proving significance of results such as bootstrap

sampling (Efron and Tibshirani, 1986), however these methods require markedly higher

computational effort in experiments and our experiments already show significance with the

t-test.

Rows of Tables 4.2–4.4 contain results for learning from 100 resp. 500 example sentences,

and for different pruning parameters. For each of the training set size, we increased pruning

stepwise starting from value 0 until we found an optimal hypothesis (So = 0) or until we saw

a clear peak in classification score in cross-validation (in that case, increasing the pruning is

pointless, because it would increase optimality of the hypothesis but decrease the prediction

scores).
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Note that datasets have been tokenised very differently, and that also state-of-the-art sys-

tems in SemEval used separate preprocessing methods for each dataset. We follow this strat-

egy to allow a fair comparison. One example for such a difference is the Images dataset,

where the ‘.’ is considered as a separate token and is later defined as a separate chunk,

however in Answers-Students dataset it is integrated into neighboring tokens.

46



Chapter 5

Results and Discussion

This chapter presents the results obtained by carrying out the experiments mentioned in the

previous chapter. For iSTS we tabulate our results for both the subtasks and provide the

scores obtained by the best system for each dataset in each subtask as well. For Chunking

with ILP we provide a detailed discussion of the results obtained from the experimental

evaluation and provide a comparison with the state-of-the-art systems in the given task.

5.1 Predicting Interpretable Semantic Textual Simi-

larity based on ASP

The results of the competition, obtained with the above parameter sets, are shown in Ta-

ble 5.1.

The Inspire system made use of a rule-based approach using Answer Set Programming

for determining chunk boundaries (based on a representation obtained from a dependency

parser) and for aligning chunks and assigning alignment type and score (based on a repre-

sentation obtained from POS, NER, and distributed similarity tagging). In team ranking,

our system is among the top three systems for Headlines and Images datasets, and in over-

all ranking (both for system and gold chunks). In terms of runs (each team could submit

three runs), our system obtains first and second place for Headlines with gold standard

chunks. For Answers-Students dataset our system performs worst. The configuration of

Run 1 performs best in all categories.
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We next work on extending the subtask of sentence chunking for the system Inspire by

learning with ILP the ASP-based rules that are currently manually set.

Data System Align Align+Type Align+Score Align+Type+Score

Gold-Standard Chunks

H

BL 0.85 0.55 0.76 0.55
r1 0.82 0.70 0.79 0.70
r2 0.89 0.67 0.83 0.66
r3 0.90 0.59 0.82 0.58

Inspire r1 0.82 0.70 0.79 0.70

I

BL 0.86 0.48 0.75 0.48
r1 0.80 0.61 0.75 0.61
r2 0.87 0.60 0.79 0.59
r3 0.86 0.49 0.78 0.49

UWB r3 0.89 0.69 0.84 0.67

A-S

BL 0.82 0.56 0.75 0.56
r1 0.80 0.51 0.73 0.51
r2 0.82 0.48 0.74 0.48
r3 0.87 0.39 0.77 0.39

IISCNLP r1 0.87 0.65 0.83 0.64

System Chunks

H

BL 0.65 0.48 0.59 0.44
r1 0.70 0.53 0.66 0.52
r2 0.76 0.50 0.69 0.50
r3 0.77 0.46 0.69 0.45

DTSim r2 0.84 0.56 0.76 0.55

I

BL 0.71 0.40 0.63 0.40
r1 0.75 0.56 0.70 0.56
r2 0.82 0.54 0.74 0.54
r3 0.81 0.45 0.73 0.45

DTSim r3 0.84 0.63 0.78 0.61

A-S

BL 0.62 0.44 0.57 0.44
r1 0.69 0.46 0.64 0.45
r2 0.72 0.42 0.65 0.42
r3 0.76 0.34 0.67 0.34

FBK-HLT-NLP r3 0.82 0.56 0.76 0.56

Table 5.1: System Performance results (F1-score) along with Best System Results for both
subtasks and each dataset.

5.2 Chunking based on ILP with ASP

We first discuss the results of training set and pruning experiments, then compare our

approach with the state-of-the-art systems, and finally inspect the optimal hypotheses.
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5.2.1 Training Set and Pruning

Tables 4.2–4.4 show results of experiments, where T denotes the test portion of the respective

dataset.

We observe that by increasing the size of the training set to learn the hypothesis, our scores

improved considerably. Due to more information being provided, the learned hypothesis

can predict with higher F1 score. We also observed that for the smaller training set size

(100 sentences), lower pruning numbers (in rare cases even Pr=0) resulted in achieving the

optimal solution. For a bigger training set size (500 sentences), without pruning the ILP

procedure does not find solutions close to the optimal solution. However, by using pruning

values up to Pr=10 we can reduce the size of the search space and find hypotheses closer to

the optimum, which predict chunks with a higher F1 score. Our statistical test shows that,

in many cases, several increments of the Pr parameter yield significantly better results, up

to a point where prediction accuracy degrades because too many examples are pruned away.

To select the best hypothesis, we increase the pruning parameter Pr until we reach the peak

in the F1 score in cross-validation.

Finding optimal hypotheses in the Inductive search of XHAIL (where So=0) is easily at-

tained when learning from 100 sentences. For learning from 500 sentences, very high pruning

results in a trivial optimal hypothesis (i.e., every token is a chunk) which has no predictive

power, hence we do not increase Pr beyond a value of 10.

Note that we never encountered timeouts in the Abduction component of XHAIL, only in the

Induction part. The original XHAIL tool without our improvements yields only timeouts for

learning from 500 examples, and few hypotheses for learning from 100 examples. Therefore

we do not show these results in tables.

5.2.2 State-of-the-art comparison

Table 5.2 shows a comparison of our results with the baseline and the three best systems

from the chunking subtask of Task 2 from SemEval2016 Task2 (Agirre et al., 2016): DTSim

(Banjade et al., 2016), FBK-HLT-NLP (Magnolini et al., 2016) and runs 1 and 2 of IISCNLP

(Tekumalla and Jat, 2016). We also compare with results of our own system ‘Inspire-
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Manual’ (Kazmi and Schüller, 2016).

� The baseline makes use of the automatic probabilistic chunker from the IXA-pipeline

which provides Perceptron models (Collins, 2002) for chunking and is trained on

CONLL2000 corpora and corrected manually,

� DTSim uses a Conditional Random Field (CRF) based chunking tool using only POS-

tags as features,

� FBK-HLT-NLP obtains chunks using a Python implementation of MBSP chunker

which uses a Memory-based part-of-speech tagger generator (Daelemans et al., 1996),

� Run 1 of IISCNLP uses OpenNLP chunker which divides the sentence into syntacti-

cally correlated parts of words, but does not specify their internal structure, nor their

role in the main sentence. Run 2 uses Stanford NLP Parser to create parse trees and

then uses a perl script to create chunks based on the parse trees, and

� Inspire-Manual (our previous system) makes use of manually set chunking rules (Ab-

ney, 1991) using ASP (Kazmi and Schüller, 2016).

Using the gold-standard chunks provided by the organisers we were able to compute the

precision, recall, and F1-scores for analysis on the Headlines, Images and Answers-Students

datasets.

For the scores of our system ‘Inspire-Learned’, we used the mean and average of the best

configuration of our system as obtained in cross-validation experiments on the test set and

compared against the other systems’ test set results. Our system’s performance is quite

robust: it always scores within the top three best systems. Considering that we learn our

hypothesis from a small portion of the training data based on only POS-tags, we conclude

that our method is able to reach competitive results, with the additional bonus of providing

an interpretable model.

5.2.3 Inspection of Hypotheses

Table 5.3 shows the rules that are obtained from the hypothesis generated by XHAIL from

Sentence 1 files of all the datasets. We have also tabulated the common rules present

50



D
a
ta

se
t

S
y
st
e
m

S
1

S
2

P
R

F
1

R
a
n
k

P
R

F
1

R
a
n
k

H
ea

d
li

n
es

B
a
se

li
n

e
60

.5
36

.6
37

.6
63

.6
42

.5
4
2.

8
D

T
S

im
7
2.

5
74

.3
71

.3
*

7
2.

1
7
4.

3
70

.5
*

F
B

K
-H

L
T

-N
L

P
6
3.

6
51

.3
51

.5
5
7.

1
51

.1
48

.3
II

S
C

N
L

P
-

R
u

n
1

6
1.

9
68

.5
61

.4
61

.1
6
5.

7
6
0.

1
II

S
C

N
L

P
-

R
u

n
2

6
7.

6
68

.5
64

.5
**

*
7
1.

4
71

.9
68

.9
*
*

In
sp

ir
e

-
M

a
n
u

a
l

6
4.

5
70

.4
62

.4
6
4.

3
6
8.

4
62

.2
In

sp
ir

e
-

L
ea

rn
ed

68
.1
±

2.
5

70
.6
±

2.
5

65
.4
±

2.
6

**
6
7.

2±
1.

3
68

.2
±

2
.4

64
.0
±

1.
8

**
*

Im
a
ge

s
B

as
el

in
e

19
.0

15
.7

16
.4

13
.6

1
7.

5
1
3.

5
D

T
S

im
77

.8
77

.4
77

.5
*

79
.5

79
.1

7
9.

2
*

F
B

K
-H

L
T

-N
L

P
41

.0
39

.2
38

.8
40

.5
4
3.

1
4
0.

8
II

S
C

N
L

P
-

R
u

n
1

6
1.

6
60

.9
60

.7
66

.1
6
6.

2
6
5.

9
II

S
C

N
L

P
-

R
u

n
2

6
5.

8
65

.6
65

.4
67

.7
6
7.

2
6
7.

3
In

sp
ir

e
-

M
an

u
al

74
.5

74
.2

74
.2

**
7
3.

8
7
3.

6
73

.6
*
*

In
sp

ir
e

-
L

ea
rn

ed
66

.4
±

15
.5

74
.3
±

0.
7

73
.7
±

0.
7

**
*

7
1.

1±
0.

8
71

.1
±

0
.8

70
.9
±

0.
8

**
*

A
n

sw
er

s-
S

tu
d

en
ts

B
as

el
in

e
62

.1
30

.9
34

.6
59

.2
3
3.

4
3
6.

6
D

T
S

im
7
8.

5
73

.6
72

.5
*

8
3.

3
7
9.

2
77

.8
**

F
B

K
-H

L
T

-N
L

P
7
0.

3
52

.5
52

.8
7
2.

4
59

.1
59

.3
II

S
C

N
L

P
-

R
u

n
1

6
7.

9
63

.9
60

.7
**

*
6
5.

7
55

.0
54

.0
II

S
C

N
L

P
-

R
u

n
2

6
3.

0
59

.8
56

.9
66

.2
5
2.

5
5
2.

8
In

sp
ir

e
-

M
a
n
u

a
l

6
6.

8
64

.4
59

.7
7
1.

2
6
2.

5
62

.1
*
**

In
sp

ir
e

-
L

ea
rn

ed
66

.8
±

2.
8

70
.5
±

2.
5

63
.5
±

2.
4

**
8
9.

3±
3.

0
80

.1
±

0
.7

80
.3
±

1.
7

*

T
ab

le
5.

2:
C

om
p
ar

is
on

w
it

h
sy

st
em

s
fr

om
S
em

E
va

l
20

16
T

as
k

2.
T

h
e

n
u
m

b
er

of
st

ar
s

sh
ow

s
th

e
ra

n
k

of
th

e
sy

st
em

.

51



Rules H I A-S

split(V) :- token(V), pos(c VBD,V). X X X
split(V) :- token(V), nextpos(c IN,V). X X X
split(V) :- token(V), nextpos(c VBZ,V). X X X
split(V) :- token(V), pos(c VB,V). X X
split(V) :- token(V), nextpos(c TO,V). X X
split(V) :- token(V), nextpos(c VBD,V). X X
split(V) :- token(V), nextpos(c VBP,V). X X
split(V) :- token(V), pos(c VBZ,V), nextpos(c DT,V). X X
split(V) :- token(V), pos(c NN,V), nextpos(c RB,V). X X
split(V) :- token(V), pos(c NNS,V). X
split(V) :- token(V), pos(c VBP,V). X
split(V) :- token(V), pos(c VBZ,V). X
split(V) :- token(V), pos(c c,V). X
split(V) :- token(V), nextpos(c POS,V). X
split(V) :- token(V), nextpos(c VBN,V). X
split(V) :- token(V), nextpos(c c,V). X
split(V) :- token(V), pos(c PRP,V). X
split(V) :- token(V), pos(c RP,V). X
split(V) :- token(V), pos(c p,V). X
split(V) :- token(V), nextpos(c p,V). X
split(V) :- token(V), pos(c CC,V), nextpos(c VBG,V). X
split(V) :- token(V), pos(c NN,V), nextpos(c VBD,V). X
split(V) :- token(V), pos(c NN,V), nextpos(c VBG,V). X
split(V) :- token(V), pos(c NN,V), nextpos(c VBN,V). X
split(V) :- token(V), pos(c NNS,V), nextpos(c VBG,V). X
split(V) :- token(V), pos(c RB,V), nextpos(c IN,V). X
split(V) :- token(V), pos(c VBG,V), nextpos(c DT,V). X
split(V) :- token(V), pos(c VBG,V), nextpos(c JJ,V). X
split(V) :- token(V), pos(c VBG,V), nextpos(c PRPd,V). X
split(V) :- token(V), pos(c VBG,V), nextpos(c RB,V). X
split(V) :- token(V), pos(c VBZ,V), nextpos(c IN,V). X
split(V) :- token(V), pos(c EX,V). X
split(V) :- token(V), pos(c RB,V). X
split(V) :- token(V), pos(c VBG,V). X
split(V) :- token(V), pos(c WDT,V). X
split(V) :- token(V), pos(c WRB,V). X
split(V) :- token(V), nextpos(c EX,V). X
split(V) :- token(V), nextpos(c MD,V). X
split(V) :- token(V), nextpos(c VBG,V). X
split(V) :- token(V), nextpos(c RB,V). X
split(V) :- token(V), pos(c IN,V), nextpos(c NNP,V). X
split(V) :- token(V), pos(c NN,V), nextpos(c WDT,V). X
split(V) :- token(V), pos(c NN,V), nextpos(c IN,V). X
split(V) :- token(V), pos(c NNS,V), nextpos(c IN,V). X
split(V) :- token(V), pos(c NNS,V), nextpos(c VBP,V). X
split(V) :- token(V), pos(c RB,V), nextpos(c DT,V). X

Table 5.3: Rules in the best hypotheses obtained from training on 500 sentences (S1), where
X marks the presence of the rule in a given dataset.

52



between the datasets and the extra rules which differentiate the datasets from each other.

POS-tags for punctuation are ‘c p’ for sentence-final punctuation (‘.’, ‘?’, and ‘!’) and ‘c c’

for sentence-separating punctuation (‘,’, ‘;’, and ‘:’).

Rules which occur in all learned hypotheses can be interpreted as follows:

(i) chunks end at past tense verbs (VBD, e.g., ‘walked’),

(ii) chunks begin at subordinating conjunctions and prepositions (IN, e.g., ‘in’), and

(iii) chunks begin at 3rd person singular present tense verbs (VBZ, e.g., ‘walks’).

Rules that are common to H and A-S datasets are as follows:

(i) chunks end at base forms of verbs (VB, e.g., ‘[to] walk’),

(ii) chunks begin at ‘to’ prepositions (TO), and

(iii) chunks begin at past tense verbs (VBD).

The absence of (i) in hypotheses for the Images dataset can be explained by the rareness of

such verbs in captions of images. Note that (iii) together with the common rule (i) means

that all VBD verbs become separate chunks in H and A-S datasets. Rules that are common

to I and A-S datasets are as follows:

(i) chunks begin at non-3rd person verbs in present tense (VBP, e.g., ‘[we] walk’),

(ii) chunk boundaries are between a determiner (DT, e.g., ‘both’) and a 3rd person singular

present tense verb (VBZ), and

(iii) chunk boundaries are between adverbs (RB, e.g., ‘usually’) and common, singular, or

mass nouns (NN, e.g., ‘humor’).

Interestingly, there are no rules common to H and I datasets except for the three rules

mutual to all three datasets.

For rules occurring only in single datasets, we only discuss a few interesting cases in the

following. Rules that are unique to the Headlines dataset include rules which indicate that
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the sentence separators ‘,’, ‘;’, and ‘:’, become single chunks, moreover chunks start at

genitive markers (POS, ‘’s’). Both is not the case for the other two data sets. Rules unique

to the Images dataset include that sentence-final punctuation (‘.’, ‘?’, and ‘!’) become

separate chunks, rules for chunk boundaries between verb (VB ) and noun (NN ) tokens, and

chunk boundaries between possessive pronouns (PRP$, encoded as ‘c PRPd’, e.g., ‘their’)

and participles/gerunds (VBG, e.g., ‘falling’). Rules unique to Answers-Students dataset

include chunks containing ‘existential there’ (EX), adverb tokens (RB), gerunds (VBG),

and several rules for splits related to WH-determiners (WDT, e.g., ‘which’), WH-adverbs

(WRB, e.g., ‘how’), and prepositions (IN). We see that our model is interpretable, which is

not the case in classical ML techniques such as Neural Networks (NN), Conditional Random

Fields (CRF), and Support Vector Machines (SVM).

5.2.4 Impact and Applicability

ILP is applicable to many problems of traditional ML, but usually only applicable for small

datasets. Our addition of pruning enables learning from larger datasets at the cost of

obtaining a more coarse-grained hypothesis and potentially suboptimal solutions.

The main advantage of ILP is interpretability and that it can achieve good results already

with small datasets. Interpretability of the learned rule-based hypothesis makes the learned

hypothesis transparent as opposed to black-box models of other approaches in the field

such as Conditional Random Fields, Neural Networks, or Support Vector Machines. These

approaches are often purely statistical, operate on big matrices of real numbers instead of

logical rules, and are not interpretable. The disadvantage of ILP is that it often does not

achieve the predictive performance of purely statistical approaches because the complexity

of ILP learning limits the number of distinct features that can be used simultaneously.

Our approach allows finding suboptimal hypotheses which yield a higher prediction accuracy

than an optimal hypothesis trained on a smaller training set. Learning a better model from

a larger dataset is exactly what we would expect in ML. Before our improvement of XHAIL,

obtaining any hypothesis from larger datasets was impossible: the original XHAIL tool does

not return any hypothesis within several hours when learning from 500 examples.

Our chunking approach learns from a small portion of the full SemEval training dataset,

based on only POS-tags, but it still achieves results close to the state-of-the-art. Addition-
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ally it provides an interpretable model that allowed us to pinpoint non-uniform annotation

practices in the three datasets of the SemEval 2016 iSTS competition. These observations

give direct evidence for differences in annotation practice for three datasets with respect to

punctuation and genitives, as well as differences in the content of the datasets.

5.2.5 Strengths and weaknesses

Our additions of pruning and the usage of suboptimal answer sets make ILP more robust

because it permits learning from larger datasets and obtaining (potentially suboptimal)

solutions faster.

Our addition of a time budget and usage of suboptimal answer sets is a purely beneficial

addition to the XHAIL approach. If we disregard the additional benefits of pruning, i.e., if

we disable pruning by setting Pr=0, then within the same time budget, the same optimal

solutions are to be found as if using the original XHAIL approach. In addition, before finding

the optimal solution, suboptimal hypotheses are provided in an online manner, together with

information about their distance from the optimal solution.

The strength of pruning before the Induction phase is, that it permits learning from a bigger

set of examples, while still considering all examples in the dataset. A weakness of pruning

is, that a hypothesis which fits perfectly to the data might not be found anymore, even

if the mode bias could permit such a perfect fit. In NLP applications this is not a big

disadvantage, because noise usually prevents a perfect fit anyways, and overfitting models is

indeed often a problem. However, in other application domains such as learning to interpret

input data from user examples (Gulwani et al., 2015), a perfect fit to the input data might

be desired and required. Note that pruning examples to learn from inconsistent data as

done by Tang and Mooney (Tang and Mooney, 2001) is not necessary for our approach.

Instead, non-covered examples incur a cost that is optimised to be as small as possible.

5.2.6 Design Decisions

In our study, we use a simple mode bias containing only the current and next POS tags,

which is a deliberate choice to make results easier to compare. We performed experi-

ments with additional body atoms head/2 and rel/2 in the body mode bias, moreover with
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negation in the body mode bias. However, these experiments yielded significantly larger

hypotheses with only small increases in accuracy. Therefore we here limit the analysis to

the simple case and consider more complex mode biases as future work. Note that the

best state-of-the-art system (DTSim) is a CRF model solely based on POS-tags, just as

our hypothesis is only making use of POS-tags. By considering more than the current and

immediately succeeding POS tag, DTSim can achieve better results than we do.

The representation of examples is an important part of our chunking case as described in

Section 3.3. We define predicate goodchunk with rules that consider presence and absence of

splits for each chunk. We make use of the power of NAF in these rules. We also experimented

with an example representation that just gave all desired splits as #example split(X) and

all undesired splits as #example not split(Y). This representation contains an imbalance

in the split versus not split class, moreover, chunks are not represented as a concept that

can be optimised in the inductive search for the best hypothesis. Hence, it is not surprising

that this simpler representation of examples gave drastically worse scores, and we do not

report any of these results in detail.
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Chapter 6

Related Work

6.1 Natural Language Processing with Inductive Logic

Programming

From NLP point of view, the hope of ILP is to be able to steer a mid-course between these

two alternatives of large-scale but shallow levels of analysis and small scale but deep and

precise analysis. ILP should produce a better ratio between breadth of coverage and depth

of analysis (Muggleton, 1999). ILP has been applied to the field of NLP successfully; it has

not only been shown to have higher accuracies than various other ML approaches in learning

the past tense of English but also shown to be capable of learning accurate grammars which

translate sentences into deductive database queries (Law et al., 2014).

Except for one early application (Wirth, 1989) no application of ILP methods surfaced

until the system CHILL (Mooney, 1996) was developed which learned a shift-reduce parser

in Prolog from a training corpus of sentences paired with the desired parses by learning

control rules and uses ILP to learn control strategies within this framework. This work

also raised several issues regarding the capabilities and testing of ILP systems. CHILL was

also used for parsing database queries to automate the construction of a natural language

interface (Zelle and Mooney, 1996) and helped in demonstrating its ability to learn semantic

mappings as well.

An extension of CHILL, CHILLIN (Zelle et al., 1994) was used along with an extension

of FOIL, mFOIL (Tang and Mooney, 2001) for semantic parsing. Where CHILLIN com-
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bines top-down and bottom-up induction methods and mFOIL is a top-down ILP algorithm

designed keeping imperfect data in mind, which portrays whether a clause refinement is

significant for the overall performance with the help of a pre-pruning algorithm. This em-

phasised on how the combination of multiple clause constructors helps improve the overall

learning; which is a rather similar concept to Ensemble Methods in standard ML. Note

that CHILLIN pruning is based on probability estimates and has the purpose of dealing

with inconsistency in the data. Opposed to that, XHAIL already supports learning from

inconsistent data, and the pruning we discuss in Section 3.3.2.1 aims to increase scalability.

Previous work ILP systems such as TILDE and Aleph (Srinivasan, 2001) have been applied

to preference learning which addressed learning ratings such as good, poor and bad. ASP

expresses preferences through weak constraints and may also contain weak constraints or

optimisation statements which impose an ordering on the answer sets (Law et al., 2015).

The system of Mitra and Baral (2016) uses ASP as primary knowledge representation and

reasoning language to address the task of Question Answering. They use a rule layer that is

partially learned with XHAIL to connect results from an Abstract Meaning Representation

parser and an Event Calculus theory as background knowledge.

6.2 Systems for Inductive Logic Programming

The following sections give an overview of ILP systems based on ASP that are designed to

operate in the presence of negation, in addition to XHAIL that we introduced in detail in

Section 2.2.1.

6.2.1 Inductive Learning of Answer Set Programs

The Inductive Learning of Answer Set Programs approach (ILASP) is an extension of the no-

tion of learning from answer sets (Law et al., 2014). Importantly, it covers positive examples

bravely (i.e., in at least one answer set) and ensures that the negation of negative exam-

ples is cautiously entailed (i.e., no negative example is covered in any answer set) (Otero,

2001). Negative examples are needed to learn Answer Set Programs with non-determinism

otherwise there is no concept of what should not be in an Answer Set. ILASP conducts a
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search in multiple stages for brave and cautious entailment and processes all examples at

once. ILASP performs a less informed hypothesis search than XHAIL or ILED, that means

large hypothesis spaces are infeasible for ILASP while they are not problematic for XHAIL

and ILED, on the other hand, ILASP supports aggregates and constraints while the older

systems do not support these.

ILASP2 (Law et al., 2015) extends the hypothesis space of ILASP with choice rules and

weak constraints. This permits searching for hypotheses that encode preference relations.

ILASP is more expressive than XHAIL but is less scalable, therefore we based our work on

XHAIL.

6.2.2 Incremental Learning of Event Definitions

The Incremental Learning of Event Definitions (ILED) algorithm (Katzouris et al., 2015)

relies on Abductive-Inductive learning and comprises of a scalable clause refinement method-

ology based on a compressive summarization of clause coverage in a stream of examples.

Previous ILP learners were batch learners and required all training data to be in place prior

to the initiation of the learning process. ILED learns incrementally by processing training

instances when they become available and altering previously inferred knowledge to fit new

observation, this is also known as theory revision. It exploits previous computations to

speed-up the learning since revising the hypothesis is considered more efficient than learn-

ing from scratch. ILED attempts to cover a maximum of examples by re-iterating over

previously seen examples when the hypothesis has been refined. While XHAIL can ensure

optimal example coverage easily by processing all examples at once, ILED does not preserve

this property due to a non-global view on examples.

When considering ASP-based ILP, negation in the body of rules is not the only interesting

addition to the overall concept of ILP. An ASP program can have several independent

solutions, called answer sets, of the program. Even the background knowledge B can admit

several answer sets without any addition of facts from examples. Therefore, a hypothesis

H can cover some examples in one answer set, while others are covered by another answer

set. XHAIL and ILED approaches are based on finding a hypothesis that is covering all

examples in a single answer set.

Unfortunately, in our experiments, we encountered several problems with ILED in the pres-
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ence of inconsistent input data (which is typical in NLP). Therefore, we decided to use

XHAIL as our ILP tool.

6.2.3 Inspire-ILP

The Inspire system (Schüller, 2017) is an Inductive Logic Programming system based on an

ASP encoding for generating hypotheses with a cost from the mode bias, and a transfor-

mation of hypotheses and examples to an ASP optimisation problem that has the smallest

hypothesis covering all examples as solutions. Inspire attempts to learn a hypothesis on

single examples while increasing maximum hypothesis cost.

The approach has the advantage that there is no need to make abduction of required facts,

then induction of potential rules, then generalisation of these rules, then a search for the

smallest hypothesis (as done in the XHAIL (Ray, 2009) system) while the obvious dis-

advantage is, that hypothesis search is blind (similar as in the ILASP (Law et al., 2014)

system).

For our application, learning from a single example is not useful as providing more examples

gives more information to the ILP tool. Hence, we use XHAIL in order to use all examples

at once in order to learn a better and stronger hypothesis for our work.
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Chapter 7

Conclusion and Future Work

The Inspire system made use of a rule-based approach using Answer Set Programming for

determining chunk boundaries based on a representation obtained from a dependency parser,

and for aligning chunks and assigning alignment type and score based on a representation

obtained from POS, NER, and distributed similarity tagging. Our system competed at the

SemEval2016 Task-2 iSTS competition and was among the top three systems for Headlines

and Images datasets, and in overall ranking both for system and gold chunks subtasks. In

terms of runs (each team could submit three runs), our system obtains the first and second

place for Headlines with gold standard chunks. For Student-Answers dataset our system

performs worst. The configuration of Run 1 performs best in all categories.

In the subtask of the competition for chunking, we decided to extend our system by learning

our previous technique of rule-based chunking. We explore the usage of ILP for the NLP

task of chunking. ILP combines logic programming and Machine Learning (ML), and it

provides interpretable models, i.e., logical hypotheses, which are learned from data. ILP

has been applied to a variety of NLP and other problems such as parsing (Tang and Mooney,

2001; Zelle and Mooney, 1996), automatic construction of biological knowledge bases from

scientific abstracts (Craven and Kumlien, 1999), automatic scientific discovery (King et al.,

2004), and in Microsoft Excel Gulwani et al. (2015) where users can specify data extraction

rules using examples. Therefore, ILP research has the potential for being used in a wide

range of applications.

We extend the XHAIL ILP solver to increase its scalability and applicability for the task of

sentence chunking and the results indicate that ILP is competitive to state-of-the-art ML
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Feature ILP ML Rules

Expressivity X X
Learning performance from less training data X
Interpretable Model X
Ability to track learned model X X (Decision Trees)
Representation of examples shaping learned model X
Robustness to new input X X
Low engineering complexity X

Table 7.1: Comparison of the benefits and drawbacks provided by Inductive Logic Program-
ming over standard Machine Learning Techniques and manually-set rules

techniques which can be seen listed in Table 7.1. We have successfully extended XHAIL to

allow learning from larger datasets than previously possible. Learning a hypothesis using

ILP has the advantage of an interpretable representation of the learned knowledge, such

that we know exactly which rule has been learned by the program and how it affects our

NLP task. In this study, we also gain insights about the differences and common points

of datasets that we learned a hypothesis from. Moreover, ILP permits learning from small

training sets where techniques such as Neural Networks fail to provide good results.

As a first contribution to the ILP tool XHAIL we have upgraded the software so that it

uses the newest solver technology, and that this technology is used in a best-effort manner

that can utilise suboptimal search results. This is effective in practice, because finding

the optimal solution can be disproportionately more difficult than finding a solution close

to the optimum. Moreover, the ASP technique we use here provides a clear information

about the degree of suboptimality. During our experiments, a new version of Clingo was

published which contains most techniques in WASP (except for core shrinking). We decided

to continue using WASP for this study because we saw that core shrinking is also beneficial

to search. Extending XHAIL to use Clingo in a best-effort manner is quite straight-forward.

As a second contribution to XHAIL we have added a pruning parameter to the algorithm

that allows fine-tuning the search space for hypotheses by filtering out rule candidates that

are supported by fewer examples than other rules. This addition is a novel contribution to

the algorithm, which leads to significant improvements in efficiency, and increases the num-

ber of hypotheses that are found in a given time budget. While pruning makes the method

incomplete, it does not reduce expressivity. The hypotheses and background knowledge may

still contain unrestricted Negation as Failure. Pruning in our work is similar to the concept

of the regularisation in ML and is there to prevent overfitting in the hypothesis generation.
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Pruning enables the learning of logical hypotheses with dataset sizes that were not feasible

before. We experimentally observed a trade-off between finding an optimal hypothesis that

considers all potential rules on one hand, and finding a suboptimal hypothesis that is based

on rules that are supported by few examples. Therefore the pruning parameter has to be

adjusted on an application-by-application basis.

Note that, in XHAIL, pruning examples to learn from inconsistent data as done by Tang

and Mooney (2001) is not necessary. Instead, non-covered examples incur a cost that is

optimised via ASP. Our additional pruning step enables learning from a bigger amount

of examples in this setting. We provide the modified XHAIL in a public repository fork

(Bragaglia and Schüller, 2016).

Our work has focused on providing comparable results to ML techniques and we have not

utilised the full power of ILP with Negation as Failure (NAF) in rule bodies and predicate

invention. As future work, we plan to extend the predicates usable in hypotheses to provide

a more detailed representation of the NLP task, moreover we plan to enrich the background

knowledge to aid ILP in learning a better hypothesis with a deeper structure representing

the boundaries of chunks.
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Appendix A

ASP Code

%

% SemEval 2016 System : In sp i r e − I n t e r p r e t a b l e Textua l

% S im i l a r i t y Alignment based on Answer Set Programming

%

% Copyright (C) 2015−2016 Mishal Kazmi

% Copyright (C) 2015−2016 Peter S chu e l l e r

%

% comfort r e p r e s en t a t i on

word ( I ,W) :− mword( I ,W, L ,P,N) .

lword ( I , L) :− mword( I ,W, L ,P,N) .

pos ( I ,P) :− mword( I ,W, L ,P,N) .

ner ( I ,N) :− mword( I ,W, L ,P,N) .

% c l a s s i f y words

propernoun (X) :− pos (X, ( ”NNP” ; ”NNPS” ) ) .

noun (X) :− pos (X, ( ”NN” ; ”NNS” ; ”PRP” ; ”PRP$” ; ”WP” ; ”WP$” ) ) .

noun (X) :− propernoun (X) .

verb (X) :− pos (X, ( ”VB” ; ”VBD” ; ”VBG” ; ”VBN” ; ”VBP” ; ”VBZ” ) ) .

l o c a t i o n (X) :− ner (X, ”LOCATION” ) .

adj (X) :− pos (X, ( ”JJ” ; ”JJR” ; ”JJS” ) ) .

adv (X) :− pos (X, ( ”RB” ; ”RBR” ; ”RBS” ; ”WRB” ) ) .

contentword (X) :− noun (X) .

contentword (X) :− verb (X) .

contentword (X) :− adj (X) .

contentword (X) :− adv (X) .

con junct ion (X) :− lword (X, ( ”and” ; ” or ” ; ”but” ; ” although ” ; ” t h e r e f o r e ” ;
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” hence ” ; ”moreover” ) ) .

% symmetry o f s im i l a r i t y

% (we genera te i t in one d i r e c t i o n in Python but we use i t in both

% d i r e c t i o n s in ASP! )

ch unk s i m i l a r i t y (C2 , C1 , S) :− ch unk s i m i l a r i t y (C1 , C2 , S ) .

% do we have a chunk s im i l a r i t y va lue ?

h a s c h u n k s i m i l a r i t y (C1 , C2) :− ch unk s i m i l a r i t y (C1 , C2 , ) .

% cand i da t e pa i r ( SentenceID1 , SentenceID2 , ChunkID1 , ChunkID2)

% pa i r o f chunks in d i f f e r e n t sen tences

chpa i r ( S1 , S2 , C1 , C2) :−

chunk (C1) , chunk (C2) , C1 = sc ( S1 , CIdx1 ) , C2 = sc ( S2 , CIdx2 ) , S1 != S2 .

% has contentword i s t rue f o r chunks t ha t conta in at l e a s t one content word

has contentword (C) :− contentword (cw(C, ) ) .

% i f requ i r e con ten tword i s true , we care about has contentword

% i f r equ i r e con ten tword i s not true , we do not care ( i t i s a lways t rue )

has contentword or dontcare (C) :− chunk (C) , not r equ i r e contentword .

has contentword or dontcare (C) :− has contentword (C) , r equ i r e contentword .

% Applying cond i t i on s b e f o r e r u l e s

% condc1 (ChunkID/ChunkID ) : second chunk has conjunct ion , f i r s t one has not

condc1 (C1 , C2) :− chpa i r ( , , C1 , C2) ,

% C1 has no conjunc t ion and C2 has

% (we ensure the o ther case be low )

#count { W1 : con junct ion (cw(C1 ,W1) ) } == 0 ,

#count { W2 : con junct ion (cw(C2 ,W2) ) } >= 1 .

% condc2 (ChunkID1/ChunkID2)

% A content word in C1 has an antonym in C2

condc2 (C1 , C2):− chpa i r ( , , C1 , C2) ,

contentword (cw(C1 , WI1) ) , lword (cw(C1 , WI1) ,W1) ,

1 <= #count { WI2 : lword (cw(C2 , WI2) ,W2) , antonym (W1,W2) } .

% condc3 (ChunkID ) : chunk has numeric e n t i t y

condc3 (C) :− chunk (C) , #count { W : cardinalnumber (cw(C,W) ) } >= 1 .
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% match (WordID ,WordID ) :

% i f two words in d i f f e r e n t sen tences match ( ignore case )

match (WI1 , WI2) :− chpa i r ( , , C1 , C2) , % in chunks in d i f f e r e n t sen tences

WI1 = cw(C1 ,W1) , WI2 = cw(C2 ,W2) , lword (WI1 ,W) , lword (WI2 ,W) .

% condc4 (ChunkID)

% a chunks has a LOCATION en t i t y

condc4 (C) :− l o c a t i o n (cw(C, ) ) .

% cond5 (ChunkID)

% a chunk has a DATE/TIME en t i t y

condc5 (C) :− datet ime (cw(C, ) ) .

% condc6 (ChunkID , ChunkID ) :

% chunks share one content word o ther than noun

condc6 (C1 , C2) :− match (cw(C1 ,W1) , cw(C2 ,W2) ) , contentword (cw(C1 ,W1) ) ,

contentword (cw(C2 ,W2) ) , not noun (cw(C1 ,W1) ) , not noun (cw(C2 ,W2) ) .

% condc7 (ChunkID ) :

% any o f the chunks has a con junc t ion

condc7 (C) :− chunk (C) , con junct ion (cw(C, ) ) .

% Order o f cond i t i on app l i c a t i o n

cond1235 (C1 , C2) :− condc1 (C1 , C2 ) . % both d i r e c t i o n s o f condc1

cond1235 (C1 , C2) :− condc1 (C2 , C1 ) . % both d i r e c t i o n s o f condc1

cond1235 (C1 , C2) :− condc2 (C1 , C2 ) . % both d i r e c t i o n s o f condc2

cond1235 (C1 , C2) :− condc2 (C2 , C1 ) . % both d i r e c t i o n s o f condc2

cond1235 (C1 , C2) :− chpa i r ( , , C1 , C2) , condc3 (C1 ) .

cond1235 (C1 , C2) :− chpa i r ( , , C1 , C2) , condc3 (C2 ) .

cond1235 (C1 , C2) :− chpa i r ( , , C1 , C2) , condc5 (C1 ) .

cond1235 (C1 , C2) :− chpa i r ( , , C1 , C2) , condc5 (C2 ) .

cond1to5 (C1 , C2) :− cond1235 (C1 , C2 ) .

cond1to5 (C1 , C2) :− chpa i r ( , , C1 , C2) , condc4 (C1) , condc4 (C2 ) .

% both chunks have l o c a t i o n e n t i t i e s

cond3or7 (C) :− condc3 (C) .

cond3or7 (C) :− condc7 (C) .
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% len (ChunkID ,w, Length ) : number o f words in chunk

l en (C,w,Length ) :− chunk (C) , Length = #count{WIdx : word (cw(C, WIdx) , ) } .

% Rules

% no1 (ChunkID ) :

% chunk i s a s i n g l e punctuat ion token

punct ( ” . ” ; ” , ” ; ” ! ” ; ”?” ; ” ’ ” ; ”\”” ) .

no1 (C) :− chunk (C) , pos (cw(C,WID) , Pos ) , punct ( Pos ) , l en (C,w, 1 ) .

% word extra w (C1 ,C2 ,CW) :

% chunk C1 has word wi th ID CW tha t i s not in chunk C2

word extra w (C1 , C2 , cw(C1 ,W1) ) :− chpa i r ( , , C1 , C2) ,

% word W from C1 i s not matched in any word W2 in C2

word (cw(C1 ,W1) , ) , 0 = #count { W2: match (cw(C1 ,W1) , cw(C2 ,W2) ) } .

% word ex tra (C1 ,C2 ) :

% chunk C1 has some word t ha t i s not in chunk C2

word extra (C1 , C2) :− word extra w (C1 , C2 , ) .

% eq1 (ChunkID , ChunkID)

% i f chunks in d i f f e r e n t sen tences are the same ( lowercased )

eq1 (C1 , C2) :− chpa i r ( , , C1 , C2) , not word extra (C1 , C2) ,

not word extra (C2 , C1 ) .

% contentword ex t ra w (C1 ,C2 ,CW) :

% chunk C1 has content word wi th ID CW tha t i s not in chunk C2

contentword extra w (C1 , C2 ,W) :− word extra w (C1 , C2 ,W) , contentword (W) .

% conten tword ex t ra (C1 ,C2 ) :

% chunk C1 has some content word t ha t i s not in chunk C2

% in s e t s : C1 \not\ su b s e t e q C2

contentword extra (C1 , C2) :− contentword extra w (C1 , C2 , ) .

% conten tword subse t (C1 ,C2)

% chunk C1 i s a sub−chunk o f chunk C2

% = chunk C1 conta ins on ly contentwords from chunk C2

contentword subset (C1 , C2) :− chpa i r ( , , C1 , C2) ,

not contentword extra (C1 , C2 ) .

% contentword match (ChunkID1 , ChunkID2)
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% i f t he r e i s a t l e a s t one contentword match between chunks

contentword match (C1 , C2) :− chpa i r ( , , C1 , C2) , match (cw(C1 , WI1) ,

cw(C2 , WI2) ) , contentword (cw(C1 , WI1 ) ) .

% eq2 (ChunkID , ChunkID ) :

% both chunks have same content words

eq2 (C1 , C2) :− chpa i r (1 , 2 ,C1 , C2) , contentword match (C1 , C2) ,

not contentword extra (C1 , C2) , not contentword extra (C2 , C1 ) .

% contentword extra notsynonym w (ChunkID1 , ChunkID2 ,W) :

contentword extra notsynonym w (C1 , C2 , WI1) :−

contentword extra w (C1 , C2 , WI1) , lword (WI1 ,W1) ,

0 = #count { WI2 : lword (cw(C2 , WI2) ,W2) , synonym (W1,W2) } .

contentword extra notsynonym (C1 , C2) :−

contentword extra notsynonym w (C1 , C2 , ) .

% bu i l d t r a n s i t i v e r e f l e x i v e c l o su r e over synonyms

synonym (X,Y) :− synonym (Y,X) .

synonym (X, Z) :− synonym (X,Y) , synonym (Y, Z ) .

% r e f l e x i v i t y f o r antonyms

antonym (X,Y) :− antonym (Y,X) .

% eq3 (ChunkID , ChunkID ) :

% a l l content words match us ing synonym lookup

eq3 (C1 , C2) :− chpa i r ( , , C1 , C2) , not contentword extra notsynonym (C1 , C2) ,

not contentword extra notsynonym (C2 , C1 ) .

% eq4 (ChunkID1 , ChunkID2)

% Al l content words o f a chunk match and unmatched content words o f o ther

% chunk are a l l proper noun type

contentword extra notpropernoun w (C1 , C2 , WI1) :−

contentword extra w (C1 , C2 , WI1) , not propernoun (WI1 ) .

contentword extra notpropernoun (C1 , C2) :−

contentword extra notpropernoun w (C1 , C2 , ) .

% in both d i r e c t i o n s

eq4 (C1 , C2):− chpa i r ( , , C1 , C2) ,

not cond1to5 (C1 , C2) , % only i f none o f cond i t i on 1 to 5 are f u l f i l l e d

not contentword extra (C1 , C2) , not contentword extra notpropernoun (C2 , C1 ) .
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% both chunks have equa l number o f content words

eqcontentw (C1 , C2):− chpa i r (1 , 2 ,C1 , C2) ,

0 = #sum{1 ,W1 : contentword (cw(C1 ,W1) ) ; −1,W2 : contentword (cw(C2 ,W2) ) } .

% eq5 (ChunkID1 , ChunkID2 , score )

% Both chunks have equa l number o f content words and sim Mikolov >0.6

eq5 (C1 , C2):− eqcontentw (C1 , C2) ,

not cond1235 (C1 , C2) , % only i f none o f cond i t i on 1 ,2 ,3 ,5 are f u l f i l l e d

ch unk s i m i l a r i t y (C1 , C2 , S ) , S > 60 .

% op1 (ChunkID1 , ChunkID2 ) :

% A content word in one chunk has an antonym in the o ther chunk

% ( corresponds to cond2 )

% not i f c3 or c7

op1 (C1 , C2) :− chpa i r ( , , C1 , C2) , % can be in both d i r e c t i o n s

condc2 (C1 , C2) , not cond3or7 (C1) , not cond3or7 (C2 ) .

% sp1 (ChunkID A, ChunkID B) : chunk A i s more s p e c i f i c than chunk B

% chunk A has a conjunc t ion

% and

% chunk A conta ins a l l content words o f chunk B

sp1 (A,B) :− chpa i r ( , ,A,B) ,

% condc1 : B has no conjunct ion , A has at l e a s t one conjunc t ion

condc1 (B,A) ,

% conten tword subse t : B i s a sub−chunk o f A

contentword subset (B,A) ,

% both chunks conta in at l e a s t one content word

has contentword or dontcare (A) , has contentword or dontcare (B) .

% sp2 (Chunk ID A, Chunk ID B) : chunk A i s more s p e c i f i c than chunk B

% Chunk A conta ins a l l content words o f chunk B p lu s ex t ra content words

% tha t are not ve rb s

% Maximum token over l ap i s s e l e c t e d at spe

sp2candidate (A,B) :− chpa i r ( , ,A,B) ,

% conten tword subse t : B i s a sub−chunk o f A

contentword subset (B,A) ,

% both chunks have at l e a s t one content word

has contentword or dontcare (A) , has contentword or dontcare (B) ,

0 == #count { WId : contentword extra w (A,B,WId) , verb (WId) } .
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% how many tokens in t h e s e chunks do over l ap ?

sp2over lap (A,B, Overlap ) :− sp2candidate (A,B) ,

Overlap = #count { WAId : match (cw(A,WAId) , cw(B,WBId) ) } .

% for each chunk A, f i nd the l o n g e s t ove r l ap

sp2be s tove r l ap (A, Highest ) :− sp2candidate (A, ) ,

Highest = #max { Overlap : sp2over lap (A,B, Overlap ) } .

% for each chunk A, s e l e c t one o f the l o n g e s t o v e r l ap s

{ sp2choose (A,B) } :− sp2be s tove r l ap (A, Highest ) , sp2over lap (A,B, Highest ) .

% choose e x a c t l y one f o r each A

:− sp2candidate (A, ) , not 1 = #count { A: sp2choose (A,B) } .

sp2 (A,B):− sp2choose (A,B) .

% sp3 (Chunk ID A, Chunk ID B) : chunk A i s more s p e c i f i c than chunk B

% Chunk A and B conta in only one noun each and hypernym

% determines which i s more s p e c i f i c

sp3onenouneach (C1 , C2):− chpa i r ( , , C1 , C2) ,

1 = #count{W1 : noun (cw(C1 ,W1) )} ,

1 = #count{W2 : noun (cw(C2 ,W2) ) } .

sp3 (C2 , C1) :−

sp3onenouneach (C1 , C2) ,

noun (cw(C1 ,W1) ) , noun (cw(C2 ,W2) ) ,

lword (cw(C1 ,W1) , W1String ) , lword (cw(C2 ,W2) , W2String ) ,

% hypernym(X,Y) : Y i s more s p e c i f i c than X

hypernym ( W1String , W2String ) .

% s i1 (ChunkID1 , ChunkID2 ) :

% Only unmatched content word in each chunk i s a ca rd ina l number type

s i 1 c a nd i d a t e (C1 , C2) :− chpa i r (1 , 2 ,C1 , C2) ,

% only one ex t ra content word

1 = #count { W1 : contentword extra w (C1 , C2 ,W1) } ,

% only one ex t ra content word

1 = #count { W2 : contentword extra w (C2 , C1 ,W2) } .

s i 1 (C1 , C2) :− s i 1 c a nd i d a t e (C1 , C2) ,
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% those are ca r d i na l s

contentword extra w (C1 , C2 ,W1) , cardinalnumber (W1) ,

% those are ca r d i na l s

contentword extra w (C2 , C1 ,W2) , cardinalnumber (W2) .

% s i2 : both chunks have DATE/TIME e n t i t i e s

s i 2 (C1 , C2) :− chpa i r (1 , 2 ,C1 , C2) , condc5 (C1) , condc5 (C2 ) .

% s i3 (ChunkID1 , ChunkID2 ) :

% Each chunk has a token o f LOCATION type

s i 3 (C1 , C2):− chpa i r (1 , 2 ,C1 , C2) , condc4 (C1) , condc4 (C2 ) .

% s i4 (ChunkID1 , ChunkID2 ) :

% Both chunks share a t l e a s t one noun :

% i f sim Mikolov>=0.4 then score=3 o therw i s e 2

s i 4 s im (C1 , C2 , S) :− chpa i r (1 , 2 ,C1 , C2) , match (cw(C1 ,W1) , cw(C2 ,W2) ) ,

noun (cw(C1 ,W1) ) , noun (cw(C2 ,W2) ) , ch unk s im i l a r i t y (C1 , C2 , S ) .

% si5s im (ChunkID1 , ChunkID2 , S im i l a r i t y ) :

% i f cond i t i on 6 not s a t i s i f i e d

% score = 4 i f sim Mikolov in [0 .7 , −1 .0 ]

% score = 3 i f sim Mikolov in [0 .65 , −0.7)

% score = 2 i f sim Mikolov in [0 .60 ,−0.65)

s i 5 s im (C1 , C2 , S):− chpa i r (1 , 2 ,C1 , C2) ,

has contentword or dontcare (C1) , has contentword or dontcare (C2) ,

not condc6 (C1 , C2) , ch unk s im i l a r i t y (C1 , C2 , S ) .

% re1sim (ChunkID1 , ChunkID2 , S im i l a r i t y ) :

% i f both chunks share a t l e a s t one content word o ther than noun

re1s im (C1 , C2 , S):− chpa i r (1 , 2 ,C1 , C2) ,

has contentword or dontcare (C1) , has contentword or dontcare (C2) ,

condc6 (C1 , C2) , ch unk s i m i l a r i t y (C1 , C2 , S ) .

% ge t f i n a l a l ignment from l a s t s t ep

% f i n a l (Chunk ID , Relat ion , Score , Chunk ID , Rule Causing Alignment ,

% Mikolov−Score )

% de f i n e s im i l a r i t y f o r a l l cand ida te pa i r s

s i m i l a r i t y o r n o n e (C1 , C2 , Mikolov ) :−

chpa i r (1 , 2 ,C1 , C2) , ch unk s i m i l a r i t y (C1 , C2 , Mikolov ) .

79



s i m i l a r i t y o r n o n e (C1 , C2 , n u l l ) :−

chpa i r (1 , 2 ,C1 , C2) , not h a s c h u n k s i m i l a r i t y (C1 , C2 ) .

% a f i n a l chunk al ignment i s

f i n a l (C1 , Rel , S , C2 , Step , Mikolov ) :−

% caused by a l i g n i n g chunks t ha t are not a l r eady a l i gn ed at t ha t s t ep

cha l i gn (C1 , Rel , S , C2 , Step ) , not a l i gned (C1 , Step ) , not a l i gned (C2 , Step ) ,

% we a l s o use t h i s s t ep

usedStep ( Step ) ,

% and uses s im i l a r i t y i f i t e x i s t s

s i m i l a r i t y o r n o n e (C1 , C2 , Mikolov ) .

% has a chunk been a l i gn ed in a c e r t a i n s t ep ? then i t i s a l r eady a l i gn ed

% in next s t ep

a l i gned (C, NextStep ) :− cha l i gn (C, , , , Step ) , nextStep ( Step , NextStep ) .

a l i gned (C, NextStep ) :− cha l i gn ( , , ,C, Step ) , nextStep ( Step , NextStep ) .

% what i s a l i gn ed s t a y s a l i gned

a l i gned (C, NextStep ) :− a l i gned (C, Step ) , nextStep ( Step , NextStep ) .

cha l i gn (C1 ,R, S , C2 , NextStep ) :−

cha l i gn (C1 ,R, S , C2 , Step ) , nextStep ( Step , NextStep ) .

usedStep (X) :− nextStep (X, ) .

usedStep (X) :− nextStep ( ,X) .

% de f i n e NOALI a l ignments

cha l i gn (C, ”NOALI” ,0 , nu l l , n o a l i c ) :− chunk (C) , C = sc (1 , CI ) ,

not a l i gned (C, n o a l i c ) , no1 (C) .

cha l i gn ( nu l l , ”NOALI” ,0 ,C, n o a l i c ) :− chunk (C) , C = sc (2 , CI ) ,

not a l i gned (C, n o a l i c ) , no1 (C) .

% de f i n e EQUI a l ignments

cha l i gn (C1 , ”EQUI” ,5 ,C2 , equi1 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , equi1 ) , not a l i gned (C2 , equi1 ) , eq1 (C1 , C2 ) .

cha l i gn (C1 , ”EQUI” ,5 ,C2 , equi2 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , equi2 ) , not a l i gned (C2 , equi2 ) , eq2 (C1 , C2 ) .

cha l i gn (C1 , ”EQUI” ,5 ,C2 , equi3 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , equi3 ) , not a l i gned (C2 , equi3 ) , eq3 (C1 , C2 ) .

cha l i gn (C1 , ”EQUI” ,5 ,C2 , equi4 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , equi4 ) , not a l i gned (C2 , equi4 ) , eq4 (C1 , C2 ) .
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cha l i gn (C1 , ”EQUI” ,5 ,C2 , equi5 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , equi5 ) , not a l i gned (C2 , equi5 ) , eq5 (C1 , C2 ) .

% de f i n e OPPO al ignements

cha l i gn (C1 , ”OPPO” ,4 ,C2 , oppo ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , oppo ) , not a l i gned (C2 , oppo ) , op1 (C1 , C2 ) .

% de f i n e SPE1/SPE2 a l ignements

% sp1/sp2/sp3 (ChunkID A, ChunkID B) : chunk A i s more s p e c i f i c than chunk B

cha l i gn (C1 , ”SPE1” ,4 ,C2 , sp1 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , sp1 ) , not a l i gned (C2 , sp1 ) , sp1 (C1 , C2 ) .

cha l i gn (C1 , ”SPE2” ,4 ,C2 , sp1 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , sp1 ) , not a l i gned (C2 , sp1 ) , sp1 (C2 , C1 ) .

cha l i gn (C1 , ”SPE1” ,4 ,C2 , sp2 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , sp2 ) , not a l i gned (C2 , sp2 ) , sp2 (C1 , C2 ) .

cha l i gn (C1 , ”SPE2” ,4 ,C2 , sp2 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , sp2 ) , not a l i gned (C2 , sp2 ) , sp2 (C2 , C1 ) .

cha l i gn (C1 , ”SPE1” ,4 ,C2 , sp3 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , sp3 ) , not a l i gned (C2 , sp3 ) , sp3 (C1 , C2 ) .

cha l i gn (C1 , ”SPE2” ,4 ,C2 , sp3 ) :− chpa i r (1 , 2 ,C1 , C2) ,

not a l i gned (C1 , sp3 ) , not a l i gned (C2 , sp3 ) , sp3 (C2 , C1 ) .

% de f i n e SIMI a l i gnements

cha l i gn (C1 , ”SIMI” ,3 ,C2 , s imi1 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi1 ) , not a l i gned (C2 , s imi1 ) , s i 1 (C1 , C2 ) .

cha l i gn (C1 , ”SIMI” ,3 ,C2 , s imi2 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi2 ) , not a l i gned (C2 , s imi2 ) , s i 2 (C1 , C2 ) .

cha l i gn (C1 , ”SIMI” ,3 ,C2 , s imi3 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi3 ) , not a l i gned (C2 , s imi3 ) , s i 3 (C1 , C2 ) .

cha l i gn (C1 , ”SIMI” ,3 ,C2 , s imi4 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi4 ) , not a l i gned (C2 , s imi4 ) , s i 4 s im (C1 , C2 , S ) , S >= 40 .

cha l i gn (C1 , ”SIMI” ,2 ,C2 , s imi4 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi4 ) , not a l i gned (C2 , s imi4 ) , s i 4 s im (C1 , C2 , S ) , S < 40 .

cha l i gn (C1 , ”SIMI” ,4 ,C2 , s imi5 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi5 ) , not a l i gned (C2 , s imi5 ) , s i 5 s im (C1 , C2 , S ) , 70 <= S .

cha l i gn (C1 , ”SIMI” ,3 ,C2 , s imi5 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi5 ) , not a l i gned (C2 , s imi5 ) , s i 5 s im (C1 , C2 , S ) ,

65 <= S , S < 70 .
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cha l i gn (C1 , ”SIMI” ,2 ,C2 , s imi5 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi5 ) , not a l i gned (C2 , s imi5 ) , s i 5 s im (C1 , C2 , S ) ,

60 <= S , S < 65 .

cha l i gn (C1 , ”SIMI” ,1 ,C2 , s imi5 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , s imi5 ) , not a l i gned (C2 , s imi5 ) , s i 5 s im (C1 , C2 , S ) ,

55 <= S , S < 60 .

% de f i n e REL al ignements

cha l i gn (C1 , ”REL” ,4 ,C2 , r e l 1 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , r e l 1 ) , not a l i gned (C2 , r e l 1 ) , re1s im (C1 , C2 , S ) , 50 <= S .

cha l i gn (C1 , ”REL” ,3 ,C2 , r e l 1 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , r e l 1 ) , not a l i gned (C2 , r e l 1 ) , re1s im (C1 , C2 , S ) ,

40 <= S , S < 50 .

cha l i gn (C1 , ”REL” ,2 ,C2 , r e l 1 ) :− chpa i r ( , , C1 , C2) ,

not a l i gned (C1 , r e l 1 ) , not a l i gned (C2 , r e l 1 ) , re1s im (C1 , C2 , S ) , S < 40 .

% hide e v e r y t h in g

#show .

% show what we need f o r e x t r a c t i n g a l i gnments

#show f i n a l /6 .

#show word /2 .
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