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Abstract

In this thesis, machine learning algorithms to improve human computer interaction
are designed. The two areas of interest are (i) sketched symbol recognition and (ii)
object recognition from images. Specifically, auto-completion of sketched symbols
and attribute-centric recognition of objects from images are the main focus of this
thesis. In the former task, the aim is to be able to recognize partially drawn symbols
before they are fully completed. Auto-completion during sketching is desirable since
it eliminates the need for the user to draw symbols in their entirety if they can be
recognized while they are partially drawn. It can thus be used to increase the sketching
throughput; to facilitate sketching by offering possible alternatives to the user; and
to reduce user-originated errors by providing continuous feedback. The latter task,
allows machine learning algorithms to describe objects with visual attributes such
as “square”, “metallic” and “red”. Attributes as intermediate representations can be
used to create systems with human interpretable image indexes, zero-shot learning
capability where only textual descriptions are available or capability to annotate
images with textual descriptions.
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Chapter 1

Introduction

Machine learning (ML) research field deals with the design and study of algorithms

for enabling machines to learn, for understanding, modeling and making decisions

from data. ML techniques are employed in various domains such as computer vision,

natural language processing, robotics, bioinformatics and information retrieval. Over

the past decade ML has seen the development of faster and more accurate algorithms

that can be applied under a broader array of problem structures and constraints.

Human-computer interaction (HCI), in contrast, is concerned with the human

context focusing on the interfaces between people and computers. HCI research puts a

significant emphasis on developing technology and practices that improve the usability

of computing systems, where usability encompasses the effectiveness, efficiency, and

satisfaction with which the user interacts with a system.

The amount of data coming from diverse sources is increasing at an exponential

rate. People deal with the growing data which increase the need to extract meaningful

information from and manage accumulating data. Consider browsing through an

image collection of thousands of images when searching for a specific image. It might

be really time-consuming to find what you are looking for. However, if you could have

a way to describe the image you are looking for and the computer retrieved only the

relevant images then the time you spent would be reduced drastically. As an another

example, consider an interface where sketching is used as the medium of interaction

with many symbols. When a user wants to sketch a symbol it might be hard for
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the user to remember the symbol correctly in its entirety. However, the user might

remember parts of the symbol and it would be nice if the computer could understand

what the user intends to draw and make suggestions to the user as to what s/he

wants to draw. This thesis is in the crossroads of ML and HCI. We introduce novel

computer vision and machine learning algorithms to improve and facilitate human

computer interaction, especially when working with large collections.

In Chapter 2 we work on sketched symbol recognition and we introduce and eval-

uate a method for auto-completion of sketched symbols (The methods discussed in

Chapter 2 are published in [74]). Sketching is a natural mode of communication

amongst humans that is especially useful in some domains such as engineering and

design. It can be used to convey ideas that are otherwise hard to describe verbally.

Increasing availability of touch screens makes sketching more viable than ever and

increases the need to create user-friendly sketching interfaces. In order to create such

interfaces we need computer applications that can “understand” what the user in-

tends to draw and interact with the user in a natural way. Sketch recognition aims to

provide users with such applications where the input is hand-drawn symbols with the

output being the recognized symbols. Sketch recognition is a well studied field and

approaches to sketch recognition such as gesture-based, rule-based and image-based

are proposed in the literature. However, while the prior work in sketch recognition

focuses on recognition of symbols or scenes in their entirety, we aim to improve the

sketching interfaces by providing auto-completion capability. Auto-completion allows

a user to complete a sketched symbol even before drawing it entirely. Auto-completion

can be useful in various ways such as improving the speed of the user, beautification

of sketches, helping the user remember symbols and preventing user errors through

feedback. These features enable a more intuitive and user friendly experience and

improve user satisfaction.

In Chapter 3 attribute-centric recognition of objects in images is studied (The

methods discussed in Chapter 3 are published in [73]). The performance of algo-

rithms designed to recognize object categories from images is increasing each year.

Most image classification approaches rely on level features such as SIFT, HOG and
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SURF to train classifiers to discriminate object categories. More recently, algorithms

based on deep-learning achieved significant improvements in image classification tasks.

Deep-learning algorithms rely on the availability of massive annotated datasets and

computing power. However, such annotated data might not be available for the recog-

nition task at hand. One alternate approach is to describe object categories using

the visual attributes they have in order to create an intermediate representation. At-

tributes encode shared visual traits among categories such as square, furry, metallic,

animal and vehicle. Having such an intermediate representation not only makes it

easier to create models with a limited amount of data but also allows for a human

understandable way of describing images. Through attributes, it is possible to create

a system that is able to describe an image of a category (e.g ., image of a horse) with

the existing attributes in the image (e.g ., four-legged, animal, mammal) without see-

ing an image of the described category (e.g ., horse). In the thesis, we introduce and

evaluate methods to automatically mine candidate attributes that describe objects vi-

sually. Attributes have attracted a lot of interest recently and they have been proven

useful in various recognition tasks. However, the question of how to select the at-

tributes and how to find category-attribute associations remains relatively untouched.

We show that a taxonomy over object categories can be leveraged to automatically

mine attributes from textual descriptions of the categories. The mined attributes

are valuable to improve HCI since they are meaningful to humans and they can be

leveraged to create user friendly interfaces.

In Chapter 4, we introduce interfaces arising from the ideas developed int Chap-

ter 2 and Chapter 3. Specifically, an interface with auto-completion support to recog-

nize sketched symbols and another one with the ability search through images using

attributes are presented. The interfaces we implement illustrate two of the many

ways auto-completion and attributes can be utilized and how HCI can benefit from

them.

Finally in Chapter 5, we discuss how the work in this thesis can be further im-

proved and future research directions.
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Chapter 2

Sketched symbol recognition with

auto-completion

Sketching is a natural mode of communication that can be used to support com-

munication among humans. Recently there has been a growing interest in sketch

recognition technologies for facilitating human-computer interaction in a variety of

settings, including design, art, and teaching. Automatic sketch recognition is a chal-

lenging problem due to the variability in hand drawings, the variation in the order

of strokes, and the similarity of symbol classes. In the thesis, we focus on a more

difficult task, namely the task of classifying sketched symbols before they are fully

completed. There are two main challenges in recognizing partially drawn symbols.

The first is deciding when a partial drawing contains sufficient information for rec-

ognizing it unambiguously among other visually similar classes in the domain. The

second challenge is classifying the partial drawings correctly with this partial informa-

tion. We describe a sketch auto-completion framework that addresses these challenges

by learning visual appearances of partial drawings through semi-supervised clustering,

followed by a supervised classification step that determines object classes. Our evalu-

ation results show that, despite the inherent ambiguity in classifying partially drawn

symbols, we achieve promising auto-completion accuracies for partial drawings. Fur-

thermore, our results for full symbols match/surpass existing methods on full object

recognition accuracies reported in the literature. Finally, our design allows real-time
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symbol classification, making our system applicable in real world applications.

2.1 Motivation

Sketching is the freehand drawing of shapes and is a natural modality for describing

ideas. Sketching is of high utility, because some phenomena can be explained much

better using graphical diagrams especially in the fields of education, engineering and

design. Sketch recognition refers to recognition of pre-defined symbols (e.g. a resistor,

transistor) or free-form drawings (e.g. an unconstrained circuit drawing); in the latter

case, the recognition task is generally preceded by segmentation in order to locate

individual symbols. There are many approaches in the literature for sketched symbol

recognition. These include gesture-based approaches that treat the input as a time-

evolving trajectory [66, 49, 82], image-based approaches that rely only on image

statistics (e.g., intensities, edges) [40, 36, 55], or geometry-based approaches that

attempt to describe objects as geometric primitives satisfying certain geometric and

spatial constraints [33, 34, 13]. However, these methods mostly focus on recognizing

fully completed symbols. In contrast, here we focus on the recognition of partially

drawn symbols using image-based features.

The term auto-completion refers to predicting the sketched symbol before the

drawing is completed, whenever possible. Auto-completion during sketching is desir-

able since it eliminates the need for the user to draw symbols in their entirety if they

can be recognized while they are partially drawn. It can thus be used to increase

the sketching throughput; to facilitate sketching by offering possible alternatives to

the user; and to reduce user-originated errors by providing continuous feedback [10].

Despite these advantages, providing continuous feedback might also distract the user

if premature recognition results are displayed [25, 40].

Auto-completion requires continuously monitoring the user’s drawing and decid-

ing whether the input given thus far can be recognized unambiguously. In order to

formalize the terms ambiguity and confidence, consider the task of auto-completion

in SMS applications where the task is to try to guess the intended word before it is

20



(a) (b)

Figure 2-1: Two sample sketched symbols from the COAD database.

completely typed, so as to increase typing throughput. For this problem, suppose

the language consists of three words: cat, car, and apple. If the first input character

is ’a’, then the word auto-completion system can infer the intended word (“apple”)

unambiguously. On the other hand, if the first character is ’c’ and no other informa-

tion is available about the language, the intended word is ambiguous (either “cat” or

“car”) and a text-based auto-completion system can be only 50% confident. However,

suppose that the same auto-completion system is allowed to make 2 guesses on the

word the user intends to type. Then, the system can guess the top 2 choices as “car”

and “cat” with 100% confidence as no ambiguity is present.

Sketch recognition is a difficult problem due to the variability of user’s hand

drawing, the variability in the stroke order and the similarity of sketch classes to be

recognized. Sketch recognition with auto-completion is further complicated since the

system is faced with the problem of computing a confidence during the recognition

process. A hand-drawn symbol is ambiguous if it appears as a sub-symbol of more

than one symbol class. This is often the case with partial symbols and occasionally

even with fully completed symbols.

Note that in the auto-completion framework, the system is not told when the

drawing of a symbol ends. This introduces additional difficulty in classifying full

symbols as well. For example, although the symbol shown in Figure 2-1a is a fully

completed symbol, it appears as a sub-symbol of another symbol shown in Figure 2-

1b. Hence, without knowing that the drawing of a symbol ended, a symbol such as

the one shown in Figure 2-1a would be classified as ambiguous. The issue of the

ambiguity of fully completed symbols is discussed further in Section 2.3.2.

Supplying the user with predictive feedback is an important problem that has

been previously studied (in terms of its effects, desirable extent etc.) [1, 78]. Most of
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the previous work has focused on giving this feedback in the form of beautification.

In the context of sketch recognition, the word ‘beautification’ has been used in two

different senses. First, it refers to recognizing and replacing a fully completed symbol

with its cleaned-up version [63, 2, 37] Second, it is used in the context of partial

drawings to refer to converting the strokes of a symbol to vectorized primitives such

as line segments, arcs, and ellipses [59, 60, 46] Sometimes these primitives are further

processed to adhere to Gestalt principles (e.g., lines that look roughly parallel/equal-

length are made parallel/equal-length) [69, 61, 38] Approaches of the first kind are

not directly comparable to our work, as they only deal with fully completed sym-

bols. Approaches of the second kind are also not very relevant in the context of our

work, because in these systems the primitives are recognized and post-processed using

Gestalt principles, however the object class is not predicted.

An implementation of beautification that couples with the idea of auto-completion

has been proposed by Arvo and Novins [4]. They introduce the concept of fluid

sketching for predicting the shape of a partially drawn primitive (e.g., a circle or

a square), as it is being drawn. However, they focus on primitives only, and don’t

generalize their system to recognize complex objects. Li et al . [47] use the term

incremental intention extraction to describe a system that can assist the user with

continuous visual feedback. This method also has the ability to update existing

decisions based on continuous user input. They focus on recognizing multi-lines and

elliptic arcs. Mas et al . [51] present a syntactic approach to online recognition of

sketched symbols. The symbols are defined by an adjacency grammar whose rules are

generated automatically given the small set of 7 symbols. The system can recognize

partial sketches in arbitrary drawing order, using the grammar to check the validity

of its hypotheses. The main shortcoming of this system is its syntactic approach,

consisting of rigid rules for rule application and primitive recognition. In comparison,

we use image features to describe individual symbols to handle different drawing

orders and our framework is fully probabilistic.

An auto-completion application similar to ours deals with the auto-completion of

complex Chinese characters in handwriting recognition, in which the auto-completion
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is used to facilitate the input by providing possible endings for a given partial drawing.

For instance, Liu et al . [48] use a multi-path HMM to model different stroke orders

that may be seen in the drawing of a character. They report accuracies with respect

to the percentage of the whole character trajectory written. They obtain accuracies

of 82% and 57% when 90% and 70% of the whole character is drawn, respectively

In the thesis, we present a general auto-completion application that is capable of

auto-completing sketched symbols without making any assumptions about the com-

plexity of symbols or the drawing style of users or the domain. The system classifies

sketched symbols into a set of pre-defined categories while providing auto-completion

whenever it is confident about its decision. The steps of the proposed method for

auto-completion are explained in detail in Section 2.2; the experiments on databases

using the method are described in Section 2.3; the results of the experiments are dis-

cussed in Section 2.4; and future directions for research are presented in Section 2.5.

2.2 Proposed method

In order to realize auto-completion, our system monitors the user’s drawing and de-

termines probable class labels and assigns a probability to each class as soon as new

strokes are drawn. If the drawn (partial or full) symbol can be recognized with a suf-

ficiently high confidence, the system makes a prediction and displays its classification

result to the user. Otherwise, classification decision is delayed until further strokes

are added to the input symbol.

In order to deal with the ambiguity of partial symbols, a constrained semi-supervised

clustering method is applied to create clusters in the sketch space. The sketch space

is acquired by extracting features from the extended training data, which consists

of only full symbols and their corresponding partial symbols. Specifically, each full

symbol in the training data and all partial symbols that appear during the course of

drawing that symbol, are added to extended training data (see Section 2.2.1). The

goal of the clustering stage is to identify symbols that are similar based on the ex-

tracted features, but may belong to different classes (see Section 2.2.3). At the end
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of clustering, a cluster may contain partial/full symbols from only one class (homo-

geneous cluster) or from multiple classes (heterogeneous cluster). Hence, in the last

step of training, we use supervised learning where one classifier per heterogeneous

cluster is trained to separate the symbols falling into that cluster (see Section 2.2.4).

If a cluster is homogeneous, then a classifier is not needed for that cluster.

During recognition, the system first finds the distance of a symbol to each of the

clusters and then computes the posterior probability of each sketch class given the

input, by marginalizing over clusters (see Section 2.2.5). This is done so as to take into

account the ambiguity in assessing the correct cluster for a given query. Dealing with

probabilities allows us to compute a confidence in the classification decision during

the test phase. If the class label cannot be deduced with a confidence higher than a

pre-determined threshold, as in the case of a partial symbol shared by many classes,

the classification decision is postponed until more information becomes available. The

described steps are displayed in the form of a flowchart in Figure 2-2.

(a) The training steps

(b) The testing steps

Figure 2-2: The flowchart of the proposed algorithm
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(a) After first
stroke

(b) After second
stroke

(c) After third
stroke

(d) Fully com-
pleted symbol

Figure 2-3: A sample of extending an instance with four strokes. The original symbol
shown in Figure 2-3d, is used to generate the three other symbol instances.

2.2.1 Extending training data with partial symbols

In standard sketched symbol databases, there are only instances of fully completed

symbols rather than partial symbols. In our approach, the training and test data

are automatically extended by adding all the partial symbols that occur during the

drawing of fully completed symbols. More specifically, if a particular symbol consists

of three strokes, (𝑠1, 𝑠2, 𝑠3), two partial symbols are extracted {(𝑠1) , (𝑠1, 𝑠2)} and

added to the database. For another user who draws the same symbol using the order,

(𝑠2, 𝑠1, 𝑠3), the partials {(𝑠2) , (𝑠2, 𝑠1)} are extracted. In this fashion, for a symbol that

consists of 𝑆 strokes, 𝑆 − 1 partial symbols are extracted and added to the extended

database, in addition to the original symbol. This process is illustrated in Figure 2-3.

The number of all partial symbols that can be generated using 𝑆 strokes is ex-

ponential in the number of strokes if all combinations of strokes are used. In other

words, if we disregard the order between the strokes, we get 2𝑆 − 1 possible stroke

subsets for a symbol with 𝑆 strokes. However, since we extend the database with

only those partials that actually appear in the drawing of the symbols, the number of

partial symbols added to the database is much smaller. This issue can be illustrated

with an example of drawing of a stick figure. If no one draws a stick figure starting

with the head which is then followed by the left leg, the system would not add a

partial symbol consisting of the head and the left leg into the database.

Hence, even though a pre-specified drawing order is not required by our system,

the system takes advantage of preferred drawing orders, when they exist. Indeed,

it is true that when people sketch, they generally prefer a certain order. This is
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based on observations from previous work in sketch recognition and psychology, which

show that people do tend to prefer certain orderings over others [70, 76, 72]. So,

our approach puts the focus on learning the drawing orders that are present in the

training data, so as to reduce the complexity of the sketch space and improve accuracy.

However, a partial symbol that results from a different drawing order may still be

recognized by the system depending on its similarity to the instances in the sketch

space.

2.2.2 Feature extraction

In order to represent a symbol, which may be a partial or a full symbol, the Image

Deformation Model Features (IDM) are used as proposed in [56]. The IDM features

consist of pen orientation maps in 4 orientations and an end-point map indicating

the end points of the pen trajectory. In order to extract the IDM features for a

symbol, firstly, the orientation of the pen trajectory at each sampled point in the

symbol is computed. Next, five maps are created to represent the IDM features. The

first four maps correspond to orientation angles of 0, 45, 90 and 135 degrees, where

each map gives a higher response at locations in which the pen orientation coincides

with the map orientation. The last map gives a higher response at end-points where

a pen-down or pen-up movement occurs. These operations are carried out using

a down sampled version of the symbol. The major advantage of the IDM feature

representation is that it is independent of stroke direction and ordering.

2.2.3 Clustering

There is an inherent ambiguity in decision making during auto-completion. In order

to address this ambiguity, we cluster partial and full symbols based on their feature

representation. Clusters which contain drawings mostly from a single class indicate

less ambiguity, whereas clusters that contain drawings from many distinct classes

indicate high ambiguity.

In order to cluster training instances, we first experimented with the unsupervised
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Expectation Maximization (EM) algorithm [17]. We used the implementation of EM

available inWEKA [32]. The results with the EM algorithm showed a low performance

for full symbols. Since our goal is to provide auto-completion without sacrificing full

symbol recognition performance, we switched to the semi-supervised constrained k-

means clustering algorithm (CKMeans) [77]. Our motivation when using CKMeans

is to enforce the separation of full symbols of different classes into different clusters,

while grouping the full symbols of the same class in one cluster through constraints.

With this approach, we aim to reduce errors in classifying full symbols, since errors

done in full symbols may distract the user more than errors done in partial symbols.

The effect of the clustering algorithm on the recognition accuracies is further discussed

in Section 2.3.6.

The CKMeans algorithm employs background knowledge about the given in-

stances and uses constraints of the form must-link and cannot-link between individual

instances while clustering the data. The must-link constraint between two instances

specifies that the two instances should be clustered together, whereas the cannot-

link constraint specifies that the two instances must not be clustered together. We

generate:

∙ Must-link constraints between full sketches of a class since we want them to be

clustered together.

∙ Cannot-link constraints between full sketches of different classes since we do not

want them to be clustered together.

A visual depiction of the must-link and cannot-link constraints between the fully

drawn symbols, is given in Figure 2-4. The must-link constraints are shown as circles,

indicating that circled instances should be clustered together; while the cannot-link

constraints are shown as crossed lines between circles, indicating that full-shape in-

stances in different classes should not be clustered together. No constraints are gener-

ated for partial symbols. We allow partial sketches of different classes to be clustered

together because partial sketches of different classes can be visually similar and have

similar feature representations.
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Figure 2-4: A visual depiction of defined constraints used in the CKMeans algorithm.
Must-link and cannot-link constraints involving full shapes are represented as circles
and crossed lines, respectively.

The constraints are specified using an 𝑁 × 𝑁 symmetric matrix, where 𝑁 is

the number of instances to be clustered in the extended training set and the matrix

elements can be -1, 0, 1 denoting cannot-link, no constraint and must-link constraints

respectively. The process of generating constraints is handled fully automatically

using the class labels present in the original training data.

2.2.4 Posterior class probabilities

In order to make a prediction given a test symbol, 𝑥, we compute the posterior

probability of each symbol class 𝑠𝑖, by marginalizing over clusters:

𝑃 (𝑠𝑖|𝑥) =
𝐾∑︁
𝑘=1

𝑃 (𝑠𝑖, 𝑐𝑘|𝑥)

=
𝐾∑︁
𝑘=1

𝑃 (𝑠𝑖|𝑐𝑘, 𝑥)𝑃 (𝑐𝑘|𝑥) (2.1)

where 𝑥 represents the input symbol; 𝐾 is the total number of clusters; 𝑃 (𝑠𝑖|𝑐𝑘, 𝑥) is

the probability of symbol class 𝑠𝑖 given cluster 𝑐𝑘 and input 𝑥; and 𝑃 (𝑐𝑘|𝑥) denotes

the posterior probability of cluster 𝑐𝑘 given 𝑥. Notice that rather than finding the
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most likely cluster, we take a Bayesian approach and consider 𝑃 (𝑐𝑘|𝑥) in order to

reflect the ambiguity in cluster selection.

Given the distance from 𝑥 to each cluster center, an exponentially decreasing

density function and the Bayes’ formula, we estimate 𝑃 (𝑐𝑘|𝑥) as:

𝑃 (𝑐𝑘|𝑥) = 𝑃 (𝑥|𝑐𝑘)𝑃 (𝑐𝑘)/𝑃 (𝑥)

≃ 𝑒−||𝑥−𝜇𝑘||2𝑃 (𝑐𝑘)/𝑃 (𝑥) (2.2)

where 𝜇𝑘 is the mean of the 𝑘𝑡ℎ cluster 𝑐𝑘 and 𝑃 (𝑐𝑘) is the prior probability of 𝑐𝑘

estimated by dividing the number of instances that fall into the 𝑘𝑡ℎ cluster by the

total number of clustered instances. 𝑃 (𝑥) denotes the probability of occurrence of

the input 𝑥, which is omitted in the calculations since it is the same for each cluster.

Supervised classification within a cluster

In order to compute 𝑃 (𝑠𝑖|𝑐𝑘, 𝑥), a support vector machine (SVM) [15] is trained for

each heterogeneous cluster, which is defined as a cluster that contains instances of

more than one class. If an instance is clustered into a homogeneous cluster, which is

defined as a cluster containing instances of only a single class, then we simply assign

a probability of 1 for the class that forms the cluster and 0 for the other classes.

Note that supervised classification step can help in cases where the symbols falling

into one cluster can actually be classified unambiguously. For instance, consider the

synthetic cluster given in Figure 2-5a containing six partial symbols. Furthermore,

assume that the corresponding fully completed drawings are given in Figure 2-5b.

Hence, the partial symbols in the cluster belong to two distinct classes, either the

class with an upside ’T’ or a downside ’T’ inside a square. While the partial symbols

in the cluster look similar enough to be clustered together, the position of the line in

the square can be used to separate them apart. This is the motivation for training a

classifier to separate the instances falling in heterogeneous clusters. If all the symbols

that fall in a cluster look very similar, the supervised classification may not bring any

contribution and the shapes falling in that cluster would be labeled as ambiguous by
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the system, since multiple classes would have similar posterior probabilities.

The semi-supervised clustering step used before the supervised classification per-

formed for each cluster, aims to divide the big problem, into smaller problems that

are hopefully easier to solve.

(a)

(b)

Figure 2-5: The visual representation of a synthetic cluster containing 6 symbols is
given in Figure 2-5a. The completed drawings are given in Figure 2-5b.

In order to show the contribution of the supervised classification step, we con-

ducted an experiment in which we assumed 𝑃 (𝑠𝑖|𝑐𝑘, 𝑥) = 𝑃 (𝑠𝑖|𝑐𝑘) and modified

Eq. 2.1 accordingly. Specifically, if it is assumed that the probability 𝑃 (𝑠𝑖|𝑐𝑘, 𝑥) is

independent of the input instance 𝑥, then:

𝑃 (𝑠𝑖|𝑐𝑘, 𝑥) = 𝑃 (𝑠𝑖|𝑐𝑘) (2.3)

and 𝑃 (𝑠𝑖|𝑐𝑘) can be estimated during training by dividing the number of instances

from symbol class 𝑖 that fall into cluster 𝑘 by the total number of instances in that

specific cluster. Of course, with this assumption there is a loss of information and we

see a decrease in the accuracies, as explained in Section 2.3.7.

2.2.5 Confidence calculation

Having computed the posterior class probabilities for an input symbol, the system

either rejects the symbol (delays making a decision) or shows the inferred class label(s)

to the user. In an auto-completion scenario, the user may be interested in seeing the

Top-𝑁 guesses of the system and choose from among those to quickly finish drawing

his/her partial symbol. For example, if 𝑁 = 2, the system shows the user two

alternative guesses.
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Naturally, as 𝑁 increases, the accuracy increases, though too many alternatives

would also clutter the user interface. Keeping 𝑁 as variable that can be set by a

user, the confidence in prediction is calculated by summing the estimated posterior

probabilities of the most probable Top-𝑁 classes. The classification decision is de-

layed until there is enough information to unambiguously classify the symbol if the

computed confidence is lower than a threshold. We refer to the proportion of symbols

that are not classified due to low confidence as "reject rate". If the confidence is

above the threshold, the 𝑁 most probable classes are displayed to the user. In the

experiments, the system performance is measured for 𝑁 = [1, 2, 3].

2.3 Experimental results

The proposed system is evaluated on two databases from different domains, in terms

of the Top-𝑁 classification accuracy in full and partial symbols separately, for varying

values of 𝑁 . For each database, the system parameters (the number of clusters, 𝐾,

and the confidence threshold, 𝐶) are optimized using cross-validation.

Parameter optimization is done as follows: for each parameter value pair (e.g.

𝐾 = 40 and 𝐶 = 0.0), we record the validation set accuracy using 8-fold cross-

validation. Cross-validation is done by splitting the training data randomly, selecting

80% of the full symbols and all of their partials as training examples and the remaining

20% of the full symbols and all of their partials as validation examples. This is

repeated 8 times with randomly shuffled data and the median system performance

on the validation set is recorded, for that particular parameter combination. The

selected parameter pair is then fixed and used in testing the system on a separate

test set.

2.3.1 Databases

The first database we use to test our system is the Course of Action Diagrams (COAD)

database. The COAD symbols are used by military in order to plan field operations

[22]. The symbols in this database represent military shapes such as a friendly or
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Figure 2-6: A sample symbol from each class in the COAD database.

enemy units, obstacles, supply units, etc. Some samples of the hand-drawn symbols

from this domain are displayed in Figure 2-6. As mentioned before, some symbols

have distinctive shapes whereas others appear as partial symbols of one or more

symbols. For example, Figure 2-6n is a sub-shape of Figure 2-6m. In total this

database contains 620 samples from 20 symbols drawn by 8 users.

Since no separate test set is available for the COAD database, a randomly selected

20% of all the available data is reserved for testing, prior to parameter optimization

done with cross-validation. The parameter optimization for the COAD database aims

to find (𝐶,𝐾) pairs at which the system performs close to human recognition rates

as will be described in Section 2.3.2. We report the system performance on this test

set in detail in Sections 2.3.3 and 2.3.4.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 2-7: A sample symbol from each class in the NicIcon database.

The second database we used in our experiments is the NicIcon [54] symbol

database used in the domain of crisis management. The database contains 26163

symbols representing 14 classes collected from 32 individuals. The symbols represent

events and objects such as accident, car, fire, etc. Some of the sketched symbols from

the database are displayed in Figure 2-7. The NicIcon database defines the training
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and test sets and in the experiments we used these sets accordingly.

2.3.2 Auto-completion performance benchmark

There are no reported auto-completion accuracies for the COAD and the NicIcon

databases, in the literature. However, both databases have been used before in testing

sketched symbol recognition algorithms designed for classifying full symbols. While

presenting the results of our experiments on the databases, we give both partial and

full symbol recognition performances and compare them to full symbol recognition

rates from the literature.

In order to test the accuracy decrease due to the auto-completion scenario (since

without knowing that the drawing ended, we cannot be sure of the class), we measured

a human expert’s performance on the COAD database, assuming an auto-completion

framework. Specifically, we showed all partial and full symbols in the COAD database

to a human expert without telling whether the drawing was finished or not. The

expert was then asked to choose the correct class if the the sample could be classified

unambiguously for varying values of 𝑁 , and reject it otherwise.

The first row of Table 2.1 indicates that 75.36% of the partial symbols and 33.58%

of full symbols are found to be ambiguous when 𝑁 = 1; that is when the expert is

asked to identify the correct class. The symbols that were not rejected were classified

with 100% accuracy. As mentioned before, both partial and full symbols in a database

may be ambiguous in an auto-completion scenario, without knowing that the user has

finished drawing. In particular, full symbols that are found ambiguous are those that

can be partial drawings of other symbols.

For 𝑁 = 2 and 𝑁 = 3, the task is to decide whether the symbol can be placed with

certainty in one of 𝑁 possible classes, hence, the reject rates decrease as 𝑁 increases.

Human performance for the NicIcon database was not calculated due to the large size

of the database and the amount of manual work involved.

Human recognition rates may be used as a point of reference for assessing an

automatic recognition system’s performance. In particular, we can compare the pro-

posed system’s accuracy to that of the human expert’s, at the reject rates close to
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Top-𝑁 Partial Full Reject rate Reject rate
Policy Accuracy Accuracy for Partial for Full
N=1 100% 100% 75.36% 33.58%
N=2 100% 100% 61.74% 18.25%
N=3 100% 100% 55.07% 12.41%

Table 2.1: Human accuracy showing the proportion of partial and full symbols that
need to be rejected in order to achieve 100% accuracy, for varying values of 𝑁 = [1−3]
on the COAD database. The reject rate indicates percentage of the cases where the
human expert decided that there is not sufficient information for classification, hence
declined prediction.

the expert’s.

2.3.3 Accuracy on the COAD database with EM clustering

As described in Section 2.2.3, we first used the EM method for clustering. We sum-

marize the validation and test performances on the COAD database using the EM

algorithm, so as to motivate the use of the CKMeans algorithm.

Table 2.2 shows a summary of the cross-validation accuracies obtained with dif-

ferent values for the system parameters (cluster count parameter 𝐾 and confidence

threshold 𝐶) that give reject rates close to human reject rates, for comparability. The

best parameter pair giving the highest validation set accuracy is indicated with an

asterisk. We then used the chosen parameters (𝐾 = 40, 𝐶 = 0.84) to evaluate the

test set performance, obtaining the results shown in Table 2.3. The human accura-

cies and reject rates measured on the whole COAD database, are also listed for easy

comparison.

K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

80 / 0.87 88.40% 96.90% 71.68% 33.87%
60 / 0.84 91.50% 98.31% 73.26% 33.87%
40 / 0.84* 91.37% 98.44% 73.83% 33.33%

Table 2.2: Validation accuracies for the COAD database for 𝑁 = 1 using the EM
algorithm.

While the results shown in Table 2.3 are already good (lower reject rates com-
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K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

40 / 0.84 94.05% 97.98% 63.95% 27.74%

Human 100.00% 100.00% 75.36% 33.58%

Table 2.3: Test accuracy for the COAD database for 𝑁 = 1 using the EM algorithm.

pared to human reject rate, but also somewhat lower accuracies compared to human

accuracies), we next evaluated the semi-supervised CKMeans algorithm that was ex-

pected to do better with the fully drawn symbols, due to the imposed constraints.

The results obtained using the CKMeans for clustering while keeping the other parts

of the system unchanged, are given in the next sections.

2.3.4 Accuracy on the COAD database using CKMeans clus-

tering

The performance surface of the system during validation with respect to the system

parameters for the COAD database is shown in Figure 2-8, while representative points

on this performance surface are listed in Table 2.4. The table is organized such that

the first three rows present accuracies where the system is forced to make a decision

(𝐶 = 0); while the last three rows present accuracies where the reject rates are close

to human expert rates. Note that the accuracy result for full shapes at zero reject rate

is comparable to recognition results without auto-completion, while the accuracies at

human reject rates can be compared to human accuracies.

The best results are obtained with 𝐾 = 40, 𝐶 = 0.74 and 𝐾 = 40, 𝐶 = 0.00,

depending on whether the system has the reject option or not, respectively. The

corresponding test performance, obtained with these parameters, are shown in Ta-

ble 2.5. One can see that the system achieves 100% accuracy for full symbols and

92.65% for partials, when the reject rates are even lower than the human reject rates.

This counter intuitive result is explained in Section 3.4.1.

When 𝑁 = 2 and 𝑁 = 3, the accuracies increase since the system can make

two/three guesses as to what the class of the object is. We again choose the best
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(a) The performance surface for full symbols.

(b) The performance surface for partial symbols.

Figure 2-8: Validation performance for 𝑁 = 1 , on COAD database, using the CK-
Means algorithm.

parameters in terms of validation set accuracy at close to human reject rates, which

are found to be 𝐾 = 40, 𝐶 = 0.88 for 𝑁 = 2 and 𝐾 = 40, 𝐶 = 0.95 for 𝑁 = 3. At

these settings, the test accuracies are given in Tables 2.6 and 2.7.

As mentioned before, the COAD database does not have explicitly defined training

and test sets. So, in order to strengthen our results, we repeated the experiments

using 5-fold cross validation where for each fold, 20% of the instances are separated

for testing and the remaining instances are used for training. In each of these 5

experiments, the system parameters are optimized in a separate cross-validation as

explained above, using only the training set allocated in that fold. For brevity, the
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K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

80 / 0.00 58.03% 96.77% 0.00% 0.00%
60 / 0.00 52.48% 97.85% 0.00% 0.00%
40 / 0.00* 58.49% 96.77% 0.00% 0.00%

80 / 0.83 90.46% 100.00% 75.00% 30.11%
60 / 0.79 88.71% 100.00% 75.76% 23.12%
40 / 0.74* 95.48% 99.31% 75.47% 24.19%

Table 2.4: Validation performance for 𝑁 = 1 using the CKMeans algorithm on the
COAD database. The rows with * indicate the parameters giving the best results.

K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

40 / 0.00 54.94% 97.08% 0.00% 0.00%
40 / 0.74 92.65% 100.00% 70.82% 17.52%

Human 100.00% 100.00% 75.36% 33.58%

Table 2.5: Test performance for 𝑁 = 1 using using the CKMeans algorithm on the
COAD database.

results obtained with different tests sets are shown in Table 2.8 for only 𝑁 = 1, along

with the selected optimal parameter values. The row labeled Exp 1 contains the

results that are presented before. As illustrated in the table, the test results with

different folds show low variance for the proposed classification method.

Discussion

For the COAD database, Tumen et al . [75] report a recognition accuracy around

96% for full symbols. This can be compared to the 97.08% accuracy obtained by our

system during testing of full symbols, when reject was not an option (first row of

K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

40 / 0.00 72.10% 99.27% 0.00% 0.00%
40 / 0.88 95.00% 100.00% 65.67% 18.25%

Human 100.00% 100.00% 61.74% 18.25%

Table 2.6: Test performance for 𝑁 = 2 using using the CKMeans algorithm on the
COAD database.
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K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

40 / 0.00 79.83% 99.27% 0.00% 0.00%
40 / 0.95 97.53% 100.00% 65.24% 17.52%

Human 100.00% 100.00% 55.07% 12.41%

Table 2.7: Test performance for 𝑁 = 3 using using the CKMeans algorithm on the
COAD database.

Validation Validation Test Test
ID K, C Accuracy Reject Accuracy Reject

Exp 1 40, 0.74 Full 99.31% 24.19% 100% 17.52%
Partial 95.48% 75.47% 92.65% 70.82%

Fold 1 100, 0.78 Full 100.00% 28.19% 100.00% 24.63%
Partial 87.69% 77.19% 90.00% 76.53%

Fold 2 80, 0.82 Full 100.00% 24.91% 100.00% 18.58%
Partial 94.97% 73.83% 95.92% 68.70%

Fold 3 80, 0.82 Full 100.00% 25.51% 98.91% 22.34%
Partial 91.62% 75.33% 88.00% 70.48%

Fold 4 60, 0.77 Full 100.00% 22.11% 100.00% 16.10%
Partial 94.87% 71.24% 89.39% 69.59%

Fold 5 40, 0.75 Full 100.00% 25.05% 100.00% 20.53%
Partial 94.19% 76.28% 98.28% 73.52%

Mean Full 100.00% 25.15% 99.78% 20.44%
Partial 92.67% 74.77% 92.32 % 71.76%

Table 2.8: Experiment results obtained using different test sets. Exp1 refers to the
results given in Tables 2.4 and 2.5. The last row shows the mean of the accuracies
and reject rates for the 5-folds.

Table 2.5). So, our system not only achieves better accuracy, but also does so while

providing auto-completion.

More importantly, our system obtains 100% recognition accuracy in recognizing

full symbols (second row, Table 2.5) at lower reject rates compared to humans. This

may seem unintuitive at first, but it can be explained by two factors. First of all,

human experts reject a full symbol 𝐹 and tag it as ambiguous if it is a partial symbol

of some other symbol 𝑆. However, if 𝐹 has not occurred in the partial symbols of 𝑆 in

the training data, that information is exploited in the presented system. For instance,

if the outer squares in Figures 2-6b to 2-6e are always drawn last, then Fig 2-6a is
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not a partial symbol of any these symbols in practice. This information is captured

by the system, as explained in Section 2.2.1.

Secondly, our system is biased towards performing better in full symbol recogni-

tion, when CKMeans is used with the constraints of not mixing full shape clusters.

The algorithm is designed this way because, as mentioned earlier, an error in classi-

fying a full symbol might cause more of a distraction to the user, than an error in

classifying partial symbols.

2.3.5 Accuracies on the NicIcon database using CKMeans clus-

tering

The validation set performance of the system with respect to the system parameters

for the NicIcon database is shown in Figure 2-9, while representative points on this

performance surface are listed in Table 2.9. The first three rows of the table present

accuracies on the performance surface at zero reject rate. Since no human expert

labeling is done for this database, the last three rows in the table present the points

at which less than 10% of the partials are rejected. The best results are obtained

with 𝐾 = 20, 𝐶 = 0.48 and 𝐾 = 20, 𝐶 = 0.00, depending on whether the system has

the reject option or not, respectively.

K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

60 / 0.00 90.75% 98.43% 0.00% 0.00%
40 / 0.00 91.39% 98.52% 0.00% 0.00%
20 / 0.00 * 91.88% 98.64% 0.00% 0.00%

60 / 0.42 94.79% 99.10% 9.33% 1.80%
40 / 0.42 95.00% 99.37% 8.94% 1.96%
20 / 0.48* 95.92% 99.40% 9.74% 2.36%

Table 2.9: Validation performance for 𝑁 = 1 using the CKMeans algorithm on the
NicIcon database. The rows with * indicate the parameters giving the best results.

For 𝑁 = 2 and 𝑁 = 3, we do not change 𝐶 and 𝐾. At these settings, the test

accuracies are given in Tables 2.11 and 2.12.
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(a) The performance surface for full symbols.

(b) The performance surface for partial symbols.

Figure 2-9: Validation performance surface for 𝑁 = 1 using the CKMeans algorithm
on the NicIcon database.

Discussion

As mentioned earlier, the NicIcon database is an easier database from the perspective

of the auto-completion problem because the symbols in this database have more

discriminative sub-symbols and fewer number of strokes. Even when the reject rate

in partial symbols is 0%, partial symbol recognition accuracy is quite high (87.63%).

As a comparison, the partial symbol recognition accuracy for the COAD database is

only 54.94% as presented in Table 2.5.

In [82], the authors report a recognition accuracy of 99.2% for the NicIcon database.

Our system achieves a recognition rate of 93.26% for full symbols, with 0% reject rate
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K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

20 / 0.00 87.63% 93.26% 0.00% 0.00%
20 / 0.48 93.06% 96.97% 14.33% 7.34%

Table 2.10: Test performance for 𝑁 = 1 using using the CKMeans algorithm on the
NicIcon database.

K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

20 / 0.00 94.81% 95.71% 0.00% 0.00%
20 / 0.48 95.66% 96.51% 2.77% 1.80%

Table 2.11: Test performance for 𝑁 = 2 using using the CKMeans algorithm on the
NicIcon database.

as displayed in Table 2.10. Our recognition accuracy in full symbols is lower than

the reported recognition rate on this database. However, our system is capable of

performing auto-completion which is a valuable feature for sketch recognition appli-

cations.

The last experiment result in the NicIcon database for 𝑁 = 3 is interesting. When

𝑁 = 3, our system produces a higher recognition accuracy for partials than for fully

completed symbols (97.47% vs. 96.75%). This result also supports the claim that

auto-completion is well suited to the symbols in this database.

2.3.6 Comparison of clustering algorithms

In order to better observe the effect of semi-supervision on performance, we compared

the accuracies obtained using each of the two clustering algorithms, for varying reject

rates. In Figure 2-10, we present the comparison of EM and CKMeans in full symbol

K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

20 / 0.00 97.47% 96.75% 0.00% 0.00%
20 / 0.48 97.57% 96.86% 0.30% 0.19%

Table 2.12: Test performance for 𝑁 = 3 using using the CKMeans algorithm on the
NicIcon database.
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recognition using 80 clusters1. We can observe that the CKMeans performs better

for all reject rates and achieves a high accuracy even for low reject rates.

Similarly, Figure 2-11 compares the partial symbol recognition accuracies, using

the two clustering algorithms. We see that in the presence of semi-supervision, the

accuracies increase when CKMeans is used not only for full symbols but also for

partial symbols.

Figure 2-10: Comparison of full symbol accuracies on the COAD database, using EM
and CKMeans with 80 clusters.

Figure 2-11: Comparison of partial symbol accuracies on the COAD database, using
EM and CKMeans with 80 clusters.

1Similar patterns are observed for different cluster sizes as well.
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2.3.7 Effect of supervised classification

As mentioned earlier in Section 2.2.4, we also conducted an experiment in order to

observe the effect of supervised classification on system accuracy. We repeated the

same experiments as above, using the NicIcon database, but removing the supervised

classification component completely and using Eq. 2.3.

When the supervised learning step was eliminated, the best validation result at

zero reject rate was obtained for 40 clusters. When the test performance was measured

at this setting (𝐾 = 40, 𝐶 = 0.00), we obtained the results given in Table 2.13. In

this table, the first row shows the test performance on the NicIcon database using

supervised classification (from Table 2.10) whereas the second row shows the test

performance without the supervised classification. The contribution of the supervised

classification is clear according to these results: Through the supervised classification

step, the accuracy increases not only for full symbols, but also for partials.

Method K/C Partial Full Reject Rate Reject Rate
Accuracy Accuracy for Partial for Full

Proposed 20 / 0.00 87.63% 93.26% 0.00% 0.00%
No supervision 40 / 0.00 74.96% 89.37% 0.00% 0.00%

Table 2.13: The effect of removing the supervised classification step on the accuracies.

2.3.8 Implementation and runtime performance

We used LibSVM for the implementation of support vector machines [14], while the

code for testing is written in Matlab. Classification of a single test instance takes

roughly 0.07 seconds on a 2.16GHz laptop. So, the system runs in real time –as

required for an auto-completion application.

2.4 Summary and discussions

We describe a system that uses semi-supervised clustering followed by supervised

classification for building a sketch recognition system that provides auto-completion.
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Our system approaches the auto-completion problem probabilistically and, although

we have used a fixed confidence threshold during our tests, the confidence parameter

can be modified by the user to specify the desired level of prediction/suggestion

from the system. Experimental results show that predictions can be made for auto-

completion purposes with high accuracies when the reject rates are close to that of

a human expert. As described in the experiments, our system achieves 100.00% and

92.65% accuracies in the COAD database at human expert reject rates for full and

partial symbols respectively. For the NicIcon database, 93.26% and 87.63% accuracies

are obtained without rejecting any instances for full and partial symbols respectively.

The system works in real time.

Few points are worth noting. First of all, there is a trade-off between accuracy and

the ability to make predictions. For all values of 𝑁 and 𝐾, increasing the confidence

threshold improves accuracy, but it also increases the reject rate. It is important

to locate points at which both reject rates and accuracies are acceptable. These

points are found using a validation set, while in the actual application, the confidence

threshold for a similarly selected 𝐾 could be adjusted by the user.

Another point is that the system does not discriminate between full and partial

symbols in its rejections. When the confidence threshold increases, more and more

full symbol instances are rejected. However, what we would really like is to recognize

full symbols well, at the cost of rejecting more partials if necessary. As we discussed

in Section 2.3.6, integrating knowledge about the full symbols and using a semi-

supervised clustering algorithm achieves this to some degree and also increases partial

symbol recognition accuracy.

2.5 Future work

In this chapter, although we addressed on-line sketch recognition, we assumed that the

scene contained only one object (either partial or full). In other words, we have not

addressed issues that come up in the context of continuous sketch recognition where

the scene may contain multiple objects. As shown in previous work [3], continuous
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sketch recognition has its own challenges. In particular, the issue of how segmentation

and auto-completion can be addressed simultaneously requires further research. It

may be the case that an approach that is based on dynamic programming, may suffice

and can be adapted to a scenario where the most recent object is partially drawn.

It may also be the case that introducing the option for auto-completion may require

modifications to the segmentation framework. More specifically, one has to make sure

that the segmentation hypotheses generated by the recognition system allows only the

latest object to be partial; all other groups computed by the segmentation step will

have to correspond to fully completed objects.

Another question that arises naturally is how humans react to an interface which

offers auto-completion. In order to figure out how and when auto-completion should

be offered, user experiments need to be carried out. During those experiments, the

parameters that we used, such as confidence threshold 𝐶 and the number of choices

to be offered, 𝑁 , can be studied to find optimum parameter values.

Integrating machine learning methods for classifier combination into the system

is also a future direction of research. During experiments, we observed that certain

values of 𝐾 do a better job at predicting full symbols, whereas others are better

at predicting partials. Exploring a system that employs an ensemble of different 𝐾

values can further boost the accuracies.
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Chapter 3

Identifying visual attributes for

object recognition from text and

taxonomy

Attributes of objects such as “square”, “metallic” and “red” allow a way for humans to

explain or discriminate object categories. These attributes also provide a useful inter-

mediate representation for object recognition, including support for zero-shot learning

from textual descriptions of object appearance. However, manual selection of relevant

attributes among thousands of potential candidates is labor intensive. Hence, there is

an increasing interest in mining attributes for object recognition. We introduce two

novel techniques for nominating attributes and a method for assessing the suitability

of candidate attributes for object recognition. The first technique for attribute nom-

ination estimates attribute qualities based on their ability to discriminate objects at

multiple levels of the taxonomy. The second technique leverages the linguistic concept

of distributional similarity to further refine the estimated qualities. Attribute nomi-

nation is followed by our attribute assessment procedure, which assesses the quality of

the candidate attributes based on their performance in object recognition. Our eval-

uations demonstrate that both taxonomy and distributional similarity serve as useful

sources of information for attribute nomination, and our methods can effectively ex-

ploit them. We use the mined attributes in supervised and zero-shot learning settings

47



to show the utility of the selected attributes in object recognition. Our experimental

results show that in the supervised case we can improve on a state of the art classifier

while in the zero-shot scenario we make accurate predictions outperforming previous

automated techniques.

3.1 Motivation

While much research in object recognition has focused on distinguishing categories,

recent work has begun to focus on attributes that generalize across many cate-

gories [27, 24, 80, 45, 79, 42, 67, 7, 65, 23, 81, 12, 43, 58, 57]. Attributes such

as “pointy” and “legged” are semantically meaningful, interpretable by humans, and

serve as an intermediate layer between the top-level object categories and the low-

level image features. Moreover, attributes are generalizable and allow a way to create

compact representations for object categories. This enables a number of useful new

capabilities: zero-shot learning where unseen categories are recognized [80, 45, 67],

generation of textual descriptions and part localization [24, 79, 23], prediction of

color or texture types [27], and improving performance of fine-grained recognition

tasks (e.g ., butterfly and bird species or face recognition) [80, 42, 12, 43, 57] where

categories are closely related.

However, using attributes for object recognition requires answering a number of

challenging technical questions — most crucially, specifying the set of attributes and

the category-attribute associations. Most prior work uses a predefined list of at-

tributes specified either by domain experts [80, 45, 12] or researchers [24, 42, 81, 43],

but such lists may be time-consuming to generate for a new task, and the attributes in

the generated list may not correspond to the optimal set of attributes for the task at

hand. A natural alternative is to identify attributes automatically, for example, from

textual descriptions of categories. However, this is challenging because the number

of potential attributes is large, and evaluating the quality of each potential attribute

is expensive.

We present a system that automatically discovers a list of attributes for object
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recognition. As we approach the problem from a computer vision perspective, we

are mainly concerned with “visual” attributes that directly relate to the appearance

of objects, such as “red ” or “metallic”. However, an attribute that relates with vi-

sual qualities in general may not be selected by our system if it does not help the

recognition task, e.g ., “metallic” is not a useful attribute if the recognition task is to

classify car brands. In contrast, the word “fragrant” does not refer to a visual quality,

however due to its indirect correlation to visual features (e.g ., its link to flowers), it

may be selected as a useful attribute for object recognition by the proposed method.

In the remainder of this chapter we use the term “visual attribute” to refer to any

word that may help object recognition from images.

Our main contributions are as follows. Firstly, we introduce two methods to select

words in a text corpus that are likely to refer to visual attributes. One of the methods

we propose uses a taxonomy defined over categories and promotes words whose occur-

rence in textual descriptions of categories is coherent with the given taxonomy. The

other method builds upon the previous one and integrates distributional similarity of

words into the attribute selection process. Secondly, we propose a way to assess the

quality of a candidate word as an attribute for object recognition from images. In the

experiments, we provide evaluations of the proposed attribute selection strategies for

effectively identifying attributes, in the plant and animal domains, and present the

efficacy of the proposed techniques at selecting visual attributes. Furthermore, we

analyze the mined attributes semantically and then use them for plant and animal

identification tasks.

We use three input sources in the proposed methods: textual descriptions and

image samples of categories and a taxonomic organization of the object domain. In

the plant identification task, the goal is to identify a plant species from the visual

appearance of its foliage. We use the plant foliage image dataset provided in Image-

CLEF’20121 plant identification task [29]. This dataset contains 9, 356 foliage images

of 122 species of which 6, 689 are for training and 2, 667 are for testing. For this

dataset, we mine a set of text documents containing encyclopedic information on cat-

1http://www.imageclef.org/2012
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egories from the web, using Wikipedia2, Encyclopedia of Life3 and the Uconn Plant

Database4. For the animal identification task, we use the animals-with-attributes

(AwA) database provided by [45] to evaluate our approach. This is a popular database

to test attribute-based recognition and zero-shot learning approaches. This dataset

contains 30, 475 images of 50 animals where 24, 295 images of the selected 40 ani-

mals are used for training and 6, 180 images of the remaining 10 classes are reserved

for testing in the zero-shot learning setting. Similar to the plant identification, we

mine textual descriptions for each of the 50 animals in that set using Wikipedia and

A-Z Animals.5 In both of the recognition tasks, the challenge is to find the words

referring to visual attributes in the mined documents. We test the effectiveness of

the automatically selected attributes for recognition in both zero-shot learning and

in traditional supervised learning settings. 6

Our approach consists of two main components. After reviewing related work in

3.2, we describe a method for assessing the visual quality of a proposed attribute

for object recognition in Section 3.3. The assessment procedure involves training

a binary attribute classifier, where the quality of a candidate word depends on the

success of the attribute classifier. Classification-based attribute selection is effective

but computationally expensive; consequently, in Section 3.4, we propose a set of

techniques for nominating candidate attributes that are likely to be of high visual

quality: we leverage multi-level discriminability across a category taxonomy, and

distributional similarity of the words in the text corpus. Our nomination process

takes feedback from the visual quality assessment of candidate attributes, making

increasingly accurate predictions as it learns more about the types of words that are

found to be of high quality. Once the set of attributes is determined, in Section 3.5, we

illustrate how the selected attributes can be used for object recognition in two different

settings. Finally, in the experiments section (Section 3.6) we present experiments to

2http://en.wikipedia.org/wiki/Main_Page
3http://eol.org/
4http://www.hort.uconn.edu/plants/
5http://a-z-animals.com/
6All the collected textual descriptions are available online at: https://drive.google.com/file/

d/0Bx-64dmWqUHIT09JRGZDOGxPNkk/view?usp=sharing
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compare attribute selection strategies. Then, the selected attributes are used for

classification of categories in two challenging recognition tasks.

3.2 Related work

Although most of the literature on attribute-centric recognition focuses on working

with a predetermined list of attributes, a few alternatives propose methods to select

attributes interactively [58, 57] or automatically [7, 65]. The interactive methods

first identify local image patches that are important for recognition and then use

human supervision to check whether or not these patches refer to attributes. Unlike

these methods, we would like to take advantage of a text corpus and select attributes

automatically. Berg et al . [7] also use a text corpus, but instead of learning which

attributes are valuable for recognition from text using textual features, they iteratively

test the most frequent words in the corpus to find attributes. We show that an

intelligently guided search identifies effective attributes much more rapidly.

There is also previous work in the literature to identify words referring to visual

characteristics [5, 11, 21]. In [5] Barnard and Yanai fit a Gaussian mixture model to

image regions and determine the “visualness” of a word based on the entropy of the

distribution. Boiy et al . [11] mine words having visual information using corpus-based

association techniques where words appearing more in the texts of visual corpus rather

than non-visual corpus are selected. In [21] authors use several strategies to mine

visual text from large text corpora. First, they generate a graph between adjectives

based on distributional similarity and apply bootstrapping to select visual nouns and

adjectives. Second they construct a bipartite graph between visually descriptive words

and their arguments and use label propagation to extend the list of visual words.

Finally, they integrate visual features to improve performance. In comparison, we

propose methods that utilize a taxonomy over categories and distributional similarity

of words to automatically discover attributes of categories that are likely to refer to

visual characteristics.

Another related work [64] involves finding discriminative codes for individual im-
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ages rather than for categories. In their work Rastegari et al . create a system to

encode each image with a binary code to balance discrimination between categories

and learnability of the individual attribute classifiers. Although there is no direct

semantic mapping of the discovered codes, they achieve state-of-the-art recognition

results on Caltech256 [30] and ImageNet [18] databases. In contrast to their work,

we define attributes on the category level and rely on a text corpus to automatically

mine semantically meaningful and discriminative attributes.

In [86], Yu et al . design a category-attribute matrix on the known categories where

they balance the separation of the categories while also considering the learnability

of the attribute classifiers. In order to perform zero-shot learning, they use human

supervision to create a similarity matrix between the novel and the known categories

while using the trained attribute classifiers. While we also design a category-attribute

matrix, we use no human-supervision in the process other than supplying the readily-

available taxonomy on the categories. Moreover, since we use a text corpus to mine

the attributes, the attributes we discover can be directly mapped to semantically

meaningful units.

The most similar prior work to ours is [65], where Rohrbach et al . use state-of-

the-art natural language processing techniques and provide experiments for several

linguistic knowledge bases for mining attributes. However, there are key differences.

Rohrbach et al . consider part-of relations encoded in WordNet [52]. In contrast, we

mine attributes using a taxonomy defined on the categories and consider the whole

text so our method can discover attributes referring to color or context that cannot

be explained with part-of relations. Furthermore, expanding the set of candidate

attributes to all words requires accurate nomination heuristics; in our approach, we

provide this by leveraging the object category taxonomy and distributional similarity.

Object classification using a taxonomy has also been studied before. In [31] Griffin

and Perona describe a way to automatically learn hierarchical relationships between

images of categories and use this taxonomy in the recognition task. Deng et al . [19]

show that there is a correlation between the structure of the semantic hierarchy of the

WordNet and visual confusion between the categories. They present a cost function
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based on the WordNet hierarchy for classification of 10000 categories and show that it

produces more semantically meaningful classification results. By defining a taxonomy

over categories, Binder et al . [8] train an ensemble of local SVMs on various levels

of the taxonomy and use trained classifiers in the recognition task. In contrast to

previous lines of work that utilize a taxonomy to improve speed and recognition

accuracy from images, we rely on the readily available taxonomy of life to discover

attributes of categories in a text corpus that help object recognition.

Finally, in [26], a unimodal topic model that integrates textual and image features

is built for the tasks of computing word association and similarity. More recently,

in [71] the authors combine visual attribute classifiers with text-based distributional

models for finding word associations. In both of these papers, improved results are

obtained when textual and image features are used together. However, these lines of

work aim to ground natural language semantics in visual features, rather than using

language to improve object recognition from images.

3.3 Assessing the visual quality of attributes

In the textual description of a category such as a plant or animal, only a very small

fraction of words refer to attributes — such as “legged”, “green”, “big”, “ugly” or “sharp”.

Moreover, some of these words refer to very high level qualities (e.g ., “ugly”) that

may not be robustly detectable using automatic methods. Also, attributes that are

beneficial might change depending on the recognition task. For example, the word

“green” can be used as an attribute for various tasks, but it is not a useful attribute

for plant identification using images of foliage, as most plant foliage is green.

In this section, we present a method to test whether a given candidate word

refers to an attribute that can be recognized using visual features. The method is

based on the assumption that a word denoting an attribute of an object category

will appear frequently in its description. Furthermore, we require from an attribute

classifier trained with a proportion of object categories having the attribute versus

others, to do a good job in separating novel categories having the attribute from
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Candidate Word
(“leaflets”)
as Attribute

Label Species Images Textual descriptions

𝑃
Frax.
Excel.

. . .

. . . The leaves are 20− 35 cm
long, pinnate compound,
with 7− 13 leaflets, the leaflets
3− 12 cm long and . . .

𝑁
Cerasus
Mahal.

. . .

𝑃
Jugl.
Nigra

. . .

. . . odd-pinnate with
15− 23 leaflets, with the
largest leaflets located

in the center, . . .

𝑁
Eriob.
Japon.

. . .

...
...

...

Train a classifier

Evaluate Images

Assess the
visual

quality of
the word

Figure 3-1: The flow for how the visual quality of a candidate word is assessed. Each
category has a set of images and textual descriptions. Given a candidate word, each
category is associated with a positive (𝑃 ) or negative (𝑁) label for this candidate,
using its textual descriptions (This is unlike previous works [64, 20, 7] where instances
are associated with labels). Images of half of the 𝑃 and 𝑁 categories are used to train
an attribute classifier and the classifier is evaluated on the remaining images. The
candidate word is assessed based on the classifier responses on the evaluation images.

others. Figure 3-1 summarizes our process for assessing whether a candidate word is

accepted as an attribute; each step is described in detail in the following subsections.

3.3.1 Constructing the training set

Given a candidate word as an attribute, all object categories in the image collection

are automatically labeled as either having or not having the attribute, based on their

textual descriptions. The categories having the attribute are associated with the

label positive (𝑃 ) while the remaining categories are associated with the negative

(𝑁) label. This is unlike previous works [64, 20, 7] that use instance-attribute rather

than category-attribute association.
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The category-attribute association is based on the occurrence frequency of the

candidate word in the description of that category in the text corpus. Specifically, we

compute the mean and standard deviation of the word frequency across all categories,

and then associate a category with 𝑃 if the frequency of the word in descriptions of

that category is at least one standard deviation above the mean frequency. All other

categories are associated with the label 𝑁 . We have tried various other methods for

finding the category-attribute associations but saw that this method works quite well

in practice.

3.3.2 Training the attribute classifier

The 𝑃 and 𝑁 categories identified in Section 3.3.1 are split into training and evalua-

tion sets, using a 50/50 split. If category is placed in the training set, then all image

instances for that category are used for training, and vice versa for the evaluation

set. In this way, we avoid attributes specific to a single category that cannot be

shared across categories. To be selected, an attribute must be recognizable in novel

categories that are unseen in the training data.

Using the 𝑃 and 𝑁 image instances reserved for training, we train a binary at-

tribute classifier that learns to differentiate between them. In other words, given a

candidate attribute (e.g ., “striped”), the classifier is trained to separate the set of

images labeled as having this attribute (zebras, tiger, . . . ) or not (lion, panther, . . . )

based on their textual description. The trained attribute classifier is used to detect

the attribute 𝑎 in a given image 𝑥, with its output interpreted as 𝑝(𝑎|𝑥).

Our experiments focus on plant and animal identification tasks. In the plant

identification experiments, we use a binary attribute classifier that operates on a

set of features extracted from images; specifically histogram of gradients [16], shape

context [6] and local curvature on the object boundary. Each attribute classifier is

trained using these feature descriptors of the images in the 𝑃 and 𝑁 sets reserved for

training.

For the experiments we perform on the Animals with Attributes (AwA) dataset,

we train the attribute classifiers using the pre-computed descriptors (color, local self
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similarity, oriented gradients, rgSIFT, SIFT and SURF histograms) supplied by the

authors of the AwA database [45] as well an additional feature descriptor extracted

using a convolutional neural network. The feature descriptors of 40 training categories

specified in [45] are used in training of the attribute classifiers. During assessment of

a candidate word, we train a binary linear SVM as the attribute classifier for each

feature descriptor.

3.3.3 Assessing the visual quality

The trained attribute classifier is used to produce 𝑝(𝑎|𝑥) for each image instance

in the evaluation set. We then analyze the probability distributions obtained by

the positive and negative samples in the evaluation set, to determine whether the

candidate word is accepted as an attribute. The candidate word is accepted as an

attribute if the distribution for the instances of the 𝑃 categories is significantly greater

than the distribution of the instances of the 𝑁 categories. In order to compare the

distributions we perform a t-test at 𝑝 < .01. While precision of the attribute classifier

at separating positive and negative instances has been used to assess visual quality

of a candidate before [20, 7], we preferred to use a t-test which allows us to a detect

statistical difference between the distributions of positive and negative instances.

Figure 3-2 presents the histograms of the probability distributions of the posi-

tive and negative evaluation instances for two words that are candidate attributes:

“deciduous” and “leaflets”. The candidate word “deciduous” fails the assessment, as

the classifier assigns essentially the same distributions to the instances of 𝑃 and 𝑁

categories in the evaluation set. In contrast, the distribution for the instances of the

𝑃 categories for the word “leaflets” is skewed to the right compared to that of the

instances of 𝑁 categories. We take this to mean that the word “leaflets” corresponds

to some visual characteristics.
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Figure 3-2: Two sample words (“deciduous” and “leaflets”) are assessed for visual
quality and the histograms for the attribute classifier predictions are presented. “De-
ciduous” is not accepted because the the classifier predictions are similar for the
instances having (positives) and without (negatives) the attribute. On the contrary,
“leaflets” is accepted because the attribute classifier produces higher probabilities for
the instances having the attribute.

3.4 Attribute candidate ranking

The previous section describes an effective procedure for determining if a word is

an attribute, but it requires training a binary classification system. Doing so for

several thousand candidate attributes can be very time consuming. Hence, we propose

techniques to rank the candidates so that the most promising ones are considered first,

allowing us to obtain a good set of attributes without iterating through all possible
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Species ⊂ Genus ⊂ Family ⊂ Order

Figure 3-3: The lowest four ranks in the hierarchy of biological classification. Each
species is also a member of a genus, family, order, etc.

candidates.

The first technique we propose measures each word’s effectiveness as an attribute

based on its ability to discriminate not only individual categories, but also higher-

order sets of categories as defined by a taxonomy on categories. For example, a good

attribute should distinguish not just cars and trucks, but higher-order categories, like

vehicles.

The second method we propose organizes all candidate words into a hierarchy, us-

ing distributional similarity, so that words with similar distributional properties are in

similar parts of the hierarchy. As we assess candidate words, we obtain firm evidence

about the visual quality of individual words. This information is then propagated to

the neighbors of the assessed candidate word in the hierarchy: i.e. if a word is found

to be a good attribute, then distributionally-similar words will be ranked higher as

well, and vice versa. We now discuss these ideas in detail.

3.4.1 Use of object taxonomy

The living organisms have a taxonomy where organisms are categorized based on

similarities or common characteristics. The lowest four ranks of this taxonomy are

displayed in Figure 3-3: each species is associated with a genus, family, and order.

Two species in the same genus are therefore more similar to each other than to other

species in different genera. Likewise, two species in the same family are more similar

to each other compared to other species in different families.

In the thesis we are working on classification of plants and animals from images and

their biological taxonomy is readily available. 7 Assuming this conceptual taxonomy

7The taxonomies of plants and animals we use are available online at: https://drive.google.
com/file/d/0Bx-64dmWqUHISHhjbWYwOXUxZFk/view?usp=sharing
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Taxonomy

𝐺1 𝐺2

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

Taxonomy

𝐺1 𝐺2

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

Figure 3-4: A toy example where a taxonomy over 5 distinct species and 2 genera
is illustrated. We present the division of the species as positive and negative for
two candidate words where the nodes that are gray are positive and the others are
negative. On the given taxonomy, picking the word on the left splits the species that
are in the same genus while the word on the right respects the taxonomy.

has some correspondence in the visual appearance of each object category, we would

like to choose attributes that match it. Such attributes should help us discriminate

between highly disparate object classes.

We motivate the use of taxonomy in finding words that are likely to denote visual

characteristics with a toy example. Suppose we have a taxonomy defined over 5

species (the leaf nodes) and 2 genera (the middle nodes), as shown in Figure 3-4

and we have a dictionary of 2 words. We would like to pick one of the words as

a candidate attribute and the task is deciding which one to pick. As described in

Section 3.3 each category (species) is associated with either a positive (gray nodes)

or negative (white nodes) label depending on the occurrence frequency of the word

in textual descriptions of the category. Now, consider the first word that creates the

labeling on the left. This word creates a positive set using categories 𝑆1 and 𝑆3,

but these categories belong to different genera. In contrast, the second word that

generates the tree on the right side of the figure, illustrates a candidate that respects

the taxonomic organization of categories. We hypothesize that words that conform to

the taxonomy, such as the second word, will be more likely to have meaningful visual

properties, and the results in Section 3.6 bear this intuition out. We now describe a

ranking procedure that will favor such words.

Formally, suppose we are given a set of categories 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑀}, where
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each category is represented by a set of text documents 𝑆𝑖 =
{︀
𝑡𝑖1, 𝑡

𝑖
2, . . . , 𝑡

𝑖
𝑁𝑖

}︀
. Assume

further that each document has a vector space representation based on tf-idf (term

frequency inverse document frequency [50]), where the length of the representation is

the same as the dictionary size. Finally, denote by 𝑑𝑖𝑗 a parametric distance between

a pair of text documents 𝑡𝑖 and 𝑡𝑗. We will parametrize the distance using a weight

vector on the words; words whose discrimination pattern is consistent with the cate-

gory taxonomy will get higher weights. We pose a constrained optimization problem

for this purpose.

For concreteness, we focus on the recognition tasks where the relevant groups are

species (𝑆), Genera (𝐺), and Families (𝐹 ). We pose the following constraints:

𝑑𝑖𝑗 + 1 ≤ 𝑑𝑘𝑗 ∀𝑡𝑖, 𝑡𝑗 ∈ 𝑆𝐼 and ∀𝑡𝑘 /∈ 𝑆𝐼

𝑑𝑖𝑗 + 1 ≤ 𝑑𝑘𝑗 ∀𝑡𝑖, 𝑡𝑗 ∈ 𝐺𝐼 and ∀𝑡𝑘 /∈ 𝐺𝐼

𝑑𝑖𝑗 + 1 ≤ 𝑑𝑘𝑗 ∀𝑡𝑖, 𝑡𝑗 ∈ 𝐹𝐼 and ∀𝑡𝑘 /∈ 𝐹𝐼 (3.1)

The first constraint states that two documents of the same species should be closer

to each other than to documents of the remaining species. Similarly, the second

constraint states that two documents belonging to the species of the same genus

should be closer to each other compared to the documents of the remaining genera.

The third constraint enforces the same condition at the level of families.

Now suppose 𝑡𝑖 ∈ 𝑆𝐼 , we define:

𝛿⃗𝑖𝑗 = |𝑓tf-idf(𝑡𝑖)− 𝑓tf-idf(𝑡𝑗)|

𝑑𝑖𝑗 =
⟨
𝑤⃗𝐼 , 𝛿⃗𝑖𝑗

⟩
(3.2)

where 𝑓tf-idf is a function computing the vector of tf-idf values of the dictionary words

for its input; 𝛿⃗𝑖𝑗 is the absolute difference vector between the tf-idf vectors of 𝑡𝑖 and

𝑡𝑗, 𝑤⃗𝐼 is the weight vector for the object category 𝑆𝐼 and 𝑤⃗𝐼 is the weight vector for

the object category 𝑆𝐼 and ⟨, ⟩ denotes dot product.

Our procedure for learning the weights is inspired by the metric learning approach
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of Frome et al . [28]. Suppose 𝑡𝑖 ∈ 𝑆𝐼 , 𝑡𝑘 ∈ 𝑆𝐾 ; denote by 𝑤⃗𝐼𝐾 the concatenation of

the weight vectors for 𝑆𝐼 and 𝑆𝐾 ; let 𝑥⃗𝑖𝑗𝑘 = [−𝛿⃗𝑖𝑗 𝛿⃗𝑘𝑗], the concatenation of 𝛿⃗𝑖𝑗 negated

and 𝛿⃗𝑘𝑗. Then, the first constraint in Equation 3.1 can be rewritten as ⟨𝑤⃗𝐼𝐾 , 𝑥⃗𝑖𝑗𝑘⟩ ≥ 1.

We denote the next two constraints that are defined on the genus and family levels

similarly, and we define a loss function over all constraints and all triplets:

∑︁
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

∑︁
𝑖𝑗𝑘

⌊1− ⟨𝑤⃗𝐼𝐾 , 𝑥⃗𝑖𝑗𝑘⟩⌋+ (3.3)

where ⌊𝑧⌋+ denotes the thresholding function𝑚𝑎𝑥(0, 𝑧). After adding a regularization

penalty, the objective function becomes:

1

2
‖𝑤⃗‖2 + 𝐶

∑︁
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

∑︁
𝑖𝑗𝑘

⌊1− ⟨𝑤⃗𝐼𝐾 , 𝑥⃗𝑖𝑗𝑘⟩⌋+ (3.4)

where 𝑤⃗ is the concatenation of the weight vectors of all categories and 𝐶 is the

regularization parameter. We select 𝐶 using cross validation, using the value that

minimizes the loss function on held-out data.

Once the regularization parameter is selected, the optimization problem can be

solved using a row-action method similar to [28]. The weight vector of each species

is updated by iterating over all constraints, and the triplets associated with them as

follows:

𝛼𝑖𝑗𝑘 ←

⌊︃
1− ⟨𝑤⃗𝐼𝐾 , 𝑥⃗𝑖𝑗𝑘⟩
‖𝑥⃗𝑖𝑗𝑘‖2

+ 𝛼𝑖𝑗𝑘

⌋︃
[0,𝐶]

𝑤⃗𝐼 ← 𝑤⃗𝐼 −
∑︁
𝑖𝑗𝑘

𝛼𝑖𝑗𝑘𝛿⃗𝑖𝑗

𝑤⃗𝐾 ← 𝑤⃗𝐾 +
∑︁
𝑖𝑗𝑘

𝛼𝑖𝑗𝑘𝛿⃗𝑘𝑗 (3.5)

where ⌊𝑧⌋[0,𝐶] denote the function 𝑚𝑖𝑛(𝐶,𝑚𝑎𝑥(𝑧, 0)). We continue iterating until the

change in weights falls below a threshold. Unlike [28], where the authors define con-

straints on the instances of categories, we have constraints defined over the taxonomy

of categories and we do not enforce non-negative weights since words with negative
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weights can also indicate potential attributes.

Since solving this constrained optimization problem relies on generation of doc-

ument triplets, let us elaborate on the number of triplets that will be generated.

Consider our first constraint in Equation 3.1, denote the number of categories by

𝑀 , and the number of documents per category by 𝑁 . Then the number of triplets

that will be generated is 𝑂(𝑀2𝑁3). Working with that many triplets might be in-

feasible, so when generating triplets we select only a subset of all possible triplets.

While forming triplets of the form ⟨𝑖𝑗𝑘⟩, we select a document 𝑘 only if it is in the

𝑅 nearest neighbors of 𝑖 based on its tf-idf representation, reducing the number of

triplets to 𝑂(𝑀𝑁2𝑅). We set 𝑅 = 50 during all experiments. In the experiments,

we consider the most frequent 2, 000 non-stoplist words in the text corpus to create

tf-idf representations, thus the weight vector of each category is of length 2, 000.

Once the weight vectors for all categories are learned, we assign a weight for each

word in our vocabulary by computing the mean absolute weight of the word over the

categories. Words that are shared among categories and obey the category taxonomy

will get higher weights, and therefore will be considered first as potential attributes.

We have implemented the described optimization using C#. 8 It takes 31 and 276

seconds for the optimization to be completed on the AwA and the ImageClef datasets

respectively using a computer having Intel i7 2.00 GHz processor.

3.4.2 Integrating distributional similarity

While taxonomic discriminability is a powerful feature for predicting whether a word

will be a useful attribute in general, it ignores the word’s meaning and considers only

co-occurrence with category-labeled documents. We hypothesize that if a word has a

high value as an attribute, then words with similar meanings should also have high

value, and vice versa. Word meanings — known as lexical semantics in linguistics

— can be difficult to pin down. This is particularly true in technical domains such

as plant/animal biology, where annotated resources such as WordNet may have low

8Available online at: https://drive.google.com/file/d/0Bx-64dmWqUHIVzJ3djlCUDQxRjQ/

view?usp=sharing
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coverage. We follow an alternative, data-driven approach to lexical semantics, moti-

vated by the distributional hypothesis, which asserts that words with similar meanings

tend to appear in similar linguistic contexts [35]. This bears directly on our problem

of identifying words that are attributes. For example, if the word “lobed” is found

to be a visual attribute, then words that appear in similar contexts to “lobed” (e.g .,

, “serrated”, “oblong”) are also likely to be attributes and should be prioritized for

testing. Conversely, if a word such as “Western” is found not to be a visual attribute,

then words that appear in similar contexts to “Western” (e.g ., , “Eastern”, “Chinese”)

are unlikely to be attributes (despite having high taxonomic discriminability), and

can be tested later.

We use a hierarchical clustering of words to capture word similarity. Each word

is represented by a vector of frequencies, where the vector of a word represents its

co-occurrence with neighboring words [53, 9]. In order to construct the co-occurrence

vector of a word we use a context window of five words on either side of the target

word where the vector dimensions are constituted by the most frequent 2000 non-

stoplist words in the text corpus. Finally, we apply a graph clustering algorithm [68]

to the word representations, obtaining a word dendrogram (Figure 3-5) 9.

To see how word similarity can help, consider the toy example shown in Figure 3-5.

Weights for each word are estimated to be 𝑤1 = 𝑤2 = 1, 𝑤3 = 𝑤4 = 𝑤5 = 0.8, using

the procedure described in Section 3.4.1. Initially, we pick 𝑊1, which is tied for the

highest weight. However, suppose that 𝑊1 fails the visual quality assessment. The

word 𝑊2 is tied for the next highest weight, but it is distributionally similar to 𝑊1.

Since 𝑊1 is not selected as an attribute, we downweight our prediction for 𝑊2, and

try another word instead. Note that this idea applies to any hierarchical clustering

of words, so we could use other word features instead of co-occurrence-based features

to cluster the words and use the same idea.

The key advantage of the word dendrogram is twofold. Firstly, it allows us to

integrate distributional similarity into the candidate selection process. Secondly, by

9The word dendrograms for the Awa and the ImageClef datasets are available online at: https:
//drive.google.com/file/d/0Bx-64dmWqUHIcTN2eEthQnBSMDA/view?usp=sharing
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Figure 3-5: The graphical model based on the hierarchical clustering of 5 words. The
learned weights for words are used to compute likelihoods of nodes being effective
visual words and each edge between nodes is governed by a compatibility function
favoring the same visual effectiveness for neighbors.

propagating information about visual quality assessment between related words, bet-

ter candidates can be selected as the candidate selection progresses. Initially, the

dendrogram helps to smooth the learned weights using taxonomy computed in Sec-

tion 3.4.1. As we assess candidate words (Section 3.3), these initial estimates are

replaced with hard evidence. By propagating this evidence through the word dendro-

gram, we can avoid wasting effort assessing unpromising words whose near neighbors

have already failed assessment.

We operationalize this idea in the framework of belief propagation [62, 85], treating

the word dendrogram as a large graphical model containing binary random variables

𝑥𝑒 for both words and word clusters. We treat visual quality assessment result as a

latent variable 𝑥𝑒 for node 𝑒, and perform inference on the distribution 𝑃 (𝑥⃗1:𝐸|𝑤⃗1:𝐸),

where 𝑤⃗1:𝐸 is the local evidence for all nodes 1 : 𝐸. This probability is proportional to

𝑃 (𝑤⃗1:𝐸|𝑥⃗1:𝐸)𝑃 (𝑥⃗1:𝐸), where the first term indicates the likelihood and the second term
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Algorithm 1 Procedure for nominating and assessing attributes.
1: function Propose attributes(𝑊 )
2: Estimate taxonomy-based discriminability for all words (Section 3.4.1)
3: Build a dendrogram based on distributional similarity (Section 3.4.2)
4: while there are untested words do
5: Apply belief propagation to estimate 𝑃 (𝑥𝑒|𝑤⃗) for all words
6: Assess the visual quality of the top-scoring untested word 𝑒 (Section 3.3),

and clamp 𝑥𝑒

7: end while
8: end function

indicates the prior. After normalizing the learned weights for words between 0 and

1, the likelihood for each node is set equal to the normalized weight of the respective

word. The prior is governed by a compatibility function, and in our experiments for

neighboring nodes 𝑥
′
𝑒, 𝑥𝑒 we define:

𝑃 (𝑥
′

𝑒|𝑥𝑒) =
1

2

⎡⎣ 𝛼 (1− 𝛼)

(1− 𝛼) 𝛼

⎤⎦ . (3.6)

where 𝛼 is a constant greater than 0.5. We experimented with various values of 𝛼 and

set it 0.6 in all experiments, obtaining the best speed at selecting visual attributes.

For words whose visual quality has been assessed, we can clamp 𝑥𝑒 to the true value.

By applying belief propagation, information from these clamped nodes is propagated

to neighboring nodes, with diminishing influence as we move across the dendrogram.

We use Algorithm 1 for nominating and assessing candidate words. With this

strategy, we adaptively search the set of possible attributes, focusing our initial efforts

on the most promising words while also taking into account the assessed words during

later iterations.

3.5 Attribute-based classification

After generating a list of attributes as described so far, the discovered attributes can

be used for object classification. In order to use the selected attributes in object

recognition, we train attribute classifiers (one per attribute), such that each classifier
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is trained to discriminate between the images of positive and negative classes (see

Section 3.3.1) corresponding to that attribute. We use the attribute classifiers for

supervised attribute-based classification of plants and zero-shot learning of animals.

During the direct similarity-based classification experiments for zero-shot learning,

we utilize the learned weight vectors of categories in Section 3.4.1. Below, we discuss

these approaches.

3.5.1 Supervised attribute-based classification

Using attributes we apply the traditional supervised learning paradigm to recognize

test images. In order to extract training features, we apply the attribute classifiers

on all the training images of each category. For each image we create a feature vector

that is the same length as the the number of attributes containing attribute classifier

responses. Next, an SVM classifier is trained [14] using the extracted features. During

testing, we extract the feature vector from a test instance (image) by applying the

attribute classifiers and concatenating the classifier responses. The extracted feature

vector is then classified by the trained SVM classifier. Supervised attribute-based

classification offers advantages over traditional classifiers, since the feature vector is

compact and the underlying representation is interpretable to humans.

3.5.2 Zero-shot learning

In zero-shot learning, the aim is to learn to recognize novel categories using only their

textual descriptions. For instance, having trained attribute classifiers has-a-torso and

has-a-tail, zero-shot learning enables us to label an image of a centaur correctly as

having a torso and tail even though the attribute classifiers have never seen an image

of a centaur. We use two methods for zero-shot learning: attribute-based recognition

and direct-similarity based recognition. These two approaches differ in the way they

describe unseen categories. For instance, an unseen category such as leopard will be

described as living in Africa and being a member of the feline family by attribute-

based recognition whereas direct similarity-based recognition will describe a leopard
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as being similar to a lion and a bobcat in appearance.

Attribute-based recognition

For attribute-based recognition, we create a classifier per attribute, without using any

example images from the testing categories. In order to label images of a category

we rely on the text corpus and use the found category-attribute associations based

on the attribute as in Section 3.3. During testing, we apply the attribute classifiers

to a test image and obtain the probability of each attribute existing in the given test

image, i.e. 𝑝(𝑎1|𝑥), 𝑝(𝑎2|𝑥), . . .. The final classification of a test instance is performed

using direct attribute prediction (DAP) proposed by Lampert et al . [45].

Using the DAP method, the posterior of a test category given a test image is

calculated using:

𝑝(𝑧|𝑥) =
∑︁

𝑎∈{0,1}𝑀
𝑝(𝑧|𝑎)𝑝(𝑎|𝑥) = 𝑝(𝑧)

𝑝(𝑎𝑧)

𝑀∏︁
𝑚=1

𝑝 (𝑎𝑧𝑚|𝑥) (3.7)

where 𝑧 is the test category, 𝑎𝑧 is the category-attribute associations for the cate-

gory and 𝑀 is the number of attributes. During testing, identical category priors

𝑝(𝑧) are assumed for each category. 𝑝(𝑎) is computed using a factorial distribu-

tion, 𝑝(𝑎) =
∏︀𝑀

𝑚=1 𝑝(𝑎𝑚) where the attribute priors are approximated using empirical

means over the training categories, 𝑝(𝑎𝑚) = 1
𝐾

∑︀𝐾
𝑘=1 𝑎

𝑦𝑘
𝑚 . This leads to the follow-

ing MAP prediction 𝑓 , that assigns the best output category from all test categories

𝑧1, . . . , 𝑧𝐿 to a test image 𝑥:

𝑓(𝑥) = argmax
𝑙=1,...,𝐿

𝑀∏︁
𝑚=1

𝑝(𝑎𝑧𝑙𝑚|𝑥)
𝑝(𝑎𝑧𝑙𝑚)

(3.8)

Direct similarity-based recognition

For direct similarity-based recognition[65], we first train classifiers to separate each

training category from others. Next, the semantic similarity between each testing

and training category is computed. Using direct similarity, the posterior of a test
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category given a test image is calculated using:

𝑝(𝑧|𝑥) =
𝐾∏︁
𝑘=1

(︂
𝑝(𝑦𝑘|𝑥)
𝑝(𝑦𝑘)

)︂𝑦𝑧𝑘

(3.9)

where 𝑝(𝑦𝑘|𝑥) is the likelihood of a test image belonging to the training category 𝑦𝑘,

and 𝑦𝑧𝑘 is the computed semantic similarity between 𝑦𝑘 and the testing category 𝑧.

This is essentially applying the DAP method with 𝑀 = 𝐾 (40 in case of the AwA

dataset) attributes where each attribute classifier is trained using the instances of a

single training category.

In order to compute the semantic similarity between the training and testing

categories, we use the computed weight vectors of categories in Section 3.4.1 using:

𝑦𝑧𝑘 =
⟨𝑤𝑘, 𝑤𝑧⟩
‖𝑤𝑘‖ ‖𝑤𝑧‖

(3.10)

3.6 Experiments

We performed experiments to analyze the success of the proposed methods at selecting

attributes for plant and animal identification tasks in Section 3.6.1. Next, we use

the attributes selected by the best candidate selection method in object recognition

tasks in Section 3.6.2: We then group the selected attributes with respect to their

semantics in Section 3.6.3. We use the selected attributes for supervised attribute-

based classification of plants and we perform zero-shot learning of animals. Below,

we explain these experiments in detail.

3.6.1 Comparison of methods for attribute selection

We compare four different strategies for proposing candidate words as visual at-

tributes:

∙ Method-1 : Iteratively selecting most frequently occurring words in the dictio-

nary, as in [7], which is our baseline.
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∙ Method-2 : Estimating word weights using constraints only on the species (cat-

egory) level and selecting words with the highest weights iteratively. This cor-

responds to applying the approach from Section 3.4.1, using only the first con-

straint in Equation 3.1.

∙ Method-3 : Estimating word weights using taxonomy constraints and selecting

words with the highest weights iteratively. This corresponds to applying the

approach from Section 3.4.1, but not applying belief propagation across the

word dendrogram.

∙ Method-4 : Treating visual quality as a latent variable, and applying belief prop-

agation across the automatically-constructed word dendrogram, as described in

Section 3.4.2.

These methods are evaluated in terms of precision at selecting visual attributes and

the resulting recognition accuracy, for the plant and animal identification tasks.

While method-1 and method-2 do not require any information other than textual

documents describing categories, method-3 is applicable when a taxonomy defined

over the categories is available and method-4 requires a word dendrogram to be con-

structed over the words in the text corpus. In our experiments, we use the weights

learned by method-3 to initialize the belief propagation procedure of method-4. How-

ever, method-4 can also be used without a taxonomy, by using method-2 to initialize

the belief propagation. In summary, among the compared word selection strategies,

methods 1, 2 and 4 are viable options in the absence of a taxonomy on categories.

Comparison of precisions

We compare the word selection strategies based on the number of candidates they

need to assess in order to acquire a fixed number of visual attributes. In Figure 3-6 the

performance of each word selection strategy at finding visual attributes is illustrated.

The 𝑥 axis in the figure is the number of candidate attributes that are assessed, and

the 𝑦 axis is the number of the visual attributes among the candidates. Various

points on this figure are also presented in Table 3.1 for comparison. For instance
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Figure 3-6: The comparison of number of visual attributes as a function of the
number of candidates using various candidate word selection strategies for the plant
identification task. All candidate selection strategies perform better than our baseline
(black line) of iteratively selecting the most occurring words.

Table 3.1: Comparison of the number of candidates required to select 𝑀 attributes
(Smaller is better). The smallest number of candidates for each M is highlighted in
bold.

Candidate word selection methods
Method-1 Method-2 Method-3 Method-4

𝑀 = 20 45 41 32 35
𝑀 = 40 80 80 69 68
𝑀 = 60 130 115 102 104

using method-4, in order to obtain 60 visual attributes, 104 candidates need to be

assessed.

We have used the output of the visual quality assessment as visualness ground-

truth similar to [64, 20, 7]. The reason for this is threefold: (i) Humans/experts do

not have a clear agreement as to which attributes are visual, (ii) As we are looking for

visual attributes that are useful for recognition, the decision becomes even more com-

plicated, and (iii) We found that the output of the proposed visual quality assessment

correlates with human labels.

We compare the four candidate word selection methods in terms of the number

of required candidates in the animal identification task for each feature descriptor.
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Table 3.2: Comparison of the number of candidates required to select 25 visual
attributes on the AwA dataset for each word selection strategy and for each provided
feature descriptor (Smaller is better). The smallest number of candidates for each
feature descriptor is highlighted in bold.

Feature Candidate word selection methods
descriptor Method-1 Method-2 Method-3 Method-4

Color
histogram

45 33 31 35

Local self
similarity histogram

43 35 33 33

Histogram of
oriented gradients

46 35 33 41

rgSIFT 46 35 33 36

SIFT 51 45 33 35

SURF 49 40 40 36

Specifically, we require each method to select 25 visual attributes and compare total

number of assessed candidates for each method. The attribute selection results are

presented in Table 3.2. For instance, using the SIFT descriptors and method-4, 35

candidates are assessed for selecting 25 visual attributes.

Compared to the baseline method of selecting the most occurring words in the

text corpus (method-1), using method-2 (category-level constraints for learning the

weights of words) results in faster, i.e. more precise, mining of visual attributes. In

our experiments, for both animal and plant identification tasks, method-2 is favorable

to method-1. Thus, we conclude that using category level constraints is useful for

automatic attribute selection.

By integrating taxonomy constraints over method-2, we observe a significant per-

formance gain using method-3. In fact, method-3 performs the best in terms of speed

at selecting visual attributes in most of our experiments. These results show that

having constraints using the taxonomy is crucial to identify candidate words that are

likely to be visual attributes.

Adaptive word selection using belief propagation, method-4, builds upon method-
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Table 3.3: The recognition accuracies of the evaluated methods for plant and animal
identification.

Candidate word selection methods
Method-1 Method-2 Method-3 Method-4

Plant Identification (%) 53.0 52.5 54.2 54.6
Animal Identification (%) 26.8 27.1 28.9 30.4

3 and incorporates information about word semantics and visual quality assessment

into the word selection procedure, through the dendrogram of word similarity. We

observe that, while performing competitively, method-4 fails to improve over method-3

in terms of speed in most of our experiments. This might be due to the fact that the

graphical model needs to explore more words before exploiting the information about

word semantics and visual quality assessment results.

Assessing a single candidate attribute (cross validation to find SVM parameters,

training the classifier and testing on the evaluation set) on the ImageClef dataset

takes around a minute while it takes around nine minutes on the AwA dataset, using

a computer having Intel i7 2.00 GHz processor. Method-4 requires the assessment of

216/104 candidates before finding the 25(*6)/60 attributes for the animal and plant

identification tasks, respectively. On the other hand, method-1 requires assessment

of 280/130 candidates for the same task. So, if method-4 is used to mine visual

attributes instead of method-1, the total time gained for the plant identification task

is 26 min whereas it is 576 min for the animal identification task. These time gains

are significant even for relatively small datasets such as AwA and ImageClef.

Comparison of recognition accuracies

After the attributes are selected, we use the visual attributes in classification experi-

ments. In this section we compare the attribute-based recognition accuracies of word

selection strategies and in Section 3.6.2 we compare a word selection strategy with

state of the art methods.

The resulting recognition accuracies for the plant and animal identification tasks

are presented in Table 3.3. The plant and animal identification tasks are super-
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Figure 3-7: Comparison of the recognition accuracies of the tested methods on the
ImageClef’2012 dataset, for the plant identification task at various ranks.

vised attribute-based classification (see Section 3.5.1) and zero-shot learning (see

Section 3.5.2) tasks respectively. We see that the recognition accuracy for both plant

and animal identification is the best when using the attributes selected by method-4.

In summary, we conclude that method-4 selects the best attributes in terms of

recognition accuracy while also performing competitively in terms of precision. As

we note note above, we think that the lower precision of method-4 with respect to

method-3 might be due to the initial smoothing of the learned weights and the number

of assessed candidates required to be able to propagate the evidence acquired from

visual quality assessment. However, since method-4 also takes into consideration the

distributional similarity of words, the visual attributes mined by method-4 are of

higher quality for attribute-based recognition purposes.

3.6.2 Classification experiments

Below, we use the attributes discovered by method-4 for attribute-based recognition

experiments and the weight vectors leaned by method-3 in direct similarity-based

recognition experiments. We compare the proposed methods with the state-of-the-

art methods in the two recognition tasks.
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Supervised attribute-based classification for plant identification

We use the selected attributes to perform supervised attribute-based classification

of plants. In the plant identification task, retrieval performance of a system is also

important, so we present recalls for varying values of rank in Figure 3-7. For a specific

rank, 𝑅, a classification decision is accepted as valid if the correct label is in the first

Top-𝑅 guesses.

We compared five methods in the plant recognition experiment:

1. Supervised attribute-based classification described in Section 3.5.1.

2. The system of Yanikoglu et al . [83, 84] which had the best results at the Im-

ageClef’2012 plant identification task.

3. Combination of the first two methods at feature level.

4. Taxonomy-based classification where given a plant taxonomic hierarchy with M

nodes train M one-versus-all classifiers.

5. Randomly creating a category-attribute association matrix and using it for

attribute-based recognition.

The results of the combined system are produced by an SVM classifier that is

trained and tested on the concatenation of the attribute-based features (of length 60)

with the features used by Yanikoglu et al . (of length 142) for each instance. The

taxonomy-based classification approach creates classifiers to separate each species,

genus and family from others in the taxonomic classification of plants to perform

recognition. In total we created 235 classifiers for taxonomy-based classification. In

our final experiment we randomly create a category-attribute association matrix with

60 attributes and train classifiers for each attribute. We repeat the same experiment

5 times and present the mean accuracy which is our baseline.

According to the results, randomly creating a category-attribute association ma-

trix to perform attribute-based classification yields the lowest accuracies as expected.

Using the taxonomic hierarchy of plants directly without using a text corpus improves
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over the baseline. However, this method requires the training of more classifiers (235

compared to 60), does not create semantically meaningful attributes and fails to gener-

alize as well the proposed method. Attribute-based classification using the attributes

and the corresponding category-attribute associations we mine not only improves over

the baseline it also generalizes well to the recognition task. For 𝑅 > 4, the recog-

nition results we obtain using attributes are better than the results Yanikoglu et al .

obtain. Another observation is that the combined system performs the best for all 𝑅

suggesting that attribute-based features complement low-level features for the plant

identification task.

Zero-shot learning on Animals with Attributes (AwA) dataset

We illustrate the recognition performance of our system for animal identification

using the AwA dataset. Lampert et al . [45] provide 6 feature descriptors for this

database and we computed category-attribute associations for each category and for

each descriptor. Next, for each category, we concatenated the category-attribute

associations of each descriptor to create an extended representation. Thus, after

combining all feature descriptors, each category has a representation of length 150(=

25 * 6) during attribute-based recognition experiments. For direct similarity-based

recognition experiments, we use the weight vectors of categories to compute semantic

similarity between training and testing categories.

As an extension, in addition to the provided 6 feature descriptors of images, we per-

form recognition experiments using a new feature descriptor. Specifically, we extract

a 4096-dimensional feature vector from each image using the Caffe [39] implementa-

tion of the convolutional neural network (CNN) described by Krizhevsky et al . [41].

These features are computed by forward propagating a mean-subtracted 227 × 227

RGB image through five convolutional layers and two fully connected layers. Using

these state-of-the art features for attribute-based recognition we discover 50 attributes

and perform the recognition experiment. During direct similarity-based recognition

experiment, we train the classifiers of each category using the new feature descriptors.

75



10

Table 3.4: Comparison of zero-shot learning accuracies using attributes and direct
similarity.

Author &
knowledge base

Attribute selection
Category-attribute

association
Accuracy
(in %)

1. Attribute-based recognition
Lampert et al . [44] Manual Manual 42.2

Rohrbach et al . [65]
Wikipedia

Manual Automatic 27.0

Rohrbach et al . [65]
Wikipedia

Automatic Automatic 19.7

Rohrbach et al . [65]
Yahoo Img

Automatic Automatic 23.6

Our method
(Provided features)

Automatic Automatic 30.4

Our method
(CNN features)

Automatic Automatic 45.7

2. Human supervision to compute similarity matrix
Yu et al . [86]
85 attributes

Automatic Automatic 42.3

Yu et al . [86]
200 attributes

Automatic Automatic 48.3

3. Direct similarity-based recognition
Rohrbach et al . [65]

Wikipedia
Automatic Automatic 33.2

Rohrbach et al . [65]
Yahoo Img

Automatic Automatic 35.7

Our method
(Provided features)

Automatic Automatic 41.8

Our method
(CNN features)

Automatic Automatic 59.4

We compare our results with the results of Lampert et al . [44], Yu et al . [86] and

Rohrbach et al . [65] as presented in Table 3.4. While Lampert et al . use the man-

ually defined 85 attributes and category associations in their experiments, Yu et al .

utilize a similarity matrix created with human supervision to design attributes, and

10The extracted CNN features for the Awa dataset are available online at: https://drive.

google.com/file/d/0Bx-64dmWqUHIVTdwS1QyTXlMT3M/view?usp=sharing
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Rohrbach et al . present experiments with the manually defined attributes and mined

category associations, with 74 mined attributes and corresponding category associa-

tions , and using direct similarity on several knowledge bases. We use 25 attributes

(per feature descriptor) using the provided image descriptors, and 50 attributes using

the features extracted by the CNN for attribute-based recognition experiments. In

order to perform the direct similarity based recognition experiment with the provided

feature descriptors, we concatenate the individual descriptors while training the clas-

sifiers of training categories. The comparison includes the knowledge base for the

best performing strategy as well the results of Rohrbach et al . using Wikipedia as

the knowledge base. Comparison with Wikipedia as the knowledge base is important

since we also rely on encyclopedic information for attribute selection.

The highest recognition accuracies using the provided feature-set for attribute-

based recognition are obtained by using manually defined attributes and category

associations followed by our approach. Our method automatically discovers the at-

tributes and the category-attribute associations while the accuracy we obtain sur-

passes the case where the attributes are defined manually and only the category-

attribute associations are mined. This shows the superiority of our approach and the

importance of using the taxonomy/distributional similarity information for automatic

attribute selection. Furthermore, when using the CNN features in the attribute-based

recognition experiment, a relative increase of around 50% in the recognition accuracy

is achieved with respect to using the provided descriptors resulting in a zero-shot

recognition accuracy of 45.7%.

In the direct similarity-based recognition experiment, using the provided features,

our method obtains an accuracy of 41.8% which is higher than the accuracy obtained

by Rohrbach et al . in their experiments. In this setting, our method gets a comparable

performance to the accuracies obtained by Lampert et al . and Yu et al . with 85

attributes. Yu et al . report that the accuracy they obtain can be increased up to 48.3%

by using more attributes. Using direct similarity and the CNN features, similar to the

case of attribute based-recognition, the recognition accuracy we obtain increases up

to 59.4%. To our knowledge, this is the best reported zero-shot recognition accuracy
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Table 3.5: Selected attributes for plant identification.

Semantic
Visual attributes

category

Groupings of
plants

Sorbus, Acer, nutlet, maple, cernuous, Prunus, hawthorn,
samara, mulberry, acorn, sumac, alder, birch, poplar, beech,
pod

Context for
plants

catkin, drupe, hypanthium, gland, bract, corymb, branch-
let, corolla, floret

Visual qualities
of plants

lobe, rounded, opposite, yellowgreen, yellow, white,
glabrous, purple, serrate, vein, egg-shaped, conic, lance-
olate, cordate, ovate, reddishbrown, chapped, pubescent,
black, cusp, obovate, entire

False positives female, root, centimeter, half(a), equal, length, narrowly,
minutely, bear, rate, capsule, touch, fragrant

on this dataset.

3.6.3 The selected attributes

We present the 60 attributes discovered by method-4 for plant identification task in

Table 3.5. We divide the words into 4 groups based on their semantics. The table

contains words that may be grouped as:

1. Groupings of plants that are similar to each other such as “Acer”, “Prunus”, and

“Sorbus”.

2. Context for plants such as “catkin”, “gland”, and “branchlet”.

3. Visual qualities of plants such as “rounded”, “yellow”, and “lobe”.

4. False positives such as “female”, “root”, and “centimeter”.

Note that words that are categorized as groupings of plants, parts of plants and

visual qualities indeed refer to attributes that are used in object description by hu-

mans/experts. As for the words that are labeled as false positives, we included all
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Table 3.6: Selected attributes for animal identification.
Semantic

Visual attributes
category

Groupings of
animals

ungulate, cetacean, canine, feline, kitten, cub, shark, jackal

Context for
animals

Africa, graze, India, hunt, Waters, Indian, Pacific, sea, At-
lantic, ocean, marine, Soviet, livestock, agricultural

Visual qualities
of animals

hoof, ivory, giant, fancy

False positives weightkg, jump, subspecies, trophy, disposition, favored, re-
cover, university, imperativeness, estes, company, prey, tip,
production, national, genome, standard, breed, intelligence,
originally, owner, sizecm, engender, monk

words that we could not directly relate to visual attributes useful for object recog-

nition, including generic words (e.g ., “length”, “minutely”, “centimeter”) and some

others that may only be indirectly correlated with visual features (e.g ., “fragrant”).

The set of 50 attributes that are selected during our experiments using CNN

features on the AwA dataset are presented in Table 3.6. The table contains the union

of attributes that are selected by anyone of the descriptors given in Table 3.2. As

before, we divided the visual words into 4 semantic categories that we relate to:

1. Groupings of animals such as “cetacean”, “feline”, and “shark”.

2. Context for animals such as “Africa”, “agricultural”, and ‘‘sea”.

3. Visual qualities of animals such as “hoof”, “ivory”, and “fancy”.

4. False positives such as “intelligence”, “favored”, “weightkg”.

We remind that we use the word “visual attribute” to refer to any word that

may help in object recognition from images as described in Section 3.3. Indeed, we

demonstrate the effectiveness of the selected visual attributes in object recognition,

even though only a portion of them relate to truly visual qualities.
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3.7 Conclusion and discussion

In this chapter, we tackle the important problem of automatically mining words refer-

ring to visual attributes. Our method assists the laborious attribute selection process

and allows us to rapidly apply attribute-centric recognition to various recognition

tasks. In order to mine attributes, we use the taxonomy of the domain, sample im-

ages and textual descriptions of object categories. We show the utility of our approach

in two tasks: plant identification and zero-shot learning of animals.

Our contributions include two novel methods for identifying plausible candidates

that can be used as attributes. While the first method uses the taxonomy defined

on the categories and promotes candidates that conform to the taxonomy, the second

method combines taxonomy with a distributional similarity measure. By providing a

way to assess the visual quality of candidate words, we create an automatic system

that generates a set of attributes for plant and animal identification tasks.

During experiments, we illustrate the utility of integrating taxonomy constraints

for candidate word selection via two cases. In the first case we use only species

(category) level constraints while in the second one we include taxonomy (species,

genus and family) constraints. We show that taking advantage of the taxonomy

yields substantially better results. The experiments also show that taxonomy-based

distributional similarity of words can be used as a cue for selecting candidate words.

By performing inference using the graphical model built on word dendrogram, we can

further improve the recognition accuracies.

Plant/animal identification are both challenging problems and we demonstrate

the usefulness of the mined set of attributes by using the trained attribute classifiers

in both of these tasks. In the plant identification task the attribute classifiers are used

for feature extraction in a supervised learning setting; while in animal identification,

they are used for zero-shot learning of unseen animal categories.

During the plant identification experiments, we show that using attribute-based

features bring performance improvements compared to using only lower-level fea-

tures. The classification results also highlight better performance of attribute-based
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features with increasing ranks, while providing a compact representation. The zero-

shot learning of animals demonstrate the quality of our attribute selection procedure:

our system that automatically selects both attributes and category-attribute associ-

ations, achieves better recognition results than the state-of-the-art results obtained

with manually defined attributes and mined category-attribute associations, in the

same dataset. Using direct similarity-based recognition, we further improve our re-

sults and obtain recognition accuracies comparable to the case where both attributes

and category-attribute associations are selected manually. In the recognition ex-

periments, we also present the performance of our system using state-of-the-art CNN

features and, to our knowledge, get the best zero-shot recognition accuracies obtained

on the AwA dataset.
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Chapter 4

User interfaces

In the previous chapters we introduced algorithms that provide auto-completion of

sketched symbols and automatically mine attributes and category-attribute associa-

tions for object recognition from images. During experiments, we showed the utility

of the proposed approaches in terms of recognition accuracy. In this section, we exam-

ine auto-completion and attribute-based learning from a human-computer interaction

perspective and demonstrate two applications that utilize the proposed algorithms to

provide natural and efficient query interfaces.

We believe that both auto-completion and attribute-centric recognition have the

potential to facilitate the way humans interact with computers. Sketching is the most

natural form of interface for certain applications and auto-completion of sketches can

make it more efficient for users to interact with the computer. On the other hand,

attributes allow a way for humans to communicate with computers using semantically

meaningful words, especially in applications where the user is searching, querying

or browsing images. Attribute-based search and browsing interfaces thus provide a

natural alternative to text or image-based queries that are not very effective. For

instance, searching for an unknown plant using image search (called reverse image

search in Google) is currently not very successful; similarly text-based search in this

application is not at all suitable.

In the following sections, we present prototype interfaces that realize sketched-

symbol recognition with auto completion and attribute-centric search among plant
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(a) The intended symbol (b) Output after the first stroke

(c) Output after the second stroke (d) Output after the third stroke

Figure 4-1: Screenshots of the auto-completion application interface. The application
predicts what the user intends to draw for the COAD database. Thanks to auto-
completion, users can quickly finish drawing before drawing symbols in their entirety.

categories. Although we do not have user experiments regarding how the ideas devel-

oped in the thesis affect the quality the way users sketch or search images, we believe

these interfaces are important to establish a proof of concept.

4.1 Auto-completion application

The auto-completion application 1 automatically guesses as to what the user intends

to draw with each stroke for the COAD database. The number of guesses the appli-

cation makes is determined by the confidence of the auto-completion algorithm. The

application provides the user with at most three guesses or until the confidence is

higher than 0.9. For instance, if the posterior probabilities of the most likely three

1publicly available online at https://www.dropbox.com/sh/qpvf6o8o2cwa6oy/

AADufXiU6n6nSJDmvvGrm_Tga?dl=0
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symbol categories are 0.4, 0.3 and 0.25 then all three symbol categories are presented

to the user. On the other hand, if the probabilities are 0.6, 0.32 and 0.03 only the

first two categories are presented to the user. In the application the auto-completion

algorithm uses the CKMeans clustering algorithm where the number of clusters is set

to 40 since we obtained the best test results using this setting. Using the applica-

tion, users not only familiarize themselves with the symbols quickly but also complete

what they intend to draw faster. We also provide the confidence the algorithm has in

each predicted symbol category in the form of tooltips. By moving the cursor on the

presented classification results the user can observe how the confidence in prediction

changes with each stroke.

The auto-completion application is illustrated in Figure 4-1 with an example.

Suppose that the user intends to draw the symbol given in Figure 4-1a. The user

starts by drawing the inner triangle presented in Figure 4-1b. The auto-completion

application makes three guesses but the intended symbol is not among them. The

main reason for that is the high level of ambiguity, i.e. there is little information in

the current state to determine the intended symbol. Still, the first two candidates

that the algorithm presents contain triangles so they are actually valid candidates.

Next, the user follows by drawing the next stroke and draws a circle inside the triangle

as presented in Figure 4-1c. This time, the intended symbol is in the second guess

of the algorithm and the user can quickly finish drawing by selecting the relevant

symbol. Thus, instead of using 4 strokes to draw the symbol the user can actually

finish drawing with only 2 strokes. If the user draws the third stroke to produce the

state given in Figure 4-1d, the algorithm is more confident as to which symbols are

possible. The algorithm presents the user with two candidates where the intended

symbol is the most likely candidate.

More screenshots of the auto-completion application are presented in Figure 4-2.

As can be observed, auto-completion significantly reduces the effort of the user for the

COAD symbols, i.e. the user can finish drawing with fewer strokes. At the same time,

since the user is able to see possible candidates, it is easier for the user to familiarize

with the symbols. Thus, auto-completion application is also useful to reduce the time
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Figure 4-2: Various examples of auto-completion are presented in the images. As can
be observed, auto-completion helps to reduce the number of strokes required to draw
sketched symbols significantly for the symbols in the COAD dataset.
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it takes for the users to become proficient with sketching interfaces.

4.2 Attribute-based image search application

The attribute-based search application 2 provides a way to search for plant categories

through attributes. The application asks the user a series of questions in the form

of existence of attributes and retrieves the most likely plant categories according to

the answers. This interaction offers a convenient and fast way for the users to search

through plant categories.

In the application, we use all the attributes and corresponding category-attribute

associations mined for the plant identification task except the attributes that are

marked as false positives in Table 3.5. That is, we use the mined attributes that

represent groupings of plant categories, contextual information and visual qualities

along with their category-attribute associations in the application.

The main algorithm of the attribute-based image search is presented in Algo-

rithm 2. The application starts by asking the user a question (line 6) for which the

user gives one of the three following answers (line 7): yes, no, pass. The answers

yes, no and pass stand for thoughts of the user about the attribute existing in the

searched image. The answers yes and no stand for the current attribute existing and

not existing in the image respectively while pass is selected if the user cannot make

a guess or if the attribute is ambiguous. With each user answer, the predictions are

updated (line 8) and the user is presented with the most likely categories. The pre-

dictions are made using the attribute-based zero-shot learning algorithm discussed in

Section 3.5.2 and the probability of each plant category are updated.

In order to select the question to ask the user, the application uses Algorithm 3.

Firstly, the remaining attributes (line 2) and the categories satisfying previous answers

(line 3) are selected. The categories satisfying previous answers are found using the

category-attribute association matrix where the categories that are in line with the

answers of the user are selected. For each remaining attribute, information-gains

2publicly available online at https://github.com/mustafae/20qs
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Algorithm 2 Main procedure for attribute-based image search.
1: function Image Search

2: Previous_Answers ← ∅
3: Previous_Attributes ← ∅
4: Initialize predictions with each category having probability
5: while the user cannot find the searched image category do
6: Select Next_Attribute Algorithm 3
7: Next_Answer ← The answer of the user
8: Use Attribute-based zero-shot learning to update predictions
9: Previous_Attributes ← Previous_Attributes ∪ Next_Attribute
10: Previous_Answers ← Previous_Answers ∪ Next_Answer
11: end while
12: end function

Algorithm 3 Procedure for attribute selection.
1: function Attribute selection(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝐴𝑛𝑠𝑤𝑒𝑟𝑠, 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠)
2: Remaining_Attributes ← Attributes ∖ Previous_Attributes
3: Remaining_Categories ← Categories that satisfy Previous_Answers for Pre-

vious_Attributes
4: Information_Gains← The information gain of Remaining_Attributes on the

Remaining_Categories
5: return argmax𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠Information_Gains
6: end function

are computed (line 4) using the category-attribute associations. The attribute that

maximizes the information gain is selected as the next question (line 5).

We illustrate the attribute-based image search in Figure 4-3. Suppose that the

user is is searching an unknown plant from the Fraxinus excelsior species, presented

in Figure 4-3a. The initial state of the application is presented in Figure 4-3b. The

top pane is used to ask questions and to present images that satisfy attributes, e.g .,

in the initial state existence of the attribute serrated is asked to the user while images

satisfying the attribute are presented to its right. The right pane is used to keep track

of the user answers which is initially empty. As the user search progresses the right

pane is filled with the answers of the user. The bottom pane is used to present the

top 5 most likely candidates for the category the user is searching. After each time

the user answers a question with a yes or no the bottom pane is updated with the

new predictions. In this example, the user is able to find the searched category by

answering only 3 questions about existence of attributes as presented in Figure 4-3c.
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(a) The searched image
category - Fraxinus excel-
sior

(b) The initial state of the application. All plant categories have
equal probability initially. The user is first asked whether the
queried plant is serrated.

(c) The user answered the first three questions serrated, samara
and maple with no, yes and no respectively. The most likely 5
candidate categories are presented at the bottom of the application
with the searched category displayed in the 4𝑡ℎ image from left.
Thus, the user found the searched category after answering three
questions about the existence of attributes.

Figure 4-3: The application allows users to search for plant categories using attributes.
Thanks to attribute-based search, users can quickly find the category they are looking
for by answering a few questions.

The attributes that are asked to the user in this example are serrated, samara and

maple while the answers of the user are no, yes and no respectively.

One concern with the attribute-based search application is that some of the at-

tributes might be hard to understand/visualize. For instance, the plants having the

attribute serrated have toothed leaf margins. However, it might be hard for the user

to visualize the attribute by just looking at the representative images of the attribute
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serrated. It would be nice if the application could highlight the parts of the images

having the attribute so that the user could understand the meaning of serrated better.

Furthermore, some of the attributes such as maple refer to global shape of leaves. If

the application can convey that information to the user, it would be easier for the

user to decide on the answer. With those features, even without domain expertise,

a user might correctly answer whether or not an attribute exists just through visual

inspection.

Another point of note is that, the results retrieved in Figure 4-3c look quite similar

to each other and three of them are members of the Fraxinus genus. This is related to

our assumption of closer species in the taxonomy being closer to each other visually.

For this specific example, we can see that our assumption holds and the user can not

only retrieve the target category but also its close relatives as well.

Further examples of attribute-based search are illustrated in Figure 4-4. As can

be observed, attribute-based search allows searching efficiently and requires only a

few steps before finding the searched plant category.
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(a) The searched image
category: Cerasus ma-
haleb

(b) The searched category is found after answering 4 questions
(serrated: yes, cordate: yes, egg-shaped: yes, branchlet: yes)

(c) The searched image
category: Gingko biloba

(d) The searched category is found after answering 4 questions
(serrated: yes, cordate: no, glabrous: no, cusp: no)

(e) The searched image
category: Quercus rubra

(f) The searched category is found after answering 5 questions (ser-
rated: no, samara: no, entire: no, egg-shaped: no, acorn: yes)

Figure 4-4: Various examples of attribute-based search.
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Chapter 5

Summary and future work

In the thesis, we have designed and implemented computer vision and machine learn-

ing algorithms that will help create more intuitive and user-friendly interfaces in two

different domains. In Chapter 2, we discussed a method to realize auto comple-

tion of sketched symbols and show that auto-completion of sketched symbols can be

performed in real-time with accuracies close to a human expert. In Chapter 3, we dis-

cussed how visual attributes can be mined from text automatically and a taxonomy

over categories and word semantics can be utilized to improve attribute mining speed

and quality. We showed the value of the mined attributes through experiments and

improved the recognition accuracies in plant identification and zero-shot learning. In

Chapter 4, we created prototype interfaces using the algorithms discussed in previous

chapters in order to create more intuitive and user-friendly interfaces.

While we discussed auto-completion of sketched symbols, one direction for future

work is to research how auto-completion affects the user when employed in free form

drawings consisting of symbols. That is, when the user sketches several symbols and

auto-completion is used to predict components, as they are being drawn. This way,

while the user is restricted to work on one symbol at a time, the segmentation phase

that is required in such recognition tasks can be eliminated.

Another research direction is user adaptation, which is studied in handwriting

recognition. Auto-completion can adapt to the way a certain symbol is drawn by a

user, but more importantly the preferred stroke order of the user can also be read-
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ily incorporated into our algorithm. While our auto-completion system inherently

leverages the fact that humans tend to prefer certain orderings of strokes over others,

we did not perform user adaptation. Auto-completion performance can be increased

greatly for a specific user if user adaptation is applied. This is due to the fact that

individuals have a certain sketching/drawing style and they stick to their styles dur-

ing sketching. If user adaptation is applied to auto-completion, the knowledge of

individual sketching styles can be integrated into auto-completion leading to better

auto-completion performance.

We used attribute-based learning for object recognition from images. Attribute-

based learning can also be utilized for sketch recognition and auto-completion. An

auto-completion system that uses attributes of sketches for prediction and auto-

completion can be an interesting future work. For instance, each category can be

associated with attributes and the existence of attributes could be used to predict

probable categories.

Our automatic category-attribute association algorithm uses the existence of an

attribute in the description of a category to signal the existence of the attribute for

that category. Consider the word “lobes” as an attribute where the description of

a category contains the following sentence: “. . . does not have lobes . . . ”. In this

example, although the word “lobes” is used in the description, it is used negatively.

An NLP system that can extract such negations from textual data would improve

both attribute selection speed and quality. Another way to improve attribute-based

learning is to extract relations from textual data. Consider the word “yellow” in the

descriptions of two plants: “. . . its leaves turn yellow in autumn . . . ” and “. . . has a

yellow fruit . . . ”. While the word “yellow” is used in the descriptions of both plants,

in the former case “yellow” is used to refer to leaves and in the latter it is used to

refer to fruits. If such relations can be extracted reliably it would be valuable for

attribute selection. Both of theses improvements to attribute mining are possible

with the usage of proper NLP algorithms.

In our discussion about the attribute-based image search application we restricted

ourselves to the attributes we mined. However, it would be nice if the users could

94



extend the set of available attributes by defining their own. While this requires

manual work, enabling such a feature might allow for a more intuitive and easy to

understand image search interface.

Finally, both sketch recognition and attribute-based learning can benefit from re-

cent improvements in machine learning, specifically the development of deep learning

strategies. Using deep learning to predict sketched symbol categories and attributes

can improve recognition accuracies in both domains.
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