
 

PASSIVE RADIATIVE COOLING USING OPTICAL THIN FILM COATINGS  

 

 

 

by 

Muhammed Ali Keçebaş 

 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences in partial 

fulfillment of the requirements for the degree of Master of Science 

 

 

 

Sabancı University 

July 2016 

 

 





iii 
 
 

 

 

 

 

 

 

 

 

 

 

© Muhammed Ali Keçebaş, 2016 
All Rights Reserved 

 

 

 

 

 

 

 

 



iii 
 
 

ABSTRACT 

PASSIVE RADIATIVE COOLING USING OPTICAL THIN FILM COATINGS 

Muhammed Ali Keçebaş 

Mechatronics Engineering, MSc. Thesis, 2016 

Thesis Supervisor: Assoc. Prof. İbrahim Kürşat Şendur 

Keywords: Thin Films, Nanophotonics, Spectral Behaviors, Radiative Cooling 

Radiative  cooling  is  a  passive way  of  cooling  by which  a  body  loses  heat  by 

emitting energy. When a body is exposed to sky, heat transfer between the body and 

sky occurs depending on  transparency of  the  atmosphere  through  radiation. During 

nighttime,  due  to  extremely  low  incident  solar  irradiation  cooling  can  be  achieved. 

However, during daylight nearly 940 W/m2 energy is present in Istanbul, due to sun and 

since emission by the object is not as high as this energy, cooling cannot be achieved. 

So, in order to achieve radiative cooling during daylight, incident solar energy has to be 

reflected strongly which prevents heating of the object. Also, by maximizing emission in 

the atmospheric transparency window in 8‐13 µm range, in which very low amount of 

solar energy is carried, radiative cooling can be achieved. 

In this study, design studies about thin film filters are carried out whose focus is 

to  achieve  high  reflection  in  the  visible  and  near‐infrared  spectrums  in which  high 

amount  of  solar  energy  is  present  and maximize  absorption/emissivity  in  8‐13  µm 

spectrum where  atmospheric  transparency window  is  present.  For  these  purposes, 

different  design  methods  are  examined,  e.g.  quarter  wavelength  stacks  for  high 

reflection  and  an  impedance matching  technique,  Chebyshev  transform,  is  used  to 

increase emission in 8‐13 µm spectrum. For the performance evaluations, radiative heat 

transfer dynamics are examined and cooling powers are compared with a design results 

given in the literature. It is observed that significant performance improvement can be 

observed by proposed design methods. 
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ÖZET  

OPTİK İNCE FİLM KAPLAMALAR ARACILIĞI İLE PASİF IŞINIMSAL 

SOĞUTMA 

 

Muhammed Ali Keçebaş 

Mekatronik Mühendisliği, Yüksek Lisans Tezi, 2016 

Tez Danışmanı: Doç. Dr. İbrahim Kürşat Şe ndur 

Anahtar Kelimeler: İnce film, nanofotonik, tayfsal davranışlar, Işınımsal soğutma 

Işınımsal soğutma bir objenin etrafına enerji yayarak ısı kaybettiği pasif bir soğuma 
yöntemidir. Bir obje gökyüzü ile etkileşim halinde olduğunda atmosferin geçirgenliğine 
bağlı olarak obje ve gökyüzü arasında radyasyon aracılığı ile ısı transferi gerçekleşir. 
Gece saatlerinde gelen güneş enerjisi çok az olduğundan bu saatlerde soğuma 
gerçekleşebilir. Ancak gündüz saatlerinde İstanbul üzerine yaklaşık 940 W/m2 güneş 
enerjisi gelmektedir ve objenin yaydığı enerji bu denli yüksek olmadığı için soğuma 
gerçekleşememektedir. Bu yüzden gündüz saatlerinde objenin güneş enerjisinden dolayı 
ısınmasının engellenmesi ve ışınımsal soğutmanın gerçekleştirilebilmesi için gelen bu 
enerjinin güçlü bir şekilde yansıtılması gerekmektedir. Ayrıca objenin yayınım 
katsayısını çok düşük miktarda güneş enerjisinin mevcut olduğu ve atmosferik 
geçirgenlik penceresinin bulunduğu 8-13 µm tayfında yükselterek ışınımsal soğutma 
gerçekleştirilebilir. 

 Bu çalışmada amacı yüksek miktarlarda güneş enerjisinin mevcut olduğu 
görülebilir ve yakın kızılötesi bantlarda yüksek yansıma ve atmosferik geçirgenlik 
penceresinin bulunduğu 8-13 µm tayfında yüksek yayınım katsayısına sahip ince film 
filtre tasarımları yapılmıştır. Bu amaçlar doğrultusunda yüksek yansıma için çeyrek dalga 
boyundaki katmanlardan oluşan bir tasarım geliştirilmiş ve yüksek yayınım için ise bir 
empedans eşleştirme tekniği olan Chebyshev dönüşümü ile oluşturulmuş bir tasarım 
incelenmiştir. Performans değerlendirmeleri için ışınımsal ısı transferi dinamikleri 
incelenmiş ve soğutma güçleri literatürde verilen bir başka tasarım sonuçları ile 
karşılaştırılmıştır. Önerilen yeni tasarımların sonuçları göz önüne alındığında yüksek 
miktarda performans artışı gözlemlenmiştir. 
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1  INTRODUCTION 

Thin film coatings, which generally have thicknesses of a few micrometers, can 

be coated on selected substrates with a desired pattern or as a complete film layer [1], for 

various applications. Some of these applications are electronics [2-3], optics [4-5], 

sensors [6] and energy [7-9]. Depending on the application; metals, semiconductors and 

dielectrics can be coated as different geometrical structures. In this thesis, thin film 

structures are investigated for their interesting optical properties for potential use in 

energy applications. To understand optical response of the thin film structures for 

potential use as energy efficient coatings, interaction of waves with various coatings made 

of different thicknesses, layer numbers, and materials are of interest. Below we 

summarize those optical responses. 

When an incident wave propagating in a medium comes into contact with another 

medium, the wave splits into 3 components upon contact. First, certain amount of the 

wave reflects from the surface of the adjacent medium. In other words, some part of the 

incoming wave does not able to pass to the adjacent medium and that part is called the 

reflected component. Secondly, the part that is not reflected from the surface of the 

adjacent medium passes to the adjacent medium and propagates in that medium, which is 

called transmitted component. However, not the entire transmitted component reach to 

the end of the adjacent medium, but losses may occur during the propagation. Those 

losses are the absorbed component. Kirchhoff’s radiation law states that under thermal 

equilibrium, the emission and absorption can be related.  Based on this, reflection, 

emission and transmission can be related as 

                                                               ܴ  ߝ  ܶ ൌ 1	                                                          (1.1) 

  In equation 1.1, ‘R’ stands for the reflection, ‘ߝ’ for the emission and ‘T’ for the 

transmission coefficients of the object or surface. Since summation of those coefficients 

equals to 1, it means that incident wave is either reflected, transmitted, or absorbed. 

Although all materials reflect and transmits at different percentages, some of them may 
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not absorb the incident wave, or has negligible absorption, at certain spectrums. In that 

case, unreflected portion of the incident wave is transmitted. This condition can be 

expressed mathematically as 

                                                               ܴ  ܶ ൌ 1	                                                           (1.2) 

 There are several factors that influence spectral behaviors of the materials, such 

as geometrical structure of the coating (only thickness of the layer when it is complete 

layer of film), optical properties of the material, incidence angle of the incident wave and 

wavelength of the incident light. Spectral responses of the thin film structures can be 

modified by changing these parameters. To design thin film structures with desired 

spectral properties for potential use in energy efficiency, various parameters need to be 

investigated. In the next section, previous studies about passive radiative cooling will be 

summarized by reviewing the related literature. 

1.1. Literature Review   

 Passive radiative cooling has been studied widely [10-13],  by designing 

selectively emitting surfaces. Fundamental principles behind all passive radiative cooling 

techniques are similar and can be explained as follows. It is well-known fact that heat 

transfer occurs between objects which are at different temperatures. Based on this fact, 

heat transfer between an object on the surface of the earth and sky can occur when an 

object is exposed to sky. In that case, energy flow from the object to the sky begins and 

object starts to lose heat. However, amount of transferred energy is dependent on 

transparency of the atmosphere, since atmospheric transmittance is the connection 

channel between the object and sky. Due to the fact that emitted energy by the object is 

in the form of an electromagnetic wave, whether it reaches to sky or not is dependent on 

the atmospheric transmittance which stands as an intermediate medium between the sky 

and earth’s surface. So, heat transfer will not take place in the spectral regions in which 

atmosphere is opaque. When this is considered, it can be stated that emission of the object 

has to be increased in the spectrums in which atmosphere is transparent and this is one of 

the reasons why selective emission is desired.  
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  From the above explanation of radiative heat transfer mechanism between an 

object on the surface of the earth and sky, it is understood that object should emit energy 

in the spectrums in which atmosphere is transparent. However, when atmospheric 

transmittance is generated [14] from visible to mid-infrared spectrum starting from 300 

nm to 13 µm, atmosphere is highly transparent except around 5 µm spectrum where it is 

opaque. In spite of this broadband transparency, selective emission would still be more 

beneficial in terms of efficiency. The reason for this claim is related to difference in the 

emitted energies with respect to wavelength and temperature. According to Planck’s law 

[15], energy emitted by the objects depend on their temperature and wavelength. Figure 

1.1, which contains the graph of blackbody radiations, based on Planck’s law, at different 

temperatures with respect to wavelength, would be beneficial in terms of understanding 

the temperature and wavelength dependency. 

 

Figure 1.1. Blackbody radiation curves of different object’s which are at temperatures 
300, 800, 1000, 2900 and 5800K from 100 nm to 100 µm spectrum. 

As it can be seen from figure 1.1, blackbody radiation depends on both the 

temperature of the object and wavelength. This figure suggests that as temperature 

decreases, curves shift towards right. In other words, decrease in temperature results in 

presence of higher thermal radiation at longer wavelengths. For instance, when object at 

300K is considered, its emission would be higher in 8-13 µm than emission in 3-7 µm 

spectrum. So, even if atmosphere is equally transparent in 300 nm to 13 µm spectrum, 
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more energy would be transferred to the sky in 8-13 µm spectrum, since objects, which 

have temperatures around 300K, has a peak in thermal radiation 8-13 µm spectrum. Once 

influence of atmospheric transmittance and thermal radiation is understood, discussion 

about passive radiative cooling can be examined in more detail by illustrating different 

studies related to the field.  

 Passive radiative cooling designs can be divided into two sub groups in terms of 

design requirements based on operation time. More explicitly, design requirements 

change depending on whether the design is going to be used during daytime or nighttime. 

Radiative cooling during nighttime has been studied extensively [16-22] in the literature 

and high cooling performances are achieved. This is achieved by increasing emission in 

the 8-13 µm spectrum, however emission maximization does not need to be necessarily 

restricted to 8-13 µm spectrum but cooling performance can be improved by increasing 

the emissivity of the structure in the spectrums in which atmosphere is transparent. That 

is because there is not any external heat influx to the body, such as solar irradiance, in the 

electromagnetic spectrum during the nighttime. In the absence of such flux, selective 

emission is not a requirement but emissivity of the body can be maximized in a broadband 

spectrum to maximize the emission by the body, since there is not any energy to absorb, 

which would increase temperature of the body, during the nighttime. 

 Although passive radiative cooling during daytime is investigated [23-25], it is a 

relatively new research area when compared to radiative cooling during nighttime. 

Differently from radiative cooling during nighttime, an extra requirement rises for 

radiative cooling during daylight. Due to the presence of incident solar irradiation which 

is strong in the visible and near-infrared spectrums, radiative cooling cannot be achieved 

without reflection in those spectrums. Previously given studies use a foil made of ZnS, 

ZnSe or polymers and pigments which has reflection in the solar spectrum (visible and 

near-infrared) and transmission in 8-13 µm range. However radiative cooling cannot be 

achieved in those cases, because overall reflection in the solar spectrum is reported to be 

below %85 percentage which still causes higher solar irradiance energy than overall 

thermal emission which is radiated to sky. Percentage of reflection is not a strict 

requirement, since lower reflection percentages can be balanced by thermal emission in 

8-13 µm spectrum. Only requirement is that the body should radiate more energy than it 

absorbs. 
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 Once necessity of high reflection in the solar spectrum is understood, demand for 

radiative cooling designs that both reflect solar irradiance and emit radiation in the 

atmospheric transparency window rises. For that purpose, inspiring from the studies in 

the fields of thermophotovoltaics [26-28] and solar thermophotovoltaics [29-30] which 

use photonic structures that are able to either increase or decrease thermal emission of 

light in 2D [31-34] or 3D [35-39], new nanophotonic structures [40-42] are developed 

that satisfy necessary requirements for radiative cooling. 

1.2. Contributions 

Aim of this thesis is to develop radiative cooling designs which are able to achieve 

cooling even in the presence of solar irradiance. Contributions of this thesis to future 

studies, as well as to the current literature are as follows:  

 A more efficient model than commercial softwares, in terms of 

computation time, is implemented which is able to obtain spectral 

behaviors of 2D thin film structures. 

 Solar irradiance data in the current literature is expanded from near-

infrared to mid-infrared spectrum. 

 It is shown that by including extra layers which composed of different 

materials, would cause tremendous performance improvement even 

without increasing overall thickness of system. 

 By determining thicknesses of the periodically ordered high-low index 

dielectric layers, high reflection in the entire visible and near-infrared 

spectrum is achieved. This design method provides the opportunity of 

overcoming the performance limitation in the systems caused by metallic 

layers which are included to generate broadband reflection. 

 Chebyshev transformation method, which is originally an impedance 

matching technique to increase transmission, is used to improve emission 

performance in 8-13 µm spectrum by using materials that nearly do not 

emit in that spectrum. In that sense, it is a novel way of improving the 

design performance in this field. 
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1.3. Outline 

In chapter 2, theoretical model that is used to obtain spectral behavior of thin film 

structures is presented. After that, a design method which is derived from this model is 

shown. Heat dynamics between an object and its environment are discussed, and solar 

irradiance calculations are conducted. Incident solar energy is obtained with respect to 

location, time and wavelength (between visible and mid-infrared spectrums). Finally, 

optical behaviors of some materials are illustrated which are possible candidates for a 

radiative cooling design.  

In chapter 3, studies related to design are given. First, a design given in the 

literature is evaluated as a benchmark for the other studies in the thesis. Here, the results 

are presented for comparison purposes to show that developed model is working properly. 

Then analysis is carried out by making slight changes to understand the dynamics of the 

optical behaviors and design method given in chapter 2 is implement and results of it are 

demonstrated. 

Finally, in chapter 4 a design method, which is originally used to increase 

transmittance, is used to increase emission in the mid-infrared spectrum and results are 

illustrated. In the final chapter, conclusion is given which summarizes the important 

results of this thesis. 
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2  METHODOLOGY 

 In this chapter, we provide the details of the methods and models used in this 

thesis. First, we described the method that is used to obtain spectral behavior of multilayer 

thin film coatings. Next, a design method to obtain high reflection in the desired spectrum 

is demonstrated. This discussion is followed by examination of heat dynamics between 

an object and its environment. After that examination, methodology that is used to 

calculate incident solar irradiation based on the date and location from visible to mid-

infrared spectrum is described. Finally, optical properties and spectral behaviors of 

different materials are illustrated to find out possible materials for radiative cooling 

applications. 

2.1 Obtaining Reflectance, Absorption and Transmission of a Thin Film System 
with Characteristic Matrix Method 

When a wave, propagating in a medium, comes into contact with a thin film 

system, depending on the properties of the film some amount of the incident wave is 

reflected back to the incident medium, some amount is absorbed by the film and rest is 

transmitted through the film. Scheme for a single layer film on a substrate can be seen in 

figure 2.1.       
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Figure 2.1. Scheme of a single layer coating on a substrate with incident medium. 

In figure 2.1, N0, N1 and N2 stand for the optical properties (complex refractive 

index) of a material for incident medium, thin film and substrate respectively. Those 

parameters are defined in the form of ‘n-ik’, where ‘n’ and ‘k’ are the refractive index 

and extinction coefficient of the material and ‘i’ is the complex number. ‘d’ is the physical 

thickness of the thin film. 

  Fundamental parameters that affect the reflectance of a thin film are as follows: 

Optical properties of the incident medium, thin film and substrate material, thickness of 

the thin film and incidence angle of the wave which is the angle between the incident 

wave and normal of film boundary. In the case of normal incidence, perpendicular to the 

film, model is slightly simplified. Formulation for varying incidence angle is going to be 

demonstrated on the following sections. All those parameters appear in the formulation 

of spectral response of a thin film. All of the formulations are retrieved from [1]. 

 Spectral behavior of a thin film can be obtained by using the characteristic matrix 

of it which is shown in equation 2.1. 

                                   	ቂܤ
ܥ
ቃ ൌ 

cos ߜ ሺ݅ sin ଵߟ/ሻߜ
ଵߟ݅ sin ߜ cos ߜ ൨ 

1
ଶߟ
൨                       (2.1) 
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In equation 2.1, right hand side is the characteristic matrix of a thin film. ‘ߟଵ’ and 

 ଶ’ are the admittances of film and substrate respectively. Admittance of air is denotedߟ‘

by	′ߛ′ and equals to 1 in Gaussian unit system and admittance of any thin film layer can 

be obtained by multiplying admittance of air with ‘N’ of that layer when incidence angle 

is zero. 

   .is the optical thickness of the film and can be defined as in equation 2.2 ’ߜ‘

ߜ                                                          ൌ
ଶగேௗ ୡ୭ୱణభ

ఒ
               (2.2) 

  In equation 2.2,   ’ߣ‘ is the wavelength of the incident wave and   ’ଵߴ‘ is angle of 

refraction in the film. When propagation direction is perpendicular to film, incident wave 

does not refract, so ‘ߴଵ’ becomes equal to the incidence angle. However, when the angle 

of incidence is different than zero, angle of refraction needs to be calculated and method 

for that is going to be demonstrated in the following sections. 

  When characteristic matrix of a film is defined and coefficients ‘B’ and ‘C’ are 

obtained, reflectance, absorption and transmittance of the film can be calculated as 

follows: 

                        ܴ ൌ ቀ
ఎబି

ఎబା
ቁ ቀ

ఎబି

ఎబା
ቁ
∗
                                         (2.3) 

          ܶ ൌ
ସఎబோሺఎమሻ

ሺఎబାሻሺఎబାሻ∗
                                            (2.4) 

          ܣ ൌ
ସఎబோሺ∗ିఎమሻ

ሺఎబାሻሺఎబାሻ∗
                                            (2.5) 

  To calculate reflectance, absorption and transmittance in a spectrum, above 

calculations are repeated for desired wavelengths. 
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As mentioned previously in this chapter, formulation of reflectance, absorption 

and transmission of a thin film is simplified slightly, when light propagates in a 

perpendicular direction to the film. Also it is stated that in this case, refraction angle does 

not change in the film layer but continues on its way in the same direction. However, this 

assumption is not valid usually and formulation has to be modified. Scheme that shows 

the incidence angle, ‘ߠ’, can be seen in figure 2.2. Formulation for varying incidence angle 

is explained below. 

                              

Figure 2.2. Incidence angle of an incoming wave propagating in a medium with index 
of N0 with respect to normal to the surface with refractive index of N1. 

  In order to include the incidence angle, previous calculations are divided into two 

separate sections with respect to orientations of the incident wave. An incident wave 

vector has two orientations, one is on the plane of incidence, on the ‘xy’ plane of the 

scheme in figure 2.2, and other one is aligned normal to plane of incidence, parallel to ‘y’ 

axis in figure 2.2. Special name of the component that is on the plane of incidence is p-

polarized or transverse magnetic (TM) and for the component that is aligned normal to 

plane of incidence is s-polarized or transverse electric (TE). So, calculations have to be 

carried out separately to obtain reflection, absorption and transmission coefficients with 

respect to wavelength for two polarizations.  
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Reason of including the polarization dependency can be explained as follows: 

When incident wave is perpendicular to film layer, both TE and TM polarizations yield 

same result for reflection, absorption and transmittance. However, when incidence angle 

is altered results vary with respect to different polarization components. That is because; 

optical admittance, ‘ߟ’, of the layer is changed in case of oblique incidence for different 

polarizations and relation can be given in following equations: 

ଵߟ                                 ൌ ߛ ଵܰ cos ݏ	ݎ݂					ଵߴ െ  ሻ              (2.6)ܧሺܶ	݊݅ܽݖ݅ݎ݈ܽ

ଵߟ                             ൌ ߛ ଵܰ/ cos 	ݎ݂			ଵߴ െ  ሻܯሺܶ	݊݅ܽݖ݅ݎ݈ܽ   (2.7) 

  From equation 2.6 and 2.7 it can be seen that when incidence angle is zero 

refraction angle in the corresponding layer is also zero then optical admittance of the layer 

is multiplication of ‘N’ of the film with admittance of air, since cosine of zero will yield 

1. However, in the case of oblique incidence, refraction angle in the film will also vary 

and needs to be calculated. Admittance of the substrate can be calculated with the same 

equations, by replacing layer properties and refraction angle with the substrate’s.   

 Refraction angle in films, scheme is available in figure 2.3, can be calculated by 

exploiting the Snell’s law (or phase matching condition) which is given as follows: 

                                       ܰ sin ߴ ൌ ଵܰ sin ଵߴ ൌ ଶܰ sin       ଶߴ      (2.8) 

  From equation 2.8, refraction angle for the film and substrate can be calculated by 

using optical properties of the mediums and incidence angle. 
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Figure 2.3. Representation of angle of refraction in different mediums. 

  In summary when incidence angle is not perpendicular to film, refraction angles 

in the film and substrate are needed to be calculated. Then optical admittances with 

respect to different polarization components have to be calculated. After that, 

characteristic matrix of the film can be formed for two different polarizations then 

reflection, absorption and transmission can be calculated for each polarization.  

 Until this point, single layer thin film on a substrate with varying incidence angle 

formulation is shown. For various applications, multilayer coatings are used and a 

formulation for a multilayer coating system is desired. For that purpose, previous 

formulation can be expanded to be used in a multilayer analysis. 

 In equation 2.1, 2x2 characteristic matrix for a single thin film layer is given in 

the right hand side of the equation. Combining it with the substrate admittance vector, 

required coefficients for calculating reflectance, absorption and transmission can be 

obtained. Modified version of that equation for multilayer coatings can be seen below. 

																								ቂܤ
ܥ
ቃ ൌ ൝ෑ

cos ߜ ሺ݅ sin ߟ/ሻߜ
ߟ݅ sin ߜ cos ߜ

൨



ୀଵ

ൡ 
1
ߟ

൨																				ሺ2.9ሻ 
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In equation 2.9, ‘r’ stands for the current layer number and ‘q’ is the total number 

of layers. Differently from the single layer version, substrate admittance is not denoted 

by a number but with ‘m’. Starting from the first layer, adjacent to incident medium, 

characteristic matrix of each layer is formed and multiplied with each other until the 

substrate layer. Order is important in this case, meaning that qth layer is adjacent layer to 

the substrate. Finally, substrate layer is included in the end with admittance vector.  

 Same as before, in order to include incidence angle dependency in the formulation 

admittance of the layers are calculated separately based on polarization components. To 

do so, equation 2.6, 2.7 and 2.8 are modified as follows: 

ߟ                                    ൌ ߛ ܰ cos ݏ	ݎ݂					ߴ െ  ሻ            (2.10)ܧሺܶ	݊݅ܽݖ݅ݎ݈ܽ

ߟ                             ൌ ߛ ܰ/ cos 	ݎ݂			ߴ െ  ሻ           (2.11)ܯሺܶ	݊݅ܽݖ݅ݎ݈ܽ

                                          ܰ sin ߴ ൌ ܰ sin ߴ ൌ ܰ sin       ߴ            (2.12) 

Equation 2.6 and 2.7 are modified as in 2.10 and 2.11. In this case, admittance of 

each layer is calculated whereas it was calculated only for a single layer. Admittance of 

the substrate can be calculated in the same fashion, given in previous section. Refraction 

angles can be calculated based on Snell’s law for each layer and substrate using the 

relationship with the incident medium. Once characteristic matrixes are formed and 

admittance of the substrate is calculated, formulation for obtaining reflection, absorption 

and transmittance is same with equation 2.3, 2.4 and 2.5. 

2.2 Analysis of Characteristic Matrix and Quarter Wavelength Design 

  In chapter 2.2, characteristic matrix of a thin film layer is formed for varying 

incidence angle. Using the characteristic matrix of a thin film layer, its reflection, 

absorption and transmission can be calculated. The characteristic matrix of thin film layer 

can be considered as a design tool to manipulate the spectral behavior of a thin film layer 

on a specified substrate. Manipulation in this context means that engineering of spectral 

behavior of a thin film system, e.g. high reflection, transmission or absorption over a 

specified wavelength range. To achieve such a task, parameters that form the 

characteristic matrix have to be carefully studied. 
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 Characteristic matrix parameters are optical thickness and admittance of the layer. 

Components of those parameters are wavelength, optical properties, geometrical 

thickness and incidence angle.  Since the incident wave is coming at a fixed angle 

determined by external factors, remaining design tools are optical properties, geometrical 

thickness and wavelength of operation. To achieve a desired behavior (reflection, 

absorption or transmission) in a specified wavelength range, wavelength of operation is 

also determined in that range. In the end two design parameters are left, optical properties 

of the selected material and thickness of the coating.  

 Exploiting the fact that characteristic matrix of a thin film involves sine and cosine 

operations, characteristic matrix of a film can be simplified into a simpler form at certain 

optical thickness values. Relationship with the optical thickness at certain values and 

structure of characteristic matrix at those values can be seen as follows: 

      ߜ ൌ ݉ ቀ
గ

ଶ
ቁ 	݉	݀݀	

௬ௗ௦
ሱۛ ۛۛሮ 		േ ቈ

0 ݅ ൗߟ
ߟ݅ 0

               (2.13) 

  It can be seen that when optical thickness is odd multiple of ’ቀగ
ଶ
ቁ’ characteristic 

matrix of the film simplifies into a form as in the right hand side of the expression 2.1. 

Given the formulation of optical thickness in chapter 2.2, ratio of the geometrical 

thickness and material based wavelength needs to be equal to ¼. In this case, optical 

thickness will be odd multiple of ’ቀగ
ଶ
ቁ’. If layer in question is air, geometrical thickness 

can be set to quarter of wavelength of operation to satisfy optical thickness requirement 

of equation (2.1). However, depending on material properties, geometrical thickness has 

to be calculated such that, optical thickness will satisfy the given requirement.  

  Based on the form of optical thickness of a layer given in equation 2.13, high 

reflection around specified wavelength can be achieved by using alternate low and high 

index dielectric materials for which scheme can be seen in figure 2.4. When thickness of 

each layer is equal to quarter wavelength, reflected waves within the high index layers 

will not suffer any phase shifts whereas 180o of phase change will occur in waves that are 

reflected within low index layers. Because of that situation inner reflected components 

will not cancel each other; in fact, they will recombine constructively since they are all in 

same phase. As a result of that, high reflection in the front surface can be achieved.  
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Figure 2.4. Demonstration of high-low index layered thin film coating system where 
each layer is quarter wavelength thick, which is used to achieve high reflection around 

operation of wavelength, λ0. 

  Once physical reasoning behind the outcomes of this technique is explained, 

mathematical expressions that lead to this outcome is examined to understand the effect 

of design parameters in this special method. It is fairly easy to see that since layer 

thicknesses are quarter wavelength, geometrical thicknesses of the layers are already 

determined in this method. Using characteristic matrixes of the layers given in chapter 

2.2, we end up with the reflection formula that is only valid for this case when outer layers 

are high index layers.    

                                       	ܴ ൌ ൬
ଵିሺಹ ಽ⁄ ሻమ൫ಹ

మ ೞ⁄ ൯

ଵାሺಹ ಽ⁄ ሻమ൫ಹ
మ ೞ⁄ ൯

൰
ଶ
																																			ሺ2.14ሻ 

  In equation 2.14 nH, nL and nS stand for refractive index of high index layer, low 

index layer and the substrate. ‘2p+1’ is the number of layers. From the equation 2.14, it 

can be seen that contributing parameters are refractive indexes of the layers and the 

substrate as well as the number of layers. Three deductions can be made from this 

equation. First one is the fact that as the number of layer increases, reflection around 

operation of wavelength increases. So depending on the need, reflection can be increased 

by simply adding more layers which are quarter wavelength thick. Second deduction is 

the selection of the substrate. When most outer layers are high index layers, as the index 

of the substrate decreases, reflection increases again in the operation of wavelength. On 

the other hand, reverse scenario occurs when outer layers are low index layers. Final 
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inference is the influence of relation between layer indexes to amount of reflection. When 

the ratio of refractive indexes increases, reflection at the operation of wavelength goes up 

while number of layers remains same. So to achieve high reflection with less number of 

layers, ratio of the refractive indexes has to be selected as high as possible.  

  In order to test the quarter wavelength technique as well as the deductions given 

above, hypothetical materials are used as high and low index materials. Refractive index 

of first material is set to 2.75 which is considered as high index and other one is to 1.45 

as the low index material. Refractive indexes of the materials are assumed to be constant 

with respect to wavelength, which is not valid for real materials generally. Also extinction 

coefficients are set to zero since model is valid only for dielectrics which do not have 

extinction coefficients, hence they are absorption free. Thickness of the layers are 

calculated as given in equation 2.15 and 2.16 which are derived from requirement given 

in equation 2.13. 

                                                  ݀ு ൌ
൫గ ଶൗ ൯ఒ

ଶగಹ ୡ୭ୱణೝ
                                              (2.15) 

                                                   ݀௪ ൌ
൫గ ଶൗ ൯ఒ

ଶగಽೢ ୡ୭ୱణೝ
                                                 (2.16) 

  When thicknesses are determined as in equation 2.15 and 2.16, characteristic 

matrix of layer will take the form given in 2.13. Inserting calculated thicknesses into 

characteristic matrixes of the layers and multiplying those one by one; spectral behavior 

of the overall system with respect to wavelength can be seen in figure 2.5. If extinction 

coefficients of the layers had been non zero, then thickness values would be complex 

numbers which is physically impossible. That is the reason why this technique is only 

valid for dielectrics. 
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Figure 2.5. Reflections of high-low index layers each quarter wavelength thick 7 layers 
in total, where outer ones are high index layers, with different operational wavelengths. 
nhigh is 2.75 and nlow is 1.45 and nsub is 1.5. Operation of wavelengths are 300, 600, 900 

and 2500 nm.  

  In figure 2.5, thicknesses are calculated such that requirement given in 2.13 is 

satisfied at 300, 600, 900 and 2500 nm wavelengths. As a result, reflection peaks are 

observed at those wavelengths. 

 In order to observe the influence of number of layers, same hypothetical materials 

are used again at an operation of wavelength with varying number of layers and results 

are compared in figure 2.6. 
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Figure 2.6. Reflections of high-low index layers, each quarter wavelength thick, consist 
of 3, 5 and 7 layers where outer ones are high index layers with 300 nm operation of 

wavelength where nlow is 1.45, nhigh is 2.75 and nsub is 1.5. 

  As mentioned above, as the number of layers in a stack increases overall reflection 

increases. In figure 2.6, claimed deduction is validated by observing increased reflection 

when number of layers are increased while everything else is kept constant. 

 Effect of the substrate can be seen in figure 2.7: 

 

Figure 2.7. a) Reflections of high-low index layers, each quarter wavelength thick and 
outer layers are low index layers, with 300 nm of operation of wavelength where nlow is 

1.45, nhigh is 2.75. b) Only difference from ‘a’ is that outer layers composed of high 
index material. Indexes of substrates are set to 1.5, 2 and 2.5 in both ‘a’ and ‘b’. 

a)  b) 
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  As previously stated, the effect of the substrate on overall reflection is dependent 

on the sequence of layers. If outer layers are high index layers then as the refractive index 

of the substrate increases, overall reflection increases. On the other hand, opposite 

scenario is valid when outer layers are not high index layers. In both case adjacent layer 

to incident medium is high index layer. However, results in the figure 2.7a belongs to 

system in which adjacent layer to the substrate is high index layer whereas for the results 

2.7b, it is opposite. So, depending on the configuration of layer sequence, substrate 

selection can differ to enhance reflection around the operation of wavelength.  

Influence of ratio of refractive indexes can be seen in figure 2.8 where ratio of 

refractive indexes is increased and results are compared.  

 

Figure 2.8. Reflections of high-low index layers, each quarter wavelength thick, 5 layers 
in total in which outer ones are high index layers, with 300 nm of operation of 

wavelength and nsub is set to 1.5, ratio of nhigh and nlow is set to 1.37, 1.58 and 1.89. 

  From figure 2.8, it can be seen that reflection at the wavelength of operation 

increases as the ratio of the refractive indexes increases as well as with the width of the 

reflection zone. These findings would be beneficial during the material selection for 

applications in which high reflection is desired. 
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Until this point factors that have an effect on the reflection magnitude at the 

operation of wavelength have been discussed with supportive results. However, when 

optical thickness is calculated such that it satisfies the given condition in equation 2.13, 

there is not a single peak of reflection, but many exist in the spectrum. This situation 

stems from the mathematical requirement given in 2.13. Optical thickness needs to be 

odd multiple of  ′ గ
ଶ
′ and this condition can be satisfied not only at wavelength ߣ, but at 

ఒ


 where m is equal to ‘1,3,5,…’. Given that, multiple high reflection zones can be 

observed at lower wavelengths. To observe that, reflection of periodic layers with 

different ߣ are plotted with respect to wider wavelength range in figure 2.9. 

Figure 2.9. Reflections of high-low index layers, each quarter wavelength thick. Besides 
high reflection zones around ࣅs, each case have high reflection zones around  ࣅ


,
ࣅ

,

ࣅ
ૠ

. 

 



21 
 
 

From figure 2.9 it can be seen that multiple peaks can be seen in each case. 

Common part of this peaks is that, magnitudes of reflection at the peak wavelengths are 

same. However, bandwidth of the high reflection zone shrinks as peak wavelength 

decreases. This finding is important for spectral filter design, especially when broadband 

is considered. Because, although designed filter behavior satisfies the given requirement 

in a specified spectral range, it may violate requirements for lower wavelengths. 

Considering a case where high reflection is desired in near infrared region and high 

transmission is required in the visible spectrum. In that case, high reflection in near 

infrared can be achieved by quarter wavelength layers. However, that design causes 

reflection zones also in the visible spectrum which violates design specifications. 

Therefore, knowing the behavior of the designs in the spectrums for which it is not 

designed is essential. 

2.3 Heat Balance 

Heat transfer occurs between objects that are at different temperatures. Heat is 

transferred through conduction, convection and radiation in the nature. Because of that, 

contribution of all transfer components has to be included in a comprehensive temperature 

analysis. Heat transfer finishes when temperature equilibrium is satisfied, in other words 

when temperature of the mediums or objects are equal. 

 Consider an object that is put into an open environment. When an object placed 

to an open environment all three components of heat transfer exists. There are different 

sources that bring heat to the object through conduction convection and radiation. In 

figure 2.10, contributions to heat balance of an object and its environment is 

demonstrated. 
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  From figure 2.10, it can be seen that there are three components of heat inflow to 

the object and one outflow from the object. Since inflow and outflows can be expressed 

mathematically, heat balance equation can be defined as in equation 2.17. 

                            ܲ ൌ ோܲௗሺܶሻ െ ܲ௧ሺ ܶሻ െ ௌܲ௨ െ ܲௗା௩                  (2.17) 

  In equation 2.10, cooling rate of the object is defined in watts, since all 

components are in dimension of watts. If  ோܲௗሺܶሻ  is higher than sum of other 

contributions than object starts to lose heat, since heat outflow will be higher. In other 

words, positive ܲ  means that object is losing heat, hence its temperature will decrease. 

On the other hand, its temperature will increase if   ܲ is negative.  

In order to make numerical calculations related to heat equilibrium, components 

of it has to be formulated. Formulation is also essential in terms of understanding on what 

factors those components are dependent. By understanding those dependencies, necessary 

requirements for cooling to be occurred can be defined.  

  Before going into formulation of the heat equilibrium components, energy that an 

object radiates is required to be defined. That definition is important since, three out of 

four components of the equation 2.17 is related to radiation heat transfer which is related 

to radiation of the objects. Radiation of a special object that is called ‘black body’ can be 

defined as follows: 

,ሺܶܫ				                                                         ሻߣ ൌ
ଶమ

ఒఱ
ଵ

 ഊೖಳ⁄ ିଵ
                                      (2.18)  
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Figure 2.10. Heat balance scheme for an object in an open environment. Left side represents 
the contributions to heat inflow to the system and right hand side contains the heat outflow 

effects. 
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  In equation 2.18, ’ܫ’ is the black body radiation which is an object’s radiation 

whose emissivity equals to 1. Other parameters can be defined as follows: ‘λ’ is the 

wavelength, ‘h’ is Planck’s constant, ‘c’ is speed of light, ‘kB’ is Boltzmann constant and 

‘T’ is the temperature of the object. It can be seen that radiation of a black body depends 

on the wavelength and temperature of the object. After this definition, radiative heat 

transfer components can be defined as follows: 

                    ܲௗሺܶሻ ൌ ܣ ߠ݀ߨ2 sin ߠ cos ߠ  ,ሺܶܫߣ݀ ,ߣሺߝሻߣ ሻߠ
ஶ


గ
ଶൗ

             (2.19) 

  ܲௗሺܶሻ is defined as heat outflow from an object, which is the energy that object 

radiates to its surroundings. Radiation of any object can be calculated from multiplication 

of its emissivity, which is wavelength and angle dependent, and the black body radiation 

at temperature of the object. By that definition inner integrant is the radiation of an object 

at different wavelengths. To calculate object’s radiation over a spectrum, it is integrated 

with respect to wavelength. Second integral is related to direction of the radiation. Since 

radiation of an object is not fixed to a single direction, but it is over a hemisphere in our 

case, object’s radiation has to be integrated over a hemisphere. Finally, ‘A’ is the surface 

area of the object. When equation 2.19 is calculated, it results in  ܲௗሺܶሻ in dimension of 

watts.     

				 ܲ௧ሺ ܶሻ ൌ ܣ ߠ݀ߨ2 sin ߠ cos ߠ  ሺܫߣ݀ ܶ, ,ߣሺߝሻߣ ,ߣ௧ሺߝሻߠ ሻߠ
ஶ


గ
ଶൗ

          (2.20) 

In equation 2.20, expression for  ܲ௧ሺ ܶሻ  can be seen.  ܲ௧  stands for the 

energy that is absorbed due to atmospheric thermal radiation. Emissivity of the air can be 

defined as ߝ௧ሺߣ, ሻߠ ൌ 1 െ ሻߣሺݐ
1
cos ൗߠ  which is also wavelength and angle dependent as 

any object’s emissivity.   ሻᇱߣሺݐ‘ is the atmospheric transmittance which is defined in 

chapter 2.4 in detail. So, physical meaning of the inner integrant is the amount of absorbed 

thermal radiation by the object. So, equation 2.20 is similar to equation 2.19 except the 

inner integrant. 

                                                  ௌܲ௨ ൌ ܣ ,ߣሺߝߣ݀ ሻߣெଵ.ହሺܫௌ௨ሻߠ
ஶ
             (2.21) 
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  Equation 2.21 is the formulation of  ௌܲ௨ which stands for the energy that reaches 

to earth’s surface. ’ܫெଵ.ହሺߣሻ’ is the radiation that sun makes at each wavelength which 

can be found in the literature numerically with respect to sun’s position. Absorbed 

radiation by the object depends on its emissivity at the incidence angle of the sun. Again 

by integrating over the wavelength spectrum, energy inflow to the object caused by sun 

can be calculated. 

                ܲௗା௩ሺ ܶ, ܶሻ ൌ ሺ݄ܣ ܶ െ ܶሻ    (2.22) 

   Final component, the non-radiative one, of the heat balance equation is given in 

2.22. In that equation, effects of conduction and convection is combined in a single heat 

transfer coefficient, ‘݄’ and equation is developed accordingly.  Conduction stems from 

physical interaction of the object with its environment and convection from the 

surrounding air.  

  Given the equations 2.19, 2.20, 2.21, 2.22 net cooling power can be calculated 

from the equation 2.17. Required parameters are surface area, temperature and emissivity 

of the object. However, only for equation 2.21, one extra parameter has to be considered 

which is   .ሻߣெଵ.ହሺܫ Although there are sources for calculating the solar spectrum 

irradiance, they are restricted to visible and near infrared spectrums. To obtain irradiance 

in mid infrared spectrum, used methods are expressed in chapter 2.4. 

2.4 Atmospheric Transmittance and Solar Irradiance 

  In section 2.3 it is stated energy that sun radiates, solar irradiance, has to be 

included in the cooling power calculations. To do so, amount of solar energy that reaches 

to earth has to be known. Amount of sunlight, so does solar irradiance, that reaches to 

earth is dependent on several factors. Without demonstrating related mathematical 

expressions, those factors are going to be explained conceptually. First, amount of the 

incident solar irradiance depends on the time of year, and latitude and longitude of the 

observation location.  
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In addition, time during day also has an influence due to rotationary motion of the 

earth around itself. Because as the earth rotates around itself, position of any location with 

respect to sun changes. Influence of those motions alter two different angles which are 

related to position of the sun with respect to the earth. First one is the azimuth angle which 

is the compass direction from which sunlight is coming. Second one is the incidence angle 

in which sun’s rays reach to the surface of the earth. A scheme in which azimuth and 

incidence angle are presented can be seen in figure 2.11. Incidence and azimuth angles 

are going to be used during the development of soar irradiation model. 

An online calculator [43], whose source is ܫெ spectrum, is used to obtain solar 

irradiation for varying dates and locations. Inputs to the calculator are date, location in 

terms of latitude and longitude and orientation of the object on the earth. Outputs of the 

calculator are solar irradiation at each wavelength, as well as with azimuth and incidence 

angles. Based on that, solar irradiation is plotted with respect to wavelength for different 

conditions to observe the influencing factors. In figure 2.12, comparison of solar 

irradiations at a fixed location for different months can be seen. 

Figure 2.11. Representation of azimuth and incidence angles of the sun 
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Figure 2.12. Comparison of solar irradiation at Istanbul (41,28) on March, June and 
December in 21st in 2016 with respect to wavelength.  

From figure 2.12 it can be seen that solar irradiation varies significantly with 

respect to month at a fixed location. There is a considerable difference in solar irradiation 

on June when compared to March and December. On March azimuth angle is 177.41o, 

incidence angle is 40.02o, on June azimuth and incidence angles are 178.48 and 17.57o 

respectively and on December they azimuth angle is 180.41o and incidence angle is 

64.44o. Based on those results, it can be seen that azimuth and incidence angles varies as 

month in a year changes. However, rate of change of incidence angle with respect to 

month in a year is higher when compared to azimuth angle. 

In figure 2.13 effect of time on solar irradiation, on a day at a fixed location is 

shown: 
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Figure 2.13. Comparison of solar irradiation at Istanbul (41,28) on 21st March 2016 at 
7:00, 9:00 and 12:00 with respect to wavelength. 

Results are almost identical to ones presented in figure 2.12. Time change in a day 

affects solar irradiance tremendously and alters azimuth and incidence angles. At 07:00 

azimuth and incidence angles are 98.12o and 79.37o. They are equal to 121.02o and 58.08o 

at 09:00. Finally, at 12:00 they are 1771.41o and 40.02o. Until this point, factors that stem 

from motion of the earth is demonstrated which are date and time. However, as mentioned 

orientation of the object also has an effect on the incident solar irradiance. 

Tilt angle which is used to define orientation of the object with respect to sun also 

has an impact on overall incident solar irradiation. Tilt angle has no effect on the azimuth 

angle, whereas it alters the angle of incidence. As the angle of incidence varies, amount 

of solar irradiance in a given location also varies. From figure 2.14, effect of tilt angle 

can be seen. 



28 
 
 

 

Figure 2.14. Comparison of solar irradiation at Istanbul (41,28) on 21st March 2016, at 
12:00 for tilt angles of 0o, 15o, 30o and 45o. 

  In figure 2.14, tilt angle 0o means that object lies on the ground whereas it is 

perpendicular when angle is 90o. By looking at the results, it can be seen that as tilt angle 

increases solar irradiation decreases at a fixed location and time. Since, tilt angle does not 

have an effect on position of the earth with respect to sun, it does not alter the azimuth 

angle. So, azimuth angle remains at 177.41o whereas incidence angles are 40o, 55o, 70o 

and 85o for tilt angles 0o, 15o, 30o and 45o. 

  Incident solar irradiation with respect to different factors is demonstrated above. 

Sun radiates energy not only in visible and near infrared spectrums 280-4000 nm, but it 

also radiates in infrared spectrum. However, source that is used to generate above figures 

is limited to 4000nm. Although radiated energy decreases to very low amounts starting 

from 2500 nm when integrated over a wide wavelength range, e.g. until infrared spectrum, 

considerable amount of energy can be achieved. So, a study is conducted to develop a 

model that is able to estimate solar irradiance in wavelengths higher than 4000nm. Results 

given above provides a reference for the model. Once model is developed, results will be 

compared and if a good match could be achieved, then validity of the model would be 

verified and it would be used safely in longer wavelengths. 
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Development of model for solar irradiation starts with radiation formula given in 

chapter 2.3 equation 2.18. As mentioned in that chapter, any object radiates energy at 

different wavelengths based on its temperature and since point of interest is sun in this 

case, sun has to be modelled as an object with a temperature. Considering that sun can be 

modelled as a black body radiating at nearly 5850K. Plugging the temperature value into 

radiation formula and by specifying the wavelength radiation curve can be obtained as 

given in figure 2.15. 

 

Figure 2.15. Black body radiation of an object at 5850K at wavelengths 280nm to 
4000nm. 

  From figure 2.15, it can be seen that radiation at wavelengths higher than 2500nm 

is much lower when compared with smaller wavelengths. Although behavior of the 

radiation curve in figure 2.15 resembles with results in figure 2.12, 2.13 and 2.14 there is 

a big difference between the magnitudes. It can be seen that results in figure 2.12, 2.13 

and 2.14 are in dimensions of Wmିଶnmିଵ whereas dimension is Wmିଶsrିଵnmିଵ in 

figure 2.15. The difference in dimensions is ‘sr’ factor which is solid angle in terms of 

steradians. Solid angle can be visualized as figure 2.16 and mathematical formulation of 

solid angle in steradians can be expressed as in equation 2.23. 

Ω ൌ


௦௧మ
                                    (2.23) 
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Figure 2.16. Visualization of steradian angle. Area of the blue segment is A and radius 
of the cone is r. Given that parameters, solid angle can be calculated as given in 2.23 

[44]. 

  Formulation given in 2.23 can be used to calculate solid angle of an object on the 

earth which receives radiation from the sun. Considering that radius of the sun is around 

700,000 km and distance between the earth and the sun is given as 150 million kilometers, 

solid angle of a body on the surface of the earth is 6.84x10-5 [44]. So, results given in 

figure 2.15 have to be scaled with the calculated factor. However, there are also other 

parameters that have to be included in the solar irradiance formulation and one of them is 

the transmission of the atmosphere. 

 Earth is covered with atmosphere in which different gasses and particles are 

contained. Due to that containment, certain amount of incident solar irradiation is 

absorbed. Unabsorbed portion is transmitted to the surface of the earth. Transmission of 

the atmosphere with respect to wavelength generated by using ATRAN can be seen in 

figure 2.17. 

 

Figure 2.17. Atmospheric transmission with from visible to middle infrared spectrum. 
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  Given in figure 2.17, it can be see that atmosphere is not transparent in the entire 

solar spectrum. There are dips in visible and near infrared spectrum. It is also opaque 

around wavelength 6000 nm. Using this information as well as with ‘sr’ coefficient and 

multiplying it with black body radiation given in figure 2.15, results would be able to 

compete with reference values which is shown in figure 2.18. 

 

Figure 2.18. Solar irradiance at (23,27) on 21 June 2016 at 12:00 is given as reference 
and compared with calculated solar irradiance. 

  In figure 2.18, it is shown that there is a good match between the reference and 

model calculation in solar irradiation. On 21 June incidence angle of solar is almost 

perpendicular at 12:00 at (23,27) and azimuth angle is 46o. So, model is able to predict 

solar irradiation very accurately when compared with the reference in case of 

perpendicular incidence angle. Another comparison is made with solar irradiance at 

Istanbul (41,28) on 21st March 2016 at 12:00. Difference between the previous case is the 

altered incidence and azimuth angles. Results related to that case can be seen in figure 

2.19.  
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Figure 2.19. Solar irradiance at (41,28) on 21 March 2016 at 12:00 is given as reference 
and compared with calculated solar irradiance. 

   From figure 2.19, non-negligible amount of error between reference and model 

results can be observed. Reason for such error is that model does not contain any 

parameters related to relative position of the earth to the sun. As mentioned in the 

beginning of this chapter, azimuth and incidence angles are related relative position of 

the earth with respect to sun, however they are not included in the model. In order to 

obtain better matching between the model calculations and reference, incidence and 

azimuth angles have to be included.  

When incidence angle included in the model as a multiple with cosine, obtained 

result can be seen in figure 2.20. 
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Figure 2.20. Solar irradiance at (41,28) on 21 March 2016 at 12:00 is given as reference 
and compared with calculated solar irradiance with model which includes incidence 

angle parameter. 

  From figure 2.20, it can be seen that including incidence angle in the model 

provides much better results when compared with the previous case. Once incidence 

angle is included, modal adapts to changes of relative position of the earth with respect 

to sun. Although including azimuth angle in the formulation would provide better 

matching, current model still yields very good results, so it can be used safely during the 

irradiance calculations. Final version of the developed modal can be seen in equation 

2.24. 

 
ௌܲ ൌ

2݄ܿଶ

ହߣ
1

݁ ఒ்⁄ െ 1
ߗሻߣሺݐ ݏܿ ௌ௨ߠ   (2.24)

In equation (2), t(λ) is atmospheric transmittance, Ω is steradian coefficient and α 

is incidence angle. In conclusion by using formulation given in (2), incident solar 

irradiation on earth any location can be calculated approximately by knowing the 

incidence angle, which can be found in [43]. Once development of the formulation is 

calculated, incident solar irradiation on 21 March 2016 at 12:00 from visible to mid-

infrared spectrum is around 950 Watts. This finding is going to be used during the 

performance evaluations of radiative cooling designs given in chapter 3. 
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2.5 Investigation of Material’s Spectral Behaviors for Radiative Cooling 

As mentioned in chapter 2.1 spectral behaviors of the materials are dependent on 

their optical properties. In this chapter, potential materials are examined for the design 

method given in chapter 2.2 and for radiative cooling applications. As going to be 

mentioned in chapter 3, a design for radiative cooling application has to reflect strongly 

in the visible and near infrared spectrum and it also needs to strongly emit in the mid 

infrared spectrum.  

In all of the following demonstrations, a system with single layer material which 

has thickness of 100 nm on a silicon substrate is analyzed from visible to mid-infrared 

spectrum to check whether spectral behavior of the material is appropriate for radiative 

cooling. Optical properties of the materials are taken from [45], unless otherwise stated. 

In figure 2.21, refractive index ‘n’ and extinction coefficient ‘k’	of GaAs is shown. 

 

Figure 2.21. Refractive index and extinction coefficient of GaAs with respect to 
wavelength. 

 As it can be seen from figure 2.21, GaAs has high refractive index over a broad 

spectrum and this makes it a potential candidate for high-low index design. Although it 

has extremely low extinction coefficient at wavelengths longer than 1000 nm, it has 

relatively high extinction coefficient in the visible spectrum which causes absorption. 

Since absorption in the visible spectrum should be avoided strictly, GaAs would not be a 

proper choice. In figure 2.22, spectral behavior of the GaAs is shown. 
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Figure 2.22. Spectral behavior of the GaAs layer with thickness of 100 nm on Si 
substrate. 

  As shown in figure 2.22, nearly %60 percentage of incident light is absorbed at 

most by GaAs in the visible spectrum where high amount of solar energy is stored as 

mentioned in chapter 2.4. 

 

Figure 2.23. Refractive index and extinction coefficient of Ag with respect to 
wavelength. 

  Ag has high refractive index, as GaAs, in near infrared spectrum whereas it has 

low index in the visible spectrum. Due to the presence of extinction coefficient in a wide 

spectrum, which can be seen in figure 2.23, Ag causes absorption in that spectrum. In 

figure 2.24, spectral behavior of a silver layer can be seen. 
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Figure 2.24. Spectral behavior of the Ag layer with thickness of 100 nm on Si substrate. 

  Although Ag provides a broadband reflection from visible to mid infrared 

spectrum, it has high absorption, which reaches to nearly %80 percentage and decreases 

slowly in the visible spectrum. Behavior of absorption is almost identical to GaAs. 

Advantage of the Ag over GaAs is the high reflectance of Ag over a large spectrum. 

Another high index material is SiC, whose optical properties are shown in figure 2.25.  

 

Figure 2.25. Refractive index and extinction coefficient of SiC with respect to 
wavelength. 

Optical properties of SiC, which are retrieved from [46], can be seen in figure 

2.25. It has high refractive index as GaAs over a broadband spectrum. Also it absorbs in 

the mid infrared spectrum due to non-zero extinction coefficient, which is essential for 

radiative cooling as stated in chapter 3. However, problem with SiC is the presence of 

extinction coefficient in the visible spectrum similar to GaAs and Ag. Spectral behavior 

of SiC is shown in figure 2.26. 
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Figure 2.26. Spectral behavior of the SiC layer with thickness of 100 nm on Si 
substrate. 

 Absorption behavior of the SiC can be seen in figure 2.26. If SiC had not absorbed 

in the visible spectrum, it would be a great material for radiative cooling purposes. 

Because, it has nearly no absorption in near infrared until mid-infrared spectrum. It starts 

to emit in the mid-infrared spectrum which is important for radiative cooling applications 

as mentioned above.  

Optical properties of the last high index material that is going to be demonstrated 

in this chapter, TiO2, can be seen in figure 2.27. 

 

Figure 2.27. Refractive index and extinction coefficient of TiO2 with respect to 
wavelength. 
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 From figure 2.27 it can be seen that TiO2 has high refractive index in the visible 

and near infrared spectrum with extremely low extinction coefficient. Due to the absence 

of extinction coefficient it does not cause absorption in that spectrum. In addition to this 

extinction coefficient starts to increase in the mid-infrared spectrum which causes 

emission. 

 

Figure 2.28. Spectral behavior of the TiO2 layer with thickness of 100 nm on Si 
substrate. 

  From figure 2.28, it is shown that TiO2 causes no absorption in the visible and near 

infrared spectrum. It also starts to absorb in the mid-infrared spectrum. Due to this 

spectral behavior TiO2 becomes a great choice in radiative cooling applications.  

 Until now, some high index materials are explored by analyzing their spectral 

behavior. Those materials, except silver since it has non zero extinction coefficient in the 

spectrum of interest, can be used as high index materials in the design method given in 

chapter 2.2. In the rest of this chapter, properties of some low index materials are going 

to be demonstrated as well as with their spectral behavior. In figure 2.29, optical 

properties of Al2O3 is shown. 
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Figure 2.29. Refractive index and extinction coefficient of Al2O3 with respect to 
wavelength. 

  As it can be seen from figure 2.29, Al2O3 has low refractive index when compared 

with previously shown materials. It also does not have extinction coefficient in the visible 

and near infrared spectrum, thus it does not cause absorption in that spectrum. In addition 

to these, graph of extinction coefficient with respect to wavelength has a peak in mid-

infrared spectrum. Because of that increase in extinction coefficient value in that 

spectrum, Al2O3 emits in mid-infrared spectrum. In figure 2.30, spectral behavior of 

Al2O3 is demonstrated. 

 

Figure 2.30. Spectral behavior of the Al2O3 layer with thickness of 100 nm on Si 
substrate. 
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  Results given in figure 2.30 are parallel to above discussion which is based on 

optical properties of Al2O3, given in figure 2.29. It does not absorb until 6 µm wavelength 

and has absorption peak around 12 µm. In figure 2.31, optical properties of MgF2 can be 

seen. 

 

Figure 2.31. Refractive index and extinction coefficient of MgF2 with respect to 
wavelength. 

Refractive index of MgF2 is smaller when compared to Al2O3 in the visible and 

near infrared spectrum, which can be seen in figure 2.31. Due that property, MgF2 would 

be a better choice for design given in chapter 2.2. However, it also has lower extinction 

coefficient in the mid-infrared spectrum relative to Al2O3, which affects the amount of 

emission. Spectral behavior of MgF2 is demonstrated in figure 2.32. 

 

Figure 2.32. Spectral behavior of the MgF2 layer with thickness of 100 nm on Si 
substrate. 
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  Spectral behavior of MgF2 is almost identical to Al2O3’s when figure 2.31 and 

2.32 are compared. The reason for this similarity is the resemblance between optical 

properties. Although behavior patterns are same, magnitudes are different. Source of this 

difference lies in magnitudes of optical properties. For instance, MgF2 has lower emission 

in the mid-infrared spectrum, since it has lower extinction coefficient when compared 

with Al2O3. Optical properties of SiO2, which is another low index material can be seen 

in figure 2.33. 

 

Figure 2.33. Refractive index and extinction coefficient of SiO2 with respect to 
wavelength. 

  When figure 2.33 is observed, it can be seen that refractive index of SiO2 is higher 

than MgF2’s and lower than Al2O3’s slightly. SiO2 also has high extinction coefficient in 

middle infrared spectrum similar to Al2O3. Spectral behavior of SiO2 can be seen in figure 

2.34.  
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Figure 2.34. Spectral behavior of the SiO2 layer with thickness of 100 nm on Si 
substrate 

From figure 2.34, it can be seen that SiO2 has almost similar absorption graph with 

Al2O3. Both does not cause absorption in the visible and near infrared spectrum and starts 

to absorb around mid-infrared spectrum. Difference between them in terms of absorption 

is that amount of absorption that SiO2 makes is higher.  

 By analyzing behaviors of different materials in this section, the most suitable 

materials for a radiative cooling system can be selected. Considering the design given in 

chapter 2.2, materials with low and high refractive indexes have to be selected. Since the 

constraints given in chapter 3 are low absorption in visible and near infrared as well as 

high emission in mid-infrared spectrums, TiO2 as high index and SiO2 as low index 

material would be a good choice. 
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3  RADIATIVE COOLING SYSTEM DESIGN 

 Once dynamics of heat exchange between the design and its environment are 

defined, design requirements can be determined accordingly. Since dynamics of heat 

exchange are defined mathematically in chapter 2.3, necessary requirements can be 

deduced from those equations. 

 As stated in chapter 2.3, in order to cooling to be occurred, any system should 

transfer heat to its environment more than it receives. So, amount of heat flow into the 

system has to be minimized whereas outflow from the system has to be maximized. For 

this purpose, contributions from equations 2.19, 2.20, 2.21 and 2.22 have to be calculated. 

Firstly, heat transfer coefficient, hc, given in equation 2.22 has to be minimized in order 

to insulate the design from its environment, hence prevent heat transfer to the system 

throughout conduction and convection.  

 Energy coming from the sun has to be hindered. Contribution from the sun is given 

in equation 2.21. Since incident solar irradiance to a given location is fixed as 

demonstrated in chapter 2.4, only tunable parameter in the equation 2.21 is emissivity of 

the system. By minimizing emissivity of the system at wavelengths in which high solar 

energy is carried, contribution from equation 2.21 can be minimized. 

 Finally, contribution from the surrounding molecules for which mathematical 

expression is given in equation 2.20, has to be minimized. Since thermal radiation from 

the atmosphere cannot be altered, only tunable parameter is the emissivity of the object 

as in equation 2.21. So, emissivity of the system has to be minimized at wavelengths 

where emissivity of the atmosphere is high, in other words atmosphere is opaque. 

 For the heat outflow from the system, equation 2.19 has to be maximized. This 

equation is the mathematical expression for the radiation that any body emits at different 

wavelengths. As emissivity of the body increases, radiation it emits also increases. 
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However, it is already stated that increasing emissivity in the spectrums in which solar 

energy is high and atmosphere is opaque, causes more heat inflow to the system. So, 

emissivity of the system has to be increased in the spectrums in which relatively small 

amount of solar energy is carried and atmosphere is transparent. Atmospheric 

transmittance in mid-infrared spectrum, 8-13 µm, can be seen in figure 3.1 and solar 

irradiance with respect to wavelength from visible to mid-infrared spectrum can be seen 

in figure 3.2. 

 

Figure 3.1. Atmospheric transmittance in the mid-infrared (8-13 µm) spectrum. 

 

Figure 3.2. Solar irradiance with respect to wavelength from visible to mid-infrared 
(280nm to 14 µm) spectrum. 
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 As it can be seen from figures 3.1 and 3.2, atmosphere is transparent in the mid-

infrared spectrum and very low amount of solar energy is carried. So, when emissivity of 

a body is maximized in that spectrum, very small amount of energy flow into the system 

occurs, thus system radiates energy to its environment without absorbing high amount of 

energy.  

 In the light of the information given above, design requirements could be 

summarized as follows: System has to be insulated from its environment to minimize 

conduction and convection and emissivity of the system has to be minimized in the visible 

and near infrared spectrum and should be maximized in the mid-infrared spectrum. Ideal 

emissivity of a radiative cooling system is given in figure 3.3. 

 

Figure 3.3. Ideal emissivity with respect to wavelength for a radiative cooling system. 

 Since there is not a material that has an emissivity profile as given in figure 3.3, a 

multilayer thin film system has to be designed. Developed multilayer system needs to 

reflect strongly in the visible and near infrared spectrum and emit in the mid-infrared 

spectrum. So, materials that are going to be used during the design should have very low 

absorption in the visible and near infrared spectrum and have high absorption in the mid-

infrared spectrum. 
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 Material selection for the multilayer design can be inspired from the findings 

demonstrated in chapter 2.5, since spectral behaviors of several materials are already 

illustrated there. Based on the given information in that chapter, MgF2, SiO2, TiO2 and 

Al2O3 are appropriate choices, since they emit in the mid-infrared spectrum and more 

importantly they have extremely low absorption in the visible and near infrared spectrum.  

 The most important study in the literature can be considered as [42], since 

capability of a radiative cooling system under direct sunlight is shown both in theory and 

practice for the first time. Emission of the design demonstrated in [42] from visible to 

mid-infrared spectrum can be seen in figure 3.4. 

From figure 3.4, it can be seen that designed structure has strong emission in the 

visible spectrum around 300-400 nm where solar energy is strong and has very low 

absorption in the rest of the spectrum until wavelength of 2.5 µm. After 2.5 µm, system 

starts to emit especially in 8-13 µm wavelength range, where atmosphere is transparent 

as shown in figure 3.1. The design consists of following materials: HfO2, SiO2 and Ag all 

deposited on Si wafer. Before going into deeper analysis of the design, structure of it can 

be visualized with as shown in figure 3.5. 

Figure 3.4. a) Emissivity of the design demonstrated in [42] from visible to near infrared 
spectrum. b) Emissivity from near infrared to mid-infrared. 

a)  b) 



47 
 
 

 

Figure 3.5. Visualization of radiative cooling design given in [42], which consists of 
seven thin film layers on top of a silver substrate. 

 As shown in figure 3.5, design consists of seven layers which are alternate high-

low index layers. Number of layers and their thicknesses are determined by needle 

optimization method [47] for ideal reflection in the visible and near-infrared spectrum, 

and ideal emission in the 8-13 µm spectrum. Also combination of simulated annealing 

and quasi-newton techniques are used to determine layer thicknesses after the needle 

optimization. HfO2 is a high index material which has minimum absorption in the visible 

and near infrared spectrum and emits in the mid-infrared spectrum. Since, authors claim 

that TiO2, whose spectral behavior is given in chapter 2.5, would be used instead of HfO2 

as high index material TiO2 is used as high index material. SiO2 on the other hand, is the 

low index layer which has very similar spectral behavior with HfO2 in terms of 

absorption. So in the aspect of spectral behaviors of the materials, these two materials 

denote parallel emissivity patterns to ideal emissivity given in figure 3.3. However, 

emissivity of the Ag contradicts with the ideal emissivity pattern. Intuition behind the 

usage of Ag in the design despite to this contradiction can be explained with the analysis 

of the spectral behavior of the overall design.  
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 With the method demonstrated in chapter 2.1, design which is given above is 

imitated partially. Given structure in figure 3.5 is preserved in which top three layers are 

used for increasing emissivity in the 8-13 µm spectrum, four layers are used to increase 

solar reflection on top of a Ag layer.  Relying on author’s claim about replacement of 

HfO2 with TiO2, TiO2 is used as high index material during the analysis. Although layer 

thicknesses are changed slightly, similar emissivity pattern could be obtained for the 50 

incidence angle. Emissivity pattern for partially imitated design can be seen in figure 3.6. 

 

Figure 3.6. Emissivity graph of the partially imitated design given in [42] with respect 
to wavelength. 

 When compared with figure 3.4, obtained results in figure 3.6 is very similar. 

Reason for slight differences may stem from both usages of TiO2 instead of HfO2 and 

layer thicknesses. In order to understand the necessity of the Ag layer in this design, 

emissivity of the same thin film system without Ag layer this time is calculated and results 

are illustrated in figure 3.7. 



49 
 
 

 

Figure 3.7. Emissivity graph of the partially imitated design from which silver layer is 
excluded. 

 As it can be seen from figure 3.7, emissivity of the thin film system is significantly 

altered. High amount of solar absorption occurred in the visible and near-infrared 

spectrum which violates the most important requirement of radiative cooling. So, with 

the specified number of TiO2 and SiO2 layers only, desired reflection in the solar spectrum 

cannot be achieved. From this result, role of Ag layer can be understood. As shown in 

chapter 2.5, Ag has broadband reflection from visible to mid-infrared spectrum. However, 

besides its high reflection behavior in solar spectrum, Ag layer brings an inevitable solar 

absorption. That absorption is inevitable in this design, because layers on top transmits 

the incident light onto the Ag layer and transmission behavior of TiO2 and SiO2 are again 

examined in chapter 2.5. 

 In order to observe the incidence angle dependency of the thin film design, 

emissivity of it is calculated for various incidence angles and results are demonstrated in 

figure 3.8. 
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Figure 3.8. Emissivity of the partially imitated design for incidence angles of 15o, 30o, 
45o and 60o in a, b, c and d respectively. 

 Results illustrated in figure 3.8 indicate that emissivity of this design does not vary 

dramatically with respect to incidence angle. A small change of emissivity in the visible 

spectrum can be observed whereas emission in mid-infrared spectrum is not affected by 

incidence angle. 

 Once the structure of the design is examined, performance of the radiative cooling 

design can be determined by evaluating its spectral behavior and calculating heat flows. 

For the performance evaluations, it is assumed that design is tested in Istanbul on 21 

March 2016 at 12:00, which corresponds to incidence angle of 40º as given in chapter 

2.4. Structure’s reflection is around %97 when integrated from 280 nm to 2500 nm, where 

nearly 940 W/m2 solar energy is carried. So, nearly 910 W/m2 incident energy is reflected 

from the surface of the system. Emissivity of the structure is also integrated in 8-13µm 

range, to evaluate amount of radiation to the outer space and calculation yields emission 

around %45 which corresponds to 70 W/m2 cooling. By inserting these values, also with 

other calculated heat flow components, into the heat balance equation given in chapter 

2.3, net cooling power for this design comes out to be around 35 W/ m2. 

a) 

c)  d) 

b) 
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 Results illustrated above is a solid proof that demonstrated model in chapter 2.1 

is able to calculate spectral behavior correctly, since it yields similar results to those given 

in the literature for a multilayer thin film system. Until this point, a rough imitation of a 

design given in the literature is analyzed, it’s results are presented and compared with 

results of our calculations. Once validity of our model is verified, further design studies 

to end up with systems whose cooling power is higher, can be conducted. 

 As mentioned several times, emissivity of the overall thin film structures 

determines the performance of radiative cooling systems. There are two ways to increase 

the performance of a radiative cooling system. Firstly, emissivity has to be minimized in 

the visible spectrum and secondly it has to be maximized in the 8-13 µm range. As a 

starting point, design studies to increase the emission in the mid-infrared spectrum is 

conducted and those studies are explained below. 

 Absorption of several materials with respect to wavelength are investigated in 

chapter 2.5. As shown in that chapter, SiO2 has absorption peak around 10 µm and 

because of that behavior, emissivity of the previous design reaches to 1 almost around 10 

µm. However, absorption peak of TiO2 cannot be observed until 14 µm, so a distinctive 

peak in the design would not be observed which is caused by TiO2. In addition to these 

materials, Al2O3 has an absorption peak around 13 µm whose magnitude is higher than 

TiO2’s and lower than SiO2’s. So, a design with Al2O3 included would provide improved 

performance. In figure 3.9, schematic structure of the new design and differences from 

first design are illustrated. 
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Figure 3.9. Schematic representation of structure of design II showing the changes from 
design I to design II. 

 In the previous design top three layers are responsible from the mid-infrared 

emission and average absorption in that spectrum is around %45. It is known that each 

layer absorbs at wavelengths in which extinction coefficient is present. Considering that 

fact, by increasing number of layers, composed of materials which have non-zero 

extinction coefficients in 8-13 µm, average emission can be improved in that range. Only 

side effect of increasing number of layers would be raise in the overall thickness. For the 

sake of balancing overall thickness, thickness of each layer which are responsible from 

solar reflection, are decreased from 60 nm to 20 nm.    

 Solar reflection, from 280 nm to 2.5 µm wavelength, almost remained same due 

to absence of any dramatic change in the solar reflection segment in the second design. 

Since the focus of the second design is on 8-13 µm range and changes in visible and near-

infrared spectrums are almost negligible, graphs of the conducted analysis are in 8-13 µm 

range. First, performance of the second design in 8-13 µm is compared with the previous 

design’s performance. Second, to show the effect of addition of Al2O3 layers in the mid-

infrared absorption, system performance is evaluated with and without Al2O3 layers.  

Third, the new design’s performance is analyzed in 8-13 µm for varying thicknesses of 

individual layers’ in the triplets, which consist of Al2O3, SiO2 and TiO2. Also, influence 

of number of triplets is examined at fixed thicknesses. Finally, it is analyzed for different 

incidence angles. Comparison of emission curves of the two design can be seen in figure 

3.10. 
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Figure 3.10. Comparison of emission curves in design I and II in 8-13 µm spectrum. 

 In figure 3.10, graphs of absorptions of two designs with respect to wavelength is 

illustrated. In the second design three triplets with individual layer thicknesses of 200 nm 

are placed on top of solar reflection segment. When compared in terms of thicknesses, 

overall thickness of the first design was 1300 nm (except the silver layer), whereas 

thickness of the second design is 1900 nm. So, second design is 600 nm thicker than the 

first design. In terms of performance considerable amount of increase in the emissivity of 

the second design with respect to first design’s emissivity can be observed. Average 

emissivity of the second design is around %71, whereas it is %45 in the first design. So, 

a dramatic change in the mid-infrared emission occurred. 

 To observe contribution coming from Al2O3 layers, performances of two 

variations of the second design are compared. In one of the designs, alternating SiO2 and 

TiO2 layers are used, each 200 nm thick and 9 layers in total. In the other one, 200 nm of 

SiO2, TiO2 and Al2O3, each 200 nm thick and 9 layers in total are used. So for the same 

number of layers and thicknesses, influence of Al2O3 layers are observed. Results of this 

comparison are examined in figure 3.11. 
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Figure 3.11. Comparison of emission curves of with and without Al2O3 layers. 

 As it can be seen from figure 3.11, including Al2O3 layers increase emission in the 

mid-infrared spectrum especially after 10 µm. In average, system with Al2O3 layers has 

%71 emission as stated above, whereas it is %55 for the system which does not have 

Al2O3 layers. So for this configuration, including Al2O3 layers brings %15 more emission. 

In the following figure, results for varying individual layer thicknesses in the triplets are 

demonstrated. 

 

Figure 3.12. Comparison of emission curves for varying individual layer thicknesses of 
100 nm, 200 nm and 300 nm in the triplets. 
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 Results in figure 3.12 indicates that as individual thicknesses of the layers in the 

triplets increase, amount of emission also increases. In this configuration, 9 layers are 

used in the absorption segment. For 100 nm case average emissivity is around %30, for 

200 nm it is around %71 and finally for 300 nm case it is around %78. So by looking at 

the high rate of change between 100 nm and 200 nm case relative to 200 nm to 300 nm, 

rate of change decreases as the layers get thicker. In the next figure, effect of layer number 

is examined. 

 

Figure 3.13. Comparison of emission curves for varying number (multiples of number 
of triplets) of absorption layers whose individual layer thicknesses are 200 nm. 

In figure 3.13, layer numbers in the absorption segment are set to 6, 9 and 12 

which corresponds to 2, 3 and 4 triplets. Although absorption around 10 µm is lower for 

larger number of layers, it is higher for other wavelengths in 8-13 µm range. For layer 

numbers of 6, 9 and 12 average emissions are around %47, %71 and %77 respectively. 

As in the analysis of layer thicknesses, amount of increase gets smaller as the number of 

layers increase. Results related to emission of the system for various incidence angles can 

be seen in figure 3.14. 
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Figure 3.14. Comparison of emission curves of systems, which has 3 absorption triplets 
with individual thicknesses of 200 nm, for varying incidence angles of 15⁰, 30⁰, 45⁰ and 

60⁰ from ‘a’ to ‘d’ respectively. 

 As shown in figure 3.14, emissivity curves of systems with 3 absorption triplets 

which have individual layer thicknesses of 200 nm, are plotted against wavelength for 

incidence angles of 15°, 30°, 45° and 60°.  Reflection in the 280 nm to 2.5 µm spectrum 

is around %96 in each case with slight fluctuations when integrated with respect to 

wavelength. Emission in the 8-13 µm is around %73 for different incidence angles again 

with small fluctuations. So, spectral behavior of the design is not altered dramatically as 

incidence angle changes. 

As in the case of previous design, once emissivity of the multilayer system is 

obtained it is used in the equations given in chapter 2.3 to obtain net cooling power of the 

system. Second design is also tested at the same conditions with the previous design, for 

the purpose of making objective comparisons. So, emissivity of the second design is 

plotted against wavelength at 40° and results are demonstrated in figure 3.15. 

d)c) 

b)a) 
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Figure 3.15. Emissivity curve of the second design at 40° incidence angle with 3 
absorption triplets, each has individual layer thickness of 200 nm. 

 Demonstrated emissivity graph belongs to second design with 3 absorption 

triplets, which has individual layer thickness of 200 nm, with respect to wavelength at 

incidence angle of 40°. When integrated from 280 nm to 2.5 µm, reflection is around %96 

and emission in 8-13 µm range is around %74. 900 W/m2 incident solar energy is reflected 

from the surface of the system and nearly 110 W/m2 energy is emitted in the 8-13 µm 

range. According to calculations given in chapter 2.4, system has net cooling power of 62 

W/m2 which is almost twice of the previous design’s. 

 After a comprehensive analysis of the second design, it is shown that cooling 

power can be increased by including an extra material, Al2O3, which has different 

absorption peak than TiO2 and SiO2. It is also shown that by increasing layer thicknesses 

and number of triplets, emission in the 8-13 µm range can be increased without observing 

a substantial change in the reflection in 280 nm to 2.5 µm range. So by an extensive 

numerical optimization, number of triplets and thicknesses of each individual layer can 

be determined such that emission in the atmospheric transparency window is maximized. 

 As mentioned before in this chapters, increasing emission in transparency window 

and reflection in the visible and near-infrared spectrum improves the performance of a 

radiative cooling system. In the second design, ways of increasing emission in the 

atmospheric transparency window are studied. Although considerable amount of 
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improvement is observed in the cooling power, design studies are restricted to 8-13 µm 

range and this situation limits the overall design performance. A new design, which 

contains findings from second design studies, may yield even more improved 

performance. To end up with such a design, problems with the previous designs have to 

be carefully examined. 

 In the second design, it is shown that emission in the mid-infrared spectrum can 

be increased tremendously by using triplets. However, in all cases, nearly %3-4 

absorption is present in the visible and near infrared spectrum which corresponds to 33 

W/m2 solar energy. If that energy had been reflected, cooling power would have been 

improved. In addition to this, if that reflection had been achieved by a multilayer thin film 

system which contains triplets or couples which consist of materials that introduce 

absorption in the mid-infrared spectrum, as in the case of second design, emission in that 

spectrum would have been increased. Since, such a design satisfies two main 

requirements better than previous designs, e.g. less absorption than %3-4 in the visible 

and near infrared spectrum and at least %70 emission in 8-13 µm range, it may outperform 

the previous designs. In order to prevent that %3-4 absorption, source of it has to be 

determined properly.  

 Various materials’ spectral behavior is analyzed in chapter 2.5 including Ag thin 

film layer. As examined in figure 2.24, Ag has high absorption in the visible spectrum 

which is also present in the previous designs. So, it can be concluded that source of %3-

4 absorption stems from presence of an Ag layer which absorbs nearly %4 percentage of 

incident light in the visible and near-infrared spectrum. Considering TiO2, Al2O3 and SiO2 

does not cause absorption in the visible spectrum, overall system still introduces 

absorption in the visible and near-infrared spectrum in the previous designs, although Ag 

layer is placed at the bottom in both of them. This behavior indicates that layers above 

Ag transmits the incident light to the Ag layer. This claim about the transmission can be 

verified as follows: In the previous designs, Ag is defined as a layer in the thin film 

system, not as the substrate. As mentioned in chapter 2.1, model provides the transmission 

onto the substrate. So, transmission data of the system when Ag is not defined as substrate 

is expected to be very low in magnitude. On the other hand, transmission data should be 

high in magnitude when Ag is defined as the substrate according to proposed claim above. 

Related figures to this comparison can be seen in figure 3.16 and 3.17. 
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Figure 3.16. Spectral behavior of the first design when Ag is defined as a layer on top of 
Si substrate. 

 

Figure 3.17. Spectral behavior of the first design when Ag layer is defined as the 
substrate. 

 In figure 3.16, spectral behavior of the first design is demonstrated when Ag is not 

defined as the substrate. It can be seen that transmission to the substrate is extremely low 

due to presence of an Ag layer which does not transmit incident light to the adjacent 

medium. On the other hand, transmission to the substrate is high especially in the visible 

spectrum, as shown in figure 3.17, when Ag is defined as the substrate. This comparison 

is a solid proof that layers above the Ag in the previous designs transmit the incident light 

to the Ag layer, which is responsible from high absorption in the visible spectrum. 
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 Once source of absorption in the visible spectrum is determined, next stage is to 

prevent this absorption. This can be achieved by maximizing the reflection in the visible 

and near-infrared spectrum without any contribution from Ag layer. More explicitly, it is 

already shown in figure 3.17 that in the absence of Ag layer, previous designs are not 

capable of providing broadband reflection, thus necessitation of usage of Ag layer in the 

previous designs are proved. So, although Ag is essential in terms of providing broadband 

reflection, due to its absorption in the visible spectrum usage of it has to be avoided to 

improve system performance. For that purpose, radical changes have to be made in the 

design structure. 

 In chapter 2.2, it is shown that by using high-low index layers high reflection 

zones can be obtained with dielectrics by arranging optical thicknesses of the layers. A 

set of high-low index layers form a segment which has high reflection as a spectral 

response and by using different segments which create high reflection zones at different 

spectral ranges, high reflection over a desired spectrum range can be obtained. 

Comparison scheme of the previous designs and the new design can be seen in figure 

3.18. 

 

Figure 3.18. Comparison of structures of the previous designs and the new design. Third 
design is composed of more than one segment. 
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By designing the periodic segment demonstrated in figure 3.18, selection of high-

low index materials and determination of geometrical thicknesses of the layers, a new 

system which satisfies radiative cooling requirements can be obtained. Design process 

and validation of the decisions related to design are expressed below. 

 Firstly, in chapter 2.2, influence of ratio of the refractive indexes of the layers is 

illustrated. To achieve higher reflection and wider width with lower number of layers, 

ratio of the refractive indexes needs to be selected as high as possible. However, reflection 

in the visible and near-infrared spectrum is not the only requirement of the radiative 

cooling as stated above several times. If materials that are going to be used have emission 

in the 8-13 µm range, then two requirements of the radiative cooling can be achieved in 

similar segments. In other words, segments that are responsible from high reflection in 

the visible and near-infrared spectrum may also increase the absorption in the 8-13 µm, 

if materials in the segments have non zero extinction coefficients in the mid-infrared 

spectrum. Since TiO2 and SiO2 have emission in the 8-13 µm range and ratio of refractive 

indexes nearly 1.6 at visible and near infrared spectrum, they are chosen as materials to 

be used in the segment designs. When materials in the segments are determined, based 

on the equations 2.15 and 2.16, required thicknesses of the layers at the specified 

wavelengths can be calculated. 

 In the following design, aim is to achieve high reflection between 280 nm and 2.5 

µm, in which solar energy is high when compared to longer wavelengths as shown in 

figure 3.2. For that purpose, 8 segments are designed to provide high reflection zones 

around 300, 600, 750, 900, 1200, 1500, 2000 and 2300 nm. Geometrical thicknesses of 

the layers are calculated such that they satisfy the condition given in equation 2.13. 

Design performance is analyzed for different number of layers in the segments and 

various incidence angles. In figure 3.19, emission of the system for various number of 

layers in the segments at a fixed angle is demonstrated. 
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Figure 3.19. Emissivities of the systems with number of layers of 6, 8, 10 and 12 at each 
segment for incidence angle of 0⁰ for cases ‘a’, ‘b’, ‘c’ and ‘d’ respectively. 

 As shown in figure 3.19, very low emission is occurred from 280 nm to 2.5 µm 

spectrum. On the other hand, system strongly emits after 2.5 µm wavelength. In order to 

evaluate the performance in a more scientific fashion, emissivities are integrated with 

respect to wavelength both in 280 nm to 2.5 µm range and 8-13 µm range and results are 

demonstrated in table 3.1. 

Number of Layers in the 

Segments 

Reflection in the 280 nm 

to 2.5 µm spectrum range 

Emission in the 8-13 µm 

spectrum range 

6 % 98.51 % 68.53 

8 % 99.57 % 73.74 

10 % 99.74 % 77.23 

12 % 99.9 % 79.74 

a)  b)

c)  d)

Table 3.1. Rates of reflection and emission for various number of layers in the 
segments in different spectrum ranges. 
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 When table 3.1 is considered, an increase in both reflection and emission in the 

spectrum ranges of interest can be observed. In the following figure, effect of incidence 

angle on emissivity is examined. 

 

Figure 3.20. Emissivities of the systems with 8 layers at each segment for incidence 
angles of 15⁰, 30⁰, 45⁰ and 60⁰ for cases ‘a’, ‘b’, ‘c’ and ‘d’ respectively. 

 In figure 3.20, it can be seen that number of small peaks are increased when 

compared to 0⁰ for different incidence angles. However, any considerable change cannot 

be observed in the 8-13 µm range. More detailed information is given on table 3.2. 

Incidence Angle 
Reflection in the 280 nm 

to 2.5 µm spectrum range 

Emission in the 8-13 µm 

spectrum range 

a) 15⁰ % 99.39 % 74.60 

b) 30⁰ % 99.32 % 75.94 

c) 45⁰ % 98.97 % 76.98 

d) 60⁰ % 97.49 % 77.46 

a)  b)

c)  d)

Table 3.2. Rates of reflection and emission for various number of layers in the 
segments in different spectrum ranges. 
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 When results given in table two is examined, a decrease in solar reflection and 

increase in emission in the specified spectrum can be observed. A solution to decreased 

reflection could be increasing the number of layers in the segments which increases 

reflection as demonstrated in table 3.2. 

  Cooling performance of the system is evaluated under similar conditions with the 

previous designs to make a valid comparison. Absorption of the system which consists of 

8 different segments, each has 8 layers, with incidence angle of 40⁰ is illustrated in figure 

3.21. When heat balance equations are calculated, reflection in 280nm to 2.5 µm range is 

around %99.2 which reflects nearly 930 W/m2 energy. Percentage of the reflection is 

higher than previous designs by %2-3. In addition to high reflection in the visible and 

near-infrared spectrum, system has nearly %77 emission in the 8-13 µm range which 

corresponds to nearly 112.5 W/m2 energy to the outer space. At the end system has 

cooling power of 85.5 W/m2 which is higher than performance of the previous designs by 

around 20 W/m2. 

 

Figure 3.21. Emissivity curve of the third design at 40° incidence angle with 8 
segments, each has 8 layers which are quarter wavelength thick. 
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 When the performance of the third design is considered, it can be seen that it is 

improved drastically. Performance can be further increased by simply increasing number 

of layers in each segment or by adding more high reflection segments which decreases 

absorption at the wavelength of interest. Reason of this improvement can be understood 

by looking at the absorption graph of the system given in figure 3.21. It is very close to 

ideal emissivity given in figure 3.3 in the spectral range of 280 nm to 2.5 µm and 8-13 

µm. However, there is a tremendous difference between actual and ideal absorption in the 

spectral range of 2.5-8 µm range. High emission in that spectrum occurred, because high 

reflection segments in the system covers only 280 nm to 2.5 µm spectrum. Extra high 

reflection segments can be added to enlarge high reflection zone to 8 µm, but it may 

require much more segments. A more elegant solution can to this problem can be 

proposed. As mentioned above several times, role of Ag layer in the previous designs is 

to provide broadband reflection, but because of introduced absorption in the visible 

spectrum by Ag layer, it is omitted in the new design to improve the overall cooling. 

Absorption in the visible spectrum occurs in the previous designs, because layers above 

Ag layer transmits the incident light onto it. If that transmission had prevented, absorption 

in the visible spectrum would have been avoided. It is already shown that Ag only has 

strong absorption in the visible spectrum and has low absorption until 14 µm wavelength. 

So, preventing transmission in the visible spectrum should be sufficient. Because of this 

situation, a Ag, is added at the bottom of the third design and emission of the system in 

that case with incidence angle of 40⁰ is shown in figure 3.22.  
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Figure 3.22. Emissivity curve of the third design at 40° incidence angle with 8 
segments, each has 8 layers which are quarter wavelength thick and a 50 nm thick Ag 

layer at the bottom. 

 When figure 3.22 is observed, it can be seen that absorption in the 2.5-8 µm range 

is dropped greatly. In addition to this, reflection in the 280 nm to 2.5 µm increased slightly 

to %99.25 and emission in the 8-13 µm range increased to %85 percentage, whereas it 

was around %77 in previous case. Overall cooling power increased to 103 W/m2 by 

increasing nearly 20 W/m2 when compared to previous case. So, adding a Ag layer makes 

the emissivity of the system much more close to the ideal emissivity given in figure 3.3, 

hence increases cooling power drastically. 

  In this section, several important results are obtained. It is shown that number of 

layers and their thicknesses’ greatly affect the spectral behavior of the system. Also, it is 

found that by including Al2O3 and creating triplets, instead of duplexes which consist of 

TiO2 and SiO2, emission performance would be improved without increasing the overall 

thickness too much and losing from reflection efficiency in the visible and near infrared 

spectrums. In addition to these, reflection bound in the previous design which stems from 

presence of a metallic layer is exceeded with the proposed design method. By generating 

high reflection zones with limited bandwidths in the desired spectrums with periodic 

high-low indexed layers and compounding those together, improved reflection 
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performance is obtained without a metallic layer which causes inevitable absorption. 

Using SiO2 and TiO2 in the proposed design also causes emission in 8-13 µm spectrum 

which is mandatory in radiative cooling. Also, adding a metallic layer at the bottom, 

increases the reflection after 2.5 µm spectrum and emission in 8-13 µm. So by altering 

the design structure, tremendous performance improvement is achieved in return of 

increased number of layers.  
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4  MINIMIZATION OF REFLECTION ON THE FRONT SURFACE IN 
THE 8-13 µm SPECTRUM BY USING CHEBYSHEV TRANSFORM 

 As stated several times in the previous chapters, for radiative cooling maximizing 

emissivity of the design in the 8-13 µm range is a requirement. When spectral response 

of a design to an incident wave is considered, incident wave splits into three components 

as reflected, transmitted and absorbed. Since one of the requirements of radiative cooling 

is high emission in the 8-13 µm range, design studies can be carried out by using emitting 

materials in the 8-13 µm range, as in chapter three. From a mathematical perspective, to 

increase emission; reflection and transmission have to be minimized since summation of 

these three coefficients equal to 1. It can be considered as an indirect way of increasing 

the emissivity of the object. However, minimization of both reflection and transmission 

is not necessary for emissivity maximization, but minimization of reflection would be 

enough. If transmission from incident medium, e.g. air, to the system had been increased 

by layers on top, absorption of the system would increase since transmission percentage 

of the bottom layers remains as it is. In other words, when quarter wavelength design 

given in chapter 3 is considered as a multilayer system, an extra transmission region 

between the incident medium and multilayer system would not alter the transmission 

percentage of the multilayer system. Role of transmission region is to increase 

transmission to the multilayer system, by decreasing reflection on the front surface of the 

multilayer system. Considering that reflection, transmission and absorption coefficients 

should add up to 1, absorption by the multilayer system should increase, since reflection 

of it is decreased and transmission is remained similar. A visualization of that case is 

given in figure 4.1. 
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One way of increasing transmission in a broadband spectrum is to use impedance 

matching techniques given in [48]. Purpose of impedance matching is to minimize the 

reflection between two adjacent mediums by using intermediate layers, each has thickness 

of quarter of wavelength. Depending on the desired transmission behavior, impedances 

of the layers are calculated. Chebyshev transform method is used to minimize reflection 

losses which creates a constant high transmission, bounded by specified ripple, behavior 

between two different media over a broadband spectrum. Different designs’ performances 

are evaluated under various conditions, such as center of wavelength, number of layers 

and ripple values. Firstly, a design is developed for air-Si interface to show that 

methodology is correct and able to provide expected transmission behavior. Once 

methodology is verified Chebyshev transform design is developed between air-TiO2 

interface and combined with the quarter wavelength design given in chapter 3 and 

performance is evaluated. 

As a starting point, reflection of a multilayer system can be given as in equation 

4.1: 

                            Γሺߠሻ ൌ 2݁ିேఏሾΓ cosሺܰߠሻ  Γଵ cosሺܰ െ 2ሻ ߠ 

																											 															…		 Γ cosሺܰ െ 2݊ሻ ߠ ⋯  ሻሿߠሺܩ

(4.1) 

In equation 4.1, ‘N’ is the number of layers between the two interface and is the 

only design parameter with the ripple magnitude and center of wavelength. ‘ܩሺߠሻ’ is a 

piecewise function and can be expressed as in equation 2. 

Incident 

Medium 
Multilayer 

System 
Substrate 

Transmittance 

Region 

Figure 4.1. ‘Transmittance Region’ is responsible for minimizing the reflection of incident wave from 
the surface of the multilayer system. In other words, it is used to maximize transmission to the multilayer 
system and it does not alter the transmittance response of the multilayer system. Since reflection from the 
surface of the multilayer system is decreased and transparency of it is not changed, it’s absorption should 

increase to satisfy Kirchhoff’s scattering law. 
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(4.2) 

 By equating equation 1 with a Chebyshev polynomial whose order is equal to 

number of layers between the two interface, ‘Γ’ coefficients can be calculated such that 

overall reflection in equation 4.1 yields similar behavior to Chebyshev polynomial. 

Chebyshev polynomials from order 2 to 4 is given in equation 4.3. 

ଶܶሺܿߠܿ݁ݏߠݏሻ ൌ ߠ2ݏܿߠଶܿ݁ݏ  ሺܿ݁ݏଶߠ െ 1ሻ 

ଷܶሺܿߠܿ݁ݏߠݏሻ ൌ ߠ3ݏܿߠଷܿ݁ݏ  ሺ3ܿ݁ݏଶߠ െ 3ሻߠܿ݁ݏܿߠݏ 

ସܶሺܿߠܿ݁ݏߠݏሻ ൌ ߠ4ݏܿߠସܿ݁ݏ  ߠଶܿ݁ݏሺߠଶܿ݁ݏ4 െ 1ሻܿߠ2ݏ 

ሺ3ܿ݁ݏସߠ െ ߠଶܿ݁ݏ4  1ሻ 

 

(4.3) 

Since 2, 3 and 4 layered Chebyshev transformers are designed, polynomials of 

those orders are given in equation 4.3. Depending on the order of the transformer, 

coefficients of ‘ܿߠܰݏ’ terms can be matched and ‘Γ’ coefficients can be calculated as 

in the equality 4.4.  

Γሺߠሻ ൌ Γ݁ିேఏ ேܶሺܿߠܿ݁ݏߠݏሻ (4.4) 

In equation 4.3 and 4.4, ‘ߠܿ݁ݏ’ term exists for which the expression can be seen 

in equation 4.5. 

ߠܿ݁ݏ ൌ ݄ݏܿ 
1
ܰ
ଵି݄ݏܿ ൬

1
2Γ

ฬ݈݊
ܴ
ܼ
ฬ൰൨ (4.5) 
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In equation 4.5, RL is the impedance of air which is 377 Ω and Z0 is the impedance 

of Si or TiO2, 110.40 Ω and 256.75 Ω respectively, depending on the design scenario.  

Once ‘Γ’ coefficients are calculated, impedance of each layer to satisfy Chebyshev 

behavior can be calculated as in equation 4.6. 

ܼାଵ ൌ ܼexpሺ2Γሻ  (4.6) 

 When impedance of each layer is calculated based on equation 4.6, thicknesses of 

the layers are set to quarter wavelength and design procedure is finished. By using the 

optical constants given in the literature, impedance of the layers can be calculated from 

those as in equation 4.7. 

ܼ ൌ ܼඨ
ߤ
ߝ
ߝ	݁ݎ݄݁ݓ			 ൌ ݊ଶ  (4.7) 

 In equation 4.7, ‘ߤ’ is the relative permeability and ‘ߝ’ is the relative permittivity 

of the medium. In our optical studies, permeability can be assumed as 1 and by using the 

relationship between refractive index and permittivity, impedance of the layers can be 

obtained. Than by using the materials that has close value to ideally calculated impedance 

value, high transmittance region between two mediums with the desired characteristics 

can be created. Comparisons of transmission performances for various designs can be 

seen below. 

 As mentioned above, design performance may vary with respect to center of 

wavelength, number of layers and ripple magnitude. In figure 4.2, transmission in 8-13 

µm spectrum with two layers in air-Si interface, with ripple magnitude of 0.05, for 

different center of wavelengths can be seen. 
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Figure 4.2. Transmission graphs with respect to wavelength, for ripple magnitude 0.05 
and 2 layers with center of wavelength 9.5, 10 and 10.5 µm air-Si interface. 

  In figure 4.2, it can be seen that very high transmission, around %99 percentage, 

is achieved especially around center of wavelengths. Transmission around center of 

wavelength is bounded by ‘Γ’, which is 0.05 in this case. Bandwidth of the high 

transmission zone is around 4 µm which is able to cover 8-13 µm spectrum almost 

entirely. From the graph it can be seen that, as center of wavelength shifts trough 9.5 µm 

to 10.5 µm, transmission around 7.5 µm decreases and around 13 µm it increases. So, 

center of wavelength has to be selected such that it maximizes the transmission in 8-13 

µm spectrum. In figure 4.3, results for change of center of wavelength on the performance 

with 3 layers is shown. 
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Figure 4.3. Transmission graphs with respect to wavelength, for ripple magnitude 0.05 
and 3 layers with center of wavelength 9.5, 10 and 10.5 µm air-Si interface. 

  In figure 3, similar trend is observed with the results in figure 4.2 in terms of effect 

of center of wavelength on the performance. Only difference with the previous case is 

that bandwidth of the high transmission zone is increased considerably. This difference 

can be observed from the results of design with center of wavelength 10.5 µm. In the 

previous graph, transmission is nearly %95 percentage around 7.5 µm and it is %99 

percentage around 14 µm, whereas in this case transmission around 7.5 µm is also higher 

than %99 percentage and remains around same percentage until 14 µm. So, when 

compared with the previous case increasing number of layers clearly enlarged the 

bandwidth of the high transmission zone. A supportive graph is illustrated in figure 4.4, 

in which performance for four layers can be seen. 
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Figure 4.4. Transmission graphs with respect to wavelength, for ripple magnitude 0.05 
and 4 layers with center of wavelength 9.5, 10 and 10.5 µm air-Si interface. 

  From figure 4.4, it can be seen that %99 percentage transmission can be achieved 

until 14 µm. When compared with the previous scenarios in which center of reflection is 

around 9.5 µm, high transmission still present around 6 µm, whereas it is not the case for 

lower number of lairs. So, from these results it can be seen by increasing number of layers, 

bandwidth of the high transmission zone can be enlarged and by altering center of 

wavelength, transmission in 8-13 µm spectrum can be maximized. After the analysis of 

the influence of the variation of the center of wavelength, effect of ripple magnitude can 

be examined. In figure 4.5, transmission graphs of the designs with different ripple 

magnitudes, with center of wavelength 10 µm and 2 layers, is given. 
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Figure 4.5. Transmission graphs with respect to wavelength, for center of wavelength 
10 µm and 2 layers with ripple magnitudes of 0.05, 0.15 and 0.25 air-Si interface. 

  When figure 5 is examined, it can be seen that as ripple magnitude increases 

difference between the highest and the lowest transmission rate also increases. It is also 

observable that bandwidth is not affected by the ripple magnitude. In figure 4.6 and 4.7, 

results for 3 and 4 layered transformers with different ripple magnitudes around 10 µm is 

given. 

 

Figure 4.6. Transmission graphs with respect to wavelength, for center of wavelength 
10 µm and 3 layers with ripple magnitudes of 0.05, 0.15 and 0.25 air-Si interface. 
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Figure 4.7. Transmission graphs with respect to wavelength, for center of wavelength 
10 µm and 4 layers with ripple magnitudes of 0.05, 0.15 and 0.25 for air-Si interface. 

  When figure 4.6 and 4.7 are examined, no contradiction with the expectations is 

observed, since bandwidth of the high transmission zones are similar to previous results 

and as ripple magnitude increases, overall transmission performance decreases in the 

design spectrum.  

Until this point, influence of number of layers, center of wavelength and ripple 

magnitudes are demonstrated with transmission graphs. In table 4.1 and 4.2, average 

transmission in 8-13 µm spectrum is given for the cases for which graphs are given above. 

Number of Layers 
Center of Wavelength 9.5 µm 10 µm 10.5 µm 

2 99.87 99.89 99.84 

3 99.86 99.86 99.87 

4 99.99 99.99 99.89 

 

Table 4.1. Average transmission in 8-13 µm spectrum for layer numbers of 2, 3 and 
4 at center of wavelengths 9.5, 10 and 10.5 µm, with ripple magnitude of 0.05 for 

air-Si interface. 
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Number of Layers 
Ripple Magnitude 0.05 0.15 0.25 

2 99.89 98.65 95.68 

3 99.90 98.96 97.48 

4 99.99 99.01 97.14 

All analysis given above is conducted with perpendicular incidence angle. In order 

to observe the effect of the incidence angle, a design which has center of wavelength 10 

µm, ripple magnitude 0.05 and 3 layers is analyzed for different incidence angles and 

results are shown in figure 4.8. 

 

Figure 4.8. Transmittance graphs with respect to wavelength of a design which has 10 
µm center of wavelength, 0.05 ripple magnitude and 3 layers with incidence angles of 
15⁰, 30⁰, 45⁰ and 60⁰ from ‘a’ to ‘d’ with average performances of %99.83, %99.48, 

%97.93 and %94.14 respectively. 

  From figure 4.8, it can be seen that as incidence angle increases, transmission 

performance in 8-13 µm spectrum decreases, yet it is around %95 at the worst case. After 

the discussion of the results of air-Si interface, results for air-TiO2 interface are 

demonstrated below. 

Table 4.2. Average transmission in 8-13 µm spectrum for layer numbers of 2, 3 and 
4 with the ripple magnitudes of 0.05, 0.15 and 0.25, with center of wavelength 10 

µm for air-Si interface. 

a)  b)

c)  d)
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Figure 4.9. Transmission graphs with respect to wavelength, for ripple magnitude 0.05 
and 2 layers with center of wavelength 9.5, 10 and 10.5 µm for air-TiO2 interface. 

 

Figure 4.10. Transmission graphs with respect to wavelength, for ripple magnitude 0.05 
and 3 layers with center of wavelength 9.5, 10 and 10.5 µm for air-TiO2 interface. 
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Figure 4.11. Transmission graphs with respect to wavelength, for ripple magnitude 0.05 
and 4 layers with center of wavelength 9.5, 10 and 10.5 µm for air-TiO2 interface. 

  In figure 4.9, 4.10 and 4.11 effect of change of center of wavelength are examined 

by comparing the performances of the designs which have 0.05 ripple magnitude and 2, 

3 and 4 layers respectively. As in air-Si interface results, high transmission zone is shifted 

towards right as the value of center of wavelength increases and bandwidth enlarges as 

number of layers is increased. However, a decline in the transmission after 12 µm is 

observed. Discussion about this decline is given after the analysis of air-TiO2 interface 

for various ripple magnitudes. In figure 4.12, 4.13 and 4.14 transmission performance for 

the designs which has center of wavelength 10 µm but different ripple magnitudes are 

illustrated for 2, 3 and 4 number of layers. 



80 
 
 

 

Figure 4.12. Transmission graphs with respect to wavelength, for center of wavelength 
10 µm and 2 layers with ripple magnitudes of 0.05, 0.15 and 0.25 for air-TiO2 interface. 

 

Figure 4.13. Transmission graphs with respect to wavelength, for center of wavelength 
10 µm and 3 layers with ripple magnitudes of 0.05, 0.15 and 0.25 for air-TiO2 interface. 
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Figure 4.14. Transmission graphs with respect to wavelength, for center of wavelength 
10 µm and 4 layers with ripple magnitudes of 0.05, 0.15 and 0.25 for air-TiO2 interface. 

  When figure 4.12, 4.13 and 4.14 are examined it can be deduced that as ripple 

magnitude increases, transmission decreases which is similar in air-Si interface designs. 

However, decline after 12 µm is still present in the results. From these results, it can be 

seen that magnitude ripple is not the source of decline after 12 µm.  

 Source of transmission decline after 12 µm can be understood, if working 

principle of Chebyshev transform is considered. Since aim of Chebyshev transform is to 

maximize transmission between two interface by impedance matching, design procedure 

starts with impedance of two mediums. In equation 4.7, relationship between impedance 

and refractive index is given. Since refractive index varies with respect to wavelength, 

impedance of a medium is also dependent on wavelength. However, during the design 

procedure impedances of the mediums are assumed to be constant along the bandwidth 

of the Chebyshev transformer. Chebyshev transformer worked in a good way in air-Si 

interface, since Si has nearly constant refractive index in the 8-13 µm spectrum, however 

refractive index of TiO2 decreases gradually in that spectrum. Due to this change, high 

transmission in the shape of a straight line with respect to wavelength, with constant 

ripple, cannot be achieved around 12 µm, although it is achieved in air-Si interface for 2, 

3 and 4 number of layers. Decline in this spectrum causes performance drop in average 

transmission, which can be seen in table 4.3 and 4.4 for different conditions. 
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Number of Layers 
Center of Wavelength 9.5 µm 10 µm 10.5 µm 

2 92.43 93.05 93.44 

3 93.25 93.58 93.63 

4 92.39 92.92 93.29 

 

Number of Layers 
Ripple Magnitude 0.05 0.15 0.25 

2 93.05 92.14 89.61 

3 93.58 94.25 94.48 

4 91.97 91.97 90.00 

 Once results for the air-TiO2 interface are examined, theoretical design can be 

realized. In order to make this realization, materials which have close impedance values 

to the ideally calculated impedance values are required. Due to the fact that materials in 

real life may not have identical impedance values with the calculated ones, there would 

be an error between the theoretical and real design. 18 different performance comparisons 

are given above for air-TiO2 interface and selected 3 designs’ performances are 

demonstrated below. Before the implementation results, refractive index of some 

materials with respect to wavelength are given in table 4.5. 

 

 

 

Table 4.3. Average transmission in 8-13 µm spectrum for layer numbers of 2, 3 and 
4 at center of wavelengths 9.5, 10 and 10.5 µm, with ripple magnitude of 0.05 for 

air-TiO2 interface 

Table 4.4. Average transmission in 8-13 µm spectrum for layer numbers of 2, 3 and 
4 with the ripple magnitudes of 0.05, 0.15 and 0.25, with center of wavelength 10 

µm for air-TiO2 interface 
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Material 
Wavelength 9.5 µm 10 µm 10.5 µm 

BaF2 1.4081 1.4014 1.3941 

CaF2 1.3137 1.2995 1.2842 

LiF 1.1344 1.1005 1.0627 

MgF2 1.2070 1.1800 1.1562 

KCl 1.4583 1.4564 1.4545 

Materials given in table 4.5 are going to be used in the realization of the air-TiO2 

interface designs. First design that is going to be realized has center of wavelength 10.5 

µm, 0.05 ripple magnitude and 2 layers. Comparison of performances of theoretical and 

realized design’s is shown in figure 4.15. 

 

Figure 4.15. Comparison of theoretical and realized design performances in which 
center of wavelength is 10.5 µm, ripple magnitude is 0.05 and number of layers is two. 
In theory, average transmission in 8-13 µm range is %93.44, whereas in realization it is 

%93.16. 

Table 4.5. Refractive indexes of BaF2, CaF2, LiF, MgF2 and KCl for wavelengths of 
9.5, 10 and 10.5 µm which are going to be used in the realization of theoretical 

design of Chebyshev transformer. 
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In this design, ideal refractive indexes are calculated as 1.1287 and 1.3010. By 

looking at table 4.5, these refractive indexes are very close to indexes’ of MgF2 and CaF2, 

so realization is carried out with these materials. In theory average transmission in 8-13 

µm is calculated as %93.44 and in the realized design it is %93.16 which can be 

considered as a very close match. Next design to be realized is the 3-layer version of the 

design given in figure 4.15 for which performance comparison between theory and 

realized versions is given in figure 4.16. 

 

Figure 4.16. Comparison of theoretical and realized design performances in which 
center of wavelength is 10.5 µm, ripple magnitude is 0.05 and number of layers is three. 
In theory, average transmission in 8-13 µm range is %93.63, whereas in realization it is 

%93.29. 

  For this design, refractive indexes of the layers are calculated as 1.0627, 1.2842 

and 1.3941 which are very close to indexes LiF, CaF2 and BaF2 according to table 4.5. 

Average transmission is %93.63 in theory, whereas it is dropped to %93.29 when realized. 

Finally, implementation results for a design with center of wavelength 10 µm, ripple 

magnitude 0.05 and 4 layers are illustrated in figure 4.17. 
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Figure 4.17. Comparison of theoretical and realized design performances in which 
center of wavelength is 10 µm, ripple magnitude is 0.05 and number of layers is four. In 

theory, average transmission in 8-13 µm range is %92.92, whereas in realization it is 
%92.70. 

  Ideal refractive indexes for the design given in figure 4.17 are 1.4524, 1.3265, 

1.1976 and 1.0938 which can be realized by KCl, CaF2, MgF2 and LiF when table 4.5 is 

considered. In theory average transmission is calculated as %92.92 and it is %92.70 when 

realized. Similar to previous cases, realization is achieved by a slight difference in the 

performance. Once it is shown that air-TiO2 interface Chebyshev designs can be realized 

with marginal errors, these designs can be combined with the quarter wavelength design 

to decrease reflection in 8-13 µm range, which would result in increase in absorption.  

 Realized three air-TiO2 interface Chebyshev designs are combined with the 

quarter wavelength design and performance analysis is conducted in each case. Analyses 

include average reflection in the visible and near-infrared spectrum, reflection decrease 

in 8-13 µm spectrum and improvement of the absorption in that spectrum. Firstly, design 

with 10.5 µm center of wavelength, ripple magnitude of 0.05 and 2 layers whose 

performance is illustrated in figure 4.15 is combined with the quarter design and results 

are demonstrated in figure 4.18. 
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Figure 4.18. a) Reflectivity of quarter wavelength design with Ag combined with 
transmittance region, consists of 2 layers of MgF2 and CaF2. Average reflection from 

280 nm to 2.5 µm is 99.20 and it is %14.29 in 8-13 µm. b) Transmission to the substrate 
with respect to wavelength. c) Emission/Absorption of the design in which average 

emission in 8-13 µm is 85.69. d) Summation of reflection, transmission and emission 
coefficients which equals to 1. 

  To make  comparisons with  the  quarter wavelength  design with  Ag  spectral 

behavior of it with average values are going to be used. In the previous design, average 

reflection in 280 nm to 2.5 µm spectrum is %99.25 and it slightly drops to %99.2 when 

transmittance region is added. So, transmittance region designed for 8-13 µm spectrum 

does not alter the behavior in the visible and near-infrared spectrum. When emission of 

the previous design in the 8-13 µm is considered, emission percentage is %84.15 and 

reflection is %15.83. Absorption and reflection in that spectrum is changed to %85.69 

and % 14.29 when transmission region is added. It can be seen that nearly %1.55 

percentage of decrease in the reflection is added to absorption which is an expected 

behavior. Secondly, similar comparisons are made and graphs of the results are given 

below in figure 4.19. 

a) 

c) 

b)

d)
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Figure 4.19. a) Reflectivity of quarter wavelength design with Ag combined with 
transmittance region, consists of 3 layers of LiF, CaF2 and BaF2. Average reflection 
from 280 nm to 2.5 µm is 99.29 and it is %13.89 in 8-13 µm. b) Transmission to the 
substrate with respect to wavelength. c) Emission/Absorption of the design in which 
average emission in 8-13 µm is 86.10. d) Summation of reflection, transmission and 

emission coefficients which equals to 1. 

  When integrated from 280 nm to 2.5 µm spectrum, reflection percentage becomes 

%99.29 which is slightly higher than average reflection of the previous design. Reflection 

and absorption percentages are %13.89 and %86.10 in 8-13 µm spectrum. Decrease in 

reflection is around %1.95 which is equals to increase in emission, as in the case of 

previous analysis. Finally, design with 4 layers which has center of wavelength 10 µm 

and ripple magnitude 0.05 is added on top of a quarter wavelength design and results are 

shown in figure 4.20. 

a)  b)

c)  d)
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Figure 4.20. a) Reflectivity of quarter wavelength design with Ag combined with transmittance 
region, consists of 4 layers of LiF, MgF2, CaF2 and BaF2. Average reflection from 280 nm to 2.5 
µm is 99.22 and it is %13.04 in 8-13 µm. b) Transmission to the substrate with respect to 
wavelength. c) Emission/Absorption of the design in which average emission in 8-13 µm is 86.94. 
d) Summation of reflection, transmission and emission coefficients which equals to 1. 

  In this design, average reflection in 280 nm to 2.5 µm spectrum is %99.22 

percentage which is very close to the performance of the design which does not have 

transmission region. Mean reflection in the 8-13 µm is around %13.04, which is smaller 

than quarter wavelength design’s by %2.79. Absorption in that spectrum is %86.94, 

which indicates that %2.79 performance improvement is achieved by in 8-13 µm, when 

compared to quarter wavelength design. As in the case of previous comparisons, decrease 

in reflection results in increase in absorption. When cooling performance of this design 

is analyzed, it is observed that %2.79 increase in absorption in the 8-13 µm spectrum, 

results in 5 W/m2 increase in the cooling power. 

 In this chapter, an indirect way of improving absorption performance in the 8-13 

µm is discussed and related results to discussion are illustrated. By using Chebyshev 

polynomials, which are used in impedance matching, a transmission region is created 

between air and TiO2 whose aim is to decrease reflection on the front surface. It is 

observed that absorption is increased by the amount of decrease in reflection when 

transmission region is added. Based on this finding, a new design with an antireflective 

coating which covers entire atmospheric transmittance window can be developed which 

minimizes reflection loss in that spectrum. Then, transmitted components can be absorbed 

to increase cooling power in radiative cooling applications.  

a)  b)

c)  d)
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5   CONCLUSION 

In this thesis, spectral behaviors of different thin film coating systems are 

examined in order to end up with new radiative cooling designs that have improved 

performance. For that purpose, a model is used which is able to obtain reflection, 

absorption and transmission of a multilayer thin film system depending on number of 

layers, optical properties of the materials from which the layers are composed, thicknesses 

of the layers, incidence angle and wavelength. Before design studies, for the performance 

evaluations, heat dynamics between an object and its surroundings are expressed with the 

equations and incident solar irradiance depending on date and location is calculated. 

Finally, optical properties and spectral behaviors of the several materials are investigated 

and results are demonstrated to find materials that can be used in a radiative cooling 

designs. 

 For the design studies, initially a design given in the literature is developed and 

performance of it is evaluated.  Then it is shown that by changing number and thicknesses 

of the layers, emission in 8-13 µm range can be increased. Also, by including extra layers 

composed of materials which have emission in the 8-13 µm spectrum also improves the 

emission performance even without increasing overall thickness and reducing reflection 

in 400 nm to 2.5 µm spectrum. Based on these findings, new designs can be developed 

which highly emits energy to outer space. 

 Secondly, another approach is used which alters the design structure given in the 

literature dramatically. Its novelty is the way of obtaining high reflection in 400 nm to 

2.5 µm spectrum. With the proposed method given in this thesis, quarter wavelength 

design, high reflection zone in the 400 nm to 2.5 µm spectrum can be generated by using 

only dielectrics, which does not cause inevitable absorption in that spectrum, as metallic 

layers used in the previous designs do. Also, using dielectric materials to create high 

reflection zones, which have emission in the 8-13 µm spectrum, increases the emission 
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in 8-13 µm spectrum. Reason for this performance improvement in the emission is the 

increased number of emitting layers, which is an expected outcome when previous 

findings given in this thesis are considered. Only negation of this design is the increased 

number of layers which would cause difficulties in the production process. As a result of 

material investigations, TiO2 and SiO2 are chosen as best materials for the design. 

Reflection of this design in the 400 nm to 2.5 µm spectrum is around %99 percentage and 

it has %85 percentage emission in the 8-13 µm spectrum which corresponds to 103 W/m2 

cooling power.  

 Finally, another novel way of increasing the performance of the overall system in 

an indirect fashion is proposed. By using Chebyshev transform impedance matching 

technique, reflection on the front surface of the quarter wavelength design in the 8-13 µm 

spectrum is decreased by including Chebyshev layers between air and TiO2. Decrease in 

reflection is resulted in increase in absorption in that spectrum. This behavior occurs, 

because transmission percentage of the quarter wavelength design remains as it is when 

Chebyshev layers are added, since structure of it is not altered. However, considering the 

fact that Chebyshev layers decreases the reflection on the front surface of the multilayer 

system, absorption in that spectrum increases in order to balance the reduction in the 

reflection. Balance is created by increase in absorption certainly, because transmission of 

the multilayer remains as it is.  

 In conclusion, aim of performance improvement of radiative cooling in the 

presence of solar irradiation is achieved greatly with the proposed methods given in this 

thesis. Intuition behind those methods and corresponding results are summarized above 

in the conclusion section. Below, reason for novelty of those methods are explained by 

discussing their contribution to the literature. 

 Previous designs given in the literature are based on optimization methods and 

include a metallic layer, which generally absorbs solar irradiance, for broadband 

reflection. However, as mentioned several times throughout the thesis, presence of such 

metallic layer limits the reflection percentage. When such layer is excluded from the 

design, average reflection drops to extremely low percentages and makes radiative 

cooling impossible. It would be difficult to generate high reflection requirement without 

a metallic layer with the optimization methods. To overcome such problem, quarter 

wavelength method is proposed in which sub-designs are developed to generate high 
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reflection zones in the desired spectrum and brought together to cover entire visible 

spectrum with high reflection. It is an entirely new approach for radiative cooling system 

designs with improved performances over the designs given in the literature. 

Usage of Chebyshev transform in this field is the other novelty of this thesis. 

Chebyshev transform is an impedance matching technique to maximize transmission 

mainly used in microwave engineering. Although there are methods for increasing 

amount of absorption with Chebyshev transform [49], proposed way of achieving this is 

entirely different in this thesis. This is achieved by including air gaps between absorbing 

mediums with Chebyshev designs. However, proposed method does not include air gaps 

and materials that are used does not absorb in the desired spectrum. So, Chebyshev 

transformation is designed in a way that it is used to maximize transmission and combined 

with the previously designed periodic quarter wavelength design. As a result, Chebyshev 

transform maximizes the transmission onto the periodic design, by minimizing the 

reflection on the front surface of it. Since transmission of periodic quarter wavelength 

design is almost zero, equality given in 1.1 is satisfied by absorption increase to balance 

reflection decrease on the front surface. So with the combination of two different designs, 

absorption/emission in the 8-13 µm spectrum is increased in an indirect fashion. 

Based on these improvements, it can be deduced that different design approaches 

given in the literature would yield outstanding performance improvements. Also, studies 

and proposed design methods contribute to the literature with their novelty. 
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