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Optimization of Capacitive Micromachined Ultrasound Transducers (CMUTs) for High-

Frequency Medical Ultrasonic Imaging System 

Keywords: High Frequency CMUT, High Resolution Medical Imaging, Pulse-Echo 

Optimization, Circuit Model for Ultrasonic Imaging. 

Abstract 

Conventional ultrasonic imaging systems use piezoelectric transducers for the generation 

and reception of the acoustic signal. Since its invention in 1994, the Capacitive 

Micromachined Ultrasound Transducer (CMUT) has been subjected to research as an 

alternative technology. Major advantages of the CMUT over traditional piezoelectric 

ultrasound transducers include higher bandwidth, higher sensitivity, CMOS compatibility, 

and ease of manufacturing (by the use of standard lithography techniques.) Increasing the 

dynamic range, decreasing the parasitic capacitance and cross coupling are the major goals 

in CMUT designing specially for medical imaging applications. The work in this thesis 

aims the optimization of a high-frequency (20 MHz) CMUT array to be used for high-

resolution medical imaging. The figure of merit has been chosen as the signal-to-noise ratio 

of the electrical return signal, which required the construction of a model for the entire 

pulse-echo operation. Such a model consists of: (1) a circuit model for the device itself, (2) 

a model for the radiation impedance, and (3) a model for the propagation medium. The 

CMUT model has been extensively studied in the literature. An already existing circuit 

model has been used in the simulations. The radiation impedance of the CMUT array was 

computed using Finite Element Analysis (FEA) software packages COMSOL 

Multiphysics® and ANSYS®, and converted to an equivalent circuit to represent the load 

in the circuit simulator. The pulse-echo model, which is entirely implemented in LTspice 

circuit simulator, was then used to optimize CMUT parameters that include radius, 

membrane thickness, and gap height to maximize signal-to-noise ratio. 
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Yüksek Frekans Tıbbi Ultrasonik Görüntüleme Sistemleri İçin Kapasitif Mikroişlenmiş 

Ultrasonik Dönüştürücülerin (CMUTs) Optimizasyonu 

Anahtar Kelimeler: Yüksek Frekanslı CMUT, Yüksek Çözünürlüklü Tıbbi Görüntüleme, 

Darbe-eko Optimizasiyonu, Ultrasonik Görüntüleme İçin Devre Modeli 

Özet 

Geleneksel ultrasonik görüntüleme sistemleri, akustik sinyalin üretimi ve alımı için 

piezoelektrik dönüştürücüler kullanmaktadırlar. 1994 yılında bulunmasından bu yana, 

Kapasitif Mikroişlenmiş Ultrason Dönüştürücü (CMUT) alternatif bir teknoloji olarak 

araştırmaya tabi olmuştur. Geleneksel piezoelektrik ultrason dönüştürücüler üzerinde 

CMUT’ın  önemli avantajları daha yüksek bant genişliği, daha yüksek hassasiyet, CMOS 

uyumluluk ve standart litografi teknikleri kullanılmasıyla elde edilen imalat kolaylığıdır. 

Özellikle tıbbi görüntüleme uygulamaları için geliştirilen CMUT tasarımlarında parazitik 

kapasiteleri ve eşleşmeleri azaltmak, dinamik aralığı artırmak önemli amaçlardır. Bu tezde 

yüksek çözünürlüklü medikal görüntüleme için kullanılacak yüksek frekanslı (20 MHz) 

CMUT dizisinin optimizasyonu amaçlamaktadır. Başari ölçütü, bütün darbe-eko işlemi için 

bir modelin geliştirilmesi için gereken elektrik geri dönüş sinyalinin sinyal-gürültü oranı 

olarak seçilmiştir. Bu tür bir model aşağıdakilerden oluşmaktadır (1) cihazın kendisi için 

bir devre modeli, (2), radyasyon empedansi için bir model ve (3) Yayılma ortamı için 

model.  

CMUT model literatürde çok araştırılmıştır. Zaten varolan bir devre modeli 

simülasyonlarda kullanılmıştır.CMUT dizi yayın empedansı, Sonlu Eleman Analizi (FEA) 

yazılım paketleri ile COMSOL Multiphysics ve ANSYS kullanılarak hesaplanmıştır, ve 

devre simülatöründeki yükü temsil etmek üzere bir eşdeğer devre modele 

dönüştürülmüştür. Tümüyle LT SPİCE devre simülatöründe gerçeklenen darbe-eko 

modeliyle CMUT parametrelerinden yarıçap, membran kalınlığı ve boşluk boyu 

kullanilarak sinyal gürültü orani optimize edilmiştir. 
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1. Introduction 

 

 

 

 

Capacitive Micromachined Ultrasound Transducer (CMUT) [1-3] is a flexible 

membrane suspended over a substrate with spacing in sub-micrometer range. Two 

electrodes are placed in membrane and substrate in parallel-plate capacitor 

configuration, actuating the device in ultrasound frequencies. Ultrasound is a type of 

acoustic wave with frequencies above the audible range of human beings (>20 kHz). 

CMUT applications mostly include air-coupled nondestructive testing [4-5], medical 

imaging [6-8], and High Intensity Focused Ultrasound (HIFU) [9-10]. There are many 

advantages and challenges regarding the CMUT arrays in comparison with traditional 

piezoelectric transducers. Advantages of CMUT array are mentioned such as improved 

impedance match in both fluid and air [15-16].With good impedance matching it is 

possible to reach wider bandwidths. Piezoelectric transducers have fractional 

bandwidths of 60%-80%, however fractional bandwidth above the 100% can be easily 

achieved using CMUTs.  The bandwidth is an important parameter in determining the 

image resolution: wider bandwidths result in better image resolution. In-vitro 

comparison of image quality between CMUT arrays and piezoelectric transducers 
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shows improvement in the radial resolution [17-18], significant enhance in the contrast, 

and field of view in images received from CMUT arrays [19].  

Another great advantage of CMUT over piezoelectric transducers is the manufacturing 

process. The photolithographic techniques enable very small dimensions both in depth 

and laterally and meet the needs for small elements and minimal distance between 

adjacent elements which is important factor in high frequency ultrasound imaging. 

Micromachining fabrication involves parallel processing of several wafers; hence, the 

production cost can be low when a process is optimized. Also the integration of CMUT 

and transmit circuitry can be realized using through wafer vias and 3D-stacking of the 

transducer chip and several IC chips [20-21].   

Drawback of CMUT in medical imaging is low sensitivity leading to limited penetration 

depth [22-23]. Different membrane sizes and shapes have been proposed to increase the 

transmission and reception efficiency such as using rectangular configuration [24]. Also 

dual electrode CMUT configuration is proposed to enhance the receive mode sensitivity 

[25-26]. 

Charging effect is another problem in CMUT and MEMS devices [27-30]. Due to the 

strong electric field within the transducer cavity or during the fabrication process, the 

charging effect may happen. This phenomenon may prevent the membrane from 

snapping-back after collapse in collapse mode operation regime of CMUT due to the 

creation of electrostatic force results in degraded performance and reliability and 

lifetime of device [31].  

One of most important phenomena which affects device performance and should be 

controlled is acoustic cross-talk. It happens between fluid-structure interfaces and also 

through the supporting structure (substrate). Creation of acoustic waves due to the 

vibration of CMUT membrane is coupled to adjacent element and degrades the CMUT 

array performance. Surface Acoustic Waves (SAWs) propagate through substrate and 

dispersive guided modes which are generated in fluid-CMUT interfaces are two main 

contributions of acoustic cross-talk in CMUT arrays [32-33]. CMUT membrane 

vibration creates longitudinal waves propagating into the substrate which maybe 

reflected from bottom of substrate and picked up by CMUT and consequently degrade 
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the radiation pattern of array. Using the backing layer in substrate is proposed as a 

solution [34-35].Thinning the substrate to increase the substrate resonance frequency to 

levels above the frequency range of interest is another solution. However, in thin silicon 

substrates, plate modes, such as Lamb waves may be excited [36]. One solution to 

overcome this problem is introducing deep trench isolation between neighboring CMUT 

elements [37].  

1.1 CONTRIBUTION  

Tunable parameters of the CMUT include the membrane material, radius and thickness, 

gap height, electrode size. The operation frequency, bandwidth, input and output 

sensitivity requirements may vary for different applications. Usually, improving one 

operational parameter results in the degradation of the other, hence a compromise 

solution is required. In medical imaging, for example, the device will be used in 

pulse-echo mode for which both good receive sensitivity and high output pressure is 

required. In this study, we investigate the round-trip behavior of the transducer and 

show that there is an optimal set of operational parameters that results in the largest 

pulse-echo signal output and best signal-to-noise ratio (SNR). 

An optimization study can be conducted by the use of analytical and/or numerical 

models for the device. Circuit modeling of CMUT arrays is preferred upon the Finite 

Element Analysis (FEA) due to the time consumption of FEA and acceptable accuracy 

of circuit simulator. Recently, analytical and computational models for the CMUTs 

have been developed [11-14]. Nonlinear modeling of CMUT array demonstrated 

accurate results in comparison with FEA [38]. One important circuit component in 

lumped modeling of CMUT cell is the radiation impedance. Since fluid coupling 

through the immersion medium results in acoustic cross-talk, the radiation impedance 

model for a multitude of CMUT cells depends on the topology of CMUT elements and 

cell to cell spacing [39]. Existing models for the self and mutual radiation impedance of 

CMUT cells have been exploited for the construction of an equivalent circuit model 

with appropriate bandwidth, which is meticulously discussed in chapter 3.  

The organization of this thesis is as follows: 
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Chapter 2 discusses high frequency medical ultrasound imaging systems and then deals 

with different operating regimes of the CMUT and shows possible plate modes of 

CMUT membrane. 

Chapter 3 studies the three modeling types of an array of immersed circular CMUT: (i) 

analytically, (ii) finite Element Method (FEM), and (iii) equivalent circuit modeling.  

Chapter 4 presents the design of circular CMUT array operating in 20 MHz and studies 

the optimizing the device parameters in order to achieve the largest return echo and the 

best signal-to-noise ratio for pulse-echo medical imaging system. 
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2. Medical Ultrasound Imaging 

 

 

 

 

2.1 History 

After Titanic Crashed into an iceberg and sank in 1912, Paul Langevin was 

commissioned to invent a device that detects the objects at the bottom of the sea. His 

inspiration by the Titanic sinking leaded to invent a first hydrophone in 1915, what the 

World Congress Ultrasound in Medical Education refers to as the first transducer. The 

development of first SOund Navigation And Ranging (SONAR) system where the 

distance to object were measured using transmission and reception of sound waves is 

accomplished during the World War I [40].  

The knowledge of pulse-echo from SONAR and RADAR systems were eventuated in 

using the ultrasound technique in medicine after World War II when Karl Dussik, a 

neurologist and physicist at University of Vienna, used the ultrasound for medical 

diagnosis of human brain tumor in 1942. In 1948 George Ludwig first described the use 

of ultrasound in diagnosis of gallstones. Ultrasound scanners have become a popular 

diagnostic tool in many areas of medicine. Most well-known are probably abdominal 

and obstetric imaging and echocardiography (imaging of the heart). 
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Ultrasound is in most cases a non-invasive imaging technique. As long as guidelines are 

followed, it has no known harmful effects, which is an advantage compared to x-ray, 

computed tomography (CT) imaging and Positron Emission Tomography (PET). 

Another important advantage of ultrasound is its lower cost and that it is more portable 

than PET, CT scanners and magnetic resonance imaging (MRI). The portability of 

ultrasound scanners have improved dramatically during the last few years, when 

handheld and laptop size scanners have become available [41]. 

2.2 Working Principles of Ultrasound Imaging 

In solids, sound waves can be both longitudinal and shear (transversal). In longitudinal 

waves, the particle motion is in the same direction as the wave, whereas in shear waves, 

the particles move perpendicular to the propagation direction of the wave. For a shear 

wave to travel, the medium must be rigid. As one particle begins to move it must be 

able to pull on its nearest neighbor. If the medium is not rigid as is the case with fluids, 

the particles will slide each other. This sliding action prevents one particle from pulling 

its neighbor in a direction perpendicular to the energy transport; hence, waves traveling 

through a bulk of fluid (liquid or gas) are always longitudinal. Human tissues are often 

modeled as a fluid due to high water content of human body. Hence, shear waves are 

usually disregarded in medical ultrasound modeling. However, the shear waves must be 

taken into account in transducer design, since the materials in the ultrasonic transducers 

are solids. 

 

Figure 2-1: Shear and Longitudinal Wave illustration 
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The difference in acoustic impedance of various kinds of human tissue (e.g. fat, muscle, 

bone, connective tissue, blood) is the basis of ultrasonic imaging. To collect data for the 

image, an ultrasonic pulse is transmitted into the body by a transducer and as the wave 

hits the various layers of tissue, the wave will be partially transmitted and partially 

reflected as illustrated in Figure 2.2. The transducer then records the reflected signal 

and based on the time-of-flight, the system calculates the depth of the object which 

reflected the signal.  

 

Figure 2-2: Transmission and reflection of sound wave at the interface between two 

materials with different acoustic impedance 

In order to construe an image, the beam steering of device should be used which is the 

sending ultrasound waves to many directions and recollecting the echo pulses from 

those directions. Beam steering can be done by two approaches: Mechanically beam 

steering and electronically beam scanning. As it is illustrated in Figure 2-3, 

mechanically beam steering involves the moving transducer with a motor in order to 

scan the desired area which has a lot of problems but at the other hand, electronically 

beam scanning is introducing the time delay for each element of transducer in array and 

is accurate at the cost of complexity of device. 
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Figure 2-3: Beam steering and ultrasound image formation 

2.3 Image Quality 

In this section, the parameters that define the quality of the ultrasound image are 

considered. One of the most important parameter should be considered is the spatial 

resolution. 

2.3.1 Spatial Resolution 

Spatial resolution is the ability to distinguish between objects located at different 

positions in space. Spatial resolution is divided into two components: axial resolution 

and lateral resolution. Axial resolution is the ability to distinguish between echoes 

coming from two objects lying one behind the other along the axis of the ultrasound 

beam. It is sometimes refers as depth resolution. It is expresses as: 

2 2

pc T c
S

B


  


 

Eq. 2-1 

 

 



9 

 

where Tp is the pulse length, B is the pulse bandwidth and c is the speed of sound 

inhuman tissue (~1540 m/s). Eq. 2.1 shows that the axial resolution is depended on 

operation frequency of transducer, pulse width and bandwidth of transducer.  

Lateral resolution is the ability to distinguish between two objects placed side by side in 

a direction perpendicular to that of ultrasound beam. Figures 2-4 and 2-5 illustrate the 

axial and lateral resolution respectively. The lateral resolution depends on the beam 

width at the focus point which is defined as [42]: 

. . #
F

l k k f
D





    Eq. 2-2 

the # rf
a

 where r is the focal depth and a is the active aperture of the transducer, D is 

the aperture size and k is a scaling constant. It is clear that the lateral resolution could be 

improved by increasing the frequency. The resolution will also be improved by small 

separation between the beams. The scaling constant depends on the shape of the 

transducer. The lateral resolution changes with depth while the radial resolution is quite 

constant with depth. Both the radial and lateral resolution will influence objects that are 

smaller than the resolution size. These objects will appear to be at least the resolution 

size even though the objects are smaller. 

 

Figure 2-4: Axial resolution where objects are placed side by side along the beam 

direction 
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Figure 2-5: Lateral resolution where two objects are place side by side perpendicular to 

the beam direction 

High frequency is good for the image resolution, however, as the operation frequency 

increases, the attenuation increases. For example the attenuation in human soft tissue is 

0.5 dB/cm/MHz. Thus, high frequency transducers are best suited for superficial 

imaging applications. 

 

 

 

 

 

 

 

 



11 

 

 

 

 

 

 

3. Capacitive Micromachined Ultrasound 

Transducer 

 

 

 

 

The Capacitive Micromachined Ultrasound transducer (CMUT) is a flexible membrane 

which first converts the electrical energy to mechanical energy as vibration and second 

converts the mechanical vibration to acoustic energy. CMUT has the potential of 

replacing the piezoelectric transducer especially in medical ultrasound field due to 

higher bandwidth and other prominent characteristics which have been discussed in the 

previous chapters. The following chapter will emphasize on CMUT operation principles 

and modeling techniques of CMUT array. 

3.1 Basic Principles of CMUT 

The basic operation principles of CMUT could be understood by examining the 

Figure 3-1 which depicts the cross section view of a single CMUT cell.  As it can be 

inferred from the figure, a CMUT is a parallel plate structure constructing a capacitor. 

When a DC voltage is applied to embedded electrode in the membrane and grounded by 

substrate (bottom electrode),  
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Figure 3-1: Cross section view of single CMUT cell (dimensions are not in the scale for 

better visualization) 

the generated electrostatic force leads to the deflection of membrane toward substrate 

and then by applying an AC voltage, the membrane starts to oscillate and transmit the 

ultrasonic waves into the medium. In this operation mode, CMUT is used as transmitter. 

However, if a DC biased CMUT is subjected to ultrasound pressure waves, the incident 

waves eventuate in vibration of membrane leading to harmonic change in charge 

density of membrane and consequently the change in capacitance which results in AC 

output current. CMUT is acting as receiver in this operation mode.  

Increasing the biased voltage will eventuate in pulling the membrane toward the 

substrate as it is illustrated in Figure 3-2.  
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Figure 3-2: Deflection profile of CMUT membrane with 30µm radius for biased 

voltages between 100V and 150V 

However, if the biased voltage further increased so that the mechanical restoring force 

couldn’t tolerate the increased electrostatic force, the membrane will be pulled into 

collapse. The possibility of operating CMUT in collapse mode has been demonstrated 

[43-44]. 

3.2 Modeling of CMUTs 

The development of models for the design of transducers is an essential study as brute 

force experimentation without tuning the device parameters can be cumbersome and 

time consuming and expensive. Models are usually based on the physics of the device, 

and expressed as relatively complex analytical equations. While optimization might be 

carried out analytically, the complexity of the models might usually require some 

simplifying assumptions, or even the use of numerical tools. Yet another practical 

method is to model the device behavior by means of a lumped electrical circuit, which 

then might be fed to a circuit simulator to sweep a wide range of parameters for 

optimization in a very efficient way. The validity of analytical and circuit models can 

be tested by the use of a very powerful numerical tool known as the Finite Element 

Method (FEM) which provides results as accurate as a physical experiment. 
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In equivalent circuit modeling, the mechanical parameters like mass, stiffness, and 

velocity are represented in electrical parameters and circuit components like capacitor, 

resistor or current[48].Physical phenomenon in many engineering applications might be 

explained in terms of partial differential equations, which can be solved analytically for 

simple systems. The equivalent circuit modeling of CMUTs begin by solving the 

differential equation of the membrane motion and then, calculating the mechanical 

impedance of the membrane [48]. On the other hand, the idea of dividing a particular 

shape into finite elements connected by nodes in Finite Element Analysis (FEA) makes 

it possible for analyzing complex systems and structures. FEA provides very accurate 

solutions for several problems including structural, thermal, electromagnetic, fluids, 

multi-body and coupled-field environments by using a numerical approach. 

3.2.1 CMUT Analytical Modeling 

The key parameters for the designing of a CMUT cell are the membrane thickness, 

diameter and the cavity height. These dimensions together with the magnitude of the 

DC bias voltage can be adjusted to obtain the transducer’s center frequency, bandwidth, 

and transmit and receive sensitivity. Stiffness and size of CMUT cell membrane 

determine the central frequency where the small and stiff membranes result in high 

resonance frequency. The cavity depth (gap height) determines the maximum output 

pressure, the more membrane deflection, the more output pressure is. For a given center 

frequency, choosing the membrane size typically requires a tradeoff between bandwidth 

and sensitivity. For the CMUT cell designing purposes, one can use Finite Element 

Analysis (FEA) or CMUT circuit model for obtaining the device dimensions. Since it is 

time consuming using FEA and even CMUT circuit model; using analytical expressions 

is a quick start-up for obtaining the first draft dimensions and then further by FEA or 

CMUT circuit model.  

For the deflections which are small in comparison with membrane thickness, modeling 

the circular CMUT membrane as spring-mass system is approved. The equivalent 

spring constant and mass can be formulated as Eq. 3-1 and Eq. 3-2[45]: 
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21.84m a t   Eq. 3-2 

where D, E, ν, a, and t are plate flexural rigidity, membrane material’s young modulus, 

Poisson’s ration of membrane material, membrane radius, and thickness respectively. 

We can think of radiation impedance as plane–wave radiation impedance which is 

shown in Eq. 3-3. 

2

b radR a R  Eq. 3-3 

  

The undamped resonance frequency and mechanical quality factor could be extracted 

from these expressions. So for designing the CMUT cell using the following equations 

which express the thickness, membrane radius and gap height is beneficial [46]. 
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Eq. 3-5 

where mechanical quality factor, Q, is expressed in Eq. 3-6. 

 

3

2 2
5.43

1

m

rad

t E
Q

a R









 

Eq. 3-6 

In order to determine the gap height, the maximum DC biased and applied AC voltage 

of system could be converted in the term of pull-in voltage which effectively depends 

on gap height. The pull-in voltage could be express in term of gap height as Eq. 3-7. 
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Rearranging the Eq. 3-7 gives the gap in term of pull-in voltage. 
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Eq.3-8 

The first approach of designing CMUT cell is related to decide of resonance frequency. 

As it seems from Eq. 3-9 there are a lot of CMUT membrane radius and thickness 

whose values satisfy the criteria of operating the CMUT in constant resonance 

frequency.  
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Eq. 3-9 

However, there are other parameters which should be taken into account. As the 

membrane radius increases, the bandwidth decreases due to the increasing the stiffness 

and mass. So, stiffer membranes have lower bandwidth in comparison with softer 

membranes operating in the same resonance frequency. Also the center of membrane 

can move above the relaxed position of it in stiffer (small bandwidth) membrane 

resulting in higher output pressure. It has been shown that for a fixed gap height and 

resonance frequency, applying 60% of collapse voltage will result in maximum output 

pressure [47].  

3.2.2 Finite Element Method 

A finite element method is a strong tool for modeling MEMS devices as well as CMUT. 

FEM is the most accurate for a number of reasons. It has the ability to incorporate the 

exact shape and size of the devices hence, all the nonlinear behavior of device could be 

modeled. For analyzing the CMUT array in immersion, CMOLSOL Multiphysics® and 

ANSYS® was used in this thesis. For analyzing the CMUT array, three physical 

domains were incorporated in the simulation domains: a) Electrostatic domain for 

modeling the applied voltage and calculating the capacitance and electrostatic force; b) 
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Mechanical domain for coupling the electrostatic force to this domain and studying the 

membrane deflections and other parameters; c) Acoustic domain for coupling the 

mechanical vibration to surrounded medium and study the generated output pressure.  

For analyzing the CMUT array some assumptions are made. First, it is assumed that all 

the CMUT cells in array have identical behavior. Based on this assumption, CMUT 

array is simplified to a single CMUT cell. However, in order to incorporate the whole 

cells behavior, boundary conditions are adjusted so that the software considers it as a 

whole device. Second, it is assumed that the topology of placing the device in array is 

square placing rather than hexagonal topology for simplicity due to the difficulties of 

changing the orientation axis of simulation. Based on these assumptions, a 3-D CMUT 

structure is modeled in COMSOL.  

Using analytical equations is the good start up for choosing the device parameters. After 

deciding about device dimensions, the second step in FEM simulation is Eigen-

Frequency analysis of device to obtain the device first resonance frequency and adjust 

the dimensions if needed.  Figure 3-3 shows the plate modes of CMUT membrane 

which used to find the CMUT resonance frequency.  
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a)  

 

b)  

 

c)  

 

d)  

Figure 3-3: First 4 Modes of CMUT membrane. 

 

The Eigen-frequencies are a) 21.13MHz b) 44.66MHz, c) 71.48 MHz, d) 81.28 MHz.  
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The dimensions of CMUT cell which are used to obtain the central frequency of 20MHz 

is listed in table 3-1.  

Parameter Description Value 

a Membrane radius 20µm 

ti Bottom & top insulation layer 300nm 

tg Cavity height 100nm 

tm Membrane thickness 3µm 

te Embedded electrode thickness  100nm 

Table 3-1: CMUT cell dimensions for operating in 20MHz 

 

Silicon Nitride (Si3N4) and Gold (Au) are used as the membrane and electrode materials 

and the material properties are taken from COMSOL material library.  

Another analysis which could be done for obtaining the device behavior is frequency-

harmonic perturbation analysis.  

Since 3-D FEA requires a relatively large mesh in this analysis, the quarter of the 

CMUT membrane is considered. In order to analyze the structure, symmetry boundary 

conditions are applied. The waveguide structure is used for modeling the surrounding 

fluid which is water (to mimic the human body.) The cell to cell distance is selected to 

be 5 µm due to the fabrication requirements. Also in frequency analysis there should be 

an absorbing boundary at the end of the waveguide so that could prevent the reflections 

which will affect the frequency response of system. In COMSOL Multiphysics®, 

Perfectly Match Layer (PML) could be used for introducing the absorbing boundary to 

the system. Also in order to model the CMUT in array, introducing the periodic 

boundary is the only way for modeling the CMUT in array. Continuity periodic 

boundary condition assumes that there are an infinite number of devices working 

identically around the system.  Figure 3-5 demonstrates that the generated output 

pressure is 10.35 MPa when the transducer is driven by 100V bias and 80V AC voltage 

for a 20µm CMUT cell membrane.  
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Figure 3-4: quarter structure of CMUT cell

 

Figure 3-5: Generated 10.35 MPa peak-to-peak output pressure of CMUT array in 

immersion  operating in 20MHz with radius of 20µm driven by 100V DC and 80V AC 

sources. 

Also the frequency response of this system is examined and the result is shown in Figure 

3-6 
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Figure 3-6: Membrane deflections for frequency ranges 5MHz-35MHz for CMUT cell 

with 20µm radius 

Since this type of designed CMUT is stiffer one, the bandwidth of 4.7MHz which is 

smaller in comparison with other designs and is roughly equals to 25% fractional 

bandwidth, the center of membrane moved above the relaxed position resulting in high 

output pressure.  

3.2.3 Equivalent Circuit Modeling 

Mason’s equivalent circuit model are generally used in modeling the CMUT which 

consists of series LC sections which L and C represents the mass and stiffness of 

membrane, respectively. When the device is immersed, it is necessary to consider the 

terminating radiation impedance in the equivalent circuit in order to represent the 

device behavior correctly. The radiation impedance of an aperture is determined by the 

particle velocity distribution across the aperture. The particle displacement and the 

velocity profile across circular clamped membranes are not uniform and can be very 

well approximated as [49]: 
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2
( ) ( 1) 1
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avg

r
r n

a
 

 
   

 
for r < a 

Eq. 3-10 

where a is the radius of the radiator, r is the radial position, vavg is the average velocity 

and n is an integer that determines the structure of the profile. Case n = 0 is dedicated to 
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the velocity profile of a rigid piston and n = 2 accurately matches to the profile of a 

clamped membrane which is the case for CMUT membrane.  

 

Figure 3-7: Cross-section view of CMUT geometry [50] 

If a biased voltage is applied to CMUT electrode and driven by an AC voltage such that  

V(t)= VDC + VAC(t); the total electrostatic force acting on membrane can be expressed 

as [52]: 
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Eq. 3-11 

where xp(t) is the peak displacement at the center of the membrane, and C0 is the initial 

capacitance of CMUT membrane when no deflection is proposed.  

The current flowing through electrodes of CMUT could be analyzed by evaluating the 

derivative of stored charge on membrane which yields:  
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Eq. 3-12 

where Icap(t) is the capacitive current and ic(t) is induced by membrane motions and is 

referred as velocity current which also could be expressed as 
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Eq. 3-13 

As it is illustrated in Figure 3-8, in the electrical part of the equivalent circuit which is 

left side of the circuit, C0 is the shunt input capacitance of the CMUT, ic is the nonlinear 

component of the capacitive current, and ivel is the motion-induced current according to 

Eq. 3-29. The mechanical part of the circuit is on the right-hand side. The electrical 

attraction force, fR, and the force exerted by the atmospheric pressure, Fb are 

represented by voltage sources. The mass and the stiffness of the plate are represented 

by an inductor, LRm, and a capacitance, CRm, respectively. The parameter N represents 

the number of cells in an array and provides scaling to the equivalent circuit. As it is 

appears from Eq. 3-29, the behavioral current and voltage sources in the circuit require 

the instantaneous peak displacement of the plate, xP, as a parameter which is 

represented by dividing the restoring force of the plate, FRm, by the plate stiffness.  
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Figure 3-8: Electrical Circuit model of Capacitive Micromachined Ultrasound 

Transducer (CMUT) array [9] 

The electrical attraction force, fR, could be calculated by 
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Eq. 3-14 

where tge is the effective gap height and expresses as 

i
ge g

i

t
t t


   

Eq. 3-15 

The force exerted by atmospheric pressure is formulated as 

2

0

5

3
bF P a  

Eq. 3-16 

The membrane mass which is represented by inductance is 
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2

Rm mL t a   Eq. 3-17 

and the capacitor stands for stiffness of membrane 
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Eq. 3-18 

where σ and Y0 are the Poisson’s ratio and Young’s modulus of the plate material, 

respectively. 

Since it is very time consuming process for optimizing the device parameter using FEM 

simulation, the equivalent circuit model is preferred over the finite element analysis and 

the results of circuit model is in good agreement of FEM results. However, modeling 

the radiation impedance plays a key role in accuracy of circuit model.  
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4. Optimization of the Pulse-Echo Response of 

a CMUT Transducer 

 

 

 

In the study of the CMUT, scientists have been optimizing various properties of the 

transducer such as gain-bandwidth product, output pressure, and input sensitivity. A 

medical imaging system uses the same transducer for insonification and for listening to 

the return echo. Consequently, a more meaningful figure-of-merit would be the overall 

pulse-echo response of the system. This work analyses the pulse-echo response of the 

CMUT transducer to tune the device parameters so that, (i) the return echo amplitude is 

maximized, and (ii) the signal-to-noise ratio (SNR) is maximized. 

  

Figure 4-1: Layout of the CMUT ring array: Top view (left), detail (right). 
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The analysis presented in this chapter is based on a case study. For a particular imaging 

device, a high frequency (20 MHz) 4-element ring array was required. Various other 

design requirements lead to a device with radius 1.75 mm, for which the outer ring is as 

small as 234 µm in thickness (Fig.4-1). Construction of such a device using 

piezoelectric transducers is extremely difficult, especially due to the difficulty in 

manufacturing such small structures, and the precision required for the matching layers. 

Due to the advantages of Capacitive Micromachined Ultrasound Transducer (CMUT) 

over piezoelectric transducer, such as being manufactured using standard lithography 

techniques (so that fine structures can be easily manufactured) and providing higher 

bandwidth especially in high frequency ranges, designing the transducer with CMUT is 

preferred. 

The first step in designing the CMUT transducer is determining device dimensions 

based on the target operation frequency. As shown by Eq.3-9, membrane’s material 

properties such as Young modulus and Poisson’s ratio, membrane radius, and thickness 

affect the operation frequency. The membrane material is conventionally chosen as 

Silicon Nitride (Si3N4) due to superior material properties. Consequently, variable 

device parameters are reduced to membrane thickness and radius, and gap height. Since 

the operation frequency is fixed, the radius and thickness become dependent variables. 

As the bandwidth of CMUT depends on the stiffness and mass of membrane, increasing 

the radius results in bandwidth reduction. However, a transducer with a thick membrane 

has higher output efficiency. Another step in designing the CMUT is the gap height. 

According to Eq. 3-7, gap height determines the collapse voltage. It is suggested that 

the electric field in the gap should be with the strength on the order of 108V/cm or 

higher [53]. Also since the gap height limits the maximum membrane deflection and 

output pressure of CMUTs, this parameter will be chose so that meets the requirements 

of CMUT device. For example, in High Intensity Focused Ultrasound (HIFU) 

applications, it is desired to have large output pressure. Hence, CMUTs in HIFU 

applications have larger gap height.  

For the optimization study that is the subject of this thesis, the following method is 

adopted: for the particular case study, two sets of membrane radius and thickness are 

determined. The DC bias voltage is swept from 0 Volts to the collapse voltage and for 
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each voltage the maximum applicable AC voltage is determined by monitoring the 

membrane deflection and keeping it less than the gap height.  

4.1 Circuit Model for Optimizing the Pulse-Echo Response 

The circuit simulations used for the optimization study was based on the model 

suggested by Hayrettin Koymen [38]. We make the following assumptions in the 

model: although the transducer has finite dimensions, the number of CMUT cells is 

large enough to make the assumption that there are an infinite number of cells. This is 

important in determining the radiation impedance of the transducer. Calculations will 

reveal that this assumption is reasonably accurate as cells surrounded by even a limited 

number of cells “think” that they are in an infinite field. In the circuit model of Fig.4-7, 

there are separate circuits for the pulse and echo part of the simulations. The pulse part 

is terminated by the radiation impedance of the medium. The output pressure is coupled 

back to the receiver circuit as if generated by a source of output impedance identical to 

the radiation impedance. The amplitude is scaled by the coverage ratio of the CMUT 

cells: output pressure is measured on the CMUT membrane but as the cell does not 

entirely cover the surface the pressure of the eventually created plane wave will have a 

lesser amplitude. 

The radiation impedance of the CMUT depends on the number, spacing and 

arrangement of the cells. We start the analysis by first computing the radiation 

impedance of the transducer in consideration. 

The radiation impedance of a CMUT defines how the membrane vibration couples to 

the surrounding fluid, and vice versa. In vacuum, this parameter will be zero, as there 

will be no fluid through which a pressure wave can propagate. In air, this parameter will 

exist, but will be very small because ultrasonic pressure waves do not propagate 

efficiently in such low density mediums. In water and similar fluids (e.g. blood), the 

radiation impedance has a significant effect on the frequency response of system and 

must be considered carefully. 

Radiation impedance of a rigid circular piston in infinite baffle could be the simplest 

approximation for radiation impedance of a CMUT array. Figure 4-2 depicts this 
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radiation impedance when the medium is water. This model assumes that the entire 

membrane surface vibrates with a uniform velocity which is the case for piston 

vibrations.  

As the frequency increases, the mode shapes of a plate are generated. Thus, the 

assumption of uniform velocity of membrane surface will no longer be valid and for 

reasonable accuracy, the piston model is not sufficient for modeling CMUT radiation 

[51]. 

 

 

Figure 4-2: Normalized radiation Impedance of a rigid circular piston analyzed between 

0-100MHz 

Several researchers studied the radiation impedance of CMUT array in immersion [39, 

52]. Their analytical approaches are in agreement with depicted results of device 

performance. Muhammed N. Senlik et al. [39] analyzed the radiation impedance 

mathematically and FEM simulation results for real part of radiation impedance was 

introduced. This thesis analyzed the radiation impedance of CMUT array in immersion 

by analytical and FEM approaches. The functions and constants pertain to radiation 

impedance in [39] was coded in MATLAB® and also FEM simulation using both 

ANSYS® and COMSOL Multiphysics® is done for studying the behavior of medium 

and examining the imaginary part of radiation impedance. As it is demonstrated by 
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Figure 4-3 shows the radiation impedance of CMUTs with a=22 µm. Although there is 

a peak in real part of radiation impedance however, the same peak for imaginary part of 

it is seen for that operation frequency. We therefore propose that the transducer should 

be operated at a lower ka product, i.e. a transducer of smaller radius is expected to be 

more appropriate to be operated at 20 MHz. 

 

Figure 4-3: Analytically calculated normalized radiation impedance of CMUT array in 

immersion using the expressions provided in [39] 

The radiation impedance of CMUT array is studied using FEM simulation for CMUT 

with radius of 22µm and 15µm and compared with analytical results. In analytical 

expression, a CMUT array of 11×11 is coded and self and mutual radiation impedances 

are examined. It is clear that this size of array is enough to think of the CMUT cell 

which is located at the center of the array, could model the infinite CMUT cell which 

this assumption is used in FEM simulation by introducing the continuity boundary 

conditions. (Figure 3-5). Since 11×11CMUT array size could model the infinite 
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environment of central located CMUT cell, it is applicable for CMUT array size with 

more than 11×11 cells.  

 

Figure 4-4: Analytical and FEM based simulation results for CMUT array with 22µm 

radius 

 

Figure 4-5: FEM based simulation results for CMUT array with 15µm radius 

So it is clear that in circuit model, representing the radiation impedance with resistor is 

not enough. For proper modeling, one should include the imaginary part of radiation 
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impedance in circuit model by putting a series inductance with resistor. Since the 

frequency analysis range in circuit simulator is studied between 1Hz-30MHz, an 

inductance is a good representative of imaginary part of radiation impedance.  

For physical description of this new model, as the frequency increases, each CMUT cell 

acts like point source and consequently, there will be large numbers of wavelength 

between two CMUT cells which means they become far away from each other in 

frequency domain even though they have located close to each other in time domain. In 

this case, waves between two adjacent CMUT cells will become standing waves which 

are not propagating. Consequently, these waves eventuate in increasing the mass 

between CMUT cells in array and the component models the mass in equivalent circuit 

model is an inductor. 

In all optimization studies the return signal is measured as the AC current that flows 

over the DC bias source. In an actual implementation, the AC return signal is decoupled 

from the bias source and is fed into a trans-impedance amplifier, as the CMUT has 

relatively large output impedance. Consequently, the DC source acts as the input of the 

trans-impedance amplifier, and by these means, noise contribution that is only due to 

the radiation impedance can be observed. 

4.2 Optimization of the Return Echo Amplitude   

Implementing the radiation impedance in LTSpice circuit simulator enabled us to 

optimize the device parameter of CMUT array with size of 1mm×1mm designed for 

operation in 20MHz frequency. Two CMUT array is designed for this purpose; one 

with radius of 20µm and other one with 15µm radius. Table 4-1 shows the device 

parameters. 
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In order to fair judge optimization, gap heights of device kept constant. However, since 

membrane thicknesses and consequently collapse voltages of CMUTs changed, the 

applied DC and AC voltage is adjusted so that the center of membrane reaches to the 

bottom of cavity.  

Figure 4-6 shows the whole system for 20MHz pulse-echo ultrasound imaging. The 

upper side of circuit model is dedicated to transmit part of CMUT array and lower one 

is assigned for receiving mode.  

 

Figure 4-6: Equivalent circuit model of CMUT array operating in 20MHz for pulse-

echo imaging system implemented in LTSpice [9]. 

Parameter Description Value 

a Membrane radius 20µm 15 µm 

ti Bottom & top 

insulation layer 

300nm 300nm 

tg Cavity height 100nm 100nm 

tm Membrane thickness 3.13µm 2µm 

te Embedded electrode 

thickness  

100nm 100nm 

Table 4-1: CMUT cell parameters for operating in 20MHz pulse-echo medical 

imaging system 
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The sub-circuits are used to generate the required parameter values such as membrane 

deflection or output pressure or for generating the controlling signals of system.  

 

Figure 4-7: Membrane deflection of 20µm radius biased by 120V and driven with 7 

cycles AC source. 

 

Figure 4-8: Transmitted pressure of CMUT with membrane radius size of 20µm biased 

by 120V and driven with 7 cycles AC source. 
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Figure 4-9: Pulse-echo response of CMUT array system as output current for membrane 

radius size of 20µm biased by 120V and driven with 7 cycles AC source. 

Figures 4-7, 4-8, 4-9 demonstrate the pulse-echo response of CMUT array system 

operating in 20MHz for membrane radius size of 20µm which is biased by 120V DC 

and driven by 7 cycles of AC voltage. The required information regarding the parameter 

values of two sets of CMUT array is illustrated in tables 3-3 and 3-4.  

 

VDC(V) VAC(V) Transmit 

Pressure P-P 

(MPa) 

Receive 

Pressure P-P 

(MPa) 

Output Current 

(mA) 

90 125.75 11.04 6.73 78.39 

100 112.50 10.74 6.41 91.25 

110 99.40 10.37 5.84 104.34 

120 86.50 9.85 4.86 117.16 

125 80.75 9.53 4.37 120.17 

130 74.00 8.95 3.58 124.53 

135 65.00 8.13 2.71 118.79 

140 54.00 6.95 1.68 108.00 

150 23.00 3.00 0.327 51.80 

Table 4-2: Device performance of pulse-echo system of CMUT array with 15µm 

membrane radius 
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Figure 4-10: Transmit pressure (left) and receive sensitivity (right) of the transducers 

with a=15um and a 20um. 

Figure 4-10 shows the results in Table 4-2 and 4-3 in graphic form. The transmit 

pressure decreases with increasing bias as the membrane has less distance to move. The 

receive sensitivity is calculated by dividing the output current by the input pressure. 

This sensitivity, as expected, improves with bias. 

Figure 4-11 depicts the output current as a function of bias voltage. As bias voltage acts 

oppositely on output pressure and input sensitivity, an optimal value for the pulse-echo 

response was anticipated. This figure shows that there is indeed such an optimal point, 

which corresponds to approximately 70% of the collapse voltage. 

VDC(V) VAC(V) Transmit 

Pressure P-P 

(MPa) 

Receive 

Pressure P-P 

(MPa) 

Output 

Current (mA) 

90 99.50 11.00 10.62 137.87 

100 88.50 11.03 10.25 161.81 

110 78.75 10.73 9.30 184.65 

120 70.25 10.25 7.82 199.61 

125 66.50 9.92 6.88 202.98 

130 63.50 9.65 5.87 202.38 

135 60.00 9.16 4.82 197.06 

140 56.50 8.61 3.72 185.95 

150 48.50 6.98 1.64 147.57 

Table 4-3: Device performance of pulse-echo system of CMUT array with 20µm 

membrane radius 
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Figure 4-11: Pulse-echo response of CMUT array systems for membrane radius of 

15µm and 20µm 

 

4.3 Optimization of the Signal-To-Noise Ratio 

One important parameter in the design of high frequency medical ultrasound imaging 

transducers is the signal-to-Noise ratio (SNR). The goal of this thesis is to determine the 

optimal point of CMUT array by considering the SNR. Signal-to-Noise ratio is a 

measure used in science and engineering that compares the level of a desired signal to 

the level of background noise. It is defined as the ratio of signal power to the noise 

power, often expressed in decibels. The noise source in this analysis is considered to be 

the thermal noise of the immersion medium. With a simplifying assumption, the noise 

source is taken as the real part of the radiation impedance. This is a valid argument for a 

single transducer, however, for the CMUT the mutual impedance effects should be also 

considered. 

The noise analysis is studied in LTSpice circuit simulator for the whole pulse-echo 

system implemented as Figure 4-6. For fair comparison, both transducers are assumed 

http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Decibel
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to have the same area. Again, it is assumed that both CMUT array sets of membrane 

sizes of 15µm and 20µm are biased by the same amount of voltage and AC signal 

applied so that the membrane center is not reached to the substrate. So the Biased 

voltages and AC driven voltages are the same as listed in table 3-3 and table 3-4 

dedicated to membrane sizes of 15µm and 20µm, respectively. The Noise analysis is 

done for the spectrum range between 100Hz-35MHz due to the fact that radiation 

impedance which has been implemented in equivalent circuit model is valid up to 

35MHz as Figures 4-4 and 4-5 demonstrate. The device is assumed to operate in room 

temperature for both CMUT array sets.  

Output noise power and output power (desired signal) is analyzed for the biased 

voltages between 90V-150V. The simulation results are listed in tables 4-4 and 4-5.  

 

Figure 4-12: Output noise voltage of CMUT array in immersion analyzed for membrane 

radius sizes of 20µm 

Figure 4-12 shows the output noise voltage of CMUT array for radius size of 20µm 

which is biased at 100V DC and analyzed between 100Hz-35MHz frequency range. 

Taking the integral of whole spectrum (100Hz-35MHz) for squire of noise voltage will 

give us the noise power.  
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VDC 90 100 110 120 125 130 135 140 150 

RMS 

Output 

Noise 

Power×10-

15 

 

4.614 

 

 

4.588 

 

4.557 

 

5.119 

 

4.468 

 

4.432 

 

4.386 

 

4.325 

 

4.072 

Output 

Power 

(mW/Ohm) 

13.012 17.044 21.147 24.990 33.733 37.213 38.407 36.564 16.602 

SNR  

(dB) 

124.537 125.696 126.665 127.426 128.7786 129.240 129.423 129.269 126.103 

Table 4-4: Signal-to-Noise ratio for frequency ranges between 100Hz-35MHz of 

CMUT Array in Immersion for membrane radius size of 15µm 

VDC 90 100 110 120 125 130 135 140 150 160 165 

RMS 

Output 

Noise 

Power 

×10-15 

 

4.255 

 

4.224 

 

4.188 

 

4.147 

 

4.123 

 

4.098 

 

4.034 

 

3.990 

 

3.875 

 

3.666 

 

3.325 

Output 

Power 

(mW/

Ohm) 

 

30.120 

 

37.637 

 

45.455 

 

53.689 

 

58.131 

 

63.755 

 

79.514 

 

87.150 

 

100.57 

 

60.91 

 

1.49 

SNR 

(dB) 

128.49 129.396 130.355 131.121 131.491 131.918 132.947 133.39 134.14 132.2 116.51 

Table 4-5: Signal-to-Noise ratio for frequency ranges between 100Hz-35MHz of 

CMUT Array in Immersion for membrane radius size of 20µm 

As it is depicted by Figure 4-13, output noise power of CMUT array with membrane 

radius of 20µm is lower than that of for 15µm. At first look, one can be alleged that due 

to the bigger radius of CMUT in 20µm, the area of CMUT which collects the noise is 

bigger and the output noise current should be larger than the other. However, the reason 

that it is lower than 15µm radius size of CMUT array is due to the flexural rigidity. 
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Figure 4-13: RMS Output Noise Power of CMUT array in immersion for ultrasonic 

pulse-echo imaging purposes analyzed for membrane radius sizes of 15µm and 20µm 

Flexural rigidity is defined as the force required to bend a non-rigid structure to a unit 

curvature or it can be defined as the resistance of structure against the bending force.  
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Eq. 4-1 

According to Eq.3-35, since CMUT array with membrane radius of 20µm is thicker 

than the other, the flexural rigidity (D) of it is also larger. Since noise sources are equal 

for both designs, the one which has larger D, less affects by noise and has lower output 

noise current.  
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Figure 4-14: Signal-to-Noise ratio for frequency ranges between 100Hz-35MHz of 

CMUT Array in Immersion for membrane radius sizes of 15µm and 20µm 

 

Figure 4-15: Signal-to-Noise ratio for frequency ranges between 100Hz-35MHz of 

CMUT Array in Immersion for membrane radius sizes of 20µm 
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After finding the output current and output noise current, finding the Signal-to-Noise 

ratio can be studied by using the following equation.  

2

10 1010log 20log
signal signal

dB

noise noise

A A
SNR

A A

    
     
     

 

Eq. 4-2 

where A is dedicated to Voltage or Current signals.  

As it is illustrated in Figure 4-14, the SNR value for 20µm radius size is higher than 

15µm membrane radius size. This is due to the higher rigidity of 20µm membrane 

radius size of CMUT array. Furthermore, the SNR figure reveals that there is an 

optimum point where if the CMUT array operates at that point, Maximum value of 

SNR could be achieved.  

According to Eq. 3-7, the collapse voltages for CMUT membrane radius of 15µm and 

20µm are 180.64V and 205.77V. Figures 4-14 and 4-15 prove that if CMUT array is 

biased at 73% of collapse voltage, maximum SNR achieves.  
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CONCLUSION AND FUTURE WORK 

 

 

 

 

In this thesis, an existing equivalent circuit model for analyzing the immersed CMUT 

array is used to find the optimal operation point of CMUT array. The CMUT array is 

design for operating in 20MHz. Two sets of CMUT array is designed; one which has 

15µm membrane radius and another one has 20µm. For fair comparison, the gap height 

for both designs chose to be 100nm and analysis of arrays is done based on the 

assumption that biased voltage and driven AC voltage are applied such that maximum 

deflection will occur. Furthermore, due to the lack of an appropriate equivalent circuit 

model for radiation impedance, FEM simulation is done to obtain the behavior of 

radiation impedance for wide range of ka. It has been proved that although there is a 

peak value for real part of radiation impedance in specific ka product which was 

reported by other researchers; however there is a peak value at the same ka product for 

imaginary part of radiation impedance. Furthermore, radiation impedance is 

implemented by circuit component into the equivalent circuit model and CMUT array 

pulse-echo performance, receive sensitivity and SNR are studied. It has been proved 
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that if CMUT array biased in 73% of collapse voltage, the best signal-to-noise ratio 

achieves which is the key factor in ultrasonic imaging.  

It is worthwhile to mention that a model for diffraction loss and attenuation in the 

propagation medium should be incorporated for future work. Also in this analysis it has 

been assumed that CMUT is working in infinite number cells and the radiation 

impedance is modeled according to this assumption. However we know that CMUT cell 

numbers are finite. Even though the model is correct for CMUT cells which located in 

the center of array, however those which are located at the age of array won’t observe 

the same radiation impedance due to the impedance coupling affect. So a model for 

finite number of cells should be incorporate to better model the acoustic cross-talk.  
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