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 15 

Abstract: State estimation (SE) is well-established at the transmission system level of 16 

the electricity grid, where it has been in use for the last few decades and is a most vital 17 

component of energy management systems employed in the monitoring and control 18 

centers of electric transmission systems. However, its use for the monitoring and control 19 

of power distribution systems (DSs) has not yet been widely implemented because DSs 20 

have been majorly passive with uni-directional power flows. This scenario is now 21 

changing with the advent of smart grid, which is changing the nature of electric 22 

distribution networks by embracing more dispersed generation, demand responsive 23 

loads, and measurements devices with different data rates. Thus, the development of 24 

distribution system state estimation (DSSE) tool is inevitable for the implementation of 25 

protection, optimization, and control techniques, and various other features envisioned 26 

by the smart grid concept. Due to the inherent characteristics of DS different from those 27 

of transmission systems, transmission system state estimation (TSSE) is not applicable 28 

directly to distribution systems. This paper is an attempt to present the state-of-the-art on 29 

distribution system state estimation as an enabler function for smart grid features. It 30 

broadly reviews the development of DSSE, and challenges faced by its development, and 31 
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various DSSE algorithms, as well as identifies some future research lines for DSSE. 1 

Keywords. Distribution system state estimation; DSSE; Smart grid; Microgrid; Distributed 2 

energy sources (DERs); Energy management system; Distribution management system. 3 
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RBA  Recursive bayesian approach 1 

SOR  Successive-over-relaxation 2 

MV  Medium voltage 3 

GPS  Global positioning system 4 

AMI  Advanced metering infrastructure 5 

ADMS  Advanced distribution management system 6 

 7 

1. Introduction 8 

 9 

SE, after it was first introduced to power systems by Fred Schweppes in 1970 [1], is nowadays 10 

an important function in the management and control of the operations of electric transmission 11 

networks all over the world. It has strengthened the SCADA systems and eventually led to the 12 

development of the EMS [2]. The state estimator obtains the system state using the SCADA 13 

measurements, measurements from PMUs [3,4], pseudo-measurements and the topology 14 

information [2,3]. After the state is known, various functions of EMS like contingency analysis, 15 

security analysis, optimal power flow and other functions can be carried out as shown in Figure 16 

1. Therefore, SE is the backbone function of TS EMS [5], however, its application to DS was not 17 

required. This was due to its passive nature with uni-directional power flows since there was no 18 

active generation at this level. However, due to shift towards the smart grid encompassing DG 19 

inputs and other features such as DR and DA functions, the shape of the power DS is changing 20 

and it is no longer passive due to bi-directional power flows (see, Figure 2). This establishes 21 

need for bringing DS into the operation circle of monitoring and control, which makes the role of 22 

DSSE more significant. 23 

Figure 1. Role of SE in EMS/SCADA 24 

 25 

DS and TS differ from one another in many ways, such as DS have high R/X, imbalances among 26 

phases and low availability of real-time measurements. This makes the use of TSSE techniques 27 

unsuitable for application to DS. This paper is an attempt to encompass various SE techniques 28 

applied to DS by reviewing the relevant literature. Many review papers on the subject can be 29 

found with the deficiency of putting various techniques together but not mentioning the adequacy 30 

of those techniques for DS. This paper attempts to address this deficiency by mentioning the 31 
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adequate estimation techniques for DS. It further provides future research directions for DSSE, 1 

including intelligent load modeling techniques [6] for pseudo measurement generation [7], event-2 

triggered SE techniques [8], incorporation of smart meter [9]data and micro-synchrophasors 3 

(µPMU) [10] data in DSSE, and finally development of advanced energy management systems 4 

[6]. 5 

Figure 2. The smart grid and active DS 6 

 7 

This paper is divided into the following sections: Section 2 presents SE and its mathematical 8 

formulation. Section 3 discusses the need for DSSE; modification on conventional SE for DSSE; 9 

NV- DSSE; BC- DSSE; and comparison of the voltage and branch current based DSSE. Section 4 10 

discusses the classification of DSSE techniques, Section 5 presents multi-area or distributed 11 

DSSE techniques, future research directions in DSSE outlining five areas of active research on 12 

DSSE are briefly discussed in Section 6, and finally Section 7 concludes the paper. 13 

 14 

2. State Estimation in Power Systems 15 

 16 

System state is the minimum set of variables that can be used to completely define the power 17 

system using network topology and impedance parameters e.g. complex node voltages or branch 18 

currents [3]. SE is the process of determining the system state using system measurements based 19 

on minimization of certain statistical criteria (e.g. Least Squares) [1]. The major objectives of SE 20 

are the following [11,12]: 21 

1. Bad measurement data detection; 22 

 23 

2. Smoothing out of small errors; 24 

 25 

3. Detection of topology errors i.e. wrong switch statuses; 26 

 27 

4. Provision of estimates for unmonitored parts of the system .i.e. filling in meter measurements 28 

for missing or delayed measurements; 29 

5. Estimation of network parameters based on redundancy in measurements. 30 

 31 

Four main processes are carried out by the TSSE present in the EMS [2,3] as depicted in Figure 32 
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3. Topology processing uses network parameters such as circuit breaker and switch status 1 

information and updates the network topology. It makes sure that the correct topology information 2 

is used in the SE process [13,14]. Other works on topology processor can be found in [15,16]. 3 

Observability analysis determines whether the measurements are sufficient to carry out the SE. To 4 

ensure the observability, measurements based on historical load data, called pseudo 5 

measurements, and zero injection measurements, known as virtual measurements, are used. A 6 

Null space method for observability analysis can be found in [17]. The bad data processor is 7 

another important function of SE, which processes the measurements and detects the erroneous 8 

measurements which get corrupted due to reasons such as communication network failures or 9 

dropped measurement packets. It detects and eliminates the gross measurement errors subject to 10 

the presence of sufficient measurement redundancy. Bad data processing and elimination can be 11 

found in [18–23]. Finally, the system state is obtained by the state estimator using the processed 12 

measurements and results from observability analyzer and topology processor [3,24]. The layout 13 

of the EMS/SCADA system is shown in Figure (2). EMS is used to monitor and control the 14 

operation of a power system, where SE plays important role. The measurement data is received 15 

from devices such as RTUs, and more recently, PDCs [3]. These measurements, along with other 16 

measurements (pseudo measurements and virtual measurements) and information from the 17 

observability analysis and the topology processor, are used to estimate the system state. This 18 

state is also used by the supervisory control system, which generates the control sequence for the 19 

switchgear (circuit breakers). 20 

Figure 3. SE Process 21 

 22 

2.1.   Conventional SE problem formulation 23 

 24 

SE has widely been adopted in industry and has attained much research attention over the last few 25 

decades [25,26].  26 

The measurement model z is given in equation (1) as; 27 

 28 

 𝒛 = 𝒉(𝒙) + 𝒆   (1) 29 
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Where 𝒛 ∈ ℝ𝑚×1 is the measurements vector having ‘m’ measurements (actual, pseudo and 1 

virtual) and 𝒙 ∈ ℝ𝑁×1(where N being the number of network buses) is the vector of state variables 2 

consisting of node voltage magnitudes and phase angles, and it may include tap positions, 3 

𝒆 ~ℵ(𝟎, 𝑹) is the observation noise, with Gaussian distribution of zero mean and covariance 4 

matrix 𝑹, and finally, 𝒉(. ) is a non- linear function vector relating the measurements to the state 5 

variables, for instance, power flow equations [2]. These are given in equations (2-5): 6 

 𝑃𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)𝑁
𝑗=0                           (2)  7 

𝑄𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗)𝑁
𝑗=0             (3) 8 

𝑃𝑖𝑗 = 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗𝐶𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) − 𝐺𝑖𝑉𝑖
2            (4) 9 

𝑄𝑖𝑗 = 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) + 𝐵𝑖𝑉𝑖
2               (5) 10 

The measurement is linearized about an operating point using Taylor’s series expansion. 11 

𝒛 = 𝒉(𝒙𝟎) + (𝒙 − 𝒙𝟎) (
𝜕𝒉(𝒙)

𝜕𝒙
) + 𝒆(𝒙) + ℎ. 𝑜. 𝑡              (6) 12 

Where; 13 

 𝚫𝒛 = 𝒛 − 𝒉(𝒙𝟎)           (7)  14 

Hence, after ignoring higher order terms (h.o.t) in (6) 15 

𝚫𝒛 = 𝑯𝚫𝒙 + 𝒆(𝒙)          (8) 16 

Where H is the Jacobean matrix and is given by 17 

𝑯 =
𝝏𝒉(𝒙)

𝝏𝒙
          (9) 18 

The measurement covariance matrix R is defined based on the variances of various measurements 19 

as; 20 

𝑹 = 𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2

2, … , 𝜎𝑚
2 )        (10) 21 

Also, the gain matrix is obtained as: 22 

𝑮 = 𝑯𝑻𝑾𝑯          (11) 23 
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Where 𝑾 = 𝑹−𝟏 is the measurement weight matrix. If the system is fully observable the gain 1 

matrix G is positive definite and non-singular. This is ensured by including independent 2 

measurements in the measurement set with size greater than the size of state vector. 3 

The WLS formulation for the SE is done as the minimization problem as; 4 

min 𝒇 = [𝒛 − 𝒉(𝒙)]             (12) 5 

Subject to: 6 

𝒛 = 𝒉(𝒙) + 𝒆(𝒙)           (13) 7 

This can be written in the famous WLS objective function form as; 8 

min 𝒇 = ∑ 𝑾[𝒛 − 𝒉(𝒙)]𝟐𝑚
𝑛=1   Or  min[𝒛 − 𝒉(𝒙)]𝑻𝑾[𝒛 − 𝒉(𝒙)]        (14) 9 

Due to a non-linear measurement model, iterative techniques such as the Newton-Raphson method 10 

[27] are used to obtain the state estimate. 11 

𝚫𝒙 = 𝑮−𝟏𝑯𝑻𝑾[𝒛 − 𝒉(𝒙)]         (15) 12 

𝒙𝒌+𝟏 = 𝒙𝒌 + 𝚫𝒙𝒌+𝟏           (16) 13 

Where k is the iteration count for SE process. Once the state is determined, bad data analysis can 14 

be done using some statistical measures such as largest normalized residual test [28]. This method 15 

is mostly applied in TSSE. Equation (15) is known as Normal Equation in the literature. 16 

3. Distribution system state estimation (DSSE) 17 

 18 

Research on DSSE began near 1990 [29–32]. The research motivation for DSSE came due to 19 

various reasons. The following sections describe the need for DSSE and its various formulations 20 

available in the literature. 21 

 22 

3.1. Need for DSSE 23 

 24 

DSSE will play a central role in the implementation of the smart grid features such as DA, DR 25 

and increased involvement of renewable energy sources and hybrid electric vehicles. Thus, 26 

distribution grid will become an active network that will be more dynamic compared to the 27 
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current passive DS. Due to fast changing dynamics, an efficient monitoring and control has to be 1 

developed incorporating smart grid features such as DA, situational-awareness and DR. The 2 

conventional SE techniques applied to TSs, are not directly applicable to the DNs because they 3 

differ in the following ways [3,24,33];  4 

 5 

3.1.1. High R/X ratios:  Electric DNs, due to low voltage levels and comparatively shorter 6 

lengths, have higher R/X ratios than the TSs. Therefore, DSs cannot be modeled and analyzed as 7 

TSs due to the fact that the assumptions made for these networks are not true for DNs. Iterative 8 

algorithms that use the Newton-Raphson simply do not converge for networks with higher R/X 9 

ratios. Moreover, for such networks, DC approximation and de-coupled power-flow solutions 10 

also becomes invalid [11,34–36]. A line-plot for different cross-sectional areas of ACSR cables, 11 

for both TSs and DSs data given in [37,38], is shown in Figure 4. A separator is used to 12 

distinguish the two systems using R/X ratios. This characteristic shows why state estimators 13 

developed for transmission networks fail to work for DSs. 14 

Figure 4. R/X ratios for TSs and DSs 15 

 16 

3.1.2. Low real-measurements availability: Unlike TS, real-time measurements are very 17 

limited in DS and are not enough for the observability analysis required in the estimation 18 

process. The conventional SE assumes the system to be over-determined by having redundant 19 

measurements but DSs are under-determined. Various attempts have been made to solve this 20 

measurement scarcity problem in DSs by generating pseudo measurements using load data. 21 

Greater proportion of pseudo measurements compared to the real-time measurements can 22 

compromise the accuracy of DSSE. To improve the accuracy of DSSE algorithm, many 23 

intelligent load estimation techniques have been proposed in the literature (see, section 6.1). 24 

However, data from recent vast deployment of smart meters have made it possible to develop 25 

accurate DSSE algorithms (see, section 6.4).  26 

 27 

3.1.3. Scalability and complexity: The DS are complex as they depend on the area. Rural area 28 

DNs are less dense as compared to those in urban areas. The more the density of the DN, the 29 

more its complexity. Thus, distributed or multi-area DSSE techniques should be developed that are 30 
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efficient and scalable to achieve all sort of complexities (see, section 5). 1 

 2 

3.1.4. Complex measurement functions: The measurements available at feeders are current 3 

and power injections. Direct voltage and power measurements are rarely available, which 4 

complicates the measurements functions. Recently PMUs or µPMUs have been researched for DSs 5 

which provide direct measurements of voltage and current phasors thereby eliminating the non-linearity 6 

of measurement functions (see, section 6.3). 7 

 8 

3.1.5. Unbalanced phases: In DS, it is very common to have three phase imbalances. The 9 

conventional SE works on the assumption of positive sequence or three phase balanced network 10 

where three phase models are not needed. However, these methods cannot be applied if there are 11 

phase imbalances which is a common scenario in DS. 12 

3.2. Modification on conventional SE for DSSE 13 

 14 

The distinctive characteristics of DSs are making them different from the TSs. Therefore, the SE 15 

techniques applicable to TSs are not applicable to DSs in their original form and requires 16 

modification. In the literature, many papers have built upon by making the conventional 17 

techniques work for DS. Papers in the literature can be categorized in the following four classes 18 

based on the nature of such modification. 19 

 20 

3.2.1. Adapting WLS based TSSE to DSSE: In the literature, some modifications on WLS 21 

TSSE are given. A SE technique, which uses available set of remote measurements (voltages, 22 

real and reactive power and substations currents) along with statistical load data of distribution 23 

transformers, is proposed in [29]. Similar SE techniques with three phase details are presented in 24 

[30] and [31]. The work in [31] used synchronized measurements along with asymmetric model 25 

of DS. A 3-phase fast decoupled state estimator is proposed in [39]. The advantage of this 26 

approach is that the gain matrix stays constant and symmetric which reduces the computational 27 

burden. The disadvantage of all these methods is that they lack robustness and will not converge 28 

to a unique solution in the presence of bad measurements (e.g. measurements majorly corrupted 29 

by noise) [40].  30 
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 1 

3.2.2. Load Estimation:  A few authors have discussed load estimation for DSSE due to the 2 

fact that metered measurements are very limited in DS which are not sufficient to ensure 3 

observability. Therefore, pseudo measurements are used to solve the issue of observability. Since 4 

DSSE algorithms have to rely more on pseudo-measurements, the authors in [41] propose DSSE 5 

which increases the accuracy of these measurements by taking into account the three-phase 6 

details and limited availability of real-time measurements. Authors in [42], used WLS-based 7 

DSSE algorithm to estimate both star-connected (or Y-type) and delta-type loads in a real-life 8 

radial DS. Although this algorithm works better for the radial system, but it doesn’t take into 9 

account the DG penetration, which is changing the shape of the DN from radial to meshed 10 

configuration. To account for this, a modification on [42], is proposed in [43], in which the 11 

voltages measurements and meshed network topologies (due to enhanced DG penetration) are 12 

incorporated. 13 

 14 

3.2.3. Phase imbalance problem: Another issue with DS is phase imbalances that exists in 15 

practice. This has to be considered in order to perform accurate SE. A few papers have been built 16 

on this problem such as [32,44,45]. These SE methods work with phase imbalances and with 17 

high R/X ratios, where the conventional WLS approaches fail to provide a solution. To apply 18 

conventional WLS methods, a current-based SE is proposed in [32]. Branch current formulation is 19 

considered instead of node voltage based formulation because the per-phase decoupling of the 20 

Jacobian matrix H is possible. This makes it possible to treat each phase as an independent SE 21 

problem and thus helps in the application of conventional WLS method to unbalanced DNs. 22 

 23 

3.2.4. Incorporation of DERs: With shift towards smart grid the DS is changing due to 24 

the integration of DERs, and energy storages in the form of flexible structures such as 25 

microgrids. To enhance observability of DS, the effect of DERs or microgrid must be 26 

incorporated in the SE problem. A microgrid state estimator is proposed in [33], which is 27 

based on conventional WLS and incorporates the additional dynamics introduced by DER. 28 

it works better with the topology errors but bad data may affect the state estimate. In [46], 29 

the autonomous SE method is proposed which takes into account the fast changing 30 
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topology information due to the presence of DERs. Whenever a DER connects to or 1 

disconnects from the DS, it can be detected automatically and the system model is updated. 2 

Another WLS and FA-based hybrid DSSE algorithm, that considers substantial penetration 3 

of DER, is proposed in [47].  The FA algorithm is a heuristic method which is employed to 4 

increases the estimation accuracy. Another similar study can be found in [48], in which 5 

authors extended the DSSE algorithm for identifying unexpected power-injections (both 6 

active and reactive) at PCCs of DERs and/or Microgrids. The estimates helps the system 7 

operator in taking proper actions by comparing the estimated injections with real values. 8 

 9 

3.3. Node-Voltage-based state estimation  10 

 11 

In the NV-DSSE, complex node-voltages are considered as state variables. The state 12 

variables can be either expressed in polar-coordinates such as 𝒙 =13 

[𝜃2, 𝜃3, … , 𝜃𝑁 , 𝑉1, 𝑉2, … , 𝑉𝑁], or in rectangular-coordinates containing the real and imaginary 14 

parts of node-voltages such as 𝒙 = [ 𝑉1𝑟, 𝑉2𝑟, … , 𝑉𝑁𝑟, 𝑉1𝑥, 𝑉2𝑥, … , 𝑉𝑁𝑥], where N represents the 15 

number of system nodes or buses. The measurement function is given in (1) where z is the 16 

measurement or observation vector containing measurements of all types that is: 17 

• Real-time non-synchronized measurements such as line power flows, bus power 18 

injections, and voltage, and current magnitudes. 19 

• Real-time Synchronized measurements from PMUs such as Voltage and current 20 

measurements along with phase angles. 21 

• Pseudo-measurements obtained using statistical load profiles. 22 

 23 

In the polar formulation, bus-1 is normally treated as reference bus and its angle is considered 24 

zero (i.e.𝜃1 = 0). The phase angles of all other buses are measured with respect to this angle 25 

therefore ‘𝜃1’ is excluded from the state-vector. However, if the PMU measurements are present, 26 

‘𝜃1’ may be included as one of the state variable since the reference is not required [49,50]. 27 

Later, the system state can be determined by using the WLS approach. In [41], a three-phase 28 
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state estimator is developed using the NV-DSSE formulation. After the state is determined, the 1 

branch currents can easily be calculated using the voltage drops at every node. Other similar 2 

readings can be found in [30,51].  3 

 4 

3.4. Branch-Current-based state estimation  5 

 6 

In the BC-DSSE method, state variables are complex branch-currents. In this formulation the 7 

rectangular coordinates of state variables are used. In the system where there is no PMU 8 

available, the state vector solely consists of branch currents (real and imaginary 9 

components); 𝒙 = [𝐼1𝑟, 𝐼2𝑟, … , 𝐼𝑁𝑟, 𝐼1𝑥, 𝐼2𝑥, … , 𝐼𝑁x], where N represents the number of 10 

branches. However, if PMUs are installed then the state vector will contain the slack bus 11 

voltage [52].  In [53], authors propose a BC-DSSE algorithm that considers both traditional 12 

SCADA measurements and synchronized measurements from PMUs. 13 

BC-DSSE algorithm consists of the following steps to be carried out at each iteration update [52].  14 

 15 

• Conversion of power measurements to equivalent current measurements [32].  16 

• Estimate of branch currents by solving (15). 17 

• Update of state vector using equation (16). 18 

• Compute the network node voltages using forward-sweep starting from the slack bus and 19 

tracing down the network graph. 20 

The details of forward-sweep algorithm can be found in [44,54].  21 

The BC-DSSE is presented by Mesut Baran in his paper [32] using the WLS-based approach. A 22 

few other readings and implementations of this algorithm with slight variations can be found in 23 

[55–57].  24 

3.5. NV-DSSE and BC-DSSE-Comparison 25 

 26 

In [58] and [59] the two SE formulations, i.e. NV-DSSE and BC-DSSE, are compared. In [58], 27 

the authors present an extensive comparison of the two formulations regarding complexity, 28 

numerical stability, convergence, computational expense and sensitivity to measurement weights.  29 
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 The results are tabulated in Table 1, which justify and endorse the BC-DSSE method as a 

promising one and emphasize its use in DS as compared to NV-DSSE.  

Table 1: NV-DSSE Vs BC-DSSE [32,58] 

Similar comparison is made in [59] with synchronized measurements from PMUs and 

traditional (non-synchronized) SCADA measurements. The two SE formulations are 

compared, based on RMSE%, convergence and computational time, with and without 

PMU data. BC-DSSE and NV-DSSE with traditional measurements are named original-

traditional and original-synchronized when PMU measurements are included. Similarly, 

the extended BC-DSSE and NV-DSSE algorithms ,given in [53] and [50], respectively, are 

named extended-traditional and extended-synchronized for traditional and PMU 

measurements, respectively. Comparison results are given in Figures 5, 6 and 7. Figures 5  

and 6 show the RMSE% in Voltage and Current respectively, for BC-DSSE and NV-DSSE 

methods. In Figure 5, it can noted that the performance of NV-DSSE (both original and 

extended) is better than that of the original BC-DSSE algorithm and similar to that of the 

extended BC-DSSE algorithm in terms of RMSE% of voltage.  

Figure 5. Percent-RMSE in Voltage 

However, in terms of RMSE% current (Figure 6), the performance of both NV-DSSE and 

BC-DSSE is deemed neutral.  

Figure 6. Percent-RMSE in Current 

In Figure 7, the computational comparison of both algorithms show that BC-DSSE 

algorithms are faster than those of NV-DSSE. 

Figure 7. Average iterations and computational time 

 

4. Classification of DSSE techniques 

 
Based on the time evolution of state vector and measurement model, the DSSE techniques 

are broadly categorized into two categories, namely Static DSSE, and dynamic (or forecast 

aided) DSSE. 
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4.1. Static DSSE techniques 

 
In static SE it is assumed that the state of power system is not changing much between 

two consecutive state updates. This is called quasi-steady state condition of power 

system. Static SE techniques have been researched a lot and many techniques can be 

found in the literature. 

Using the measurement in (1) and the normalized residual vector for kth measurement can 

be defined as: 

 

𝒓𝒌 =
𝒛𝒌−𝒉(𝒙𝒌)

𝝈𝒌
         (17)       

 

The objective is to minimize the residual given in (17). Generally this is expressed as [60]: 

𝑱 = ∑ 𝜁𝑘(𝑟)𝑀
𝑘=1             (18) 

The function ζk(r) can be evaluated differently thus producing different estimators 

such as WLS, WLAV and SHGM. These estimators will be reviewed briefly. 

4.1.1. WLS: For WLS algorithm the function ζk(r) takes the following form: 

 

𝜁𝑘(𝑟) =
1

2
𝑟𝑘

2            (19) 

The objective function to be minimized is given in (14). 

 
4.1.2. WLAV: In this algorithm the function ζk(r) has the following form: 

 

𝜁𝑘(𝑟) = |𝑟𝑘|           (20) 

In WLAV, the minimization of the following objective function is required  

𝑀𝑖𝑛 (𝐽(𝒙)) = ‖𝑅−
1

2[𝒛 − 𝒉(𝒙)]‖
1
        (21) 

Further details of this algorithm can be found in [61]. 

4.1.3. SHGM: This estimator is based on Huber function and represents a good 

compromise of WLS and WLAV.  
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𝜻𝒌 = {

1

2
𝒓𝑘

2 , 𝑖𝑓 |𝒓𝒌| ≤ 𝑎𝜔𝑘

𝑎𝜔𝑘 −
1

2
𝑎2𝜔𝑘

2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}      (22) 

 

This estimator is sensitive to weight parameter ‘𝜔𝑘’ and tuning factor ‘𝑎’. The solution of 

this estimator is obtained through IRLS algorithm  [2]. In [60], the three algorithms, i.e. 

WLS, WLAV and SHGM, are compared based on three statistical measures, namely bias, 

consistency and quality. Based on these measures results are produced and it is shown 

that WLS gives the best performance and is a preferred choice for DSSE solver. Detailed 

analysis and simulation results can be found in [60].  

4.2. Dynamic DSSE techniques 

 
The previous section discussed SE methods that are static. These methods takes into 

account single snapshot of measurement data for the state estimate and its evolution over 

successive measurement instants is disregarded [62,63]. On the other hand, the DSE 

techniques, or more appropriately the FASE techniques, consider the time evolution of 

state over time and can track system changes during its normal operation. FASE 

techniques inherently consists of a forecasting feature which can help provide near real-

time monitoring of the system [62,64]. Generally FASE process involves the following 

four steps as shown in Figure 8. 

Figure 8. Steps involved in the DSE process 

4.2.1. Mathematical model: The DSE process considers the following mathematical 

model [65,66].  

𝒙𝒌+𝟏 = 𝒈(𝒙(𝒌), 𝒖(𝒌), 𝝎(𝒌), 𝑘)      (23) 

Here, k represents the time instant, and 𝒙(𝒌), 𝒖(𝒌) and 𝝎(𝒌) are the values of state vector, 

input vector and process noise at time instant k. These values are related to the future state 

vector, 𝒙𝒌+𝟏, through a non-linear vector function 𝒈(. ).  Model in (23) is far more complex, 

therefore following assumptions are made to simplify it for easy implementation [65,66]. 

• Power system is assumed to be operating in quasi-steady state. In quasi-steady state, 
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the state transition can be considered linear. 

• The process noise is modelled as a zero-mean Gaussian distribution with constant 

covariance P. 

 

Equation (23) can be re-written in a simpler form using the above assumptions as: 

𝒙𝒌+𝟏 = 𝑭𝒌𝒙𝒌 + 𝒈𝒌 + 𝒗𝒌      (24) 

The system observation model is given by equation (25). 

𝒛𝒌 = 𝒉𝒌(𝒙𝒌) + 𝒘𝒌        (25) 

Where 𝑭𝒌 ∈ ℝ𝐿×𝐿 is state transition matrix, where 𝐿 = 2𝑁 − 1 is the number of state 

variables with N being the number of buses; 𝒈𝒌 is related to trend behavior and state 

trajectory; 𝒛𝒌 is the measurement vector; 𝒗𝒌 and 𝝎𝒌 are process noise and observation noise 

respectively, both having a zero-mean Gaussian distribution with covariance matrices 𝑷 and 

𝑸 respectively. The covariance matrix 𝑷 is normally considered to be constant (e.g.10−6). 

The observation model is non-linear and is linearized using Taylor’s series as: 

𝒛𝒌 = 𝑯𝒌𝒙𝒌 + 𝝎𝒌        (26) 

Where 𝑯𝒌 is the Jacobian matrix previously defined in equation (9). 

 

4.2.2. Parameter identification: This is the second step of DSE process. In the 

literature, many authors [64–71] have adopted the Holt-Winters exponential smoothing 

technique for the identification of 𝑭𝒌 and 𝒈𝒌. Debs and Larson, in [66], assume a simple 

state transition model by considering 𝑭𝒌 as an identity matrix and a zero 𝒈
𝒌
. This reduces 

equation (24) to a simpler form given by (27). Similar assumption is also applied by the 

authors in [67,72,73].  

𝒙𝒌+𝟏 = 𝒙𝒌 + 𝒗𝒌       (27) 

4.2.3. State prediction: State prediction utilizes the assumed system model and predicts 
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the future values of the state variables. In the literature, there are many algorithms that 

perform this prediction step, e.g. ANNs [74] and algorithms based on Fuzzy logic [75]. 

Some authors used auto-regression-based models for state prediction [65].  

4.2.4. State filtering: Filtering is the final step involved in the DSE process. In this step, 

bad data are filtered out from the measurement set using the measurements that arrive at 

time instant ‘k + 1’ and the predicted information obtained in the prediction step of the 

dynamic estimation process. The EKF is widely used method to do the filtering step [76]. 

The recursions of EKF based methods, using the measurements coming at time instant ‘k 

+ 1’ i.e. 𝒛𝒌+𝟏 = 𝒉(𝒙𝒌+𝟏) + 𝝎𝒌+𝟏 are given by [3]. 

𝒙̂𝒌+𝟏 = 𝒙𝒌+𝟏 + 𝑲𝒌+𝟏[𝒛𝒌+𝟏 − 𝒉(𝒙̃𝒌+𝟏)]     (28) 

Where; 

𝒙̃𝒌+𝟏 = 𝑭𝒌𝒙̂𝒌 + 𝒈𝒌      (29) 

𝑲𝒌+𝟏 = ∑ 𝑯𝒌+𝟏
𝑻 𝑸−𝟏

𝒌+𝟏      (30) 

∑ = [𝑯𝒌+𝟏
𝑻 𝑸−𝟏𝑯𝒌+𝟏 + 𝑴𝒌+𝟏

−𝟏 ]
−𝟏

𝒌+𝟏     (31) 

𝑴𝒌+𝟏 = 𝑭𝒌 ∑ 𝑭𝒌
𝑻

𝒌 + 𝑷       (32) 

Other formulations of DSE can be found in [25], and more detailed survey on DSE 

techniques can be found in [77].  

From the literature, it can be observed that the DSE or FASE techniques are more focused 

on TSs, such as the studies done in [67,71] and [78].  In [67], an exponential-weight 

function is used to increase the robustness of the EKF-based estimator. Another 

modification to this algorithm is given in [69], in which the Taylor’s series of the non-linear 

measurement function is expanded to include the second order term, which enhances the 

accuracy of the estimation process. EKF utilizes the linearization of the dynamics of the 

system involved, which has inherent flaws. In [79], a new variant of Kalman filter, namely 
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UKF, is proposed which has the same computational expense as EKF. The authors in [80], 

discuss various flaws of EKF and extend the use of UKF to other diverse applications such 

as system-identification, ANN-training and problems of dual-estimation. Although UKF has 

been applied to non-linear systems with specific models, it was first applied to power 

systems, in which a specific system model does not exist, in [81], in which the authors have 

re-formulated UKF for power systems. Here, UKF is compared to EKF and to WLS for 

diverse simulation scenarios such as normal operating conditions, bad data, and sudden load 

variation. The authors concluded that comparatively UKF performs better in all simulated 

scenarios. In [82], a UKF-based hybrid-dynamic estimator is proposed which incorporates 

measurements from both the commonly available SCADA system and PMUs. The 

algorithm was validated for IEEE 14-bus and New England 39-bus networks and compared 

with conventional UKF, and it was shown that the proposed algorithm outperforms the 

conventional UKF. Another UKF-based estimator that accounts for randomly delayed 

measurements, namely UKF-RD, is presented in [83], in which simulation results 

demonstrated the accuracy of UKF-RD compared to conventional UKF. 

Although dynamic estimators have been proposed for TSs, only a few studies have 

discussed the DSE solution for DSs. In [84], a UKF-based estimator is proposed for DNs 

considering renewable energy integration. Since DNs lack real-time measurements, network 

observability is achieved using pseudo measurements, which are generated using historical 

load forecasting. In this regard, the authors in [85], propose a UKF-based dynamic 

estimator, which utilizes short-term load and DG forecasting for generating pseudo 

measurements. This algorithm was validated using a 123-bus DN to demonstrate its 

effectiveness.  Various dynamic estimators have been applied to power TSs, but from the 
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DS perspective, DSE techniques are not very prevalent, possibly due to the following 

reasons. 

1. FASE techniques require measurements with high resolution (e.g. from PMUs), which 

is so far not possible in DS due to a lack of communication infrastructure [86,87].  

2. The large problem size of DS (due to its dense nature) can lead to a huge 

computational burden [8].  

5. Multi-area DSSE 

 
The DSs are denser as compared to TSs due to the increased number of nodes per unit 

area. This predicts that SE is likely to face large computational challenges, creating the 

need for more computational resources. To remedy this problem, the large network is 

divided into smaller networks, each consisting of an LSE. The LSE of each network area 

estimates the state of its concerned area network using the measurements from that 

particular area. 

𝒛𝒍 = 𝒉𝒍(𝒙𝒍) + 𝝎𝒍 , 𝑙 = 1 … 𝐿       (33) 

Where  𝒙𝒍 = [𝒙𝒊𝒍𝑻  𝒙𝒃𝒍𝑻]
𝑻
is the state estimate of local area network ‘𝒍’. The state vector 

comprises the internal state variables (i.e.𝒙𝒊𝒍) of any particular area and border or tie-lines 

state variables (i.e. 𝒙𝒃𝒍) between two neighboring network-areas. A central estimator 

coordinates all the network-areas and processes and augments the states of the individual 

network-areas into a single state vector that represents the whole system (see Figure 9). 

 Figure 9. Multi-area SE 

MASE may or may not contain a central coordinator. MASE with central coordinators are 

called hierarchical-MASE in the literature, whereas those without it are decentralized-

MASE [27]. Figure 9 shows an example of hierarchical-MASE, but if the central estimator 



20  

is ignored it will become decentralized-MASE. In [88], authors propose a hierarchical-

MASE with an alternative approach through which sensitivity-functions are exchanged 

instead of system-states between the neighboring areas. This improves convergence speed 

and reduces the data exchanges between the neighboring areas [88]. A decentralized-

MASE is proposed in [89], which undertakes a two-step estimation process to determine 

the state of a large DS. A large DN is first divided into manageable local-area networks 

based on geography, various topological-constraints and available metering infrastructure. 

Later, local estimates for all the network-areas are obtained, which are utilized by the 

second estimation step to determine the updated state of the whole DS. In [90], a 

distributed-DSSE is presented which can take into account different types of measurement 

data from PMUs, smart meters, and SCADA to estimate the state of the DN. The main 

advantage of this method is its applicability to both radial and meshed networks with 

frequently varying system configuration. Another robust and fully decentralized-MASE 

based on BSE is proposed in [91], which takes into account non-linear measurements. 

Although MASE is an attractive paradigm, it has certain inherent drawbacks such as heavy 

dependency on the communication network between the neighboring areas. To cope with 

the challenge of this computational burden and to relieve the communication infrastructure, 

a decentralized UKF-based MASE is proposed in [92] for the power system SE along with 

a consensus-algorithm. The authors propose a multi-area dynamic state estimator which 

splits the network into non-overlapping areas and carries out estimation for each area 

locally. Later, the consensus-algorithm initiates local communication among the 

neighboring network-areas to exchange state information. Another work on MASE 

technique can be found in [93], in which event-driven sensing, estimation and 

communication is implemented to minimize the data exchange and thus, reduce the 
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dependency on the communication network. 

Multi-area DSSEs are robust and computationally efficient, but they come with problems of 

time-skewness due to non-synchronized measurements obtained in different network-areas 

[3]. A more detailed survey on MASE and associated challenges can be found in [27].  

6. Future Research directions for DSSE 

With the grid becoming more and more intelligent, it is getting more dynamic and 

complex. The events occurring in smart grids will be difficult to control manually. This in 

turn would require the extension of monitoring and control to the distribution level. Hence, 

DSSE will play a vital role in future smart DS. In the following sections, several new 

research areas for DSSE are discussed. 

 
6.1. Intelligent load forecast techniques for DSSE. 

 
DSs have fewer available real measurements than TSs do. These are not sufficient for 

ensuring system observability, which is crucial for the state estimator to work. In the 

literature, the remedy to this problem is performed through load forecasting. In this 

regard, ML and ANN-based methods present a viable solution. A detailed review on the 

application of ANNs for load forecasting can be found in [94]. In [95], an ANN-based load 

forecasting model is presented in which pseudo measurements are generated for DSSE.  

Another load estimator based on a ML technique is proposed in [96], in which the load 

model developed works in a closed loop and has the capability of training itself as new 

measurement data comes in and thus, enhances the performance of DSSE. Closed loop 

models are developed for the load forecast in [97,98]. These have the advantage of 

increased accuracy resulting in improved the performance of DSSE. Similar approaches 

are used by [99,100] to accurately estimate the load, thus enhancing the accuracy of 

DSSE. A real-time load modeling technique is presented in [99], in which the customer 
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load curves data and measurements of line flows have been utilized to approximate the 

uncertainty in the load estimates, which are used by DSSE. Another technique for 

generating pseudo measurements for DSSE is proposed in [100], in which the authors use 

a Gaussian mixture model to represent the load probability density function in DSs, where 

the mixture parameters are attained through a EM algorithm. These load models can be 

used by DSSE as pseudo-measurements. 

 

6.2. Event-triggered DSSE techniques. 

 
One of the challenges involved in extending the TSSE to the DS is increased 

computational burden due to the big problem size of DNs. In [8] and [101,102] an event-

triggered approach is applied to the existing WLS SE to improve its computational 

efficiency and estimation accuracy in the presence of variable energy sources. The 

results obtained with the developed SE technique are more promising than the existing 

WLS SE. In [93] an event-triggered MASE is developed which is able to perform event-

based sensing, estimation and communication. The occurrence of an event happens if 

there is sufficient novelty in the measurements above a certain threshold value. The 

advantage of this method is that it makes efficient use of communication and 

computational resources. In the literature, event-triggered approaches have also been 

adopted for model identification, especially in DSs where topology errors are more 

common because not all the breakers are monitored. The detection and elimination of 

these errors are necessary for accurate estimation. In [103], the authors present a 

topology identification algorithm based on RBA. Various critical power system 

configurations are defined as different topologies in a model bank. The SE algorithm is 

run for all topologies in parallel, and Bayesian-based probabilities are calculated for all of 

the models. The probability of the correct topology model reaches ‘1’, whereas those of 
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others converge to zero. The a-posteriori probability of correct model ψi is given by (35); 

𝑝(𝜓𝑖|𝜺𝑗) =
𝑝(𝒆𝒋|𝜓𝑖)𝑝(𝜓𝑖|𝜺𝒋−𝟏)

∑ 𝑝(𝒆𝒋|𝜓𝑖)𝑝(𝜓𝑖|𝜺𝒋−𝟏)
𝑁𝑚
𝑘=1

        (34) 

Where 𝜺 = {𝒆𝟏
𝒋

, 𝒆𝟐
𝒋

, 𝒆𝟑
𝒋

, … , 𝒆𝑵𝒎

𝒋
}, are the corresponding error vectors for 

models {𝜓1, 𝜓2, 𝜓3, … ,   𝜓𝑁𝑚
} respectively; 𝑝(𝜓𝑖|𝜺) is the a-priori probability, and 

𝑝(𝒆𝒋|𝜓𝑖) is the probability of i-th model error. Although this approach is effective in 

identifying the correct topology, it may converge slowly in the presence of noise. This 

issue is addressed by [104], in which the authors propose a Seidel-type recursive Bayesian 

approach, in which it is shown that the convergence speed is improved even in the presence 

of noise. Very recently, an SOR-based RBA is proposed in [105], which has further 

increased the convergence speed of both basic-RBA and Seidel-type RBA. Topology 

identification results for all three algorithms for the IEEE 6-bus system [11] are shown in 

Figure 10, for a case of 10% noise in the measurements. It can be observed that all the 

algorithms end up selecting the correct system configuration but with different 

convergence speed, and SOR-RBA converges quickly as compared to the Seidel-type RBA 

and the basic-RBA in the presence of noise. 

Figure 10. Three RBA approaches: a) Basic-RBA [103] b) Seidel-type RBA [104] c) 

SOR-RBA [105]. 

 

A similar approach can be found in [106], where three estimators, namely WLS, EKF and 

UKF, are used, and it is shown that when the topology is known a-priori, UKF performs 

better than WLS and EKF. When the topology is not known a-priori, a configuration change 

is detected using a forecast-aided technique and later, the correct topology is recognized 

from a bank of available options using an event-triggered based recursive Bayesian filter. 

Although Bayesian based topology identification methods perform well for smaller and 
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medium sized networks, their performance may degrade for larger networks due to an 

increased number of possible topologies in the model bank [107]. In [107], the authors 

implemented event-driven RBA algorithm and generalized-SE for configuration 

identification of 48-bus MV DN with DG and microgrid integration. The performance of 

both algorithms is evaluated in the presence of an increased number of system topologies 

and in the presence of noise. It is shown that the computational performance of the RBA-

based approach deteriorates compared to that of the generalized-SE when the number of 

configurations in the model bank are increased. This in turn motivates seeking accurate 

and computationally efficient power system topology identification algorithms in the 

future. 

6.3. Incorporation of PMU measurements in DSSE. 

Power systems are becoming more dynamic with the added role of DERs. These 

resources, being stochastic in nature, add uncertainties to power system dynamics.  These 

fast changing dynamics may not fully be captured by traditional SCADA sensors. 

Therefore, PMUs came into picture in the year 1980 [3] which are capable of providing 

synchronized measurements of voltage and current phasors with a time stamp from a 

GPS-based universal time clock. These synchronized measurements can help avoid 

iterative SE techniques by providing a linear relation between measurements and states, 

ultimately reducing the computational complexity of these algorithms [3]. They could 

prove to be more useful in DSs, where DSSE would likely face more challenges like 

computational complexity and estimation accuracy. In [108,109] and [110,111], the 

authors have worked on the incorporation of PMU in the DSSE algorithm. Beside all 

these studies, the deployment of PMUs in DNs is not economical. Hence, in [10], the 

authors developed µPMU to offset the installation costs of these units in DS. In [112], a 
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linear DSSE algorithm is formulated assuming that the DN is completely observable with 

µPMUs. The disadvantage of [112] is that it assumes the full scale installation of µPMU, 

which is not yet possible due to economic constraints. In [113], the authors propose a 

compressive sensing based DSSE algorithm that makes use of a lower µPMU and utilizes 

l1-norm to solve the underdetermined system.  The algorithm was validated for weakly-

meshed 123-bus and 134-bus networks with different levels of DER penetration, and a 

performance comparison of the proposed algorithm and conventional WLS-based DSSE 

algorithm. Apart from all these studies, µPMUs are still expensive and their massive 

deployment in DS is not possible; today’s need is to develop DSSE that can use both 

synchronized data (e.g. PMU or µPMU data) and non- synchronized data (e.g. smart 

meters, SCADA sensors and pseudo measurements). In [114], two different ways of 

fusing PMU data and conventional SCADA measurement data were found for static SE. 

These are: 

• A single stage state estimator in which both conventional SCADA and PMU or 

µPMU data can be combined to reach an optimal state estimate. 

• A hierarchical double stage state estimator in which a state estimate is obtained by 

using only conventional SCADA measurement data. This estimated state is then 

mixed with the measurement data from PMU and similar units to get the optimal 

state estimate. 

Such methods can be extended to DSSE in future. 

6.4. Inclusion of smart meter measurement data in DSSE. 

 
The availability of more DS loads data from smart meters can help better estimate and 

model the load behavior and as a result can increase the accuracy of DSSE. In the 
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literature, inclusion of smart meter data from AMI is also exploited to increase the 

accuracy of DSSE algorithms [115,116]. In [117], measurement data from smart meters is 

used for estimating various network variables such as voltages and line flows etc. Another 

method that uses compressed smart meter data and data from DERs, is proposed in [118]. 

In [119], an energy forecasting methodology is developed based on smart meter data for 

the operation of DS having substantial presence of DERs. Voltage and power or 

equivalent current measurements from AMI are used to estimate the 1-phase or 3-phase 

DN models [120]. Incorporation of data from smart meters is still challenging because of 

its non-synchronized and low data rate. The data reporting rate of smart meter is about 15 

minutes, which may not capture the snapshot of system more effectively. In [121], authors 

propose a DSSE algorithm that utilizes non-synchronized smart meter data by proper 

adjustment of variances for these measurement. Using data from smart meters can help in 

providing system observability for certain unmonitored network-areas. In this regard, the 

hierarchal estimation techniques that make use of non-synchronized heterogeneous 

measurements (e.g. PMU data, smart meter data, and SCADA measurements) would be a 

better solution. 

6.5. Advanced energy management systems for DS. 

 
ADMS is another good research area where DSSE has a fundamental role. The relationship 

of DMS with its TS counterpart, i.e. EMS, is depicted in Figure 11.  Earlier, DSs were 

passive with uni-directional power flows, which made their management and control easy. 

However, the future smart grid is transforming the existing power distribution grid in terms 

of 1) communication infrastructure, 2) integration of sources of different nature, 3) 

involvement of different types of loads and equipments, 4) data accumulation, 5) data 

security and sharing, and 6) deregulation of electricity grid which brings in many business 
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players [122]. Thus, the future grid would be an extra ordinary complex grid, whose 

operations would require certain common platform to increase its operational flexibility by 

facilitating flexible data exchange and system interoperability [122,123]. This would in turn 

require a fully functional DMS, which integrate sources and loads of different nature, and 

provide a platform for different utilities to cooperate in data sharing. In this regard, many 

researchers have tried to develop management and control functions to enhance system 

monitoring at the distribution level [124,125]. Algorithms for three important functions of 

DMS, namely load estimation, ac power flow, and optimal system re-configuration, are 

presented in [126]. Another similar study is performed in [127], in which the authors 

demonstrate the development of standard measurement-acquisition system and a real-time 

situational-awareness function for the Korean Smart grid initiative project. In [128], the 

authors develop an application software for DMS, which was used to investigate the effect 

of missing or delayed measurements on DSSE. In [129], a two-level DSSE algorithm is 

proposed for DMS of low-voltage (LV) DN. This algorithm was tested on a LV-network 

which has a mixture of conventional-generation sources and DGs, smart-loads, and storage-

facility. The authors in [130], develop a DMS framework integrating network modeling, SE 

and control for the implementation of Volt/Var support service. However, these algorithms 

are proposed mainly for radial DNs and doesn’t take into account meshed network topology. 

In this regard, a possible future work may consider the modification of [130] for meshed 

network topology with enhanced DG integration. Efficient and quickly convergent power 

flow algorithms, for instance [131–133], that considers both radial and meshed network 

models and integration of multi-DER, may be adopted.  

Figure 11. Relationship between EMS and DMS 

 
7. Conclusion 
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TSSE is well established and is present as a critical component of EMS because of the 

well-developed communication infrastructure. However, it is not implemented in the DSs 

firstly, due to passive nature of DS in which power flows are uni-directional and are easily 

manageable and secondly, due to the absence of communication infrastructure at this level. 

With the development of smart grid, which promises many features such as DA, demand 

responsive loads and increased integration of DERs, the distribution grid is evolving and is 

turning into active network. In active DS, power flows are bi-directional due to 

penetration of renewable energy sources such as wind energy, solar energy etc. Therefore, 

DSSE will have an essential role in such future active networks. This paper gives an 

overview of DSSE methods, its formulations and types present in the literature. 

Furthermore it provides brief possible future research directions for DSSE, including load 

forecasting for pseudo measurement generation, event-triggered SE, incorporation of 

PMU or µPMU and smart meter data and finally development of ADMS. 
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