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ABSTRACT
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Antibiotic resistance has become an important health threat across the world dur-
ing recent years. One of the solutions to reduce antibiotic resistance is to find ways
in order to use efficient amounts of antibiotics in treatments. It has been seen that
some antibiotics are synergistic, i.e, if they are administered together, they will
boost the individual antibacterial and antifungal effects. Identification of syner-
gistic antibiotics can be of significant assistance to medical practitioners in order
to optimize the amount of antibiotics to be used. In this thesis we have conducted
a set of analyses using data mining based approaches. Chemogenomic profiles
and chemical properties of drugs have been utilized to predict synergy between
them. Two datasets, E. Coli and yeast were used in order to perform the analysis.
GRASP meta-heuristic algorithm was implemented on chemogenomic features in
order to predict synregies which yielded in 0.94 accuracy and 0.82 Area Under
ROC curve for E. Coli dataset. In order to further explore the chemogenomic
features, we suggest a novel algorithm to predict synergy. This algorithm resulted
in Area Under ROC curve and accuracy of 0.71 and 0.91, respectively for E. Coli
dataset. Next, two chemical features, XLogP3 and Q PC- were used to perform
the analysis by employing decision trees and random forest classifiers. Our analysis
indicate that Q PC- chemical feature can be as discriminative as XLogP3 which
has been used in literature previously. Employing chemical features resulted in
most accurate prediction among the implemented methods. In this thesis, details
of the above-stated methods and algorithms will be presented.
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Son yıllarda antibiyotik direnci dünya çapında önemli bir sağlık tehdidi sırasında
haline gelmiştir. Antibiyotik direncini azaltmak için çözümlerden biri tedavi sırası-
nda antibiyotiklerin uygun miktarda kullanılmasının sağlanmasıdır. Bazı antibiy-
otiklerin sinerji oldukları, yani birlikte uygulandığı takdirde, tek başlarına sahip
oldukları antibakteriyel ve antifungal etkilerin arttığı bilinmektedir. Antibiyotikler
arasındaki sinerjinin belirlenmesi, çeşitli durumlarda kullanılacak olan antibiyotik
miktarlarının optimizasyonuna katkı sağlayabileceğinden, tıbbi uygulamacılar için
önemli bir fayda sağlayacaktır. Bu tezde veri madenciliği tabanlı yaklaşımlar kul-
lanılarak antibiyotikler arası sinerjinin belirlenmesi problemine yönelik bir takım
analizler yapılmıştır. Bu kapsamda ilaçların chemogenomic profilleri ve kimyasal
özellikleri kullanılarak birbirleri arasındaki sinerjinin tahmin etmeye yardımcı ola-
cak yeni yöntem ve yaklaşımlar geliştirilmiştir. Geliştirilen yöntem ve yaklaşımlar
E. Coli ve maya verileri kullanılarak performansları karşılaştırılmıştır. Chemoge-
nomic profillerin kullanılmasına dayanan yaklaşımlar arasında yer alan GRASP
meta-sezgisel algoritması 0.94 doğruluk ve 0.82 AUC sonucuyla E.Coli veri kümesi-
nde en iyi sonucu vermiştir. Öte yandan topoloji verilerinin de öğrenme sürecinde
kullanılması amacıyla geliştirilen orijinal bir yaklaşımla gene E. Coli veri kümesinde
sırasıyla 0.91 ve 0.71, doğruluk ve AUC sonucuna ulaşılmıştır. Öte yandan tez kap-
samında ayrıca ilaçların kimyasal özellikleri verisinin kullanılması durumunda ne
yapılabileceği üzerinde durulmuştur. Bu kapsamda, karar ağaçları ve karar or-
manları gibi yöntemlerin de kullanılmasıyla yapılan çeşitli çalışmalar sonucunda
iki özelliğin (XLogP3 ve Q PC) sinerji ilişkisinin belirlenmesi kapsamında diğer 300
civarındaki kimyasal özelliğe göre daha çok yardımcı olabileceği belirlenmiştir. Her
ne kadar XLogP3 bilimsel yazında zaten bu kapsamda etkili bir özellik olarak daha
önceden belirlenmiş ise de, yapılmış olan analizler Q PC’nin de XLogP3 kadar işe
yarar olabileceğini göstermektedir. Bu tez de bu kapsamda geliştirilen yaklaşımlar,
yöntemler ve bunların performanslarının belirlenmesine yönelik yapılan çeşitli anal-
izlerin sonuçları sunulmaktadır.

Anahtar Kelimeler: Veri Madenciliği, Algoritmalar, İlaç Etkileşimi, Sinerjik İlişkiler,
Antibiyotikler, Antibiyotik Direnci
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Chapter 1

INTRODUCTION

1.1 Motivation

Humankind has always searched for solutions to the problems that takes place

in his/her body. Early written evidence of such endeavors date 2500 BC where

certain types of plants have been used to cure diseases in Egyptian civilization [1].

Each medical plant’s usefulness to treat a category of illnesses had been identified

by medical practitioners of this ancient civilization. Researchers in [1] suggest

that these discoveries had been based on the physical properties of the plants. For

example, Figure 1.1 depicts perforated leaves of St John’s wort which suggests a

benefit in healing perforated wounds. Similarly, in Ayruvedic medical tradition

in India, Azadirachta Indica or neem leaves were used as a natural remedy for

bacterial infections, antiseptic treatment, oral hygiene, parasite infection, fevers,

and general infections [4]. Although traditional medical systems were effective

in treating certaint types of infections and boosting general immune system, they

were not able to provide solutions for all infections especially with global prevalence

of infectious diseases in 18th and 19th century.

1



Introduction 2

Figure 1.1: Ancient societies used St. John’s wort to heal perforated wounds
based on the shape of its leaves [1].

In 1928, Alexander Flemming, introduced the first chemical compound, Penicillin,

which fights the bacteria and/or inhibits its growth. This discovery was effective

in controlling infectious diseases which in turn led to a revolution in the medical

sciences in 20th century. The term antibioisis means against life and was first

introduced in a research paper published by William Roberts in 1874. Roberts

observed and reported that the liquid in which the Penicillium glaucum existed

could not be infected with bacteria [5].

Although antibiotics are not proven to be effective in battling diseases which are

caused by viruses, bacteria based disorders can be effectively cured using this type

of drugs. Infectious diseases such as tuberculosis, which was the cause for 25% of

deaths during 19th century, have been prevented in developed countries [6].

Since the first introduction of antibiotics in medicine many new infections have

been discovered and accordingly scientists have been constantly trying to find new

antibiotics to defeat them. At the same time many lives have been saved and the

use of antibiotics has significantly improved public health globally.
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Antibiotic drug consumption has increased by 36% during 2000-2010 period. This

increase has happened mainly in developing countries [7]. Although drug accessi-

bility is a life saving opportunity for the individuals who were previously unable

to provide these drugs for themselves, over-consumption of antibiotics results in

antibiotic resistance which is currently considered as a major public health threat

[7]. That is to say, antibiotic resistance is a serious problem facing global health

that is caused by misuse and overuse of antibiotics.

When antibiotic resistance occurs, a microbe evolves such that it resists the chem-

ical compounds which aimed to kill it. This resistance can be partial or total.

In total resistance, presence of the drug makes no difference in the growth of the

bacteria and in partial resistance, the drug kills only a percentage of the bacteria.

In order to prevent resistance issue, promoting rational use of antibiotics and

educating communities about the effects and dangers of antibiotic resistance seems

to be essential. Studying efficacy of drugs in cases where multiple number of

antibiotics are required is one of the ways to help physicians optimize the amount

and type of the antibiotic administered.

Researchers have previously studied the effects of using two drugs at the same time

and the process is referred to as drug-drug interaction. Many of such research is

based on purely experimental procedures, in which bacteria is grown in laboratory

and a combination of drugs are introduced to it in order to observe the combined

effects of drugs on bacteria’s growth. However, these methods are expensive and

time consuming, which limits the number of interactions that can be examined.

Employing data-mining (DM) can significantly assist in exploring drug-drug in-

teractions. By applying these techniques it is possible to discover and study a

greater number of drug-drug interactions. Although experimental data is needed

in training phase of the DM procedures, implementing these methods brings the

possibility of predicting drug interactions for which experimental data does not

exist. That is to say, researchers can learn from existing data and predict those

that are not available by using tools provided in DM. Despite the fact that there

are several articles in literature that incorporate Machine Learning (ML) in this

problem, there is still open research questions both in terms of the methodologies

and their applications.
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In this thesis, we have examined various approaches that employs DM techniques

in order to predict the synergistic drug-drug interactions. Performance of the

developed nethodologies are assessed in two datasets, namely, E. Coli and yeast.

The rest of the thesis is organized as follows. In Chapter 2 we will introduce

terminology and define the problem. Relevant literature will also be provided in

that chapter. Next, one of the approaches that utilize topological information will

be presented in Chapter 3 and the performance of the proposed approach will be

evaluated in E. Coli and yeast datasets. Chapter 4 will follow the same structural

flow in which non-topological approaches will be introduced and evaluated with the

same datasets. In Chapter 5, we will introduce chemical features to the problem

and present our proposed approaches. We will conclude the thesis in Chapter 6

with some insights we gained from the experimental analysis and further research

topics that are worth to be examined.



Chapter 2

Problem Statement and Relevant

Literature

In this chapter we will first introduce the basic terminology and the relevant lit-

erature of the synergistic drug-drug interaction prediction problem that we will

focus in the thesis. Next, we will provide the details of the datasets that will be

used in the analysis.

2.1 Drug-drug Interaction

The history of studying interactions among drugs can be traced back to tradi-

tional Chinese medicine and Indian medicine, Ayurveda. In traditional systems of

medicine, practitioners combined herbal extracts and plants in order to increase

the effects on a particular disease. These methods were developed by observing

each individual empirically and proposing a solution based on the patient’s par-

ticular characteristics [8]. One of the most popular fixed formulas in Ayurveda

is “Trikatu.” This mixture combines black pepper (Piper Nigrum), long pepper

(Piper Longum), and ginger (Zingiber Officinalis) [9][10]. It has attracted the at-

tention of phyto-medicine practitioners recently in an experiment and it is discov-

ered that “Trikatu” increases the blood level of vasicine significantly, which is an

antiasthmatic drug [10]. It appears that Trikatu mixture increases bio-availability

of drugs by providing rapid absorption in garstointestinal tract or prevention of

drug oxidization in its first passage through liver [10].

5
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One of the disadvantages of using traditional systems of medicine is that geo-

graphical location and seasonality of the place of production for the medical plant

is significantly influenced in their efficacy [8]. For example, researchers compared

chemical compunds in two extracts of Brazilian Orchid Tree (Bauhinia forficata)

from two different geographical areas and harvested in the same period of the year,

and the results suggest that the extracts present different concentration of their

main marker [8]. Despite their efficacy in dealing with chronic ailments, tradi-

tional medicine has not been proven to be successful in combating new infectious

diseases and as a consequence, they are rarely practiced.

Drug interaction is investigated from two major points of view. Some try to

investigate drug interaction type using pure biological experiments while some use

computational methods and bioinformatics for prediction.

In pure biological studies each drug combination is applied to cultures of the

biological entity and growth curves over a time period are reported. Growth

conditions consist of multiple dosages for each one of the drugs. Growth curves

indicate the number of grown cells at any specific time. Drug interaction type

is then determined based on these growth graphs. E. Coli is one of the most

researched bacterium in the literature. Some groups have also done experiments

on yeast cultures [2].

As possible combination of drugs is extremely large, determining interaction types

using pure biological methods for every combination is not possible in reality. In

addition, sometimes experiments are repeated several times to prove their repro-

ducibility, which is both expensive and time consuming. Computational methods

bring the possibility of predicting drug interaction type using a reduced number

of experiments. Using computational methods, the type of new drug interactions

is predicted based on features extracted from the biological experiments.

Each of the above-stated ways to approach drug synergy prediction can be used

for finding synergy in different types of cells.

Here we will introduce the basic terminology and review previous studies done in

the field of drug synergy prediction in literature.
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2.1.1 Measuring synergy

When two drugs are administered together they may interact in three different

ways [11]:

• They might have expected efficacy of each drug as in the case that they are

administered individually, which are called as additive drugs.

• They may have an efficacy higher than what it is expected from each one of

the drugs; in this case these two drugs are said to be synergistic.

• One may inhibit the other one to function, thus, using two drugs together

have less efficiency as using each one of them separately, which are called

antagonistic drugs.

These three possible ways of interaction are depicted in Figure 2.1. X axis repre-

sents ratio between the dose of agent 1 when used in combination with agent 2,

D1, to the dose of agent 1 in isolation, DIx,1, for the same biological effect. Axis Y

represents the same ratio for agent 2 [8]. Concave line, i.e. when the curve moves

towards the origin, indicates that the agents in the mixture are synergic, and when

the opposite occurs (convex line) they present antagonism. In other words, the

same biological effects of the agents in isolation are obtained at lower (or higher)

doses of the mixture.

Figure 2.1: Drug interaction types of combined agents.

Synergistic interaction is of more interest as it allows treatment of the disease with

less dosage of drugs. Administration of synergistic drugs results in reduction in
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toxicity and side effects while the efficacy is increased or remains the same [11].

Combinatorial therapies that impact multiple targets inside the cell simultaneously

are less prone to development of drug resistance, and thus they increase therapeutic

efficacy [12]. Although in this thesis we study using a combinatorial therapeutic

approach in treating infectious diseases, they are now standard in tackling other

diseases as well, such as cancer, diabetes [12], AIDS, malaria and hypertension [8].

There are four main mechanisms that drug synergy might occur [2].

• Drugs impact separate targets to create a combination effect.

• One drug alters the ability of another to reach its target.

• The components bind separate sites on the same target to create a combi-

nation effect.

• Two drugs physically interact to make a new chemical entity.

In order to discover how two drugs interact, a target cell is cultured in a matrix

which is called dose matrix, i.e., growth matrix [3]. Each plate has a different

concentration of drug 1 and 2. For example, in Figure 2.2 concentrations of drug

A and B are increased in eight steps and combination of both has been applied

to the culture of cells. Each subplot in Figure 2.2 represents number of cells

present in culture over a period. X axis in the subplots represent time and Y axis

represents number of cells in culture. The type of interaction between the drugs

are determined by the shape of Minimum Inhibitory Concentration (MIC ) curve

obtained from the experiments.
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Figure 2.2: Drug interaction diagram when drug A and drug B have synergy[2]

MIC, is the lowest drug concentration that prevents visible growth of the target

microorganism. In synergistic interaction connecting MIC concentrations in the

dose matrix, results in a concave line.

When drug A and B have synergy, they kill the bacteria faster, in other words, in

the first column of graphs in Figure 2.2, when there is no drug A in the solution,

it takes seven units of drug B to kill the bacteria completely, but by introducing

just one unit of drug B to the solution, it takes just 2 units of drug A to kill the

bacteria completely. This method of representing drug interaction is called Loewe

additivity model [13].

Figure 2.3 represents an example of real dose-matrix responses obtained in an

experiment. Tunicamycin and Ciclosporine A are suggested to be synergistic in

attacking Saccharomyces cerevisiae [3]. Each circle in Figure 2.3 depicts a colony of

grown cells. Brighter spots implies more cells have survived to grow in comparison

to darker spots. Since the MIC curve is concave, Tunicamycin and Cyclosporin A

are synergistic.
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Figure 2.3: Dose matrix response of two antibiotic drugs which show synergy
[3]

On the other hand when drugs are additive, they neither boost nor prohibit their

effects, i.e., adding one more units of drug A to the growth environment kills the

same number of bacteria cells as adding one unit of drug B. Loewe additivity

model for additive drugs is represented in Figure 2.4.

By means of such experimental analysis, it is possible to identify the type of

interaction of drugs in different target bacteria. However, it is costly due to the

time required and money spent. Data-mining methods, on the other hand, use

known interactions to predict unknowns which saves both in terms of money and

time. In the literature, some research is available that uses chemogenomic profiles

while some use chemical features as an alternative. Now we will introduce the

literature that utilizes these two approaches.
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Figure 2.4: Loewe additivity model when drug A and drug B are additive [2]

2.1.2 Chemogenomic profiling

Researchers have developed different methods to predict whether two drugs are

synergistic or not. One of these methods is to employ chemogenomic profiles

of the drugs that interact. Chemogenomic profiles are an output of a research

discipline known as chemogenomics. In this field, researchers find genomic response

of a biological entity to chemical compounds [14]. When a chemical compound is

introduced to a cell or a biological entity, it will target products of one, or more

gene(s) which in turn inhibits that gene from expression. In other words, with

chemogenomic profiling it is possible to find which gene is affected by a specific

drug [14].

In order to access the chemogenomic profile of a drug, a gene is removed from

bacterium’s genome and a stress is introduced to that phenotype, then that phe-

notype is arrayed on agar plates1. Number of bacteria cells which are present on

the agar plate after applying the stress over a period of time is estimated. Based

on this estimation, which is done by multiplying size of the colony by approximate

number of cells per unit of area for E. Coli, a score is calculated. This score is

proportional to expression level of the cells which lack the related gene. This score

1An agar plate is a dish which contains a growth medium and is used to culture microorgan-
isms. Other compounds such as antibiotics might also be added to the plate [15].
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is calculated for all gene deletions. The combined vector is the chemogenomic

profile of that particular type of cells.

Chemogenomic profiles have been used in drug synergy prediction in [3]. Authors

use hyperergeometric probability distribution and calculated a similarity measure

between chemogenomic profiles of two drugs involved in the interaction. If there

are x genes that are common in both profiles, similarity measure is the probability

of obtaining x or more genes that overlap between the two by chance. Similarity

measure can be considered as a p-value derived from hyper-geometric distribution

[3].

Note that, the approaches used in [3] does not utilize the topological features of

the drug-drug interaction network. In this thesis we will also develop an algo-

rithm which utilizes the topology information. Furthermore, we will introduce

alternative approaches that use genetic algorithms (GA) and Greedy Randomized

Adaptive Search Procedure (GRASP) which will not use topology information.

The algorithms that are based on the former approach will be presented in Chap-

ter 3 and the algorithms that are based on the other approach will be introduced

in Chapter 4.

2.1.3 Utilizing Chemical Features

Another approach in predicting drug synergy by data-mining methods is utilizing

the chemical features of the drugs. In [2] authors have found that synergy of drugs

based on their lipophilicity (LogP) values. LogP of a drug is by means of the oc-

tanolwater partition coefficient which is the relative solubility of a compound in

octanol over the solubility in water.

logP = log(
solute in octanol

solute in water
) (2.1)

A major advantage of this method is that logP of all compounds are known with

high precision and at no cost.

In [2] authors have defined synergicity of a drug as the ratio of number of synergies

of that drug with other drugs to number of experiments done on that drug. For

example, out of 24 drugs that Pantamidine was tested against, 12 of them were

synergistic and 12 non-synergistic which sets synergicity score of Pentamidine as
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0.5. Synergicity of a drug can be considered as a measure of willingness of a drug

to have synergy with others in a particular drug set.

Figure 2.5 (left) indicates that lipophilicity (XLogP3) is significantly correlated

with synergicity (Spearman correlation = 0.51, p-value = 0.0036). Diameter of

each circle corresponds with number of experiments done on that drug. Figure 2.5

(right) is histograms of XLogP3 distribution for non-synergistic (black) and syn-

ergistic (red) pairs. Two drugs with highest number of experiments (Pentamidine

and Terbinafine) are more likely to have synergy with lipophilic drugs [2].

Figure 2.5: (Left) Drug synergicity scores vs. drug lipophilicity for 31 drugs.
(right) is histograms of XLogP3 distribution for non-synergistic and synergistic

pairs

Since correlation between XLogP and synergicity is positive, it can be inferred

that if a drug has a higher lipophilicity it is more probable to have synergy with

other drugs, therefore, XlogP can be a good measure that cn be used in predicting

synergy among drugs. We can also observe in Figure 2.5 (right) that the drugs

with highest number of synergy experiments tend to show synergy with drugs that

have higher XLogP values which repeats the previous assumption.

Using chemogenomic dataset two approaches are developed; methods based on

topological data and non-topological methods. In experimental analysis that are

conducted both E. Coli and yeast are used. Next, we will summarize the datasets

that are used in the analysis.
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2.2 Datasets

When two drugs are used together three different possibilities arise. They might

be antagonistic, additive or synergistic. In this thesis we aim to predict synergy

of the drugs and we do not consider predicting neither additive nor antagonistic

interactions. We approach the problem using two different different approaches

and propose various algorithms for both. One of the approaches utilizes chemoge-

nomic profiles of the drugs involved in an interaction and the other uses chemical

properties of the drugs for the same purpose. We have used chemogenomic profiles

that have been discovered for E. Coli [17] and yeast [18] respectively.

In each of these researches, a series of experiments have been conducted on E. Coli

and yeast using different drugs in order to determine their chemogenomic profiles.

For each drug, different dosages have been applied and drug-gene scores have been

recorded in the relative chemogenomic profiles.

In order to select one of available profiles for a drug, the profile which has the

highest number of expressed genes was selected. An expressed gene is the one

which its drug-gene score is higher than a threshold in the profile, i.e. number

of grown cells which lack the gene passes a threshold when that drug has been

present in the cell culture. That is to say, by means of a threshold, the levels

(scores) are binarized. The threshold that is used to binarize profiles is set by the

domain experts.

Bacteria’s growth is prohibited not only by introducing drugs to it but also by

putting it under various physiologically relevant stresses. As we are going to

analyze the effects of drugs on E. Coli bacteria, we only consider chemogenomic

profiles when only a drug used as a stress factor.

Recall that MIC contour was used in order to determine the interaction type

between the drugs. The MIC curve is summarized by a metric refered to as alpha

score [20]. That is to say, alpha scores are extracted from dose matrices, explained

in Section 2.1, to indicate number of grown cells of the target cells (E. Coli or

yeast) when two drugs have been present in the culture. A low alpha score in

an interaction implies low number of grown cells, thus, we conclude that involved

drugs have effectively prohibited the growth of target cells, similarly, if the alpha

score is more than a threshold, which is again provided by experts, we can label
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the interaction as antagonistic. If the alpha score of an interaction is lower than

the threshold we consider the interaction as synergistic.

2.2.1 E. Coli Dataset

In [17] authors have compiled chemogenomic profiles of E. Coli in 324 conditions

for 3979 gene deletions extracted from Keio single-gene deletion library [19]. Out

of 324 conditions, 209 belongs to drugs including antibiotic, antimicrobial and

antifungal drugs [17].

Conditions to which gene deletions were introduced consists of 114 unique condi-

tions in different varietes, e.g. a drug is used as an stress in different dosages or

other physiological stresses have been applied.

The dataset of E. Coli contains
(
25
2

)
= 300 alpha scores of interactions between

25 drugs. In order to be able to validate interaction types which are predicted, a

subset of drugs are selected which we both have validation data and chemogenomic

profiles. After removing drugs that were not common between train and validation

sets, 19 drugs and
(
19
2

)
= 171 interactions among them were remained. Validation

dataset was extracted from [20].

2.2.2 Yeast Dataset

Chemogenomic profiles of yeast [18] were used in the analysis. In this dataset 726

conditions were applied on yeast’s 5985 gene deletions to find its chemogenomic

profiles. Interaction data available in supplementary materials of [2] were used to

compile required dataset for yeast. As the interaction data was in binary numbers,

i.e, synergy is represented by true and false otherwise, we used the same data and

did not apply a threshold on alpha scores. This dataset contains 175 interactions

among 33 drugs. Two different subsets were extracted to be used in validation

phase of the proposed algorithms. The first contains 165 pairs of 31 drugs and the

second includes 67 pairs of 21 drugs. Validation sets were selected according to

the type of features used for training. First set was used to validate the methods

based on chemical features, that will be discussed in Section 2.2.3, and the second

is used for the chemogenomic profile based prediction approaches.
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As chemical property that we use in proposed methods for yeast does not exist

for two drugs, i.e. Lithium and Cisplatin, we removed these two drugs and their

relevant interactions leaving the validation set with 31 drugs and 165 interactions

among them. Chemogenomic profiles of 22 drugs, with 68 interactions, exist in

yeast’s validation set. One drug in the dataset, Clozapine, has only one interac-

tion. We removed that interaction and drug in order to increase reliability of the

methods.

2.2.3 Chemical features

In the second method of drug interaction type prediction, chemical properties of

drugs are used in order to predict their interaction type. Our dataset consists of 328

chemical features for 31 drugs and 165 drug interactions. In this dataset interaction

data is not complete and instead of
(
31
2

)
= 465 interactions, we have a subset of

165. Our aim in this part is to investigate the possibility of predicting synergy

type using just one of the chemical features of the drugs in that interaction. The

advantage of using this method instead of using experimentally obtained features

is that chemical features are calculated mathematically with a predefined formula

which makes them significantly more reliable in comparison to the features based

on experiments. This fact helps us remove uncertainty caused by the experimental

procedure and improve the accuracy of predictions.

A set of analysis that had been done using XLogP3 has been published in [2]. Here

we first aim at reproducing the results found in [2] and secondly finding features

which did not have correlation with XLogP3 and result in reasonable Area Under

ROC and Area Under Precision Recall curve.



Chapter 3

Topology-Based Algorithm

3.1 Introduction

In this chapter a novel algorithm is proposed in order to predict drug synergy

based on synergy networks. A synergy network is a graph that depicts synergy

relationships among a set of drugs, i.e., nodes of the graph represent drugs, and

existence of an edge indicates that connected nodes are synergistic. Similarly,

antagonistic network can also be developed by considering edges when connected

drugs are antagonistic.

Synergistic and antagonistic pairs are determined by setting a threshold, extracted

from expert knowledge, on the alpha scores. If the score is less than synergistic

threshold we consider that interaction to be synergistic knowing the fact that

when alpha score is low, two drugs have effectively kill target cells (E. Coli or

yeast). If alpha score is higher than antagonistic threshold the pair is assumed

to be antagonistic. Synergy and antagony networks contain valuable information

that can be used to predict synergy. If a subset of drugs, i.e. a sub-graph, in the

network are fully connected and a common property can be found among them,

employing these properties may help us predicting synergistic pairs.

In this chapter we have utilized an algorithm to predict synergy using these com-

mon features. The following sections will provide details of this algorithm.

17
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Table 3.1: Binarization thresholds used in validation sets.

Antagony network Synergy network # of synergies
E. Coli 3 -0.5 20
Yeast 1 -0.5 17

Table 3.2: Maximal cliques in E. Coli synergy network and their nodes

Clique # 1 2 3 4 5 6 7 8 9 10 11
Nodes 1,7 2,7 7,14 3,5,7,16 3,6,7,16 7,13,16 7,16,19 8,16 10,11 13,18 18,19

3.2 Synergy and Antagony Networks

Synergy and antagony networks, as described in introduction section, depicts the

topology in which drugs interact. Thresholds used for binarizing alpha scores are

presented in Table 3.1 for the two datasets used in in the analysis.

Synergy and antagony networks of E. Coli dataset are represented in Figures 3.1

and 3.2 respectively. Recall that the existing dataset had 19 drugs for E. Coli,

on the other hand, chemogenomic profiles of 21 drugs are available for the second

yeast dataset. The synergistic and antagonistic networks of yeast are depicted in

Figures 3.3 and 3.4 respectively.

The proposed topology based algorithm utilizes maximal cliques that are available

in the networks. Maximal cliques are complete sub-graphs which form a complete

connectivity inside the subset. In other words, cliques are complete sub-graphs of

a network.

Bron-Kerbosch algorithm [21] is used to determine all maximal cliques in both

synergy and antagony graphs of E. Coli and yeast.

E. Coli and yeast synergy networks consist of 11 maximal cliques listed in Tables

3.2 and 3.4 respectively. Note that we used Leave One Out strategy in the analysis.

According to this strategy every time a drug is removed from the dataset and used

as the test drug in order to evaluate the performance of the algorithm, the structure

of the graph will change, which consequently modifies number of maximal cliques.

For example if drug #7 is used as test drug in E. Coli dataset, there will be eight

cliques which are represented in Table 3.3.
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Table 3.3: Maximal cliques in E. Coli dataset when drug 7 is left out as test
drug.

Clique # 1 2 3 4 5 6 7 8
Nodes 10,11 3,5,16 3,6,16 8,16 13,16 16,19 13,18 18,19

Figure 3.1: Synergy network for E. Coli dataset. Connected nodes represent
synergistic pairs.

Figure 3.2: Antagony network for E. Coli dataset. Connected nodes represent
antagonistic pairs.

Yeast’s synergy and antagony network is provided in 3.3 and 3.4
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Figure 3.3: Synergy network for yeast dataset. Connected nodes represent
synergistic pairs.

Table 3.4: Maximal cliques in yeast synergy network and corresponding nodes

Clique # 1 2 3 4 5 6 7 8 9 10 11
Nodes 1,2,6 1,2,7 1,2,8 2,4,7 2,5,6 2,5,7 2,5,8 2,12 2,13 2,17 20,21

Figure 3.4: Antagony network for yeast dataset. Connected nodes represent
antagonistic pairs.

3.3 Topological Algorithm

Our proposed method is structured in two phases. In the first phase we make a set

of possible synergistic pairs which we call “suggested synergies” and in the second
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phase, suggested synergies are filtered to remove less probable predictions. The

following sections present the steps of each phase in the algorithm.

3.3.1 Finding Possible Synergies

A threshold, extracted from expert knowledge, was used to convert drug chemoge-

nomic profiles into binary vectors. In the converting process, if a drug-gene score is

over this defined threshold, binary value will be true and false otherwise. Thresh-

old of -0.5 was used for E. Coli and -1 for yeast. Leave-One-Out cross validation

concept was performed by leaving one drug and its relevant data as test data and

using other drugs as training set.

Binary chemogenomic profiles were used as an input for Algorithm 1. Dti and DC

parameters used in Algorithm 1 are explained in Section 3.3.1.3.

Data: binarized chemogenomic profiles

Result: “suggested synergies” set

for all drugs in dataset do

select drug as “test drug”;

remove test drug from the network;

find maximal cliques;

for each maximal clique do

extract discriminative features set;

calculate distance matrix;

end

if Dti < DC then

add ith drug in clique and test drug to “suggested synergies”;

end

end
Algorithm 1: Topological based synergy prediction - creating suggested synergies

set

3.3.1.1 Discriminative Features

A subset of features(gene deletions) were selected for each clique which we refer

to as “discriminative features”. This subset is used in order to calculate distance

matrices. Recall that features have binary values after the binarization process.
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Three possible cases exist for a feature value inside and outside of a clique,

• A feature value can be true in clique drugs’ profiles and false for others.

• It can be false for clique drugs and true for others.

• Feature’s value can be the same in clique and non-clique drugs, i.e. both

true or both false.

Features which fit in first and second cases are possibly discriminative in finding

synergies. Based on this observation we suggest the following: If a feature has the

same value, e.g. true, among all clique drugs and is in lower s percentile of the

other binary value, i.e. false we include them in “discriminative features”. For

example, value of feature f is true for both drug d1 and d2 which are members of

clique c in E. Coli dataset and in only one of the remaining 17 drugs f value is

true, therefore, we include this feature to discriminate features related to clique c.

This process is repeated for each maximal clique as indicated in Algorithm 1.

As structure of network changes for each test drug, feature selection was done

for each test drug network separately. We performed the same procedure for

synergy and antagony networks of each dataset. Two cases were considered for

both antagony and synergy network, therefore, total number of extracted feature

subsets equals to
∑

D NCD
∗ 4. Where NCD

is number of cliques for corresponding

drug D.

3.3.1.2 Distance Matrices

Distance matrices were calculated as a means to form classification. A distance

matrix contains pairwise euclidean distances of drug chemogenomic profiles based

on the subset of features determined. That is to say, only discriminative features

are used to generate the distance matrices. For example when dt is selected as test

drug in E. Coli dataset, features selected for clique c earlier in the algorithm is

represented as a vector which is a subset of drugs’ chemogenomic profiles. This sub-

profile is extracted for all 19 drugs and euclidean distance between each possible

pair of these sub-profiles is calculated to form distance matrix of clique c. Distance

matrices of all cliques are formed and stored as distance matrices for each test drug

dt.
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Distance matrices are square with ND rows and columns, where ND indicates

number of drugs in the dataset. Test drug is included in the process of calculating

distances as there is a need to find distance between test drug and the drugs in

the clique drugs. Inclusion of test drug in matrices does not bring circularity as

distance values are not used in training part of the algorithm and is only used

later in order to find synergies of the test drug.

We calculate a matrix for each member of discriminative features set, therefore,

again a total of
∑

D NCD
∗ 4 distance matrices exist.

3.3.1.3 Suggested Synergies

We first calculate average distance, DC , between each clique drug and other non-

clique drugs using the distance matrices of all cliques. Non-clique drugs set in-

cludes all drugs except the ones in the corresponding clique and the test drug.

If test drug’s distance with any of clique drugs is less than DC , we consider test

drug and that specific clique drug as a possible synergistic pair. M will be an

average of ND −NDC − 1 numbers where NDC is number of drugs in clique.

Distance matrices of both cases discussed in section 3.3.1.2 were used to obtain a

set of synergy suggestions. Using selected features, clique drugs have an average

profile distance, DC , among themselves and test drug has a distance, Dti , with

ith member of drugs in a clique. If Dti < DC we suggest that test drug and ith

clique drug are possibly synergistic and include them into “suggested synergies”

set. After suggested synergies are dtermined, a classification algorithm is used

to make the final decision. Next, we will present the details of the classification

algorithm used for this purpose.
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3.3.2 Classification

Data: suggested synergies

Result: predicted synergies

for all drugs in dataset do

select subset W of suggested synergies ;

calculate scores for members of W ;

select high score members as final predictions

end
Algorithm 2: Topological based synergy prediction - predicting synergistic pairs

A subset, W, of most frequent suggestions for each test drug was extracted from

suggested synergies set. Subset W has a size, p, which is an indicator of connec-

tivity of a drug in the network,

p = bavg(synergicity) ∗ (ND − 1)c

largest integer before(floor) average synergycity score in the network multiplied

by ND − 1 which is number of drugs excluding test drug. . For example if drug

#7 is selected as the test drug, average synergicity equals to 0.35 and p = 6.

Three scores were extracted from distance matrices to identify candidate syner-

gistic drug(s) from W.

• Synergicity is number of synergies a candidate drug shows in all experiments

that has been done on it.

• Difference score for synergistic network

• Difference score for antagonistic network

When two drugs are included in suggested synergies set,

DC −Dt

mean(distance matrix)

is added to a separate vector which we call as “difference vector”. Average “differ-

ence vector” values of items in W were calculated to form Difference score for each

member of W set. This vector was also created using distance matrices obtained

from antagonistic network. A higher difference score in synergy network and a
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lower score in antagony network, indicates that test drug is more affine to have

synergy with the drug in W, thus, when combining these two scores, antagonistic

scores will have a negative coefficient.

Synergy Index is a normalized weighted sum of three scores. Average synergy

index of all drugs in W added to a percentage of their standard deviation was

used as a threshold to determine final synergies. Percentage of used standard

deviation is different in yeast and E. Coli datasets. In E. Coli dataset 100% and

in yeast dataset 75% of of standard deviation was added to the average synergy

index. Percentages of standard deviation was determined empirically.

3.4 Results for E. Coli

Employing this method on E. Coli dataset resulted in 566 members of suggested

synergy set for synergy network and 759 for antagonistic network. Suggested

synergies has 215 unique members for synergy network and 260 for the antagony

network. Size of W set varies between 8-9 suggestions for this dataset. Synergy in-

dex was calculated using weights equal to 0.5 for synergicity and synergy difference

scores and -0.5 for antagony difference score. Table 3.6 represents confusion matrix

after applying the method on original network. A confusion matrix is a table that

represents performance of an algorithm. Each column of the matrix indicates the

instances in a predicted class while each row represents actual instances. Table

3.5 represents the elements of a confusion matrix.

• true positives (TP): These are the cases in which the classifier correctly

predicts interaction to be synergistic, and it is synergistic in reality.

• true negatives (TN): These are the cases in which the classifier correctly

predicts interaction to be non-synergistic, and it is non-synergistic in reality.

• false positives (FP): The classifier predicts synergy but the interaction is

non-synergistic in reality.

• false negatives (FN): The classifier predicts non-synergy but the interaction

is synergistic in reality.
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Table 3.5: Structure of a confusion matrix.

Predicted(P) Predicted(N)
Actual(P) TP FN
Actual(N) FP TN

Table 3.6: Confusion matrix after network based classification on E. Coli
dataset.

147 4
11 9

Base accuracy rate is defined as

Base accuracy rate =
Size of major class

Total number of instances

Major class is the output class of the classifier which has the highest instances in

data set. Base accuracy rate indicates accuracy value in case that the classifier

outputs the major class for every input In this dataset 20/171 interactions belong

to the positive, i.e., synergistic class which makes base accuracy rate equal to

20/171 Area Under ROC curve for this result and accuracy are 0.71 and 0.91,

respectively, in which accuracy is more than base rate of 0.88.

As an alternative approach, the method used in [2] was implemented in order to

verify the results. We conducted the analysis on node-shuffled and edge-shuffled

networks for 1000 iterations. Edge shuffled network has the same number of nodes

as the original network but the links between nodes are randomly distributed.

Node-shuffled network on the other hand has the same topology of edges but node

labels are shuffled. Since more information is lost in edge shuffled network we

expect when we shuffle edges, performance of the classifier be lower than the node-

shuffled network. At the same time original network’s classification performance

should be better than node-shuffled’s as node label information is lost in this

network. Figure 3.6 represents the results of 1000 randomizations for both node

and edge-shuffled networks. AU-ROC of node shuffled was more than the original

network in 42/1000 of the trials. As there is no randomization for the original

network we performed the analysis once.
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Figure 3.5: Area Under ROC curve for of 1000 iterations of the method on
edge-shuffled (blue), node-shuffled (green) and original network(black). The real

counts value for original graph is one.

Figure 3.6: Area Under ROC curve for of 1000 iterations of the method on
edge-shuffled (blue), node-shuffled (green) and original network(black). The real

counts value for original graph is one.

3.5 Results for yeast

Employing this method on yeast dataset resulted in 556 members of suggested

synergy set for synergy network and 773 for antagonistic network. Suggested

synergies has 179 unique members for synergy network and 260 for the antagony

network. Size of W set varies between 8-9 suggestions for this dataset, except for

the time that drug # 2 is selected as test drug. Synergy index was calculated
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Figure 3.7: Predicted synergy network for E. Coli. Nine synergies were pre-
dicted correctly (green), 11 synergies could not be predicted (red), and four

non-synergies were predicted as synergy (black)

Table 3.7: Confusion matrix after network based classification on yeast
dataset.

43 7
9 8

using weights equal to 0.5 for synergicity and synergy difference scores and -0.5

for antagony difference score. Table 3.7 represents confusion matrix after applying

the method on original network.

In this dataset 17/67 interactions belong to the positive, i.e., synergistic class

which makes base accuracy rate equal to 50
67

= 0.75 Area Under ROC curve for

this result and accuracy are 0.66 and 0.76, respectively, in which accuracy is more

than base rate of 0.75.

Table 3.7 represents confusion matrix after applying this methon on yeast dataset.

Figure 3.8 represents the results of 1000 randomizations for both node and edge-

shuffled networks. AU-ROC of node shuffled was more than the original network

in 581/1000 of the trials. As there is no randomization for the original network

we performed the analysis once.
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Figure 3.8: Area Under ROC curve for of 1000 iterations of the method on
edge-shuffled (blue), node-shuffled (green) and original network(black). The real

counts value for original graph is one.



Chapter 4

Non-topological Methods

4.1 Introduction

In this chapter of the thesis we have used two meta-heauristic algorithms for

feature reduction and prediction of synergistic pairs. A brief review of the used

algorithms will be provided in Section 4.2, results of employing such methods are

represented in Section 4.3. Genetic Algorithm was only used to find a subset

of available features which provide a better objective function. Details of the

objective function will be provided in Section 4.2. GRASP algorithm was uswd

only on E. Coli dataset. In order to predict interaction types using the feature

subset found by GRASP, decision tree and KNN classifiers were used.

4.2 Algorithms

4.2.1 Genetic Algorithm

Genetic algorithms are a subset of a larger class of meta-heuristic algorithms called

evolutionary algorithms. In these algprithm natural selection is inspired from bi-

ological evolution. Biological functions such as reproduction, mutation and selec-

tion is common in this type of methods. GA is especially beneficial in solving the

problems in which the solution space is significantly large and fitness landscape

is complex, i.e., there are many local optimal solutions. Mutation process in GA

allows the algorithm to avoid remaining in the local optima and look for more or

30
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global optimal solutions. A solution is usually called an individual and a subset

of the solution space that algorithm preforms on is called a population or a pool

of solutions. Fitness function is designed in such a way that represents the value

of objective function of an individual. A crossover operator produces next pop-

ulation by incorporating more than one parent solutions. Children solution are

referred to as offsprings in GA terminology. There are different types of perform-

ing a crossover on an individual. In this thesis we have used two-point crossover

procedure in which children solution is created by two parts of first parent and

one part from the second one, as depicted in Figure 4.1.

Figure 4.1: Two point crossover used in this analysis.

Locations of crossover are determined randomly in each iteration of GA. A muta-

tion operator simulates the biological mutation phenomenon by randomly changing

some parts of the offspring individuals, Figure 4.2 depicts a simple example of mu-

tation in two points of a solution.

Figure 4.2: Mutation randomly changes some part of the solution.
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We define selected subset of a chemogenomic profile which is defined by a solution

as “sub-profile”. In this study, our objective function is defined as correlation

between sub-profiles and alpha scores of the drug interactions in both E. Coli and

yeast chemogenomic datasets.

A genetic algorithm with two-point crossover, one percent mutation was used in

10000 iterations. Probability of doing a crossover and a mutation was 0.5 in each

iteration and when a mutation was going to happen 1% of solution pool was

mutated. Algorithm 3 represents steps taken in this algorithm.

Data: chemogenomic profiles

Result: sub-profile

create initial pool;

for number of iterations do

calculate fitness function for all pool solutions;

find best and worst fitness solutions;

crossover on best solutions − > new solutions;

exchange worst reslts with new solutions ;

mutate the pool ;

end
Algorithm 3: Genetic algorithm for sub-profile selection

4.2.2 GRASP

GRASP is a commonly used meta-heuristic algorithm in optimization problems.

GRASP algorithm consists of two phases. First is to create a feasible solution,

and the second phase in which local optimum is searched in neighborhood of the

feasible solution found in the first phase. Each iteration of the algorithm provides a

solution to the problem at hand. Since GRASP selects the best possible solutions,

is categorized as a greedy algorithm. In every iteration of the algorithm a random

solution of non-best solutions is added into a selected set of solutions with highest

value of objective function. This set is then used for further steps of searching the
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feasible region. A generic GRASP procedure is represented in Algorithm 4.

create initial solution;

for GRASP stopping criterion is not satisfied do

construct greedy randomized solution ;

local search;

update solution ;

end

return best found solutions

Algorithm 4: Generic GRASP algorithm procedure [22].

In order to select a subset of features that can help us predict synergistic inter-

actions, we have implemented GRASP on E. Coli and yeast datasets. In the first

phase of the method, we select a subset of length two from available features,

feature i and j. For each drug interaction, k, we select ith and j th element in

the chemogenomic profiles of the drugs involved in the interaction to calculate

the correlation between these two sub-profiles. We defined correlation vectors as

pairwise correlation between sub-profiles of the drugs in an interaction. Figure 4.3

represents depicts the process to calculate correlation vectors. In Figure 4.3 drugs

x and y are two drugs in interaction k.

Figure 4.3: Element k in the correlation vector is a result of correlation be-
tween elements i and j in feature vectors x and y

After calculating all elements of the correlation vector, q, we calculate the correla-

tion between alpha scores and q which is the value of fitness function for GRASP.
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Fitness values vector and q have the same length equal to number of the interac-

tions.

Fitness value indicates similarity between alpha scores and feature vector using

only ith and j th feature instead of all. Similarly we can calculate fitness values

for a subset of more than two features.

In the first part of the method, We find the fitness value for all possible couples of

features, with length of
(
3979
2

)
= 7914231. As we expect features which represent

alpha scores better will be more successful in the classification process, we select

a subset of n feature couples with highest fitness values.

A random couple out of n is selected in the beginning of the second part to start an

experiment. In each iteration of the experiment one feature is added to the subset

of selected features. Starting from the first feature we check whether it has been

already selected or not. If it has not been used before, we concatenate that feature

to the subset of selected features and objective values are calculated using new set

of selected features. We select k features which yielded best objective values and

due to the nature of GRASP algorithm we add one feature which has not been

among k best objective values. Adding features is continued until a predefined

limit, F, is reached in an experiment. E experiments will be done and the best

result is reported. Figure 4.4 represents the steps of each experiment.

4.2.3 KNN classifier

K-Nearest Neighbors algorithm is an instance-based classification method, i.e.,

it stores all available cases and classifies new cases based on a similarity mea-

sure ,e.g., distance functions [23] Classification using an instance-based classifier

is performed by locating the nearest neighbor in instance space and labeling the

unknown instance with the same class label as that of the located neighbor in

training data. A disadvantage in using this approach its sensitivity to the noise in

training data.

In order to achieve more robust models, location of k, where k ¿ 1, neighbours can

be considered and majority vote can decide the outcome of the class labelling. A

higher value of k results in a smoother, less locally sensitive, function. The nearest

neighbour classifier can be regarded as a special case of the more general k-nearest

neighbours classifier, hereafter referred to as a kNN classifier.
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Figure 4.4: Flowchart of experiments done using GRASP algorithm in second
part of feature selection method

4.3 Results

4.3.1 GA Results

In case of E. Coli, objective value was -0.24 before performing GA and the rela-

tionship between correlation of chemo-genomic profiles and alpha scores was as

depicted in Figure 4.5

Fitness function value was decreased to -0.58 by applying GA. Fitness function for
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Figure 4.5: Correlation of chemo-genomic profiles versus alpha scores of drug
interactions before applying genetic algorithm in E. Coli dataset

each iteration is depicted in Figure 4.6. Relationship between correlation vector

and alpha scores after GA in E. Coli dataset is represented in 4.7.
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Figure 4.6: Fitness function in each iteration of GA in E. Coli dataset

Size of selected sub-profile is around 1600 features. By applying genetic algorithms

we could select a subset of features by which the value of objective function has

been minimized.

For yeast before applying genetic algorithm, using 67 out of 231 possible drug

interactions, value of objective function was -0.15. A genetic algorithm with two
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Figure 4.7: Relationship between alpha scores and sub-profiles after GA in E.
Coli dataset

point crossover function and 1% mutation was performed for 20000 and the max-

imum absolute value of objective function in each iteration were as depicted in

Figure 4.8
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Figure 4.8: Value of objective function in each iteration of genetic algorithm
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Table 4.1: Parameters used for GRASP algorithm

Number of experiments 20
Number of selected features 32
Number of best features selected 5
n 100

Table 4.2: Parameters used for GRASP algorithm

Number of experiments 10
Number of selected features 20
Number of best features selected 5
n 100

4.3.2 GRASP results

Figure 4.9 represent the final output of feature reduction procedure using the

parameters stated in Table 4.1 for the model.

Figure 4.9: Objective value has decreased by using the features selected by
GRASP with parameters stated in Table ??.

We tried another set of parameters but fitness value was not improved, Table

4.2 represents used parameters and Figure 4.10 depicts the relationship between

correlation vector and alpha scores.

In order to verify that using selected features yields in a better classification accu-

racy, we predicted interaction types using desicion tree and KNN classifiers. These
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Figure 4.10: Objective value has decreased by using the features selected by
GRASP with parameters stated in Table 4.2

Table 4.3: Confusion matrix after using

148 3
7 13

two common classifiers voted for the type of each of 165 interactions, i.e. if both of

them predicted the interaction to be synergistic, the final output is synergy. PR

Tools [24] was used as a means to perform the classification, 5-fold cross validation

and voting procedure.

Selected features of experiments were sorted and the subset which leads to the

best objective function was selected, i.e., the same feature set related to Figure 4.9.

Since value of objective function is not strictly increasing inside the selected subset,

a reduced subset of features were selected. Reduced subset contains members of

the original subset from the first member to the one that leads to the best fitness

function. Since in our analysis the best fitness function was the last member of

the feature subset, reduced subset contained all 32 selected features.

Correlation vector was calculated using selected features and was introduced to the

voting classifiers. Binarized alpha-scores with threshold -0.5, which is extraced fron

expert knowledge, was used as the labels for learning. 4.3 represents the confusion

marix of our analysis. Area Under ROC equal to 0.82 and Area Under PR curve

of 0.87.



Chapter 5

Utilizing Chemical Features

5.1 Introduction

Chemical features of drugs participating in an interaction can be used as a means

to predict synergy. These features are based on chemical formulations and can be

calculated mathematically which makes them significantly more reliable in com-

parison to the features based on experiments. It has been seen that if a feature

is correlated significantly with synergicity, it can be a leading to more accurate

predictions. Drug lipophilicity is an example of such features and has been used

in [2]. Lipophilic drugs have a higher tendency to be synergistic with other drugs

[2]. In this chapter we reproduced results found in [2] with a different classifier

in first step and selected a new feature, Q PC-, from a subset which consisted of

327 drug descriptors. We found that although Q PC- is not neither correlated

with lipophilicity nor synergicity, using it will yield in good classification results.

Decision tree and random forests were used in order to perform the classification.

Details of the methods used will be discussed in the following sections.

5.2 Classifiers

In this section a brief introduction to the used classification methods will be pro-

vided.

40
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5.2.1 Decision tree

Decision tree classifiers use graphs in tree format to model possible outcomes of a

datum based on attributes it possesses . Each internal node in the tree represents a

test on the data attribute and based on the criterion which is calculated using the

value of that attribute, a branch is made. When all data attributes are considered

or a stop condition is met, a label(an outcome) is assigned to the datum. Final

nodes of a decision tree, i.e. assigned class labels, are called leaves of the tree.

If nodes of the tree are traced from root to the leaves, a decision rule can be

generated. Decision rules verbally express the rules generated by the decision

tree algorithm. Figure 5.1 depicts an example of a trained decision tree on “play

tennis” dataset. This dataset consists of weather conditions and labels which

state whether it is suitable to play tennis or not. Leaves of this tree represent the

decision that is suggested by the algorithm. Based on this decision tree We can

generate a decision rule which states “if outlook is sunny and humidity is normal,

it is suitable to play tennis today”. If a node is closer to the root of a tree, it

contains more valuable information than the one that is further.

Figure 5.1: An example of a trained decision tree for “play tennis” dataset

In the analysis that we have done in this chapter, nodes of the trained decision

tree consists of the chemical features of first and second drug in a test interaction

and the output is based on the chemical attributes are they synergistic or not.

MATLAB’s default implementation of decision trees has been used to train the

models.
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5.2.2 Random Forest

A random forest uses an an ensemble of decision trees in training phase. Median of

outputs from these individual trees are reported as the final label random forest has

generated. Each tree in the ensemble is trained by using a subset of input variables,

i.e., if there are V variables in input data, a subset v of these variables is selected

randomly with replacement to branch the nodes of the trees in an ensemble [25].

Using random forests can avoid over-fitting that is a common problem in decision

tree algorithm. They also perform better in unbalanced datasets [25]. In an

unbalanced dataset, majority of training set consists of data from one class, thus,

the classifier has a tendency to label test data as the majority class. Performance

on unbalanced datasets is an important factor in selecting classification methods.

In our analysis we have used the random forest implemented in WEKA toolkit

[26].

5.3 Chemical features

5.3.1 Lipophilicity feature

Lipophilicity, XLogP3, of drugs has a significantly high correlation with drug

synergicities, Figure 5.2. The method used in [2] to predict synergy in yeast dataset

was replicated with random forest classifier of WEKA toolkit [26] in MATLAB.

The feature vector introduced to the random forest classifier was XLogP3 value

of first drug concatenated with XLogP3 value of the second drug and vice versa,

i.e. we added values of second drug concatenated with first to the bottom of the

previous vector. As there were 165 interactions available in yeast dataset, total

number of rows of (observations) in the feature vector was 2 ∗ 165 = 330, Figure

5.3. WEKAs random forest was used in MATLAB with the following settings

• Unlimited depth of trees

• 2 features to be used in random selection

• 100 as the number of trees to be trained
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Figure 5.2: XLogP3 has a significantly high correlation with synergicity,
Spearman r = 0.51 , p = 0.0036

Figure 5.3: Feature vector introduced to random forest classifier.

5.3.2 Q PC- Feature

We observed features which are not correlated with synergicity can be equally a

good means to predict interaction types. Q PC- is one of these features that is

neither correlated with synergicity nor lipophilicity, Figure 5.4.
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Figure 5.4: Q PC- is not correlated with XLogP3 nor synergicity.

Figure 5.5: Q PC- features were used in the classifier by concatenating the
both values for Q PC- of drugs involved in an interaction

We used the same pattern of concatenating the features of first and second drugs

to be introduced to classifier, Figure 5.5. If we apply a simple rule based on Figure

5.5 to identify interactions with Q PC- value of more than -6 for both drugs as

synergistic, an AU-ROC of 0.55 will be achieved. This result promises that if

the random forest divides the feature space into more accurate subspaces, more

accurate predictions can be obtained.
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5.4 Results

5.4.1 E. Coli Results

Resulted AU-ROC and AU-PR curve of performing 10-fold cross validation for

300 iterations are represented in Figures 5.6 and 5.7 respectively.

Figure 5.6: Distribution of AU-ROC when using random forest as a classifier
along with XLogP3 as feature.

Figure 5.7: Distribution of AU-PR when using random forest as a classifier
along with XLogP3 as feature.

In Figures 5.6 and Figure 5.7 black color represents the results for the original,

green for the node shuffled and blue for the edge shuffled synergy graph. As
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Figure 5.8: AU-ROC when using Q PC- feature in a random forest classifier.
Maximum AU-ROC for original network is 0.86

described in Chapter 3, the results are as expected, i.e. original graph’s AU-ROC

is more than node-shuffled AU-ROC and node-shuffled AU-ROC is more than

edge-shuffled AU-ROC. By adopting random forest as the classification method,

maximum AU-ROC for original network was improved from 0.80 in [2] to 0.87 and

maximum AU-PR to 0.79.

5.4.2 Q PC- Results

A similar random forest was applied to the feature space and the results in Figures

5.8 and 5.9 were achieved for AU-ROC and AU-PR respectively. Analyses were

repeated for 300 iterations of 10 fold cross validation. Reviewing the AUROC

distribution suggests that Q PC- can be a as discriminative in predicting synergies

as XLogP3. In order to further investigate this feature we conducted the analyses

using decision trees in MATLAB with default settings and obtained similar results.
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Figure 5.9: AU-PR when using Q PC- feature in a random forest classifier.



Chapter 6

Discussion and Conclusion

In this thesis, we studied the drug synergy prediction problem in two important

datasets, E. Coli and yeast. Chemogenomic profiles and chemical drug features

were used in the analysis. We used three different approaches.

In our first survey, we introduced a new method in Chapter 3 to predict synergies

based on the topological information gained from chemogenomic profiles in both

E. Coli and yeast datasets. This algorithm resulted in Area Under ROC curve and

the accuracy of 0.71 and 0.91, respectively, in E. Coli dataset.

Next, in Chapter 4 we used meta-heuristic algorithms for feature subset selection

and synergy prediction in E. Coli dataset. We employed genetic algorithm with

two point crossover procedure to select a subset of features and maximize the

defined objective function. In the second part of the chapter, we defined a GRASP

algorithm to the first perform feature subset selection and predict synergies in E.

Coli dataset in the second step. Applying this method yielded in 0.94 accuracy

and 0.82 Area Under ROC curve for E. Coli dataset.

Finally, Chapter 5 was dedicated to utilize chemical features. We used decision

trees and random forest in order to predict synergies in yeast dataset. Two chem-

ical features were utilized, XLogP3 and Q PC-. Our analysis suggests that Q PC-

chemical feature can be as discriminative as XLogP3, despite the fact that Q PC-

does not have a significant correlation with synergicity scores of the drugs. XLogP3

has been used in literature previously [2]. It has been seen that utilizing XLogP3

will lead to more accurate predictions in yeast dataset.

48
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We observed that utilizing chemical features in yeast dataset results in more ac-

curate synergy predictions in comparison to other methods. A future step can

perform the same analysis on E. Coli dataset. More chemical features can also

be explored to find other discriminateive features. In topological based methods

introduced in Chapter 3, more scores can be extracted from distance matrices to

observe their effect on the final accuracy of predictions.
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