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ABSTRACT 

Development of lithium-ion batteries operating at high charge and discharge rates is highly 

demanded especially for electronic devices and electric vehicles. For this purpose, 

improvement of ion transport in the crystal structure is needed. In this respect, the general 

strategy is reducing down the particle size to a nanometer scale. This helps to decrease the 

ion diffusion length. Titanate nanotubes are promising materials because of their special 

morphology and high specific surface area. These titanates provide high rate capability and 

low volume expansion upon lithiation. More importantly their tubular structure helps the 

transport of ions through the crystal. In this study, we synthesized titanate nanotubes 
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hydrothermally from commercial and sol-gel TiO2. Moreover, the interlayer distances of 

the nanotubes were modified by changing the pH and the addition of surfactants. 

For the characterization, SEM, XRD, BET and TEM techniques were used. In addition, the 

effect of interlayer distance on energy capacity and rate capability was investigated. The 

shortest interlayer distance was observed at pH value of 4.4. Getting further away from this 

point, interlayer distances increased and this also increased the nanotube diameter. 

Conversely, specific surface area reaches its maximum value of 334 m2/g at pH of 4.4. 

Potential-capacity profiles of TiO2 (anatase) nanoparticles showed distinct potential 

plateaus at 1.7 and 2.2 V for discharging and charging, respectively. However, the capacity 

dropped from 254 mAh/g to 87 mAh/g in 10 cycles. For titanates, broad peaks appear in 

CV measurement, thus no distinct plateau was observed at potential-capacity profile. For 

titanates before surfactant treatment capacities as high as 980 mAh/g were obtained. After 

surfactant treatment the capacity reached to 1232 mAh/g. More importantly, titanates 

showed exceptional rate capabilities especially at wider interlayer distances due to higher 

mobility of ions in the structure. It was found that interlayer distance plays an important 

role in rate capability. In addition, we achieved significant expansion in interlayer distances 

after post-treatment with the surfactants which can enhance the ion mobility.  
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ÖZET 

 

Elektronik cihazlarda ve araçlarda kullanılabilecek yüksek şarj ve deşarj oranlarında 

çalışabilen lityum-iyon bataryalarının geliştirilmesi oldukça önemli bir gereklilik haline 

gelmiştir. Bu amaçla, batarya içinde kristal yapıdaki iyon hareketini iyileştirmek 

gerekmektedir. Bu bağlamda uygulanan genel strateji ise parçacık boyutunu nanometer 

skalasına düşürmek olmaktadır. Bu sayede iyon difüzyon uzunluğunun düşürülmesine 

yardımcı olmaktadır. Titanat nanotüpler, özel morfolojileri ve yüksek yüzey alanları 
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sayesinde umut vadedici malzemelerdir. Bu titanatların lityumun tepkimesi  sırasında 

yüksek hız kapasitesi ve düşük hacim genişlemesi sağlamaları da beklenmektedir. Ayrıca, 

bu titanat nanotüplerin boru şeklindeki yapıları sayesinde iyonların kristale taşınmalarını da 

kolaylaştıracağı düşünülmüştür. 

Bu çalışmada, titanat nanotüplerinin, ticari ve sol-jel TiO2’den başlanarak hidrotermal 

yöntemle sentezleri başarıyla gerçekleştirilmiştir. Ardından, nanotüpler arasındaki 

tabakaların açılması için değişen pH’larda çalışılıp pH etkisi incelenmiş ve ayrıca 

surfactant eklenerek bu etki de araştırılmıştır. 

Elde edilen yapıların detaylı karakterizasyonları için SEM, XRD, BET ve TEM teknikleri 

kullanılmıştır. Özellikle, tabakalar arası uzaklığın enerji kapasitesi ve hız kapasitesine etkisi 

araştırılmıştır. pH=4.4’da tabakalar arasındaki en düşük uzaklık elde edilmiştir. Bu 

değerden sonra tabakalar arası uzaklık artırmış ve nanotüplerin çapları da artmıştır. Ayrıca, 

pH= 4.4’da özgül yüzey alanının maksimum değere ulaştığı ve 334 m2/g olduğu 

saptanmıştır. TiO2 (anataz) nanoparçacıklarının potansiyel- kapasite profilleri 

çıkarıldığında, 1.7 V değerinde deşarj ve 2.2 V değerinde şarj için plato değerleri 

gözlemlenmiştir. Kapasite değerinin 10 çevrim sonrasında 254 mAh/g ‘den 87 mAh/g’e 

düştüğü görülmüştür. Titanatlar için gerçekleştirilen CV ölçümlerinde ise geniş pikler elde 

edilmiş ayrıca belirgin bir plato değeri gözlemlenmemiştir. Yüzey aktif madde ile 

işleminden önce titanatlar için oldukça yüksek bir kapasite değeri, 980 mAh/g, elde 

edilmiştir. Yüzey aktif madde ile işlemden sonra ise kapasite 1232 mAh/g değerine 

ulaşmıştır. Daha önemlisi, tabakalar arası genişletilmiş titanatlar için oldukça yüksek hız 

kapasiteleri elde edilmiştir. Tabakalar arası uzaklığın kapasite için oldukça önemli olduğu 

sonucuna varılmıştır. Ayrıca surfactant sayesinde tabakaların açıldığı ve iyon hareketinin 

artırıldığı da gösterilmiştir. 
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1. Introduction 

Energy is the most important issue that all countries around the world are concerned about. 

Due to their high energy densities and relatively lower costs, mainly fossil fuels are 

preferred for energy generation. Fossil fuels were significantly consumed within the last 

100 years due to increase in the world population and consequently resulted in high energy 

demand [1]. It is known that consumption of fossil fuels has resulted in mass production of 

green house gasses and by-products. As a consequence air pollution has become a major 

issue all around the world thus some new technologies such as nuclear and renewable 

energy were considered as alternatives in the last decades. The former, however has its 

problems like nuclear waste and low safety, therefore most of the attention is on the 

renewable sources of energy such as wind and solar power as well as environment friendly 

fuels [2]. For that reason, we need to use more renewable energy resources and decrease 

our reliance on fossil fuels. More importantly, due to our high energy need, we need easily 

acquired sources of energy that satisfy our energy demand whenever it is needed. Today, 

even after decades of improvement in renewable energy systems, 95% of the energy in the 

world is still provided by fossil fuels, nuclear power and traditional hydropower. The 

missing thing from the present picture that could dramatically increase the use of renewable 

energy is improved energy storage. Storage breaks out into two domains. First, is portable 

storage, specifically batteries, the kind that we use in our laptops and mobile phones which 

requires relatively lower energy densities and current rates. The second one which is more 

important is storage for applications like electric cars and grid scale power storage. Electric 

vehicles and grid storage devices have potential to become feasible alternatives to current 

technology, if we can improve energy storage materials for Li-ion batteries that offer high 

capacity and high rate capabilities [3]. 

1.1. Common secondary battery types 

Secondary batteries (rechargeable) can be found anywhere around us and our world is 

highly influenced by them. They provide the opportunity to charge an empty battery and 

use them again therefore they are financially beneficial. 
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Lead- Acid Batteries: These batteries are made of two lead plates as electrodes. They are 

considered as the oldest types of secondary batteries. They provide low specific energy and 

also less cycle life. They are commonly used in emergency lighting and drain applications. 

Nickel- Cadmium Batteries (Ni-Cd): It can be implied from its name that this type of 

battery is made of two electrodes based on nickel and cadmium. They are used when high 

discharge current is needed. They can also operate at high temperatures and their main 

application is power tools. 

Nickel-Metal-Hydride Batteries (Ni-MH): They contain two electrodes based of Nickel and 

a metal hydride, the common metal hydride which is used as an electrode in this type of 

batteries is Lanthanum (La) [4]. They can provide a high energy density (800 Wh/kg) and 

they are able to reserve energy density even at high current rates [5]. They are generally 

used in hybrid cars. 

Lithium ion Batteries (LIBs1): LIBs compared to other battery types have some benefits 

such as less weight, high energy density, almost zero self-discharge and no memory effect 

which make LIBs as the promising electrical energy storage device for modern portable 

electronic applications [6, 7]. This convinced the global markets to do investments on LIBs 

and increase the amount of mass production of LIBs over the past years. Moreover it was 

forecasted that volume of sales will be raised to 20 billion dollar in 2020 [8].  

 

                                                             
1 Lithium ion batteries 
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Figure 1. Secondary batteries comparison of energy density [9] 

 

1.2. Lithium ion batteries 

Like the other secondary batteries, LIBs are made of several compressed cells. Any cell 

contains two electrodes as an anode and cathode, a chemical component known as 

electrolyte is between them, and two current collectors which are typically copper and 

aluminum that are connected to anode and cathode, respectively. If the electrolyte is liquid, 

a separator is used in order to keep the electrodes apart from each other, but if the 

electrolyte is solid, there is no need for a separator. Schematic drawing of a typical lithium 

ion battery is shown in Fig.2. Almost 35 years ago the first LIB presented and the anode 

was graphite and lithium cobalt oxide (LiCoO2) was used as cathode [10]. Charge -

discharge processes are the results of Li+ migration between anode and cathode. During 

charging, the LiCoO2 structure, which stores Li+, is oxidized till reaching Li0.5CoO2 

(equation 1) and Li+ ions moves toward anode through an ion conductive electrolyte and 
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inserted into graphite lattice which is reducing it to LiC6 (equation 2). In order to get 

electrical work, two current collectors are connected to each other and make an external 

circuit; electrons can be easily conducted throughout this circuit. Discharge is the reverse 

process of charging; the lithium ions are transferred from cathode and inserted to graphite 

lattice and reverse reactions happen in both electrodes resulting in a potential of about 3.9 

V. Equation 1 and 2 show the reactions in cathode and anode, respectively [3]. 

 

 

Figure 2. Schematic assembly of a LIB using lithium cobalt oxide (LiCoO2) as cathode and 

graphite as anode [3] 

 

Cathode: LiCoO2                Li1-xCoO2 + x Li+ + x e-                                        (1) 

Anode: C6 + x Li+ + x e-                LixC6                                                          (2) 

Overall: LiCoO2 + C6                 Li1-xCoO2 + LixC6                                        (3) 
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Each material has its specific reduction and oxidation potential indicating that when the 

materials are used in a cell, their potential differences would give the overall potential of 

that cell (equation 4). 

E˚cell = E˚cathode - E˚anode                                                                                    (4) 

Theoretical capacity of the battery can be calculated by using the following equation where 

q is the theoretical capacity (mAh/g), n is the number of electrons transferred, F is the 

Faraday constant (As/mole) and M is the molar mass (kg/mole) of the host material [11]. 

                                                                                                          (5) 

For instance, if LiFePO4 is used as cathode, its theoretical capacity can be calculated by 

equation 5. 

LiFePO4                   FePO4 + Li+ + e- 

Here n=1 and molar mass of LiFePO4 is 157.7 × 10-3 kg/mole and faraday constant is 

96500 As/mole. By using equation 5, the capacity would be 170 mAh/g. 

Practical specific capacity is the amount of capacity that battery delivers in a determined 

cutoff potential at constant current rate. This capacity can be calculated by the following 

equation [11]. 

                                                          (6) 

In this equation i (A/m2) is the current rate, A (m2) is the area of electrode, t (second) is the 

duration of battery working till reaching cutoff potential and W (kg) is the weight of the 

active material. Fig. 3 shows voltage-capacity of Lix(Ni1/3Co1/3Mn1/3)O2 cathode at C/30 

current rate as an example of a typical voltage-capacity profile. The capacity axis is 

calculated by equation 6. As it can be seen the practical capacity of this material is 165 

mAh/g which is less than its theoretical capacity (277.8 mAh/g) [11] due to formation of 

Lix(Ni1/3Co1/3Mn1/3)O2 where x cannot reach to its maximum value of 1. 
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Figure 3. Voltage-capacity profile of Lix(Ni1/3Co1/3Mn1/3O2) cathode as an example of a 

typical voltage-capacity pattern [11] 

Furthermore oxidation–reduction voltages are studied with cyclic voltammetry (CV) 

technique where the voltage of electrode is scanned with respect to current from an initial 

value to a determined limit. When the voltage reaches to the up limited value, the direction 

of the scan is revered. By utilizing this technique, we are able to know in which voltage 

oxidation and reduction occur. It has generally two peaks corresponding to oxidation and 

reduction. Fig. 4 represents a typical CV curve. 

 

Figure 4. Typical cyclic voltammetry profile 
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.  

Unlike other batteries, LIBs can be assembled using different materials to make the anode 

and cathode to store more lithium ions. 

1.3. Cathode materials 

One of the most important factors to choose a high performance cathode material is its 

structure. Most cathode materials have the layered structure of α-NaFeO2, which provides 

more mobility for Li+. Cathode materials are generally categorized in three types. 

The first type is lithium metal oxide like layered structure LiCoO2. It has high discharge 

voltage (4.2 V) associated with specific energy of 590 Wh/kg and specific charge of 140 

Ah/kg [12]. Utilizing this material as cathode has some disadvantages. Its high discharge 

potential may decompose the electrolyte and leads to decreasing of the battery performance 

[12]. Its cycle performance is not adequate for some applications like electric vehicles also 

capacity fading was reported for LiCoO2 as cathode material [13]. 

The second type of cathode materials is transition metal phosphates like LiFePO4 (LFP). 

LFP can be a standard candidate for cathode material in high power density LIBs because 

of its high capacity, excellent cycling performance and low cost. Its main advantage is high 

specific power up to 1500 W/kg also its discharge potential, specific capacity and specific 

energy is 3.4 V, 170 Ah/kg and 580 Wh/kg, respectively [14]. Poor electronic conductivity 

as well as low Li+ diffusion rate can be considered as the major disadvantages of LFP as a 

cathode material. 

The third type of cathode material is spinel type. LiMn2O4 is well-known material in this 

type. It was reported that carbon coated LiMn2O4 cathode has excellent rate capability [15]. 

Capacity fading as the result of Mn2+ insertion into electrolyte and low specific capacity 

(300 Wh/kg) are the main disadvantages of LiMn2O4 [16] 

 

 



8 
 

1.4. Anode materials 

Anode in LIBs is generally fabricated from three main groups, alloying, conversion and 

intercalation type materials. The first group can easily make several steps of alloying with 

Li+ to come up with LixA (A = Ge, Si, SiO, Sn, SnO2, etc). They have high theoretic 

capacity in the range of 783 mAh/g for SnO2 to 4211 mAh/g for Si. These materials are not 

used as anode electrode due to their great volumetric increase when they combine with 

lithium [3]. Huge efforts have been done to control volume change like trying to buffer the 

unstable volume by blending with appropriate additives but still they did not meet the life 

range, safety and cycle stability requirements [17]. In the case of Si which has the highest 

theoretical capacity among alloying materials, several lithium rich phases form (Li13Si4, 

Li12Si7 and Li21Si5) [18]. However, these phases are not formed and the material goes to an 

amorphous phase during electrochemical lithiation. Moreover, when Li+ are inserted to its 

lattice, Si will be expanded which significantly leads to formation of some cracks and 

capacity fading [18]. 

Conversion type materials are based on binary transition metal compounds and have the 

general formula MaXb (M = transition metal; X = anion). When conversion type of 

materials react with Li+, transition metal is fully reduced. As a result, more ions can be 

Stored due to formation of strong crystal structure of LinX. However, as an important  

problem, they still have the high volume changes like the alloying materials [19]. Iron 

oxides as a conversion material have been greatly studied due to their non-toxicity and low 

cost. Magnetite (Fe3O4) as well as hematite (α-Fe2O3) can reversibly react with lithium with 

a theoretical capacity of 926 and 1004 mAh/g, respectively [20]. Unfortunately, they have 

low cycling performance because of poor diffusion of Li+, high volume change and poor 

electrical conductivity. However many researchers tried to modify iron oxide morphology 

to get better electrochemical performance [21, 22]. 

 As a result of the mentioned drawbacks of conversion and alloying materials, the third 

group, intercalation materials, have been extensively tried as anode materials in LIBs but 

they provide less theoretical capacity than alloying and conversion materials [23]. On the 
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other hand, they have noticeable electrochemical properties such as long cycle life, 

promising cycle stability and high reversibility. 

 

 

Figure 5.Three main groups of materials, which are used in LIBs and their properties and      

schematic drawn mechanism. Yellow circles: lithium ions, black circles: pores in crystal 

structure, blue circles: metal atoms [17] 

Graphite as an intercalation material has high conductivity (up to 2000 S/cm2) due to its 

electronic structure. It is widely used as anode material in LIBs. It can uptake lithium ions 

until the formation of LiC6 where its theoretical capacity is 372 mAh/g. Multilayered 

graphite has the expansion of 16% when lithium ions enter its lattice (see Fig. 2). Another 

material that is tried anode is carbon nanotubes (CNTs) which have similar properties with 

graphite. Even though (ingle walled carbon nanotubes (SWCNTs) has the theoretical 

capacity up to 1116 mAh/g [24], experimentally achieving this value is a great challenge 

for researchers who are trying to modify morphology of SWCNTs. However a capacity in 

the range of 220 – 780 mAh/g was obtained [25]. Graphite based anode can reversibly 

place lithium ions to its multilayer structure and this can happen over thousands cycles, 

furthermore it has a low cost and it is abundant in environment. Moreover, lots of efforts 
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have been conducted on graphene [26, 27] and carbon nanofibers [28, 29] to improve the 

power density. 

LIBs with graphite based anode electrode have low capacity (~372 mAh/g) because it 

allows insertion of only one Li+ with respect to six carbon atoms. This capacity is not 

enough for some applications that need high capacity like electric vehicles. Moreover low 

diffusion rate of Li+ into graphite (10-9-10-7 cm2/s) delivers low power density [30]. 

Dendrite problem is another side effect of using graphite as anode. During several charge-

discharge cycles of the battery, nanofibers of lithium known as dendrite are formed and 

they grow toward the cathode and this can cause short circuit between cathode and anode, 

causing it overheat and in some cases it leads to ignition (Fig. 6) [31, 32]. Another issue is 

the formation of solid electrolyte interphase (SEI) which is a surface film formed on anode. 

In most of the cases LIBs graphite anode works at -2.5 V vs. standard hydrogen electrode, 

and cathode which is most of the time a transition metal oxide works at +1 V thus the 

battery with this setup gives 3.5 V potential. This high potential makes a situation for 

electrolyte to be oxidized and reduced to form new substances  across anode electrode [33]. 

Formation of SEI depends on the electrolyte type, for common electrolytes it starts to form 

at 2.6 V [34] This film makes electrode surface less chemically reactive with electrolyte 

and prevent further electrolyte decomposition. 
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Figure 6. Dendrite process [35] 

SEI film has some advantages like preventing more reactions between graphite anode with 

electrolyte but it also reduces power and battery’s capacity because in the first charge this 

layer behaves like a wall and keep some lithium ions and prevent them to transfer toward 

cathode during discharge. In addition, during intercalation and deintercalation, due to 

volume volume changes some cracks may grow on the SEI layer and new SEI may form in 

those cracks. Over time this leads to a significant decrease in the battery’s capacity [17, 36].  

Many studies have been carried out to replace graphite with another active metal oxide to 

be used in LIBs to enhance their electrochemical performance especially the battery’s 

capacity. Studies reveal that titanium dioxide (TiO2) based insertion materials can be one of 

the most reliable candidates to be replaced with graphite in anode of LIBs. TiO2 based 

anode in LIBs does not form SEI layer, six times faster charging compared to graphite and 

also maintain better capacity than graphite [37]. The aim of this work is modifying titanium 

dioxide to get higher capacity and good cycle performance. 
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1.4.1. Titanium dioxide (TiO2) as the anode  

Thanks to some noticeable properties of TiO2 including low cost, environmental 

benignancy and non-toxicity [38], it is widely used in different applications like electronic 

and pigment industry, catalysis and sensors. TiO2 has in different oxidation states and its 

cations can be easily found in environment [39]. It was reported that the state of TiO2 has 

highly affected by the surface oxygen atoms [40]. 

TiO2 has three main polymorphs: anatase, rutile and brookite. The first phase (anatase) is 

much more photoactive than the others thus it is the target materials in different industrial 

applications like photocatalysis, photonic crystals, electrochromics, sensors and surface 

coatings [41, 42]. On the other hand, the second phase (rutile), is generally used in 

pigments and sunscreens industry and it is the most stable phase of titanium dioxide. 

Brookite is not as common as anatase and rutile and it is not chemically stable just like the 

other polymorphs. There is also another phase of TiO2 which is commonly known as TiO2 

(B). Table 1 shows some structural parameters of TiO2 polymorphs. 

 

Table 1. Structural parameters of titanium dioxide polymorphs [43, 44] 

Structure Density (gcm-3) Crystal structure Unit cell (Å) 

Anatase 3.79 tetragonal a=3.79, c=9.51 

Rutile 4.13 tetragonal a=4.59, c=2.96 

Brookite 3.99 orthorhombic a=9.17, b=5.46, c= 6.51 

TiO2 (B) 3.64 monoclinic a=12.17, b=3.74, c=6.51, 

ß=107.29⁰ 
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In the crystal structure of titania, each titanium atom is coordinated with six oxygen atoms 

but the way this building block link to each other varies every polymorph. In all 

polymorphs of titania, the Ti-O length is about 2 Å and each oxygen atom is apart from 

each other with 2.5-3 Å distance. The main XRD peaks with their intensities are shown in 

Table 2. 

 

Table 2. Main XRD peaks of anatase, rutile and brookite phases [45] 

Anatase Rutile Brookite 

2θ 

(degree) 

Intensity 

(%) 

2θ 

(degree) 

Intensity 

(%) 

2θ 

(degree) 

Intensity 

(%) 

25.27 100 27.70 100 25.33 100 

37.79 20 36.07 50 25.68 80 

48.03 35 41.21 25 30.80 90 

53.87 20 54.30 60 36.24 25 

55.04 20 56.62 20 47.99 30 

  65.45 20 51.18 20 

  68.98 20 55.21 30 

 

In anatase each Ti atom is surrounded by six oxygen atoms and each oxygen atom is 

surrounded by three Ti atoms thus the structure is 6:3 coordination (Fig. 7c). The location 

of the Ti and O atoms and the unit cell of anatase phase are presented in Fig. 7a. The bonds 

between Ti and O atoms are shown in Fig. 7b, and the structure of anatase with TiO6 

octahedra is shown in Fig. 8. 
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The symmetry of anatase structure decreases when Li+ enters and LixTiO2 (x=0.5) forms, as 

the result of change in symmetry of the crystal, the volume of the unit cell increases by 4% 

and rapid capacity fade is followed [46]. Theoretical capacity of TiO2 is 335 mAh/g, 

however reaching this value is not possible unless the particles are extremely small. In that 

case, Li+ cannot be stored at the theoretical level and structure like LixTiO2 forms where x 

is less than 1 [47]. It was reported that nano-sized anatase at 0.1C has a first discharge 

capacity of 215 mAh/g, where Li0.68TiO2 was formed during Li+ intercalation [48]. Some 

other researchers found a higher capacity of 286 mAh/g at 1.5C as a result of carbon 

coating of anatase [49]. 

 

Figure 7. (a) location of Ti and O atoms in unit cell of anatase, (b) bonds between Ti and O 

atoms, (c) location of each Ti and O atoms [50] 
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Figure 8. Anatase phase structure of TiO2 [51] 

 

Rutile which is the most stable phase of TiO2, has the 6:3 coordination like anatase. Its 

structure is shown in Fig. 9. Li+ diffusion in rutile is an anisotropic process which leads to 

Li+ insertion only from its c axis direction [52]. It was reported that Li+ diffusion 

coefficient in c axis direction is much more than ab-plane [52, 53]. Experimental data show 

that nano-sized rutile TiO2 has a capacity of 160 mAh/g at the rate of C/20 after 50 cycles 

and it decreases to 100 mAh/g at 10C [54]. It was also reported that rutile nanoparticles (15 

nm) has 200 mAh/g capacity after 20 cycles at 0.3C. When the  particle size was increased 

to 300 nm, capacity dropped to 50 mAh/g indicating that nano-sizes materials has much 

higher capacities [55].  
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Figure 9. Rutile phase structure of TiO2 [51] 

 

Brookite structure is orthorhombic with more complexity than anatase and rutile. Fig. 10 

shows the crystal structure of brookite. Each Ti atom is enclosed by an octahedral group of 

oxygen atoms. Recently brookite phase has been subjected to battery testing and the results 

show that the performance is highly depending on the size of particles. Reported specific 

capacity for 10 nm brookite particles is 170 mAh/g, on the other hand, the capacity 

decrease to 35 mAh/g for 33 nm brookite particle sizes [56].  
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Figure 10. Brookite phase structure of TiO2 [51] 

 

Monoclinic TiO2 (B) has the lowest density among all TiO2 polymorphs. It is mainly 

synthesized by acid washing of K2Ti4O7 to replace K+ with H+ to form hydrogen titanate, 

then it is transformed to TiO2 (B) after calcination at 500°C [57]. Structural form of TiO2 

(B) is shown in Fig 11. The octahedra in TiO2 (B) align themselves to form a perovskite 

structure. This creates pathways for easier Li+ insertion and make this unique structure the 

best host for Li+ among TiO2 polymorphs [58]. Some researchers synthesized nanowires of 

of TiO2 (B) by hydrothermal treatment of anatase TiO2 in alkali solution. They subjected 

the material to electrochemical testing and obtained a capacity of 305 mAh/g [58, 59]. This 

capacity for TiO2 (B) is much higher than the other polymorphs, but still it is far from 

theoretical capacity (335 mAh/g) indicating that x in LixTiO2 is less than 1. 
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Figure 11. TiO2 (B) phase structure of TiO2 [51] 

 

Various forms of TiO2 nanocrystals have been prepared via different experimental 

procedures [60, 61]. Platelets, nanorods, diamond shaped and bullet nanocrystals and 

nanotubes forms of TiO2 nanocrystals have been synthesized in hydrolysis reaction of 

titanium alkoxides [62].  

It was shown that electrochemical performance, lithium insertion-deinsertion and reversible 

capacity of titanium dioxide anode are highly dependent on their size, structure and 

morphology [55]. Therefore modifying TiO2 to obtain large surface areas and high 

porosities can consequently result in better capacity, longer cycle life and higher rate 

capability. Lots of studies have been carried out to modify TiO2 into titanate nanotubes 

which are examined as an anode material [63, 64] 

Titanate nanotubes have attracted attention due to their promising properties like high 

surface area and layered crystal structure which are the important factors that influence 

energy storage kinetics [65]. They are generally synthesized via hydrothermal treatment of 

TiO2 powder in an alkali solution followed by washing with acidic solutions. There are still 
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some debates about formation step of the nanotubes. While some studies claim that the 

nanotubes form during the hydrothermal treatment step, the other studies tell that they form 

after acid washing. In the latter claim, first layered sodium titanates (Na2Ti3O7) form during 

hydrothermal treatment where sodium cations (Na+) are between edge-shared octahedral 

layers (TiO6). Then due to high surface energy the layers scroll up to form the nanotubes 

[66-69]. After acid washing, Na+ are replaced with H+ leading to a decrease in interlayer 

distances, increase in surface area and from hydrogen titanate (H2Ti3O7) nanotubes [70, 71] 

where Li+ can easily move in the structure (Fig. 12). 

 

 

Figure 12. Scroll shape of titanate nanotube 

 

Reaction that occurs during hydrothermal treatment is shown in equation 6. In the first step, 

dissolution TiO2 is followed by crystallization of layered sodium titanate (Na2Ti3O7). In the 

next steps, treatment with acidic solutions leads to ion exchange forming H2Ti3O7 

(equations 7, 8, 9). Here H2Ti3O7 has a zig-zag (TiO6)n layered structure like Na2Ti3O7, 

however the interlayer distance is shorter (Fig. 13).  

3TiO2 + 2NaOH                   Na2Ti3O7 + H2O                                         (6) 

 Na2Ti3O7                   2Na+ + Ti3O7
2-                                                      (7) 

 2Na+ + Ti3O7
2- + H+ +Cl-                    H+ + Ti3O7

2- + 2Na+ + Cl-           (8) 
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 2H+ + Ti3O7
2-                   H2Ti3O7                                                          (9) 

 

  

Figure 13. Li+ intercalated zig-zag layers structure of titanate with Li+, H+ and Na+ between 

its layers [72] 

 

Titanate nanotubes are widely tested as an anode active material in LIBs due to their 

layered structure that facilitates Li+ insertion-deinsertion. Titanates are considered as a 

pseudocapacitive metal oxide in which redox reactions take place at or near the surface 

which leads to fast charge-discharge process and provide high power densities [73]. 

There are some studies that have been conducted on hydrogen titanate nanotubes 

synthesized via hydrothermal treatment and their electrochemical performances. Table 3 

summarizes the hydrothermal treatment conditions and the electrochemical properties of 

these hydrogen titanate nanotubes. In all of these studies anatase TiO2 nanoparticles were 

hydrothermally treated with 10 M NaOH in a Teflon-lined autoclave. 
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Table 3. Electrochemical properties of hydrothermally treated TiO2 

Titanate 

morphology 

Temp. (°C) Duration 

(h) 

1st 

discharge 

Capacity 

(mAh/g) 

Current 

density 

(A/g) 

Reference 

Nanotubes 150 48 330 0.05 [74] 

Nanowires 150-180 > 72 191 0.3 [75] 

Nanotubes 120 > 48 210 0.24 [76] 

Nanotubes 110 22 182 0.08 [77] 

Nanorods 110 48 174 0.05 [78] 

Nanowires 200 72 220 0.05 [79] 

Nanowires 170 > 72 100 40 [80] 

Nanotubes 110 24 168 0.21 [81] 

 

It can be seen from Table 3 that titanates with different morphologies can be obtained 

hydrothermally in the temperature range of 110-180°C between 1-3 days. The morphology 

of titanates improved the capacity when the performance is compared with TiO2 

nanoparticles. Nanotubular structure allows Li+ to flow easily in the lattice and with its 

pseudocapacitive properties the material shows higher power densities. 

As a precursor of titanates, surface area, pore size, particle size and crystallinity of TiO2 

highly affect the properties of titanates after hydrothermal treatment. The final morphology 

and textural properties are very crucial parameters, since they directly affect the 

electrochemical performance. For that reason, it is crucial to control the particle size, shape 
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and porosity of TiO2 for titanate synthesis. The easiest way to achieve this is to synthesize 

TiO2 with sol-gel method. 

 

1.4.2. Sol-gel method 

There are different methods to obtain metal oxides; such as microemulsion, hydrothermal 

and sol-gel synthesis. Microemulsion synthesis is a method for the synthesis of metal 

oxides with different particle sizes in water-oil emulsions. Some surfactants are used to 

control particle sizes. Applications of microemulsion materials are more in biological fields 

like drug delivery [82]. Hydrothermal synthesis method is based on chemical reactions of 

substances in an aqueous solution which is heated above room temperature in a high 

pressure sealed vessel to grow nanocrystals. Supercapacitors and catalysts can be 

considered as the important applications of hydrothermal synthesized metal oxides [83]. 

Nowadays, sol-gel technique is widely used for the synthesis metal oxides (Fe2O3, TiO2, 

Al2O3, etc) with several benefits [84-86]. The process parameters are easier to control and 

the materials obtained have better homogeneity, higher porosity with a low cost [87]. 

General schematic representation of this process can be seen at Fig. 14. 
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Figure 14. Schematic presentation of sol-gel process [88] 

TiO2 nanoparticles are widely synthesized via sol-gel technique. Titanium alkoxides as well 

as non-alkoxides are used as titanium precursors in the synthesis of TiO2. The most widely 

used alkoxide precursors are TiCl4 [89], Ti(i-OP)4 [90] and Ti(OBu)4 [91]. In this process, 

TiO2 is generally formed via 2 important reactions, hydrolysis and polycondensation 

reactions. Titanium precursor Ti(OR)n reacts with water to produce oxopolymers in 

aqueous phase, then these products are finally transformed into an oxide state. When 

titanium hydroxide forms, the first step of the reaction comes to an end (equation 10). 

Ti(OR)n + xH2O                   Ti(OH)x(OR)n-x + xROH                 (10) 

 

After the formation titanium hydroxide, the polymerization reactions take place.  

Condensation dehydration 

Ti(OR)n + Ti(OR)n-1(OH)                   Ti2O(OR)2n-2 +ROH          (11)  
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Dealcoholation  

2Ti(OR)n-1(OH)                   Ti2O(OR)2n-2 +H2O                         (12) 

 

And the overall reaction is as following  

Ti(OR)n + n/2 H2O                   TiOn/2 + nROH                             (13)   

 

Particles agglomerate to form metal oxide crystal in the condensation reactions [92]. After 

that, gelation of the solute occurs where a three-dimensional state of gel forms. This step is 

important in terms of controlling the structure of the final product. Evaporation of water 

and alcohol starts after gelation; as a consequence the gel shrinks and creates pores. 

The morphology of the final TiO2 nanoparticles is highly affected by different factors such 

as titanium precursors [93], drying step temperature [94] and reaction pH value [95]. 

Calcination is also one of the main factors that affect final TiO2 nanoparticles. In 

calcination, the amorphous powder is heated under oxygen environment to crystallize the 

inorganic compounds. High calcination temperature leads to loss some hydroxyl groups and 

decrease in surface area. It was reported that low calcination temperature as low as  300 ºC 

can be used to crystallize dried TiO2 [96]. 

Titanate nanotubes as a titania based materials, have some unique structural properties like 

high surface area, layered crystal structure and high porosity. These properties can make 

titanate nanotubes a promising anode material. Sol-gel method just yields TiO2 

polymorphs, while titanate nanotubes can be easily synthesized hydrothermally [97]. 

 

1.4.3. Hydrothermal Treatment 

Hydrothermal treatment can be defined as heterogeneous reactions in aqueous media over 

100 °C and above 1 atm. The advantages of hydrothermal treatment is proving high surface 
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area with porous structures which are suitable to be used as anode in LIBs [83]. This 

technique is generally used for metal oxides and hydroxide nanoarrays. Single crystal metal 

oxides (Co3O4, ZnO, TiO2, V2O5, Fe2O3, Fe3O4, etc) are synthesized with this method to 

enhance their structural properties [83] 

To obtain titanate nanotubes (H2Ti3O7), anatase TiO2 nanoparticles should be reacted 

hydrothermally with NaOH solution in a Teflon-lined autoclave. NaOH concentration 

should be more than 5 M while temperature should be at least 100°C then the as-prepared 

product should be washed with acidic solutions and deionized water to reach the neutral pH 

conditions [71]. Hydrothermal treatment is commonly used to produce titanate nanotubes 

due to its noticeable advantages like low energy requirement, high reactivity and also its 

easiness of controlling the aqueous solution [98]. Temperature, duration and pH value of 

the post-treatment step highly affect the final product’s characteristics. Figure. 15 represent 

a schematic mechanism of formation titanate nanotubes. 

 

 

Figure 15.Schematic formation mechanism of titanate nanotubes [64] 

The hydrothermal treatment temperature has a significant impact on the crystal growth of 

H2Ti3O7. The higher the temperature is, the more degree of crystallinity can be obtained 
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[99]. It should be done in the range of 100-180°C to form titanate nanotubes. It was 

reported that at the temperature range of 100-150°C, the highest yield of nanotubes can be 

obtained [100]. Some researchers found that the highest pore volume and surface area of 

titanate can be obtained when the hydrothermal treatment is conducted at 130°C [101].  

During acid washing step, Na+ which are located between titanate layers are replaced with 

H+, as a result while the surface area increases and the interlayer distances decrease. Some 

researchers have synthesized titanate nanotubes via hydrothermal treatment at 150°C, then 

they washed the product in 0.1 M HCl. They observed that nanotubes became shorter and 

also the lowest surface area and pore volume belong to samples that have the least sodium 

amount in their structure [98]. Table 4 summarizes some studies that were successful to 

obtain titanate nanotubes by using different precursors which were treated with 10 M 

NaOH in the temperature range of 130-180°C and duration of 1-3 days. In cases where 

post-treatment were needed, first samples were washed with 0.1 M HCl solution then 

deionized with water to reach pH 7. 

 

Table 4. H2Ti3O7 nanotubes prepared by different TiO2 precursors, experimental and post-

treatment conditions 

precursor Temp.(°C)/ 

duration (h) 

post-treatment nanotube 

diameter(nm) 

reference 

anatase 130/72 water 9 [102] 

anatase 130/72 HCl + water 9 [103] 

anatase 130/72 HCl + water 10 [63] 

anatase 180/48 water 10 [104] 

anatase 180/24 HCl + water 10 [105] 
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anatase/rutil 150/20 water 12 [106]  

rutile 150/72 HCl + water 8 [99] 

 

In this study, by changing the pH values of the post-treatment step, the nanotube diameter 

has been changed; and as consequence the interlayer distances and surface area have been 

changed as well. These parameters significantly affect electrochemical performance of 

titanate nanotubes. High mobility of Li+ in the structure of titanates can be achieved by 

increasing the interlayer distances. This goal can be obtained by hydrothermally treating 

titanates with surfactants. This surfactant treatment process has never been tried for titanate 

nanotubes before. 

 

1.4.4. Surfactant treatment 

Surfactants are generally organic compounds that have water soluble and insoluble parts. 

They contain hydrophilic groups (the head) and hydrophobic groups (the tail). In some 

studies Cationic and anionic surfactant were used with layered titanates to obtain hybrid 

organic-inorganic films [107]. In this study, we used surfactant to modify the structure of 

titanate nanotubes to obtain better anode materials. Modification of titanate nanotubes with 

surfactants can be useful to store more Li+ between titanate layers. By increasing the 

interlayer distances of titanate nanotubes, this goal can be achieved. Treating layered 

titanates with surfactants under hydrothermal conditions replaces H+ or Na+ between the 

layers with long surfactant chains, thus with this technique expanded nanotubes can be 

obtained. 
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1.5. Objectives 

The main objectives of this work are listed below 

 Synthesizing high surface area anatase TiO2 nanoparticles via sol-gel method.  

 Titanate nanotubes with high specific surface area and layered structure can have 

remarkable electrochemical performance, thus the next aim is modify the interlayer 

distance of titanate nanotubes with acid washing to enhance Li+ mobility for high 

power density and good rate capabilities. 

 Re-modify the titanate nanotube structure using surfactants to obtain expanded 

titanate nanotubes. 

 

Remarkable novelties of this work are: 

 Modification of titanate nanotubes’ interlayer distances by post-treatment to prepare 

titanate nanotubes washed in a wide range of pH values. 

 Investigation of electrochemical performance of resultant anode materials. 

 Modification of titanate nanotube structure by surfactant treatment. 
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2. Materials and Methods 

TiO2 nanoparticles (anatase) were firstly synthesized via sol-gel method then this sol-gel 

synthesized TiO2 and commercial TiO2 (anatase) were used as two different TiO2 sources 

to be treated with a basic solution hydrothermally to obtain titanates. Moreover, these 

titanates were modified by hydrothermally treating with surfactant. All of the samples were 

subjected to morphology and electrochemical testing characterizations. 

2.1. Sol-gel synthesis  

TiO2 nanoparticles were synthesized by utilizing titanium isopropoxide (TTIP) (Sigma–

Aldrich CAS no: 546-68-9) as a precursor. 8.4 mL of TTIP was diluted in 20 mL of 2-

propanol (Aldrich CAS no: 67-63-0) then a solution of 0.25 mL of HCl (Aldrich CAS no: 

7647-01-0), 0.5 of distilled water and 130 mL of 2-propanol was slowly added to the first 

solution to initiate the reaction. After the complete addition of the second solution, the 

mixture was left for aging under constant stirring for 1 hour at room temperature. After 

that, the TiO2 sol was dried for 2 days at 60°C then the dried sample was subjected to 

Protherm calcination furnace (Fig.16) with air flow for 4 hours at 450°C in order to obtain 

anatase phase of TiO2. Fig. 17 represents mechanism of sol-gel sysnthesis. 

 

Figure 16. Protherm calcination furnace 
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Figure 17. Schematic mechanism of sol-gel method 

 

2.2. Hydrothermal treatment 

Anatase TiO2 nanoparticles which have been synthesized with sol-gel technique and 

commercial anatase (Aldrich CAS no: 1317-70-0) were used here as the starting materials. 

1.5 g of either sol-gel or commercial anatase were dispersed in an aqueous solution of 120 

mL 10 M NaOH (Aldrich CAS no: 1310-73-2) and stirred for 30 min. After that, the 

solution was put in a Teflon-lined autoclave (Fig. 18), heated to 130°C and hydrothermally 

treated for 48 hours. The final solution was then filtered and dried at 110°C for 3 hours. 

The dried filter cake was powdered and added to 1 L water having different pH values (the 

pH was adjusted using 0.1 M HCl) for 20 hours in order to replace Na+ with H+. Finally the 

washed sample was again filtered and dried at 110°C for 3 hours to obtain hydrogen 

titanate (H2Ti3O7). Fig. 19 shows the hydrothermal treatment process. 
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Figure 18. Teflon-lined autoclave 

 

 

Figure 19. Schematic mechanism of hydrothermal treatment 
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2.3. Surfactant treatment 

1 g of titanate which has been synthesized hydrothermally, 8 mL of dodecylamine 

(C12H27N) as surfactant and 10 mL of ethanol were subjected to a Teflon-lined autoclave 

and they were hydrothermally treated at 130°C for 48 hours then the solution was mixed 

with water:ethanol ratio of 1, then the solution was stirred for 30 min. after that, the final 

product was filtered and dried at 90°C for 3 hours. In this process H+, which are placed 

between titanate layers are replaced with surfactant cations. Fig. 20 represents the 

surfactant treatment mechanism. 

 

Figure 20. Schematic mechanism of surfactant treatment 

 

2.4. Structural characterization 

For the x-ray diffraction (XRD) analysis of the samples, a Rigaku Rint2000 diffractometer 

with a monochromatized CuKa irradiation (λ = 0.15405nm) was used. The morphology of 

the samples were examined by scanning electron microscopy (SEM) using a Zeiss LEO 

Supra 35VP SEMFEG. Surface area and pore sizes of all samples were determined using a 
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Quantachrome NOVA 2200e surface area and pore size analyzer in boiling N2 temperature 

(77 K). All of the samples were degased at 150°C for 24 hours. 

2.5. Electrochemical characterization studies 

A mixture of active material (75 wt.% ), carbon black (20 wt.%) and poly(vinylidene 

fluoride) (PVDF) (5 wt.%) is prepared then it was left for 20 hours at room temperature in 

order to dry, then it was mixed with n-methyl-2-pyrrolidone (NMP) to obtain a past, after 

that the copper foil (Fig. 21a) was coated by the mixture and coated copper foil was dried at 

120°C for 24 hours, then dried coated copper foil (Fig. 21b) was put in the glove box in 

order to assemble a lithium ion battery (Fig. 22). The battery was made of coated copper 

foil as anode, lithium chip (Fig. 21c) as cathode, Li-ion Battery Separator Film (25µm thick 

x 85mm W x 60m L, Celgard) (Fig. 21d) and lithium hexafluorophosphate solution in 

ethylene carbonate and dimethyl carbonate, 1.0 M LiPF6 in EC/DMC=50/50 (v/v), (battery 

grade-746711-100ML Sigma - Aldrich) as electrolyte. Fig. 23 shows the preparation of 

anode. 

 

Figure 21. a) Copper foil, b) coated copper foil, c) lithium chip and d) separator 



34 
 

 

Figure 22. Assembled lithium-ion battery 

 

Figure 23. Preparation of anode 
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Assembled battery was electrochemically examined by electrochemical characterizations 

with constant voltage range (1-3 V) 

Charge-discharge characterization was done at 0.1C, 0.5C and 1C current rates for 20 

cycles. Rate capability performance was tested for 50 cycles, first ten cycles (at 0.1C), next 

ten cycles (at 0.5C), next ten cycles (at 1C), next ten cycles (at 5C) and last ten cycles (at 

0.1C). Cyclic Voltammetry was performed with scan rate of 0.1 mV/s 
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3. Results and discussion 

3.1. Structural and electrochemical properties of TiO2 samples 

To obtain titanate nanotubes, the starting material has to be TiO2. During the nanotube 

synthesis, the particle size, porosity and crystal phase play an important role to achieve the 

product with high yields. For the aim of testing the effect of particle size, two different 

TiO2 sources were utilized. The TiO2 nanoparticles used for this purpose are sol-gel 

synthesized TiO2 (SG) and commercial TiO2 (Com). 

3.1.1. Thermal characterization 

Since, for the titanate synthesis, the crystal phase of starting material determines the final 

product, deciding on the calcination temperature is important. For that purpose, the gel 

obtained after sol-gel synthesis was dried 60 °C and TGA/DTA analysis of that amorphous 

powder was made. Fig. 24 shows the TGA/DTA curves of the powdered gel TiO2. As it can 

be seen there are three main weight loss regions at temperatures of 130, 130-212 and 212-

365 °C corresponding to vaporization of most solvents, removal and thermal decomposition 

of organic solvents and loss of carbon groups in the sample, respectively. DTA curve shows 

four endothermic peaks. The first two at the temperatures of 130 and 217 °C were 

associated with removal of adsorbed water on the surface of particles and evaporation of 

organic compounds, respectively. Exothermic peak at 370 °C was attributed to energy 

release during the combustion of organic matter. The third endothermic peak at 450 °C was 

assigned to the phase transformation of amorphous TiO2 to anatase phase of TiO2. Finally 

the last endothermic peak at 610 °C was attributed to the phase transformation from anatase 

to rutile [108]. To obtain trititanate (H2Ti3O7) nanotubes, pure anatase is the preferred 

starting material. For that reason, calcination temperature should not exceed 610 °C. In 

addition to that, to reduce sintering problems it was decided to perform calcination at 450 

ºC. 
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Figure 24. TGA/DTA curves of SG 

3.1.2. XRD characterization 

XRD patterns of as-prepared nano-TiO2 (SG) and commercial anatase (Com) are shown in 

Fig.25. All peaks are in good agreement with the standard anatase spectrum (JCPDS no.: 

84-1286) and no other phase of TiO2 was observed. Also the main peak of anatase (101) at 

2θ = 25.4⁰ was used for finding the crystallite sizes of the samples utilizing the Scherer’s 

equation [109, 110]. The crystallite sizes of SG and Come were calculated as 17 nm and 65 

nm, respectively. The patterns show that SG and Com is suitable for titanate nanotube 

synthesis. If the particles of a material is big, the crystallite size does not directly give the 

particle size. However it gives a general idea and from calculated crystallite sizes it can be 

suggested that SG and Com will yield different structures since the particle size of TiO2 

also affects the morpholgy of titanaate nanotubes. 
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Figure 25. XRD diffraction patterns of Com and SG 

3.1.3. SEM characterization 

As mentioned at the previous section, the morphology of TiO2 is important since it 

determines the final structure of titanate nanotubes. For that reason, morphologies of SG 

and Com were studied by SEM (Fig. 26). Agglomerated SG nanoparticles have average 

particle size of 20 nm which is consistent with literature that reported 15-20nm  [109], 

20nm[111]  and 25nm [112] particle sizes for sol-gel anatase calcined at 450 °C. It should 

be also noted that the crystallite size calculated for SG is close to its particle size. In 

contrast to SG, the average particle size of Com is 140 nm. As can be seen from the SEM 

images, Com has macroporous (pores bigger that 50 nm) structure. On the other hand, SG, 

has micro and mesopores (pores smaller than 2 nm and pores between 2 and 50 nm) (which 

will be discussed in the following section). Although having a small particle size is better 
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for achieving high reaction rates, the highly agglomerated SG can delay the formation of 

titanates under hydrothermal conditions.  

 

Figure 26. SEM images of a) Com, and b) SG 

3.1.4. Surface area and pore size analyses 

Not only for the electrochemical performance but also for the hydrothermal reactions, high 

specific surface area and the porosity is desired. To determine the surface area and the 

porosities BET and BJH analyses were made. Specific surface areas of SG and Com were 

measured as 63 m2/g and 13 m2/g, respectively. In addition, the pore volume of SG is 0.104 

cm3 and 0.059 cm3 for Com. The BJH pore size distribution curves of SG and Com clearly 

shows that while SG is mainly mesoporous, Com is mainly macroporous (Fig.27). It was 

reported that increase in calcination temperature, due to sintering, leads to larger particles, 

pore volumes and lower surface areas [113]. Y. Li and his co-workers calcined sol-gel 

synthesized amorphous TiO2 at 300 °C and 700 °C. Their surface area results were 171 

m2/g for 300 °C and 2 m2/g for 700 °C. In another study, again sol-gel TiO2 they obtained 

surfaces areas in the range of 53 – 45 m2/g after calcination performed at the temperatures 

between 400 – 500 °C [114]. In addition to being consistent with our SG sample, it was 

seen that temperature has a significant effect on surface area. 

During the hydrothermal synthesis of titanate nanotubes, after reaching supersaturation 

dissolution/recrystallization reactions occur. At such conditions, the mesoporous structure 

of SG may decrease those reactions and delay the formation of the nanotubes. However, for 
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electrochemical studies, this problem does not exist and SG should have better capacity 

than Com with its larger specific surface area. 

 

Figure 27. Pore size distributions of Com and SG using BJH method 

3.1.5. Electrochemical characterization 

To make a comparison with titanate nanotubes, electrodes were also made out of SG and 

Com. The cyclic voltammogram curves of the first cycle for both Com and SG are shown 

in Fig. 28. For Com, the TiO2 oxidation of Ti3+ to Ti4+ occurs at 2.14 V and corresponding 

reduction takes place at 1.68 V. In the case of SG the oxidation and reduction take place at 

2.3 V and 1.51 V, respectively which are consistent to faradic deinsertion and insertion of 

Li+ to anatase [115]. When compared with Com, SG had wider oxidation-reduction peaks 

indicating slower insertion kinetics for SG [116]. SG is a mesoporous material with high 

agglomeration, which delays Li+ insertion. On the other hand, lower peak potential 

separation of Com (0.46 V) than the predicted Faraday’s law (0.59 V) means there were 

some side-reaction during lithium insertion into Com lattice [117]. These values are also 

consistent with constant voltage plateaus obtained at charge-discharge curves. 
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Figure 28. Cyclic voltammetry of Com and SG 

 

Fig. 29 (a, b) shows the first three charge-discharge profiles of Com and SG electrodes, 

respectively. In the first discharge of both materials, three region can be distinguished: the 

first region is at higher voltages before a constant voltage plateau at 1.75 V. In this region, 

potential drops as the result of formation of LixTiO2 [118] the extent of this region is related 

to the surface area of the material. The second region is the constant voltage plateau at 1.75 

V, this plateau is due to the formation of two phase of Li0.6TiO2 (lithium rich) and 

Li0.01TiO2 (lithium poor) [119], in other word, during Li+ insertion, anatase changes to two 

phases which one of them is lithium poor with tetragonal symmetry and another one is 

lithium rich with orthorhombic symmetry. The third region is voltages less than 1.75 V, in 

this region Li+ is stored at the surface of the material thus extension of this region is depend 

on the surface area of the materials. As can be seen from Fig. 29 (c) The discharge 

capacities of Com electrode at current rate of 0.1C in the first and twentieth cycles are 256 

mAh/g and 54 mAh/g, respectively, while these values for SG (Fig. 29d) are 357mAh/g and 

104 mAh/g, respectively. The higher first discharge capacity as well as reversible capacity 

for SG are due to smaller particle size and larger surface area of SG when compared with 

Com [120]. Although the theoretical capacity of anatase TiO2 is 335 mAh/g only half of 

this capacity can be achieved (165 mAh/g) for large particles because presence of Li+ in 
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LixTiO2 (where x is higher than 0.5) leads to high Li-Li interaction in the lattice thus Li+ 

just store only  in half of the octahedral interstices [47, 121]. However since Com has much 

bigger particles, even half of these octahedral spaces could not be filled. 

 

Figure 29. First three charge-discharge curves at 0.1C for a) Com, and b) SG and evolution 

of reversible capacity at different current rates over 20 cycles for c) Com, and d) SG 

 

The discharge capacity of the Com and SG at different current rates was examined for 50 

cycles. The current rates were increased for every ten cycles until the fortieth cycle then 

current rate was decreased back to its initial value (0.1C) for the last ten cycles. For the 

Com electrode (Fig. 30), at the first region (0.1 C), the discharge capacity dropped very fast 

and at the tenth cycle the capacity was 88 mAh/g. After increasing the current rate to 0.5 C, 

the capacity dropped almost to zero. This situation continued for 1 C and 5C until current 

rate decreased back to 0.1C. For a stable system, the capacity should have increased to a 

value close to 88 mAh/g.  However the capacity increased 72 mAh/g and kept decreasing 
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until the end of 50 cycles. In the case of SG (Fig. 30), the drop of discharge capacity was 

not that high at the first region and at the tenth cycle it dropped to 119 mAh/g. Even though 

the performance at high current rates was not satisfactory it was better than Com. After 

reaching the last region, the capacity increased to 102 mAh/g and stayed constant during 

the last ten cycles. The recovery was better with minimal capacity loss, thus SG electrode is 

more stable than Com mainly due to its smaller particle size and higher surface area. 

 

Figure 30. Rate capabilities of Com and SG 

 

3.2. Structural and electrochemical properties for titanate samples 

It is known that some Ti-O bonds of TiO2 are broken when they used as precursor treated 

hydrothermally with high concentrated NaOH [64]. This leads to forming layered titanate 

(Na2Ti3O7) then it is washed with an acidic solution and water. Washing step controls the 

amount of Na+ in the sample, then due to located imbalance H+ and Na+ between the layers, 

the surface energy of the layers increase and it force the layers to bend to form tubes [70]. 

Some researchers claim that acid washing is not a crucial step for nanotube formation and 

just during NaOH treatment that will be formed [63, 122]. While there are some other 

studies that clearly reported that acid washing affects the formation and structure of the 

final titanate nanotubes [64, 123]. Such differences in experimental finding are the result of 

differences in NaOH treatment conditions like temperature, duration applied, particle size 
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and whether the medium is mixed or not. Treatment with a concentrated NaOH at high 

temperature or long experimental durations might be leading to formation of titanate 

nanotubes [70, 99]. Another factor that might help to formation of nanotubes is agitation, it 

was reported that nanotubes were formed at 110 °C of NaOH treatment after 20 hours with 

agitation [122]. However, for the cases where after hydrothermal treatment only an 

intermediate structure in obtained due to low temperature and short experimental duration, 

acid washing step can help the formation of titanate nanotubes [64, 123]. 

In this study, SG and Com were treated with NaOH at 130 °C for 4hours, then specimens 

were washed with solutions having different pH values to obtain titanates (the pH was 

adjusted using 0.1 M HCl). The samples that were obtained from SG or Com were coded 

with label that contains letters followed by a number. If the sample was hydrothermally 

treated with NaOH, then the label starts with the letter N. Then depending on the starting 

materials, after the letter N, S (for SG) or C (for Com) is used. The number is the pH value 

in which the sample was washed, for example if SG was used as starting material and that 

sample was washed at a pH of 4, then it was coded as NS4. 

3.2.1. XRD characterization 

Structural change of the samples hydrothermal treatment was first studied by XRD. 

According to Fig. 31a, which is XRD patterns of hydrothermal treated Com washed in 

different pH values (NC series), by decreasing the pH of the solutions, the structure 

changes from titanates to anatase, this can be imply from intensity titanates diffraction 

peaks positioned at 2θ = 11⁰, 24⁰ and 28⁰ associated with the (2 0 0), (1 0 1) and (3 0 0) 

planes of trititanate (H2Ti3O7 and Na2Ti3O7) (JCPDS no: 31-1329) that were decreasing and 

appearance of anatase diffraction peak at 2θ = 25.4⁰ due to H+ attack and restructuring TiO6 

octahedral to form anatase [122]. This structure change can be also seen in the XRD 

patterns of hydrothermal treated SG (NS series) (Fig 31b).  
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Figure 31. XRD patterns of titanates samples washed in solutions with different pH values. 

(a) NC, (b) NS 

3.2.2. SEM characterization 

Study on the samples morphology reveals that nano structure of the sample is highly 

influenced by post-treatment step. By decreasing the pH values of the solution in which the 

samples were washed, the nanotubes size was decreased due to present more H+ rather than 

Na+ in the system which leads to decreasing Na/H ratio. At higher pH values, the materials 

has more Na+ than H+ thus at higher pH values the nanotubes should be thicker. Fig. 32 

shows the SEM images of the NC samples with different post-treatment conditions, the 

diameters of the nanotubes in NC4, NC7.2, NC9.8 and NC11 are in the range of 15-20nm, 
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21-27nm, 25-30nm and 30-36nm, respectively. Some researchers obtained titanate 

nanotubes hydrothermally with anatase TiO2 precursor at 130 °C and duration of 72 hours, 

they got 9nm nanotubes [102, 103]. Duration of the experiment make such a difference in 

nanotubes diameter. 

Fig.33 shows the NS samples washed in solutions with different pH values, SEM images of 

NS2.4 and NS3.3 (Fig. 33 a,b) show particle like morphology, according to their XRD 

profiles (Fig. 31 b) it can be concluded that they are in anatase phase due to extreme pH 

values solutions where they were washed in, while for higher pH values samples, nanotubes 

can be easily seen (Fig. 33 c,d,e). The nanotubes diameters were decrease like NC samples 

when NS samples were washed with severe pH solution. These diameters for NS5.2, NS6.5 

and NS13 were measured to be in the ranges of 25-30nm, 28-34nm and 30-40nm, 

respectively. 

 

Figure 32. SEM images of NC samples with pH values of (a) 4, (b) 7.2, (c) 9.8 and (d) 11 
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Figure 33. SEM images of NS samples with pH values of (a) 2.4, (b) 3.3, (c) 5.2, (d) 6.5 

and (e) 13 

3.2.3. Surface area and pore size analyses  

Figure 34 shows the variations of surface area and interlayer distances with respect to pH 

for NC and NS samples. Surface area for both series of samples was increasing by 

decreasing the pH, in the NC series, NC4.5 has the highest surface area of 334 m2/g. while 

some researchers reported 195 m2/g [102] and 240 m2/g [104] surface areas for titanate 

nanotubes washed with water. It seems that highest surface area is belong to those samples 

that were washed at the pH range of 4-5. Getting far from this range towards higher pH 

values, the surface area will be decreased due to replacement Na+ in the structure more than 

H+, while both series of samples showed wider interlayer distances at higher pH values due 

to store more Na+ content between the layers than H+. By decreasing the pH values, 

interlayer distances were decreased. 
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Figure 34. (a, b) NC samples a) surface area, b) interlayer distances, (c, d) NS samples c) 

surface area, d) interlayer distance 

3.2.4. Electrochemical characterization 

NC4 and NC9.8 have a pair of broad oxidation-reduction peaks in their CV patterns (Fig. 

35) indication their pseudocapacitive behavior of this materials which occurs during 

hydrothermal treatment when they turned to titanate from anatase , surface area increased 

and form layered structure with pseudocapacitive behavior [124]. Due to multi-layered and 

tubular structure of these titanate nanotubes, Li+ can easily intercalate and deintercalate to 

their structures. This can be resulted in broad oxidation-reduction peaks in their CV profiles 

[116]. 
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Figure 35. Cyclic voltammetry of a) NC4, and b) NC9.8 

 

The first three charge-discharge profiles at current rate of 0.1C of NC4 and NC9.8 are 

shown in Fig 36 (a, b). It was shown that interlayer distances of NC9.8 is more than NC4 

(Fig.34) also NC9.8 nanotubes is thicker than NC4 nanotubes (Fig. 32 a,c) thus this 

enhancement in interlayer distances and nanotubes diameters provide more free space for 

Li+ to intercalate to NC9.8 lattice, which can be resulted in more initial discharge capacity 

for NC9.8. This capacity for NC9.8 is 980 mAh/g, while it is 823 mAh/g for NC4, which is 

still high enough due to its high surface area (130.6 m2/g). Some studies reported initial 

discharge capacity of 182 mAh/g at 0.48C [77] and 330 mAh/g at 0.3C [74] for titanate 

nanotubes, while we obtain higher initial discharge capacity even at higher current rate 

(0.5C),  365 mAh/g for NC4 and 385 mAh/g for NC9.8. However capacity fading occurs 

for both of them in the beginning of charge-discharge cycles due to trapping some Li+ in 

the lattice [124], consequently losing their capacities is followed. The capacity reversibility 

of the samples was examined at different current rates in 20 cycles (Fig 36 d, e). NC4 

shows 104 mAh/g as reversible capacity at 0.1C after 20 cycles, while NC9.8 with wider 

interlayer distances has 131 mAh/g reversible capacity after 20 cycles at 0.1C due to less 

trapped Li+ in NC9.8 lattice. 

M. Eom and his co-workers reported that reversible capacity of titanate nanotubes is highly 

affected by interlayer spacing, they enlarged the interlayer spacing of titanate by treating 
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titanate with one of the Li, Na and K alkali solutions to exchange ions among layers. They 

obtained 230 mAh/g initial discharge capacity at 0.1C for sodium titanate nanotubes [125] 

thus it can be seen that our titanate nanotubes were significantly modified. 

 

Figure 36. First three charge-discharge curves at 0.1C for NC samples washed in pH value 

of a) 4, and b) 9.8, and evolution of reversible capacity at different current rates in 20 

cycles for c) NC4, and d) NC9.8 

 

Rate capabilities of NC4 and NC9.8 samples is shown in Fig. 37. For NC4, the discharge 

capacity was decreased from 823 mAh/g to 151 mAh/g during first ten cycles at the current 

rate of 0.1C, then the current rate was increased to 0.5C, 1C and 5C for each ten cycles till 

fortieth cycle. In this three ten cycles, discharge capacity retention was observed. In the last 

ten cycles the current rate was return it its initial value (0.1C), and discharge capacity of 

134 mAh/g was obtained for forty-first cycles and it was decreased to 102 mAh/g for 

fortieth cycle. For NC9.8 sample, this procedure took placed and discharge capacity of 
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tenth cycle, forty-first cycle and fiftieth cycle was 170 mAh/g, 157 mAh/g and 131 mAh/g, 

respectively. Titanate nanotubes showed excellent rate capability especially at wider 

interlayer distances, even at higher current rate irreversible capacity is negligible this is 

because of wide interlayer distances that provide enough space for Li+ to intercalate and 

deintercalate. 

 

Figure 37. Rate capabilities of a) NC4, and b) NC9.8 

 

 It was reported that electrochemical properties are significantly affected by morphological 

characteristics of titanate nanotubes like surface area, nanotubes diameter and interlayer 

distances thus if these parameters will be improved then better electrochemical 

performance is followed. 

 

3.3. Structural characterization of surfactant treated titanates 

Titanate nanotubes with different post-treatment conditions were treated with dodecylamine 

(C12H27N)(surfactant) hydrothermally to replace H+ or Na+ with surfactant chains in order 

to modify the interlayer distances which has great impact on the electrochemical 

performance. It was reported that surface of titanate nanotubes has a point of zero charge 

(pHPZC) value of about 3.5 indicating that above this point the surface of titanate nanotubes 
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is negatively charged and by increasing the pH, the surface get more negatively charged 

[126, 127]. Thus during surfactant treatment, positive charged surfactant can easily enter 

electrostatically to titanate interlayers that were washed at pH values above 3.5. Surfactant 

treated samples are coded like hydrothermal treatment method. For example if NC4 was 

treated with surfactant, it was coded as SNC4. 

 

3.3.1. XRD characterization 

XRD profiles of surfactant treated NC (Fig. 38 a) and NS (Fig. 38 b) show that titanate 

diffraction peak at 2θ = 11⁰ corresponding to (2 0 0) plane, got intense indicating the 

presence of large surfactant cations between the layers and also this peak was shifted to 

lower angels revealing an increase in interlayer distances. This happened for both SNC and 

SNS series samples. In order to know how much the interlayer distances were increased, 

bragg’s law was used to find the d-spacing of (2 0 0) plane of titanate nanotubes before and 

after surfactant treatment. It was calculated that d-spacing of the layer corresponding to 

peak at 2θ = 11⁰ for titanate before the surfactant treatment was 7 Å and after the surfactant 

treatment this value reached to 11 Å. 
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Figure 38.  Comparison between XRD patterns of a) NC and SNC samples, and b) NS and 

SNS samples 

3.3.2. SEM and TEM characterization  

Fig. 39 shows the SEM images of some samples before and after surfactant treatment. 

Nanotubular structure of titanate was preserved after surfactant treatment while nanotubes 

become thicker. For NC4 sample, after surfactant treatment, the diameter of nanotubes 

increased from 15-20 nm to 35-55nm (Fig. 39a, b). This was also observed for NS samples, 

after surfactant treatment, NS5.2 nanotubes’ diameter increased 25-30 nm to 40-60 nm 

(Fig. 39c, d). From TEM images for NC4.4, the average diameter of the nanotubes was 

measured as 9 nm. On the other hand, when this sample was treated with the surfactant the 

diameter increased to an average value of 14 nm (Fig. 40) 
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Figure 39. SEM images of a) NC4, b) SNC4, c) NS5.2, and d) SNS5.2 

 

 

Figure 40. TEM images of NC4.4 and SNC4.4 

 



55 
 

3.3.3. Surface area and pore size analyses 

BET and BJH analyses were made on surfactant treated NC and NS samples to determine 

surface area and interlayer distances. Fig.41 shows the effect of surfactant treatment on 

surface area and interlayer distances of titanates. It was indicated that during surfactant 

treatment, surface area of the titanates was decreased because surfactant cations were 

replaced with H+ or Na+ and it filled the pores in the structure leading to decreasing in 

surface area (Fig. 41 a, b), however the interlayer distances of the titanates was increased 

due to a force by surfactant cations on layers to be enlarged when they inserted to titanate 

lattice (Fig. 41 c, d). Both SNC and SNS samples were followed this procedure. The higher 

interlayer distance for SNC samples is 21 Å, which is for SNC11. XRD profiles of 

surfactant treated NC (Fig. 38 a) and NS (Fig. 38 b) also support the BET results. The peak 

at 2θ = 11 for titanates was shifted to lower degrees after surfactant treatment as the results 

of an increase in the interlayer distances. Also this peak got intense because surfactant 

cations filled the pores, as a consequence surface area was decreased.  
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Figure 41. Comparison of a) surface area of NC and SNC samples, b) interlayer distances 

of NC and SNC samples, c) surface area of NS and SNS samples and d) interlayer distances 

of NS and SNS samples 

3.3.4. Electrochemical characterization 

In order to know the effect of surfactant on electrochemical performance of titanate 

nanotubes, we compared discharge capacity of NC4.4 and SNC4.4 at current rate of 0.1C 

for 19 cycles. As it was expected the initial discharge capacity of SNC4.4 (1232 mAh/g) is 

much higher than initial discharge capacity of NC4.4 (730 mAh/g) due to wider interlayer 

distances for SNC4.4 where Li+ can be stored more and have more mobility. The discharge 

capacity was faded due to trapping Li+ in the lattice but as it can be seen (Fig. 42) SNC4.4 

shows better stability than NC4.4, again due to higher interlayer distances for SNC4.4. 
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Figure 42. Discharge capacity of a) NC4.4, and b) SNC4.4 at 0.1C in 19 cycles 
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4. Conclusion 

In this study, anatase TiO2 nanoparticles were prepared via sol-gel method. Moreover, as-

prepared and commercial anatase were used as the precursors to synthesize titanate 

nanotubes hydrothermally in alkali conditions. Titanates interlayer distances were modified 

by a post-treatment step in which titanate were washed with solutions having different pH 

values. Furthermore, titanate nanotubes were treated with surfactants to expand the 

nanotubes. After that, structural and electrochemical characterizations were performed. 

 Anatase TiO2 nanoparticles were successfully synthesized by sol-gel method with average 

particle size of 20nm and 63 m2/g surface area.  While as-prepared TiO2 anode showed 357 

mAh/g initial discharge capacity at 0.1C current rate, the capacity of commercial TiO2 

anode was 256 mAh/g at 0.1C current rate. Smaller particle size and higher surface area of 

the sol-gel TiO2 than the commercial one provided better electrochemical performance. 

Titanate nanotubes were synthesized hydrothermally in high yields. By decreasing the pH 

value of the washing solution, the nanotube diameter decreased and after pH of 3 the 

titanates were converted back to anatase. The highest surface area was obtained at pH of 

4.4 (334 m2/g) for hydrothermal treated commercial TiO2 and getting away from this point 

to higher and lower pH values lead lower surface area values. The highest interlayer 

distances was observed at pH of 13 (26 Å) for hydrothermal treated commercial TiO2. 

Titanates showed exceptional rate capabilities especially at wider interlayer distances. High 

specific capacity of 980 mAh/g was observed for titanate at pH of 9.8 due to its large 

interlayer distance. 

Nanotubes diameter, surface area and interlayer distances of titanates were significantly 

affected by surfactant treatment. Surfactant treated titanates showed thicker nanotubes, 

lower surface area and higher interlayer distances than titanates without surfactant 

treatment. Moreover, a much higher discharge capacity of 1232 mAh/g was obtained due to 

having expanded titanate nanotubes. 
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