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Playback delay control is an important mechanism to avoid jitter in video streaming

systems. This work introduces a playback delay minimization problem for multiuser

video streaming systems providing a jitter-free video streaming service to end users in

the system. We first analyze the case where the video requests of the users arrive to

server at the same time in other words video requests are synchronized. Then we extend

our analysis to case of asynchronised video requests where the number of users varies by

the time

In particular, a necessary condition on the playback delay for jitter-free streaming is

obtained. Then, based on the derived necessary condition, an optimum rate splitting

algorithm that splits available rate to all users is proposed. The proposed algorithm is

optimum in the sense that it achieves the minimum system delay, which is defined as

the maximum of all initial playback delays, while ensuring jitter-free streaming service

to all users. Finally, using these results, an expression for the minimum system delay as

a function of system parameters such as total rate, arrival times and playback curves of

requested video files is also derived.
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Further, in this work we investigated random channel model and a closed form ex-

pression for interruption probability is presented. In addition it is verified that nearest

deadline first algorithm is the optimal scheduling policy for video streaming over het-

erogeneous channels in a sense that it provides the minimum system jitter probability.
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Chapter 1

Introduction

1.1 Motivation

Recently, there is an increasing demand for multimedia streaming applications thanks

to the ubiquity of internet access, the availability of online content and the growing

usage of wireless hand-held devices. The predictions of Cisco Visual Networking Index

[1] indicate that IP video traffic will constitute 79 percent of all consumer internet traffic

in 2018. Especially, on demand video providers have gained importance in the current

decade. For instance, in 2014, YouTube and Netflix accounts for up to 49 percent of

fixed access Internet traffic in North America [2]. Furthermore, 20 percent of the mobile

internet traffic in North America is solely based on YouTube [2]. The upward trend

in the interest for the video on demand (VOD) services such as IPTV is expected to

accelerate further during the next decade [3].

As the VOD global market is growing fast, certain system design issues have to be

rethought for video streaming systems such as appropriation of video server bandwidth.

In particular, for a commercialized and efficient video streaming system, the service

providers do not only have to assure that the network infrastructure has the sufficient

resources to serve the users according to their desired level of service quality such as

video quality and playback delay, but also allocate available communication resources

optimally among the users according to their desired level of service quality. It may even

be necessary for the VOD service provider to control admissions to the network so as to

prevent existing users from observing lower than promised level of quality of service.

In the literature, there are manifold studies regarding video streaming systems. In ad-

dition, various QoS metrics are proposed to quantify the service quality provided to end

user. One of the prevalent QoS metrics is the statistical delay bound which describes

1
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the probability that packet delay exceeds the predefined delay-bound [4]. In [5–16] it

is investigated how to guarantee a statistical delay bound for end users while increas-

ing rate (throughput), minimizing resource utilization, maximizing the video quality or

minimizing energy consumption. Statistical delay-bound is a powerful metric to analyze

wireless networks, however presented works do not explicitly underline the relationship

between the delay-bound and video quality at the end user.

Hence, it is investigated to quantify the distortion in the video stream due to rate varying

structure of the channel. In these studies quantified distortion in the video quality is

considered as a QoS metric and an utility function is defined based on the average rate,

throughput or packet loss. [17–25]. Then it is aimed to maximize the utility function

for users. Hence, these works are concentrated on rate-distortion analysis for the video

stream. In [26–29], layered structure of the encoded video file is also take in to the

consideration to measure the distortion. Different from the traditional utility-based

approaches, delay-constrained video transmission schemes have been considered in [30–

33]. Although, papers ,discussed so far, provide different techniques for scheduling, rate

allocation, admission control and rate adaptation to maximize the utility of the users

based on the video quality, these works could not decently identify the received video

quality from the user perspective. For instance, continuous fluctuations in the video

quality is also an undesirable situation for users, even though average video quality is

high during the streaming process. Therefore, recent works aim to identify the distortion

in video file from the user’s aspect. Therefore, notion of the subjective video quality is

analyzed in [34],[35],[36]. However, in our work we ensure that video quality is preserved

during the whole streaming session. In other words, encoded video files are sent with

fixed frame configuration and quantization step size.

Minimum playback delay for user to display video without an interruption is introduced

in [37]. Further, there are several works aim to derive a closed form expression for the

interruption probability [37–42]. However, all these works concentrate on the single user

case, whereas we consider a video streaming system with multiple end users. Moreover,

we propose a rate splitting policy for minimum system delay and a scheduling policy

to minimize interruption probability. Scheduling policy to prevent interruption in a

multiuser streaming is proposed in [43]. Nevertheless, the proposed algorithm is a best

effort method and unable to provision the interruption probability. Although the play-

back delay optimization problem for multiuser video streaming systems was investigated

in [44], the authors assume that clients subscribe to different portions of scalable video

streams. In our system, on the other hand, each user is able to request a different video

stream from the server.
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1.2 Problem Formulation

For maximum end-user experience, we expect each user to display the requested video

stream without an interruption. An interruption occurs when the required data for

video is not available in the user buffer on time. This interruption event is called jitter.

A simple and efficient way to resolve jitter is to start displaying the video stream after

a sufficiently long playback delay. Note that a long playback delay is not preferred by

users. Hence, the playback delay should be minimized as far as possible whilst satisfying

the promised level of quality of service to all users.

In the first part of our work, we assume that the rate of the transmission channel is

varying over time, but such channel variations during the video streaming session are

known in advance. The maximum possible latency of a user is the determining factor of

QoS. Hence, we focus on minimizing the initial playback delay for an uninterrupted video

streaming service in a multiuser setting for a known but dynamic service bandwidth,

and for a given set of users’ video requests. In this setting, we concentrate on the

transmission of pre-encoded video files to a multitude of end users. In a general multiuser

video streaming system, video requests from different users may arrive at the server at

different times. However, for the sake of simplicity we start our analysis from the case

of synchronized video requests.

We first find a necessary condition for the proposed multiuser video streaming system to

provide jitter-free video streaming to all users simultaneously. Next, we propose a rate

splitting control policy for the server such that when the derived necessary condition is

satisfied, then all users receive jitter-free video streaming service. Finally, by utilizing

the proposed rate splitting policy, we determine the minimum possible playback delay

while still achieving jitter-free video streaming to all users.

Thereafter, we investigate the case of asynchronised video requests. Remark that the

number of users in the system is changing as time goes by due to newly arriving users.

To deal with this, we consider the whole video streaming process as a concatenation of

mutually exclusive time intervals (frame). Each frame corresponds to a system with a

constant number of users such that video transmission for each user starts at the same

time. Then, we utilize our inferences from the case of synchronized video requests to

determine the minimum possible playback delay while still achieving jitter-free video

streaming to all users for asynchronised video requests. An important practical implica-

tion of these results is that they indicate the service providers if and when their network

infrastructure is adequate for meeting certain level of QoS requirements measured in

terms of playback delays for jitter-free multiuser video streaming.
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In the second part of this work, we assume that time is divided into fixed length time

slots. We further assume that transmission channel experience independent and identi-

cally distributed (iid) block fading such that channel gain is constant over a time slot

and it varies between the time slots independently. The random behaviour of the chan-

nel is defined by the packet drop rate. In this case, we consider the playback delay is a

default system parameter.

We first examine the different methods used for provisioning the jitter probability when

there is a single user in the system [42],[37],[38]. Then, we introduce a recursive method

to measure exact jitter probability for given channel statistic, playback delay and play-

back curve. Next, we propose a closed form expression for the approximate jitter prob-

ability. Finally, we compare the performance of all these methods for different video

lengths and varying playback delayes.

Further, we extend our analysis to multiuser video streaming over heterogeneous chan-

nels. Our main purpose is to identify the optimal scheduling policy for a multiuser

system in a sense that for the presented scheduling policy the minimum system jitter

probability is achieved. In here, minimum system jitter probability defines the proba-

bility that for at least one user video interruption occurs. In this work, we show that

nearest deadline first algorithm provides the optimal scheduling policy.

1.3 Contributions

The main contribution of our work is providing a novel framework to solve the delay opti-

mal resource allocation problem in the multiuser video streaming system over a common

transmission channel. We establish a necessary condition for providing interruption-free

video streaming to all users, and we find the minimum possible playback delay to avoid

interruption during the video streaming process. We further extend our study to a ran-

dom channel model where only the information of packet drop rate is available. Then we

present a closed form expression for the interruption probability when there is a single

user in the system. Finally, we verify that nearest deadline first (NDF) algorithm is

the optimal scheduling policy for video streaming over heterogeneous channels in the

sense that it minimizes the system interruption probability.Further we point out that

it is possible to provision the system jitter probability under the assumption that all

transmission channels are identical.
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1.4 Organization of Work

This work is organized in the following way. Second chapter is allocated to literature

review. In Chapter 3, we introduce the playback delay analysis of the multiuser video

streaming system. We explain the system model for multiuser video streaming system

in 3.1. Synchronous and asynchronous video requests are investigated in 3.2 and 3.3

respectively. In Chapter 4, we introduce the Interruption analysis of the multiuser video

streaming system. Methods for quantifying the jitter probability are provided in 4.1 and

in 4.2 we examine multi-user video streaming over heterogeneous channels. Finally, in

Chapter 5 we provide the conclusions and mention the future works.



Chapter 2

Literature Review

2.1 Statistical Delay Bound

Quality of service (QoS) provisioning in wireless networks has been an active research

area. Manifold studies interest in statistical (QoS) due to varying structure of the wire-

less channel. Hence, the concept of effective capacity is a powerful tool to characterize

the wireless channel in terms of functions that provides a statistical link-layer QoS met-

ric. The concept of the effective capacity is constructed upon on the theory of effective

bandwidth. Effective bandwidth provides a statistical delay bound for packets [45] in a

queuing system. The concept of effective bandwidth considers constant channel capacity

with varying source rate whereas effective capacity deals with constant source rate and

varying channel capacity. To clarify the effective capacity method, let D(t) denotes the

delay experienced by a packet arriving at time t. Then, it claims that probability of

D(t) exceeding a delay bound Dmax is given as

sup
t
Pr {D(t) ≥ Dmax} ≈ γ(µ) exp−θ(µ)Dmax (2.1)

where {γ(µ), θ(µ)} are function of source rate µ [4]. Hence, for a given delay-bound

violation probability ε maximum value of µ can be calculated.

In [5],[6], authors consider a multiuser downlink network and propose a scheme consisting

of admission control, resource allocation and scheduling algorithms. In these papers

proposed schemes, the scheduling algorithm is a combination of Knoop and Hublet’s

(K&H) scheduling and round robin (RR) scheduling . Through proposed scheduling

algorithms, it is aimed to increase multiuser diversity while providing a QoS guarantees

to users in the network. The main contribution of these works are enabling explicit

provisioning of statistical QoS for multi end-user by virtue of the effective capacity

6
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method. Different dynamic resource allocation schemes for wireless networks adopting

the effective capacity model is studied in [14],[15],[16]. The proposed schemes aim to

increase the throughput performance of network while supporting the QoS requirements.

Cross-layer modeling is introduced in [7] and [8] to characterize the QoS performance

at the data link layer utilizing the effective capacity concept. The significant feature of

the introduced model is that physical layer service process is modeled as a finite state

Markov chain (FSMC). In [9], the authors proposed an adaptive resource allocation

scheme for downlink heterogeneous wireless networks based on the cross-layer model.

According to the proposed scheme, assigned power levels and time slots to mobile users

are dynamically updated according to the statistical QoS delay-bound. In [10] QoS

provision for multilayered video files is investigated and an adaptive transmission scheme

is proposed to minimize resource consumption. However, all these works aim to maximize

the rate (throughput) or minimizing the resource consumption which are not directly

related to received video quality. On the other hand, in [11] authors aim to maximize

the sum of video quality while delay-bounds for end-users are satisfied.

In addition to above previous work, the relationship between the energy efficiency and

QoS constraints is also investigated in the literature. In particular, this relationship

is monitored and characterized in [12] and an energy efficient power allocation scheme

guaranteeing QoS constraints is proposed in [13].

2.2 Rate Distortion Analysis

In the literature, the problem of maximizing the video quality, or equivalently the prob-

lem of reducing distortion in the received video file delivered over a wireless medium,

is also well-investigated. In [17], an adaptive rate allocation strategy is studied to as-

sure certain QoS requirements considering the packet loss events for multi-layered video

transmission. In addition, different distributed scheduling and distributed rate allocation

algorithms are proposed for multiuser video streaming [18–24]. There is a strong relation

between the rate of a wireless or wireline link and the level of video distortion. In these

papers, this relationship is first described. Then, to optimize the system performance,

either the weighted sum of the video distortion functions of users is minimized or the

weighted sum of the utility function of users is maximized. In [20–24] video distortion

is modeled according to parametric model given in [46]. In [18] a distortion parameter

assigned to each packet according to their priorities to model the deterioration in the

video quality. On the other hand, a rate based utility function is used in [19].
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A similar scheduling problem regarding the group of picture (GoP) structure and de-

lay deadlines is investigated in [25]. Each GoP contains finite certain number of data

units with different distortion impacts. The proposed method aims to maximize accu-

mulated video quality of all users. One of the distinguishing features of this work is the

consideration of long term video quality delivered to users.

Recent studies on optimizing the received video quality in a wireless video streaming

systems consider scalable video files. In [26], an adaptive scheduling algorithm for single

user is proposed to minimize video distortion where the video distortion is measured by

using mean square error in the received data units. Multiuser video streaming systems

are also investigated in [27],[28],[29]. In order to quantify the system performance, the

mean square error method for video distortion calculation is used in [27],[28], whereas a

throughput based utility function is used in [29].

Traditional utility-based approaches often did not explicitly account for stringent dead-

lines. Therefore, the delay-constrained video transmission schemes have been considered

in the literature by using different techniques. In particular, scheduling and resource

allocation policies are proposed in [30–33]. Particularly, the authors in [31] authors

identify a lower bound on the deadline violation probability, and propose simple policies

that achieve the lower bound. In [32], a reward is assigned to each packet meeting its

deadline, and the function of total reward accumulated from all packets is maximized.

On the other hand, in [33] transmission delay deadlines of each sender’s video packets

are considered as monotonically-decreasing weight distribution in the time horizon and

the proposed non-stationary resource allocation policy schedule the users according to

these weights.

The common feature of the works explained above is that video quality is defined through

rate, throughput, packet dropping or video layer. Hence, it is aimed to maximize average

video quality. However, from the users perspective consistency of the video quality is

also an important parameter which is ignored in these papers. Therefore, to visualize

the video quality experienced by end users, notion of the subjective video quality is

introduced [34],[35],[36]. In [35] quality of experience is characterized by using the

second order empirical cumulative distribution function. On the other hand, in [36] it is

assumed that frame rate and quantization step-size are two determinant factors of the

subjective video quality.
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2.3 Interruption Probability

In the literature, many works consider interruption probability as a quality of experi-

ence (QoE) metric since the experienced video quality is directly related to occurrence

of interruption event. Hence, there are several research on provision of the interruption

probability. In [37], the authors first define the minimum initial delay to prevent inter-

ruption event when the channel rate is fully characterized. The random channel case

where the fluctuations in the channel rate is not known a priori at the receiver is inves-

tigated in both [37],[38] and an upper bound for interruption probability is provided.

In these works, the random channel is modeled with probability of successful packet

transmission.

Another approach to derive the interruption probability is based on the diffusion ap-

proximation. According to the diffusion approximation approach [47],[48], if the packet

inter-arrival times follow a given but unknown distribution with mean 1
λ and variance

υa and similarly packet inter-departure times follow a given but unknown distribution

with mean 1
µ and variance υs, then the buffer size X(t) is modeled as a Brownian motion

such that

dX(t) = X(t+ dt)−X(t) = βdt+G
√
αdt, (2.2)

where G is a random variable with standard normal distribution, β = λ− µ is the drift

coefficient and α = λ3υa − µ3υs is the diffusion coefficient. In [39], an interruption

probability is derived for infinite video length using the diffusion approximation and

similarly an upper bound for interruption probability is obtained in [40]. Other methods

for provisioning the interruption probability are proposed in [41] and [42]. In [41], it is

claimed that for a given arrival process with rate R, initial buffer size D and uniform

departure process with rate 1, then the interruption probability is given as

p(D) = exp−I(R)D, (2.3)

where I(R) is the largest root of γ(r) = r + R(exp−r −1). In [42], the buffer level of

an user is modeled as a M/M/1 queue with Poisson arrival process and Poisson service

process. Then, using the Ballot Theorem, a closed form expression for interruption

probability is derived. On the other hand, in [49],[50] and [43] scheduling and rate

adaptation algorithms are proposed to prevent interruption event. In [49], interruption

probability is predicted for short time intervals utilizing the large deviation theory then

playout rate is adjusted accordingly. Similarly, in [50] buffer occupancy is measured to

adjust the video rate to prevent rebuffer. On the other side, in [43] proposed algorithm

control the users’s buffer levels and if there is a certain amount of reduction in the buffer

levels then decide on the next user to be scheduled.
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2.4 Dynamically Adaptive Streaming over HTTP

Besides the above works focusing on the server side of the video streaming systems,

there is an increasing interest towards client side of the video streaming applications re-

cently. Thanks to the abundance of Web platforms and broadband connections, HTTP

streaming has become the cost effective way of delivering multimedia content [51], [52].

Further, the dynamic adaptive streaming over HTTP (DASH) [52][53] has been pro-

posed. In a DASH system, multiple copies of the pre-encoded videos corresponding to

different video quality levels are stored in segments. In HTTP streaming, the Web server

usually has very little knowledge about client/network status. Therefore, client decides

on the content delivery, and for each segment the client request the appropriate quality

version of the video fragment. In the recent works, quality of experience QoE is aimed

to be maximized using the DASH standard [54–60].

2.5 Energy Efficiency

Design issues related to video streaming systems are not only based on the quality of

service or quality of experience. Increasing mobile data traffic and dense deployment of

base stations have made energy efficient implementations increasingly more important

for video streaming systems. Besides, it is well known that consumers highly care about

battery life times of wireless hand-held devices. Thus, there are many works aim to

reduce energy consumption both in the base station side and in the mobile device side

[61–66].



Chapter 3

Multiuser Video Streaming:

Playback Analysis

3.1 Introduction

Main server Cloud Server

AP Router

End User

Figure 3.1: Multiuser video streaming system

In this chapter, we focus on discovering underlying principles for interruption free deliv-

ery of video streams to a multitude of end users. To this end we consider an extension

of the video streaming system introduced in [37] to a multiuser setup. In particular,

there are N different users requesting N different video streams from a common video

streaming server in our case, as shown in Fig.3.1.

The routing between the video server and the router is fixed and determined prior to the

network operation. The bottleneck of the network is between the router and the clients.

11
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∆

Bits

Time

p(t) R(t) p(t −∆ )

Figure 3.2: Receiver, Playback and Playout curves

Router has an infinite buffer space, but we will consider the case for finite buffer as a fu-

ture work. The end-to-end transmission is performed over UDP protocol, which requires

the reliability to be ensured by the application. We consider a cross-layer network stack,

where the application layer has direct communication with MAC sub-layer. The effects

of any forward error correction and/or application-specific error-correction used in the

system are reflected in packet error probability[67], which is independent and identical

among time slots. Once a packet is not received correctly, a NAK is sent by the client,

which in turn triggers a retransmission by the router. There is no limit on how many

times the packet is retransmitted. Otherwise, client sends an ACK which in turn allows

the router to drop the packet from its outgoing queue. Our proposed resource allocation

algorithms are run at the MAC layer of the bottleneck router serving the clients.

In this chapter, for the playback delay analysis, we assume that packet length is suffi-

ciently small thus time axis is considered as continuous. Before analyze the multiuser

video streaming system in regard to the relation between the interruption event and

initial waiting time of user, we introduce some system parameters to obtain a rigorous

mathematical model.

3.1.1 Cumulative Rate Curve

The data transmission channel can be characterized by a deterministic rate curve r(t)

that specifies the instantaneous error-free data of the channel. Since the server starts

streaming only after a video request arrives, it is assumed that r(t) = 0 for t ≤ 0. We

construct the cumulative rate curve R(t) such that

R(t) =

∫ t

0
r(τ)dτ, (3.1)

to visualize the total amount of error free data that can be transmitted over the channel

up to time t. Obviously, R(t) = 0 for t ≤ 0 and R(t) is monotonically increasing function

of t
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3.1.2 Playback Curve

In this multiuser streaming setup, it is important to be able to quantitatively characterize

the additional rate requirement introduced by each video stream requested by end users.

To this end, we introduce the notion of playback curve such that the video stream

requested by user i is characterized by a playback curve pi(t), where i = 1, . . . , N

The playback curves describe the minimum amount of data(e.g. measured in bits)

that needs to be decoded up to time t in the user buffer. In general, these curves are

monotonically increasing. We assume that pi(t) = 0 for t ≤ 0 to indicate that no data are

requested before the arrival of the ith user video request. Remark that we particularly

focus on VOD services such that users in the system request a video stream from a

certain video library. Furthermore, we assume that quality of the video stream remains

constant during the video streaming process, hence it is proper to assume that playback

information is known in advance. Therefore, exact information of the playback curves

are available in the server, before the transmission of the corresponding video files(e.g.,

header file of the video stream contains the playback curve information).

A video file is considered as a combination of mutually exclusive fragments that contain

different frames of the same video file. In [68], the authors call the video units group

of pictures (GOP). Note that frames of the same GOP are decoded and encoded to-

gether. To display a frame, all information related to the corresponding GOP needs to

be available in the buffer. Hence, we assume all playback curves are right-continuous

step functions. We call any time instant t > 0 with p(t−) 6= p(t) an increment point.

The t− notation denotes any time instant t− ε, ε > 0, that comes arbitrarily close to t

from the left-hand side.

3.1.3 Receiver Curve and System Delay

The receiver curve Ri(t) is defined as the overall error-free data allocated to user i up

to time t. As before, we assume that Ri(t) = 0 for t ≤ 0. Since information transmitted

to a user cannot be retrieved back from this user, each receiver curve is monotonically

increasing. Note that in a video streaming system with a single user, the cumulative rate

curve and the receiver curve turn out to be the same function , as all communication

resources allocated to only one user. In a multiuser setting, on the other hand, we need

to handle the issue of distributing the available communication resources to a plurality

of end users. Hence, we define the rate splitting policy π for further analysis of the

proposed multiuser system.
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Definition 1. A rate splitting policy π is a method for dividing the cumulative rate curve

R(t) to obtain a receiver curve for each user such that

R(t) =
N∑
i=1

Ri(t) (3.2)

for all t ≥ 0, where Ri(t) denotes the receiver curve of the user i under rate splitting

policy π.

Throughout the section we assume that for a given cumulative rate curve R(t) and a

rate splitting policy π, there exists a sufficiently large constant T > 0 such that the

following equality

Ri(T ) = pi(Ti), (3.3)

holds for all i ∈ {1, . . . , N}. This assumption indicates that for any rate splitting policy

π, each user can download the corresponding video stream in a finite duration. In this

chapter, our primary purpose is to identify the conditions under which we can provide

uninterrupted video streaming service to all users in the system. We remark that if a

user does not receive the required amount of data on time during the video streaming

process, an interruption arises while playing out the video at the end user. In the

literature this phenomenon is also called jitter. One common technique to avoid jitter

during video streaming is to start to display the video stream with a delay, after some

∆ seconds from the arrival of the video streaming request. ∆ here is called the playback

delay.

We first consider a system with single user, where the receiver curve is equal to the cumu-

lative rate curve R(t). Authors of [37] demonstrate that for jitter-free video streaming,

the total number of bits received by the user up to time t should be equal to or larger

than p(t−∆) bits for any time instant t > 0 i.e.,

R(t) ≥ p(t−∆). (3.4)

Here, the curve p(t−∆) is called playout curve and denoted by p∆(t). When the receiver

curve R(t) and the playback curve p(t) are known before the transmission at the server,

then the minimum initial delay to avoid jitter is given as

∆min = max
t

{
R−1(p(t))− t

}
, (3.5)

where R−1(x) = max {t : x ≤ R(t)} is the so called the pseudo-inverse function of the
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monotonically increasing receiver curve R(t). The pseudo-inverse function of the play-

back curve p−1(t) and the receiver curve R(t) are used to determine minimum playback

delay in [37]. However, the method given in [37] only provides the minimum playback

delay for strictly increasing R(t). On the other hand, the minimum playback delay given

in (3.4) is valid for all monotonically increasing receiver curves. Note that ∆min is the

minimum value satisfying the inequality R(t) ≥ p(t−∆) for all t > 0

3.2 Multiuser Video Streaming for Synchronized Video

Requests

In this section we consider the case where there are multiple end users in system and

all the video requests reach to server at the same time particularly at t = 0. In contrast

to the single user case, there are N users in our system model and each user may have

a different initial delay. A delay vector ∆ = (∆1, . . . ,∆N ) is used to denote all initial

delay values for all users in the system. We say that a multiuser video streaming system

is jitter free if (3.4) holds for all users in the system, i.e.,

Ri(t) ≥ pi(t−∆i), (3.6)

for all t for all i. We denote the playout curve of the user i by p∆
i (t) to simplify the

notation. For a given rate splitting policy π and a cumulative rate curve R(t), (3.5)

provides the minimum playback delay for user i with pi(t) i.e.,

∆π
i = max

t

{
(Ri)

−1 (pi(t))− t
}
. (3.7)

The minimum playback delay vector ∆π is a vector that consists of minimum playback

delays for the given rate splitting policy π, i.e.,

∆π = (∆π
1 , . . . ,∆

π
N ) (3.8)

Definition 2. For a given playback delay vector ∆, the system delay ∆s is defined to be

the maximum of playback delays, i.e., ∆s = max1≤i≤N ∆i.

3.2.1 Optimal Rate Splitting Policy and Minimum System Delay

In this subsection, we formally introduce our design problem for the multiuser video

streaming system in question as the minimization of the system delay ∆s while all users

receive jitter-free video streaming service simultaneously. That is, we want to find the
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optimum rate splitting policy π? minimizing ∆s over all feasible rate splitting policies

π while inequality (3.6) holds for all i = 1, . . . , N and for all t. It turns out that finding

the optimum jitter-free rate splitting policy minimizing the system delay is equivalent

to the following minimization problem

argmin
π
{‖∆π‖∞} , (3.9)

where ‖x‖∞ = max {| x1 |, . . . , | xn |} is the maximum norm. We note that this objective

ensures min-max fairness among users in the system, while playback delays are mini-

mized.Before analyzing the minimum achievable system delay we define two additional

terms P (t) =
∑N

1 pi(t) and P∆(t) =
∑N

1 pi(t−∆i) to simplify our notations. The first

one is interpreted as the cumulative playback curve and the second one is interpreted as

the cumulative playout curve. The next lemma establishes the relationship between the

R(t) and P∆π
(t) for a rate splitting policy and the corresponding minimum playback

delay vector ∆π. We remark that, for the sake of simplicity in the notation P∆(t) is

used instead of P∆π
(t).

Lemma 1. For any rate splitting policy π and corresponding minimum initial delay

vector ∆π, the following inequality between the cumulative rate curve R(t) and the

cumulative playout curve P∆(t) =
∑N

1 pi(t−∆π
i ), holds for all t ≥ 0.

R(t) ≥ P∆(t), (3.10)

Proof: For a given rate splitting policy π and the delay vector ∆π, the inequality (3.6)

holds for all i = 1, . . . , N and for all t. Summing over all of these inequalities gives the

following inequality
N∑
i=1

Ri(t) ≥
N∑
i=1

pi(t−∆π
i ), (3.11)

for all t. By using (3.2) and the definition of P∆(t), we observe that the summation in

the left hand side is equal to the cumulative rate curve R(t) and the summation in the

right hand side is equal to the cumulative playout curve P∆(t).

An important corollary of Lemma 1 is that inequality (3.10) is a necessary condition

for providing jitter-free video streaming to all users. We now utilize Lemma 1 to obtain

a lower bound on the minimum system delay attainable by solution (3.9). Later, we

will show that this lower bound is achievable by constructing a feasible rate splitting

policy attaining the lower bound and ensuring jitter-free video service to all users in the

system. To this end, let ∆? be equal to

∆? = max
t

{
R−1 (P (t))− t

}
. (3.12)



Chapter 3. Multiuser Video Streaming: Playback Analysis 17

Hence, ∆? can be considered as the minimum playback delay in the single user case with

the playback curve P (t) and receiver curve R(t). We note that ∆? is only a function of

P (t) and R(t), and therefore it is fixed number for any given P (t) and R(t).

Lemma 2. For any minimum initial delay vector ∆π, the system delay ∆s satisfies the

inequality,

∆? ≤ ∆s. (3.13)

Proof: Assume there exist a rate splitting policy π with a corresponding ∆π such

that S(∆π) < ∆?. Then, Lemma 1 implies that the cumulative rate curve and the

cumulative playout curve satisfy (3.10), which leads to

R(t) ≥ P∆(t) =

N∑
i=1

pi(t−∆π
i ),

for all t > 0. From the definition of the system delay, ∆π
i ≤ ∆s for all i. Further, since

∆s < ∆?, we can also conclude that ∆π
i < ∆? for all i. Then, using the monotonically

increasing property of the playback curve, we have

R(t) ≥
N∑
i=1

pi(t−∆s) = P (t−∆s),

for all t > 0. Hence, ∆s < ∆? and satisfies R(t) ≥ P (t − ∆) for all t > 0, which

contradicts with the fact that ∆? is the minimum ∆ value that satisfies R(t) ≥ P (t−∆)

for all t > 0.

Now we search for the rate splitting policy π that provides the minimum system delay

∆s while all users are provided with jitter-free video streaming. Recall that in the

proposed system model, users request the corresponding video stream pi(t) at t = 0

simultaneously. Assume we have playback delay vector ∆. Let there be K increment

points in the corresponding cumulative playout curve P∆(t). Each increment point is

denoted by tk where k ∈ {1, . . . ,K}. Given that Qk is the total additional data demand

between tk−1 and tk, tk can be expressed as

tk = (P∆)−1

 k∑
j=1

Qj

 . (3.14)

For each increment point, we have a corresponding sufficiency point τk such that τk

is the video streaming server time instant at which the video streaming server is able

provision the total additional data demand required by the users at the increment point

tk. Equivalently, it is the first time instant at which the cumulative rate curve reaches

the value of
∑k

j=1Qj .
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Figure 3.3: Cumulative Rate Curve and Cumulative Playout Curve

Algorithm 1

Input: ∆, R(t), {pi(t)}Ni=1

Output: {Ri(τk)}Ni=1

if k = 1 then
Q1 = P∆(t1)

else
Qk = P∆(tk)− P∆(tk−1)

end if
for k = 1 : K do

τk = R−1
(∑k

1 Qj

)
if k = 1 then

q1
i = p∆

i (t1),
Ri(τ1) = q1

i ,
else

qki = p∆
i (tk)− p∆

i (tk−1),
Ri(τk) = Ri(τk−1) + qki ,

end if
end for

We propose Algorithm 1 to address the rate allocation problem for jitter-free multiuser

video streaming. Algorithm works as follows. For any given ∆, R(t) and {pi(t)}Ni=1, it

first determines the all sufficiency points. Then, in between each sufficiency point τk−1

and τk, Algorithm allocates p∆
i (tk) − p∆

i (tk−1) bits to user i. We note that p∆
i (tk) −

p∆
i (tk−1) is the share of the user i in the increment of the cumulative playouut curve at

tk.

Algorithm 1, in turn, utilizes the knowledge of p∆
i (tk)−p∆

i (tk−1) for all i = 1, . . . , N and

k = 1, . . . ,K to determine the values of receiver curve Ri(t) at τk. for all i = 1, . . . , N and

k = 1, . . . ,K. Note that Algorithm 1 does not construct Ri(t) for all t. It only provides

the critical values {Ri(τk), k = 1, . . . ,K}Ni=1 that all receiver curves need to satisfy for

jitter-free video streaming. Due to the step function property of the playback curves,
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any rate splitting policy achieving these critical values at τk, k = 1, . . . ,K provides

jitter-free video streaming service to all users. Thus, provides a family of rate splitting

policies that achieve critical rate values at the sufficiency points.

This family of rate splitting policies is not necessarily singleton, and we will show below

that any rate splitting policy in this family provides jitter-free streaming service to all

users in the system. Let {Ri(τk), k = 1, . . . ,K}Ni=1 be the output of Algorithm 1 for

given R(t), {pi(t)}Ni=1 and ∆. Then, all rate splitting policies with the receiver curves

achieving the critical values {Ri(τk), k = 1, . . . ,K}Ni=1 form a set of rate splitting policies

that is denoted by Π∆.

Lemma 3. For given delay vector ∆1 = (∆1, . . . ,∆N ) and ∆2 = (∆1+∆d, . . . ,∆N+∆d)

with any ∆d > 0, Algorithm 1 gives the same set of rate splitting policies.

Proof: If we shift the all playout curves by ∆d, then cumulative playout curve is

shifted by same amount and the shape of the curve is preserved. Therefore, although the

increment points tk changes, values of the Qi, q
k
i and τk remains the same. Consequently

we have the same critical values Ri(τk) for all i = 1, . . . , N and k = 1, . . . ,K. As a result,

we have the same set of rate splitting policies achieving these critical values.

Note that if the necessary condition (3.10) in Lemma 1 is satisfied, then we have to have

tk ≥ τk for all k due to monotonically increasing property of R(t) and P∆(t). Now,

we will use this observation to obtain a family of jitter-free rate splitting policies in the

next Lemma.

Lemma 4. For given R(t), {pi(t)}Ni=1 and ∆ satisfying (3.10), any rate splitting policy

π ∈ Π∆ provides jitter-free video streaming to all users.

Proof: By construction, for any π ∈ Π∆ we have

Ri(tk) ≥ Ri(τk) = pi(tk −∆i), (3.15)

for all increment points t1, . . . , tK . Since Ri(t) is monotonically increasing and pi(tk−∆i)

is constant over time intervals {[tk−1, tk)}Kk=1, we conclude then Ri(t) ≥ pi(t) for all t.

Hence, all users in the system are provided with a jitter-free video streaming service

under the rate splitting policy π.

Recall that for each rate splitting policy π, we have a corresponding minimum playback

delay vector ∆π that consists of minimum single playback delays for the given rate

splitting policy π. We search for the rate splitting policy π? providing jitter-free video

streaming to all users with the minimum system delay, i.e., π? belongs to the set

argmin
π
{‖∆π‖∞} .
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Figure 3.4: Experiment Setup

The following theorem indicates that ∆? = max
{
R−1 (P (t))− t

}
is the minimum

achievable system delay. Moreover, any rate splitting policy π ∈ Π0 achieves the mini-

mum system delay ∆? where 0 = (0, . . . , 0).

Theorem 1. For given R(t) and {pi(t)}Ni=1, any rate splitting policy π ∈ Π0 is a solution

to minimization problem (3.9).

Proof: Consider the playback delay vector ∆? that is given as {∆?, . . . ,∆?}. Notice

that ∆? satisfies (3.10) for all t. Hence, for any rate splitting policy π ∈ Π∆?
and the

playback delay vector ∆?, the jitter-free video streaming service is provided to all users

by Lemma 4. Therefore, we have the following inequality,

‖∆π‖∞ ≤ ∆? (3.16)

for any π ∈ Π∆?
. On the other hand, Lemma 2 implies that ∆? ≤ ‖∆π‖∞. Hence,

∆s = ∆? for the rate splitting policy π ∈ Π∆?
and the lower bound on the system delays

with jitter free streaming in (3.13) is achieved by any π ∈ Π∆?
. Therefore, π is solution

to the minimization problem in (3.9). Since Π0 and Π∆?
corresponds to same set by

Lemma 3, we conclude that any rate splitting policy π ∈ Π0 achieves the system delay

∆s = ∆? and be a solution to given minimization problem in (3.9).

3.2.2 Numerical Analysis

We perform numerical experiments to investigate the relation between the number of

users and the channel capacity for the given QoS level (i.e., playback delay). The
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Figure 3.5: Required Channel Capacity for Playback Delay of 30 Seconds

video file used in the experiments are encoded according to single layer H.264/AVC

standard [69]. We consider approximately 30 minutes of Silence of Lambs with CIF res-

olution(352x288) at a 30 frames per second. A GOP size of 16 and frame configuration

of 3 frames in between I/P frames key pictures is used [69]. In the simulation setup, we

consider two different user classes, users with normal and premium service. Users from

respectively different classes request the same video content with different quantization

parameters (QP). A quantization parameter is used to determine the quantization level

of transform coefficients in H.264/AVC. An increase of 1 unit in the quantization param-

eter means an increase of quantization step size by approximately 12 percent which in

turns means 12 percent reduction in the video rate [70]. We assume that users with nor-

mal service, stream the video file with QP = 16 and users with premium service stream

the video file with QP = 10. In the experiment, we observe the necessary capacity for

satisfying different playback delay requirements. Fig. 3.5 and Fig. 3.6 show the results

for playback delay of 30 seconds and 60 seconds respectively. Our results indicate that

the required channel capacity increases linearly with increasing number of users for a

given QoS level. However when the number of users is kept constant, increasing the

playback delay does not decrease the required channel capacity linearly.
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Figure 3.6: Required Channel Capacity for Playback Delay of 60 Seconds

3.3 Multiuser Video Streaming for Asynchronized Video

Requests

Bits

a2a ∆1 ∆ 21
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∆
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Figure 3.7: Example case with 3 Users

In a general multiuser video streaming system, users are not obliged to request the cor-

responding video files synchronously. In other words, different from the case examined

in the previous section, video requests may not reach the server at the same time par-

ticularly at t = 0. We consider the system for N users where they consecutively request

different video streams from the server. Let ai be the request time of video stream

belonging to user i and without loss of generality let a1 = 0. For ease of notation we

assume that users are indexed according to their order of arrival to the system. The
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server starts to allocate rate to a user, when a request for the video stream has arrived.

This implies that for all i, Ri(t) = 0 and pi(t) = 0 when t < ai. We first explain

the system with an example with three users and then generalize it to system with N

users. Eventually, we want to show that Algorithm 1 ,introduced in the previous section,

achieves the minimum system playback delay for asynchronised video requests as well

as synchronized video requests.

In this system model, it is difficult to find minimum achievable system delay imme-

diately, due to newly arriving users. Therefore, to simplify our analysis we consider

each mutually exclusive time interval (frame) (ai, ai+1] as an independent rate alloca-

tion problem such that each frame corresponds to a system with a constant number

of users simultaneously requesting video streams. Hence, to examine the each frame

separately without causing a sub-optimality and to sustain the independency, we de-

velop the notion of residual playout curve and residual cumulative rate curve. The

residual playout curve p∆
i,j(t) is interpreted as the playout curve of the user i and the

residual cumulative rate curve R̃j(t) is interpreted as the cumulative rate curve when

the rate allocation process is completed in the time interval (aj−1, aj ]. In each frame

(aj , aj+1], we divide the cumulative rate between first arriving j users and construct

Ri,j(t) as the residual receiver curve for user i. A simple case with 3 users is visual-

ized in Fig.3.7 . Observe that between a1 and a2, server allocates all the rate to user

1 i.e., R1,1(a2) = R̃1(a2) = R(a2). For t > a2 the residual playout curve of user 1

is p∆
1,2(t) =

[
p∆

1,1(t)−R1,1(a2)
]+

, where [x]+ = max(x, 0) and the residual cumulative

rate curve is R̃2(t) = R(t)− R(a2). At t = a2 user 2 joins the system with the playout

curve p∆
2 (t). Hence, during the time interval (a2, a3] the server splits the cumulative rate

between user 1 and 2 such that R1,2(a3) + R2,2(a3) = R̃2(a3). Similarly, we determine

the residual playout curves p∆
1,3(t), p∆

2,3(t) and residual cumulative rate curve R̃3(t) for

t > a3. This process can be generalized for arbitrary N > 1. In general the residual

cumulative rate curve is given as

R̃j(t) = R(t)−R(aj) (3.17)

for t > aj and residual playout curve is given as

p∆
i,j(t) =

[
p∆
i,j−1(t)−Ri,j−1(aj)

]+
(3.18)

for t > aj and for all i. We remark that initially p∆
i,j(t) = p∆

i (t) for t > ai. In addition,

receiver curve of the user i in the time interval (aj , aj+1] is given as

Ri(t) = Ri(aj) +Ri,j(t) (3.19)
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and Ri(t) = 0 for t ≤ ai, since user i has not arrived yet. Note that p∆
i,j(t) for t > aj is

recursively updated in the following way,

p∆
i,j(t) =

[[[
p∆
i (t)−Ri,i(ai+1)

]+ −Ri,i+1(ai+2)
]+
. . .−Ri,j−1(aj)

]+

. (3.20)

The expression in the right hand side of the (3.20) is equivalent to

[
p∆
i (t)−

j−1∑
k=i

Ri,k(ak+1)

]+

. (3.21)

Hence, using (3.19) p∆
i,j(t) simplified in to

p∆
i,j(t) =

[
p∆
i (t)−Ri(aj)

]+
. (3.22)

In the previous section, we have a single condition to ensure jitter-free video streaming.

However, in this section we aim to investigate the jitter event for each frame separately.

Hence, we need to convert the given condition for jitter-free streaming in to multiple

conditions such that each corresponds to a particular frame (aj , aj+1].

3.3.1 Preliminaries

In the following lemma, utilizing the notion of residual playout curve and residual re-

ceiver curve, we redefine the sufficient condition for jitter-free video streaming.

Lemma 5. System provides jitter-free video streaming to all users i.e.,

Ri(t) ≥ p∆
i (t)

holds for all i and all t, if and only if the following inequality

Ri,j(t) ≥ p∆
i,j(t) (3.23)

is satisfied for any frame (aj , aj+1] and for all i.

Proof: First assume that (3.23) holds for all i and for each frame (aj , aj+1]. Then, we

need to show that

Ri(t) ≥ p∆
i (t)

holds for all i and all t. Without loss of generality consider the particular frame (aj , aj+1].

Then, using (3.22) we rewrite (3.23) in the following way

Ri,j(t) ≥
[
p∆
i (t)−Ri(aj)

]+
, (3.24)
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where aj < t ≤ aj+1. Further, we add Ri(aj) to both sides of (3.24) such that

Ri,j(t) +Ri(aj) ≥
[
p∆
i (t)−Ri(aj)

]+
+Ri(aj). (3.25)

The term in the left hand side of (3.25) is equal to Ri(t) from (3.19), thus we have the

following inequality

Ri(t) ≥
[
p∆
i (t)−Ri(aj)

]+
+Ri(aj), (3.26)

for aj < t ≤ aj+1 and for all i. We note that
[
p∆
i (t)−Ri(aj)

]+
+Ri(aj) ≥ p∆

i (t). Hence,

we show that

Ri(t) ≥ p∆
i (t) (3.27)

holds for all i. This inequality implies that the system provides jitter-free video streaming

to all users. Now assume that system provides jitter-free video streaming to all users

i.e.,

Ri(t) ≥ p∆
i (t)

holds for all i and for all t. Then, if we extract Ri(aj) from both side of the equation in

the above we obtain the following inequality

Ri,j(t) ≥ p∆
i (t)−Ri(aj), (3.28)

for aj < t ≤ aj+1 and for all i. Notice that Ri,j(t) ≥ 0 for t > aj , thus we can replace

right hand side of (3.28) with
[
p∆
i (t)−Ri(aj)

]+
. Finally, from (3.22) we conclude that

Ri,j(t) ≥ p∆
i,j(t)

holds for each frame (aj , aj+1] and for all i.

3.3.2 Delay Optimal Rate Splitting Policy

In this subsection, we search for the rate splitting policy π that provides the minimum

system delay ∆s while all users are provided with jitter-free video streaming i.e.,

argmin
π
{‖∆π‖∞} .

Before searching for the delay optimal rate splitting policy π, recall that for a given rate

splitting policy π and cumulative rate curve R(t) minimum playback delay for user i

with pi(t) is given as

∆π
i = max

t

{
(Ri)

−1 (pi(t))− t
}
. (3.29)
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In addition, playback delay vector ∆π = (∆π
1 , . . . ,∆

π
N ) is defined as minimum playback

delay vector for the corresponding rate splitting policy π.

Recall that Algorithm 1 provides the critical values {Ri(τk), k = 1, . . . ,K}Ni=1 for given

R(t), {pi(t)}Ni=1 and ∆. However, in the case of asynchronised video requests each user

have a different arrival time ai and it is assumed that Ri(t) = 0 for t ≤ ai in other

words server starts to allocate rate to user i at ai. Thus, algorithm 1 can not be directly

executed for given R(t), {pi(t)}Ni=1 and ∆. As a result of that, for given R(t), {pi(t)}Ni=1,

∆ and {ai}Ni=1 we execute the Algorithm 1 for each exclusive time interval (aj , aj+1]

separately. Notice that if we are dealing with the frame (aj , aj+1], then
{
p∆
i (t)

}j
i=1

and

R̃j(t) will be the inputs of the Algorithm 1 and as an output we obtain the sufficiency

points τk in the interval (aj , aj+1]. Collection of these sufficiency points τk, defines

the critical values for receiver curves. Hence, we have {Ri(τk), k = 1, . . . ,K}Ni=1 as an

overall output. Then, all the rate splitting policies with the receiver curves achieving

the the critical values {Ri(τk), k = 1, . . . ,K}Ni=1 form a set of rate splitting policies that

is denoted by Π∆.

Note that difference between the asynchronised case and synchronized case, in terms of

the outputs provided by Algorithm 1, is the location of the sufficiency points. In spite

of that values of the receiver curves at the sufficiency points are same for the both cases.

In this section, we further introduce the term P∆
j (t) such that

P∆
j (t) =

j∑
i=1

p∆
i,j(t). (3.30)

P∆
j (t) is interpreted as residual cumulative playout curve for t > aj . The next corollary

establishes the relationship between the R̃j(t) and P∆
j (t) for a given rate splitting policy

π and the corresponding minimum delay vector ∆π

Corollary 1. For any rate splitting policy π and the corresponding minimum playback

delay vector ∆π, residual cumulative rate curve R̃j(t) should be over the residual cu-

mulative playout curve P∆
j (t) =

∑j
i=1 p

∆
i,j(t) i.e.,

R̃j(t) ≥ P∆
j (t). (3.31)

for each frame (aj , aj+1].

Proof: From definition of the ∆π and Lemma 5, we know that

Ri,j(t) ≥ p∆
i,j(t) (3.32)
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for each frame (aj , aj+1] and for all i. Summing over all of the inequalities i = 1 : j gives

the following inequality

R̃j(t) ≥ P∆
j (t),

for aj < t ≤ aj+1.

Notice that given corollary defines the necessary condition for jitter-free video streaming.

In the remaining part of this subsection, we first introduce the properties of the rate

splitting policies that are constructed according to Algorithm 1. Then, we show that

there exist a lower bound for the system delay ∆s. Finally, we prove that any rate

splitting policy π ∈ Π0 is a delay optimal rate splitting policy such that any rate splitting

policy π ∈ Π0 is a solution to minimization problem in (3.9). In the next Lemma, we

underline the relationship between the rate splitting policy π and the residual cumulative

playout curve P∆
j (t). Lemma 6 asserts that for given R(t),

{
pi(t)

N
i=1

}
and ∆ any rate

splitting policy π ∈ Π∆ achieves the minimum residual cumulative playout curve P∆
j (t)

for each frame (aj , aj+1].

Lemma 6. For given R(t),
{
pi(t)

N
i=1

}
and ∆ the following inequality

P∆
j+1(t) ≥

[
P∆
j (t)− R̃j(aj+1)

]+
+ p∆

j+1(t), (3.33)

holds for any rate splitting policy π and equality is achieved for any π ∈ Π∆.

Proof: Assume that there are n users in the video streaming system. Notice that for the

time frame (an, an+1], video streaming system is equivalent to a video streaming system

where users simultaneously request the video streams at t = an with corresponding

playout curves p∆
1,n(t), . . . , p∆

n,n(t). Further, we assume that a new user arrive to the

system at t = an+1 with playout curve p∆
n+1(t). From (3.30) and (3.18), the residual

cumulative playout curve P∆
n+1(t) for t > an+1 is given as

P∆
n+1(t) =

n∑
i=1

[
p∆
i,n(t)−Ri,n(an+1)

]+
+ p∆

n+1(t). (3.34)

Note that value of the Ri,n(an+1) depend on the rate splitting policy π, however we

know that
∑n

i=1Ri,n(an+1) = R̃n(an+1). Therefore, following inequality holds

n∑
i=1

[
p∆
i,n(t)−Ri,n(an+1)

]+ ≥ [ N∑
i=n

p∆
i,n(t)− R̃n(an+1)

]+

, (3.35)
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for t > an+1. The term
∑N

i=n p
∆
i,n(t) in the right hand side of the (3.35) is replaced by

P∆
n (t) and we have the following inequality

n∑
i=1

[
p∆
i,n(t)−Ri,n(an+1)

]+ ≥ [P∆
n (t)− R̃n(an+1)

]+
. (3.36)

From (3.36) and (3.34) we conclude that,

P∆
n+1(t) ≥

[
P∆
n (t)− R̃n(an+1)

]+
+ p∆

n+1(t). (3.37)

Let assume cumulative rate is distributed among the users according to a rate splitting

policy π ∈ Π∆. Further, assume that there are K increment point in the residual

cumulative playout curve P∆
n (t) and without loss of generality let τk ≤ an+1 ≤ τk+1 for

some k. Then, Algorithm 1 implies that following inequality

p∆
i,n(tk) ≤ Ri,n(an+1) ≤ p∆

i,n(tk+1) (3.38)

should hold for all i ≤ n . Likewise, we have P∆
n (tk) ≤ R̃n(an+1) ≤ P∆

n (tk+1). Now, we

want to show that inequality (3.36) is satisfied with equality for any π ∈ Π∆. Consider

two possible cases where t < tk+1 and t ≥ tk+1. When t < tk+1, both sides of the (3.36)

will be 0 since p∆
i,n(t)−Ri,n(an+1) ≤ 0 and P∆

n (t)− R̃n(an+1) ≤ 0 for t < tk+1. On the

other hand, when t ≥ tk+1

[p∆
i,n(t)−Ri,n(an+1)]+ = p∆

i,n(t)−Ri,n(an+1). (3.39)

Hence, we have the following equality

n∑
i=1

[
p∆
i,n(t)−Ri,n(an+1)

]+
=

n∑
i=1

p∆
i,n(t)−

n∑
i=1

Ri,n(an+1) = P∆
n (t)− R̃n(an+1), (3.40)

for t > an+1. Since we monitor that (3.36) is satisfied with equality, we conclude that

(3.33) is also satisfied with equality for any rate splitting π ∈ Π∆.

Now, let us introduce the term Pj(t), where Pj(t) is the residual cumulative playout

curve for the given playback delay vector ∆ = {0, . . . , 0} and the rate splitting policy

π ∈ Π0 i.e.,

Pj(t) =
[
Pj−1(t)− R̃j−1(aj)

]+
+ pj(t). (3.41)

In the following lemma we want to reveal the relation between the Pj(t) and P∆
j (t) for

given ∆ and π ∈ Π∆.
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Lemma 7. For given R(t),{pi(t)}Ni=1 and ∆ = (∆, . . . ,∆), any rate splitting policy

π ∈ Π∆ provides the equality

P∆
j (t) = Pj(t−∆). (3.42)

Proof: In the proof of lemma, we use the induction method. The base case j = 1

is trivial since P∆
1 (t) = p1(t − ∆) and P1(t) = p1(t). Then, assume for j equality

P∆
j (t) = Pj(t − ∆) holds. Now, we want show that equality (3.42) holds for j + 1.

Recall, Pj+1(t) is given as [
Pj(t)− R̃j(aj+1)

]+
+ pj+1(t). (3.43)

Notice that under the assumption of Pj(t)−R̃j(aj+1) 6= 0, (3.43) converted in to following

expression [
Pj(t) + pj+1(t)− R̃j(aj+1)

]+
. (3.44)

Pj(t) − R̃j(aj+1) 6= 0 is a valid assumption for our system model. Because if it is not

the case and Pj(t) − R̃j(aj+1) ≤ 0, then it simply means that video streaming process

for the first j user is completed before the arrival of the j+ 1th user. However, this case

is not in the scope of our interest. In a similar fashion P∆
j+1(t) is given as

[
P∆
j (t) + p∆

j+1(t)− R̃j(aj+1)
]+
. (3.45)

Since, we assume that P∆
j (t) = Pj(t − ∆) holds and p∆

j+1(t) = pj+1(t − ∆) from the

definition, we conclude that P∆
j+1(t) = Pj+1(t−∆).

Until now, we examine the properties of the rate splitting policies that are provided by

Algorithm 1. We now utilize Lemma 6, Lemma 7 and corollary to obtain a lower bound

on the minimum system delay. Later , we will show that this lower bound is achievable

by constructing a feasible rate splitting policy attaining the lower bound and ensuring

jitter-free video streaming to all users in the system. To this and, let ∆max be equal to

∆max = max
{

∆?
j

}
where

∆?
j = max

t

{
R̃−1
j (Pj(t))− t

}
. (3.46)

Lemma 8. For given any minimum playback delay vector ∆π, the system delay ∆s

satisfy the inequality

∆max ≤ ∆s. (3.47)

Proof: Assume that there exist a rate splitting policy π with a corresponding ∆π

such that {‖∆π‖∞} < ∆max. From corollary we know that for given π and ∆π the
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following inequality R̃j(t) ≥ P∆
j (t) holds for each frame (aj , aj+1]. Due to monotonically

increasing property of playout curves the same inequality should be also valid for the

playback delay vector ∆ = (∆s, . . . ,∆s) where each user is equally delayed with ∆s.

From Lemma 6 we know that for given playback delay vector ∆ any rate splitting policy

π ∈ Π∆ provides the minimum residual cumulative playout vector P∆
j (t). Hence, for

each frame (aj < t ≤ aj+1], the inequality R̃j(t) ≥ P∆
j (t) should hold for playback delay

vector ∆ = (∆s, . . . ,∆s) and for any rate splitting policy π ∈ Π∆. From lemma 7,

P∆
j (t) can be replaced with Pj(t−∆s). Notice that ∆?

j is the minimum playback delay

satisfying the inequality R̃j(t) ≥ Pj(t −∆). Further, we know that there exist at least

one j satisfying ∆?
j = ∆max. On the other hand, it contradicts with the observation

R̃j(t) ≥ Pj(t−∆s) holds for each frame where ∆s < ∆max

Theorem 2. For given R(t) and {pi(t)}Ni=1, any rate splitting policy π ∈ Π0 is a solution

to minimization problem (3.9) with a corresponding system delay ∆max.

Proof: Consider the playback delay vector ∆max = (∆max, . . . ,∆max). Notice that for

given playback delay vector ∆max and any rate splitting policy π ∈ Π∆max we have

the following equality P∆max
j (t) = Pj(t−∆max) for all j from Lemma 6. Further, from

definition of the ∆max it is ensured that R̃j(t) ≥ Pj(t−∆max). Hence, we have

R̃j(t) ≥ P∆max
j (t). (3.48)

for all j. Then Lemma 4 implies that for any π ∈ Π∆max following inequality

Ri,j(t) ≥ p∆
i,j(t) (3.49)

holds for all i and all j. According to Lemma 5 the last inequality is the sufficient

condition for providing jitter-free video streaming to all users. Hence, we conclude that

{‖∆π‖∞} ≤ ∆max (3.50)

for any π ∈ Π∆max . On the other hand Lemma 8 implies that ∆max ≤ {‖∆π‖∞}. Thus,

∆s = ∆max for any rate splitting policy π ∈ Π∆max , and the lower bound on system

delays with jitter free streaming in (3.47) is achieved by any π ∈ Π∆max . Therefore, π

is a solution to the minimization problem in (3.9). Since Π∆max and Π0 corresponds to

the same set by Lemma 3, we conclude that any rate splitting policy π ∈ Π0 achieves

the minimum system delay ∆max and is a solution to the minimization problem.
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3.3.3 Numerical Results

In this subsection we perform numerical experiments to investigate the relation between

the user acceptance rate, mean inter-arrival time of user and the channel capacity for

the given QoS level (i.e., playback delay). The video file used in the experiments are en-

coded according to single layer H.264/AVC standard [69]. We consider 3 different video

fragments from different video files Silence of Lambs,Tokyo Olympics and Stars Wars

with CIF resolution(352x288) at a 30 frames per second. Each of the video fragments

has a duration of 60 seconds. A GOP size of 16 and frame configuration of 3 frames in

between I/P frames key pictures is used [69] and quantization parameters (QP) is set to

24. In the simulation setup, we consider two different channel rate, 1Mb/s and 2Mb/s.

We assume that arrival process of the users behave according to Poisson distribution,

thus the time interval between the two consecutive arrival is exponentially distributed.

f(x; λ) =


1
λ exp

−x
λ if x ≥ 0

1 if x < 0

Further, it is assumed that new arriving user requests one of the video fragments ran-

domly. We consider that request frequency for each video fragment is equal. If the

system is able to provide jitter-free video streaming to all users, then the new user

admitted to system. For each channel rate we observe the number of jitter-free video

streaming service completed in a 1 hour period and monitor the user acceptance rate.

Fig. 3.8 and Fig. 3.9 shows the results for channel rate of 1Mb/s and 2Mb/s respectively.

Our results indicate that when mean inter-arrival time is small then the channel is more

utilized in a sense that total number of video transmission is high. On the other hand, for

small mean inter-arrival time we observe that user acceptance rate is low. In addition,

increasing the channel rate increase the both total number of video transmission and

user acceptance rate. However, this increment is not necessarily linear.
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Multiuser Video Streaming:

Interruption Analysis

4.1 Jitter Probability for Single User

To analyze the jitter probability, we assume that time is divided into fixed length time

slots and each time slot is denoted by l. In addition, channel experience independent

and identically distributed (iid) block fading such that channel gain is constant over a

time slot and it varies between the time slots independently. Duration of a time slot is

equal to fixed packet length and ρ denotes the average probability of successful packet

transmission. Since, the time interval is considered as a sequence of time slots l we use

the notation of R(l) and p(l) for receiver curve and playback curve respectively. We

remark that notation p(l) is used for playback curve and playout curve interchangeably

for ease of simplification in the notation. Let H denote the total number of GOPs in a

given video file. Hence, there are K number of increment points in the playback curve

of the corresponding video file and each increment point is denoted by lh. Recall that

for jitter-free video streaming, the total number of packets received by the user up to

time slot l should be equal to or larger than p(l) for any time slot l > 0 i.e.,

R(l) ≥ p(l) (4.1)

Hence, our scope of examination is to find a closed form expression for the probability

Pr(R(l) ≥ p(l)) to provision the jitter probability before server starts video streaming

process. First we discuss previous works related to quantifying the jitter probability.

Then, we demonstrate how to calculate the exact jitter probability for given channel

statistic ρ, playback curve p(t) and initial playback delay ∆. Thereafter, we proposed

a closed form expression for the approximate jitter probability. Finally, we prepare

34
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an experiment setup to compare these methods for varying video lengths and different

channel statistics.

4.1.1 Upper Bound for Jitter Probability

In [38], authors proposed an upper bound for jitter probability using the notion of

Rbest(l) curve. Rbest(l) curve describes the receiver curve in the best case such that at

Time(l)

Packets

0−∆−∆    min

best

f Hl l

R(l) R      (l) p(l)

Figure 4.1: Rbest Curve

any time slot l packet transmission is successful. For a given playback curve p(l), ∆min

is the minimum playback delay for jitter free streaming that can only be achieved with

Rbest(l). Notice that lf denotes the first time instant where Rbest(l) ≥ p(lH). From Fig.

4.1 observe that if R(l) ≥ Rbest(l) holds for all l ∈ [−∆min, lf ], then we ensure jitter-free

streaming such that R(l) ≥ p(l) holds for any l. Therefore, Pr(R(l) ≥ Rbest(l)) provides

a lower bound for the probability of jitter-free streaming and equivalently

πu = 1− Pr(R(l) ≥ Rbest(l)) (4.2)

is a upper bound for jitter probability. Note that if Rbest(l) > R(l) for some l ∈
[−∆min, lf ] thenRbest(lf ) > R(lf ) holds certainly sinceRbest(l) has the maximum achiev-

able slope. On the other hand, if R(lf ) ≥ Rbest(lf ) = p(lH) holds then it means that

R(l) ≥ Rbest(l) should hold for all l ∈ [−∆min, lf ]. Therefore, we use Pr(R(lf ) ≥ p(lH))

instead of Pr(R(l) ≥ Rbest(l)) because that it is easier to find a closed form expression

for Pr(R(lf ) ≥ p(lH)).
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Recall that ∆min is given as,

∆min = max
l

{
R−1
best(p(l))− l

}
. (4.3)

Further, due to structure of the Rbest(l) curve, the time interval [−∆min, lf ] corresponds

to transmission of p(lH) packets. Hence, lf is given as −∆min + p(lH). Let M denote

the total number of time slots up to lf such that M = ∆ + lf . Then, upper bound for

jitter probability πu given as,

πu =
M∑

i=p(lH)

(
M

i

)
ρi(1− ρ)M−i. (4.4)

4.1.2 Buffer Starvation

In [42] buffer level of user is modeled as a M/M/1 queue with Poisson arrival process

with a rate of λ and Poisson service process with a rate of µ. Therefore, arrival of a

packet occurs with probability ρ = λ
λ+µ and departure of a packet occurs with probability

1− ρ. For the initial queue length of x1 and the total size N of a file, buffer starvation

probability [42] is given as

π =

N−1∑
k=x1

x1

2k − x1

(
2k − x1

k − x1

)
ρk−x1(1− ρ)k. (4.5)

Since playback curve information p(l) is available, it is easy to determine the departure

rate µ. Furthermore, we assume that channel statistics are known, thus it is also possible

to assign a proper value to λ.

4.1.3 Exact Calculation of Jitter Probability

In this subsection we demonstrate a recursive method to calculate the exact jitter prob-

ability π for given playback curve p(l), initial delay ∆ and channel statistic ρ. First of

all let us define the probability vector pvh and assume that a GoP duration corresponds

to D time slots.

Definition 3. pvh is a vector of probabilities such that pvh(i) indicates the sum of the

probabilities of the jitter-free realizations of receiver curve R(l) up to lh with a value of

R(lh) = p(lh) + (i− 1) i.e.,

pvh(i) = Pr (R(lh) = (p(lh) + (i− 1)) | R(lh−1) ≥ p(lh−1), . . . , R(l1) ≥ p(l1)) . (4.6)
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where 1 ≤ i ≤ mindh, and mindh defines the maximum index for pvh. Remark that

total number of packet transmission up to time slot lh is ∆ + (h−1)D and pvh contains

the probabilities for jitter-free realizations up to time slot lh, thus for the maximum

index we have the following inequality mindh ≤ ∆ + (h − 1)D − p(lh) + 1. Further,

notice that
∑mindh

i=1 pvh(i) corresponds to probability that no jitter event occurs up to

time slot lh

The aim of this method is to obtain pvH , since jitter probability π is equal to
∑mindH

i=1 pvH(i)

from definition of the pvh. Now we want to show how to procure pvH recursively. Let

pv0 contain the probabilities of the all outcomes (number of successful packet trans-

mission) from D trials (total number of packet transmission in a GoP duration) such

that

pv0(i) =

(
D

i− 1

)
ρi−1(1− ρ)D−i+1, (4.7)

In addition, let ṕvh denote the convolution of the pvh and pv0. Then, the ith index

of the ṕvh defines probability that receiver curve R(l) achieves the value R(lh+1) =

p(lh) + (i− 1) at time slot l and up to time slot lh realization of the receiver curve R(l)

is jitter-free i.e.,

Pr(R(lh+1) = p(lh) + (i− 1)| R(lh) ≥ p(lh), . . . , R(l1) ≥ p(l1)), (4.8)

where 1 ≤ i ≤ mindh+D. Observe that for 1 ≤ i ≤ p(lh+1)−p(lh), we have the inequality

R(lh+1) < p(lh+1) which means for those given probabilities jitter event occurs at time

slot lh+1. Therefore, if we remove the first p(lh+1) − p(lh+1) elements of the ṕvh and

denote the remaining vector with p̌vh, then p̌vh(i) defines the sum of probabilities

of jitter-free realizations of receiver curve R(l) up to lh+1 with a value of R(lh+1) =

p(lh+1) + (i− 1) i.e.,

Pr(R(lh+1) = p(lh+1) + (i− 1)| R(lh) ≥ p(lh), . . . , R(lh) ≥ p(lh)). (4.9)

We monitor that p̌vh is identical to pvh+1. Then, it is possible obtain the probability

vector pvH recursively and find the exact probability of jitter.

4.1.4 Approximation for the Jitter Probability

In this subsection, we search for a closed form expression for the approximate jitter-

probability. First we define the required minimum average rate γmin such that γmin is

the minimum slope that makes the line ,from time instant 0 to tH , to stand over the
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Figure 4.2: Minimum slope γmin

given playback curve. Hence, γmin is given by

γmin = max
h=1,...,H

p(lh)

lh
(4.10)

Let lf denote the first time slot that the line with slope γmin reach the value of p(lH)

such that lf =
⌈
p(lH)
γmin

⌉
. Then, we claim that

π = Pr(R(l) ≥ p(l)) ≈ Pr(R(lf ) ≥ p(lH)). (4.11)

Hence, approximate jitter probability is given as

π =

M∑
i=p(lH)

(
lf
i

)
ρi(1− ρ)lf−i. (4.12)

4.1.5 Numerical Results

In this section, we compare different methods that are used to measure jitter probability.

Eventually, we will show that proposed algorithm to find approximate jitter probability

performs the best result among the other methods. The video file used in the experiments

are encoded according to single layer H.264/AVC standard [69]. We consider the encoded

video file of Silence of the Lambs movie with CIF resolution (352x288) at 30 frames per

second. A GOP size of 16 and a frame configuration of 3 B frames in between I/P

key pictures is used [69]. In addition, in the experiment we use the video file with

fixed quantization parameter QP = 16. In the simulation set up, we consider the first

20,40,100 seconds of the same video file.

Fig. 4.3 monitors the playback structure of video fragments with different video lengths.

We set Ip packet size to 1500 bytes [71] and initially we assume maximum transmission
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Figure 4.3: Playback Curves for Different Video Durations

bit rate as 1Mb/s. Notice that ratio of the packet size to maximum transmission bit

rate gives the fixed packet length. Further, ratio of GOP duration to fixed packet length

is the total number of trial in a GOP duration. In the experiment for each video length

we consider different channel statistics, in other words we change the successful packet

transmission probability ρ. 1500 bytes [71] and initially we assume maximum transmis-

sion bit rate of 1Mb/s. Notice that ratio of the packet size to maximum transmission

bit rate gives the fixed packet length. Further, ratio of GOP duration to fixed packet

length is the total number of trial in a GOP duration. In the experiment for each video

length we consider different channel statistics, in other words we change the successful

packet transmission probability ρ.

Fig. 4.4 and Fig. 4.5 show the results for video duration of 20 seconds and 40 seconds

respectively. Note that when we use the video fragment with length of 40 seconds,

maximum transmission bit rate is set to 1.4Mb/s. However we also investigate the cases

where maximum transmission bit rate is 1Mb/s and 1.2Mb/s. Remark that there are 2

different ways to avoid the video interruption. These are increasing the playback delay

and increasing the maximum transmission bit rate which is corresponds to the total
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Figure 4.4: Jitter Probability Analysis For Video Duration of 20 Seconds

number of packet transmission in a GOP duration. Fig. 4.6 shows the effect of these

jitter preventive methods on the strictness of jitter upper bound introduced in [38]. Fig.

4.6 verifies that, if the playback delay is increased instead of increasing the maximum

transmission bit rate then upper bound for jitter probability performs better and for

long playback delays it almost fit to exact jitter probability calculation. On the other

hand, for short playback delay it provide a loss bound. This is because that in the jitter

upper bound analysis we utilize the Rbest curve. If the maximum transmission bit rate is

high compared the average source rate of the video file then it implies that Rbest curve is

not close to playout curve of the user, thus it provides a loos upper-bound. Conversely,

if the maximum transmission bit rate and the average source rate of the video file is

close the each other then we have strict bound for jitter probability. However, when the

maximum transmission bit rate and the average source rate of the video file is close the

each other we need longer playback delay to prevent jitter. Fig. 4.7 show the results for

video duration of 100 seconds. The results indicates that proposed approximate jitter

probability method provides the closest results to exact jitter probability compared

buffer starvation and jitter probability upper bound. In addition, it almost fit to exact

jitter probability for different video durations. Remark that buffer starvation method
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(a) Jitter Probability Vs Playback Delay for ρ = 0.9
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Figure 4.5: Jitter Probability Analysis For Video Duration of 40 Seconds
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Figure 4.6: Jitter Probability Analysis For Video Duration of 40 Seconds for fixed ρ
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Figure 4.7: Jitter Probability Analysis For Video Duration of 100 Seconds

does not fully utilize the playback information but use the average source rate statistic to

compute jitter probability. Hence, it is not surprising that it performs better for longer

vide files since video statistics are more reliable for longer video files in a sense that

it depends on more GOP samples. Further, Fig. 4.7 monitors that we have a smooth

transition for buffer starvation method as expected since we use the video statistics for

jitter probability calculation. On the other hand, we observe more dramatic change in

the case of exact jitter probability and approximation method. This is mainly because

of the structure of the playback curve. In the playback curve structure some certain

GOPs may be dominant over the others be the determinant factor for jitter probability.

Hence, we conclude that for longer video files buffer starvation method provides close

results to exact jitter probability, nevertheless ,due to its smoothly changing structure,

does not fit to exact jitter probability.
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4.2 Video Transmission to Multi-end Users Over Hetero-

geneous Channels

4.2.1 Introduction

In this case, ρn denotes the average probability of successful packet transmission for

channel belong to user n. In this section, for given playout curves p = {pn(l)}Nn=1 and

channel statistics {ρn}Nn=1, we aim to find the optimal scheduling policy ω? where the

minimum system jitter probability is achieved i.e.,

ω? = argmin
ω

1− Pr(R1(l) ≥ p1(l), . . . , RN (l) ≥ pN (l)| ω). (4.13)

Then, given minimization problem in (4.13) is solved by using Probabilistic Dynamic

Programing in the following way. First of all p is considered as the state of the dynamic

programing. We note that end of the each time slot current state is updated according

to the previous state p, scheduled user n and result of the action (success or fail). Define

πl(p) to be the probability that a jitter event does not occur after time slot l for recent

p. In the dynamic programing πl(p) equal to the maximum expected reward that can

be earned during next periods. Hence, πl(p) is obtained from the following recursion

πl(p) = max
n

(ρnπl+1(p| (n, 1)) + (1− ρn)πl+1(p| (n, 0))) (4.14)

where (n, 1) and (n, 0) indicates successful and failed transmission for scheduled user n

respectively. In addition, user n maximizing the right hand side of 4.14 is the optimal

scheduling decision for time slot l. In the preliminaries, we explain nearest deadline first

(NDF) algorithm in a details, however shortly NDF algorithm schedules the user i if

there is a packet request of user i in the nearest deadline.

4.2.2 Preliminaries

4.2.2.1 Binomial Identities

let g(k, n, ρ) denote the probability that kth success from consecutive independent

Bernoulli trials with a parameter ρ, occurs at the nth trial such that

g(k, n, ρ) = f(k − 1; n− 1, ρ)ρ (4.15)

where f is the probability mass function of binomial distribution with parameter ρ.
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Lemma 9. Following identity holds

N+1∑
n=k

g(k, n, ρ)F (n− 1) = ρ
N∑

n=k−1

g(k − 1, n, ρ)F (n) + (1− ρ)
N∑
n=k

g(k, n, ρ)F (n) (4.16)

where F (n) is an increasing function of n.

Proof: First, consider the following term g(k − 1, n, ρ)ρ + g(k, n, ρ)(1 − ρ) which is

written as

f(k − 2; n− 1, ρ)ρ2 + f(k − 1; n− 1, ρ)(1− ρ)ρ =((
n− 1

k − 2

)
ρk(1− ρ)n−1−(k−2)

)
+

((
n− 1

k − 1

)
ρk(1− ρ)n−1−(k−2)

)
. (4.17)

Then, the expression in the above is simplified into((
n

k − 1

)
pk−1(1− p)n−(k−1)

)
p = g(k, n+ 1, p). (4.18)

Hence, we show that

g(k, n+ 1, p) = g(k − 1, n, p)p+ (1− p)g(k, n, p). (4.19)

Now observe the following steps for the remaining part of the proof,

p

N∑
n=k−1

g(k − 1, n, p)F (n) + (1− p)
N∑
n=k

g(k, n, p)F (n) (4.20a)

=

N∑
n=k−1

g(k − 1, n, p)pF (n) +

N∑
n=k

g(k, n, p)(1− p)F (n) (4.20b)

=
N∑
n=k

(g(k − 1, n, p)p+ g(k, n, p)(1− p))F (n) + g(k − 1, k − 1, p)pF (k − 1) (4.20c)

=
N∑
n=k

g(k, n+ 1, p)F (n) + g(k − 1, k − 1, p)p︸ ︷︷ ︸
g(k,k,p)

F (k − 1) (4.20d)

=
N∑

n=k−1

g(k, n+ 1, p)F (n) (4.20e)

=
N+1∑
n=k

g(k, n, p)F (n− 1). (4.20f)
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4.2.2.2 Nearest Deadline First Algorithm

We first explain the nearest deadline first algorithm then show how to find corresponding

jitter probability recursively. Let consider the case where the current time slot is lc and

there are M deadline at lc + l1, . . . , lc + lM respectively. Further, let qn,m denote the

number of additional packet requested by user n between the deadline m−1 and m. We

c

Time(l)

Time(l)

Np   (l)

1p  (l)

Packets

N,1q

q 1,2

q 1,1

q

q N,2
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Figure 4.8: Playout curves at time slot lc

note that playout curves in 4.8 defines the remaining packet demands for each user after

time slot l. For this given case, user n is scheduled at time slot lc if qn,1 6= 0 according to

the NDF algorithm. However, there might be more than one user satisfying the property

qn,1 6= 0. In such case any of them is a possible decision for NDF algorithm, nevertheless

without loss generality we assume that user with minimum index is scheduled. Now

we monitor how to derive πl(p) recursively. Let us define kn,m as the number of time

slots allocated to user n to transmit qn,m packets. Further, K is used to define distance

of a time slot to current time slot lc. Notice that under the NDF algorithm, user

with minimum index (let m be the smallest) among the users in the nearest deadline is

served until it receives q1,m number of packets. In other words until the q1,mth successful

transmission user m is scheduled ceaselessly. Therefore, πl(p) given as

l1∑
k1,1=q1,1

g(q1,1, k1,1, ρ1)F1,1(k1,1, q2,1). (4.21)
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The term Fn,m(K, qn,m) in the 4.21 is obtained by the following recursion

Fn,m(K, qn,m) =


∑lm−K

kn,m=qn,m
g(qn,m, kn,m, ρn)Fn+1,m(K + kn,m, qn+1,m) if n 6= N∑lm+1−K

k1,m+1=q1,m+1
g(q1,m+1, k1,m+1, ρ1)F1,m+1(K + k1,m+1, q1,m+1) if n = N

Now observe the following properties related to Fn,m(K, qn,m). First of all, multiplying

Fn,m(K, qn,m) with some constant is equivalent to multiplying the term Fn+1,m(K, qn+1,m)

with the same constant . Secondly, decreasing the K increases the value of Fn,m(K, qn,m)

and finally if K is reduced for Fn,m(K, qn,m) than K values for all other F functions

,that are take place after Fn,m(K, qn,m) in the recursion (i.e., Fn,m+d(K, qn,m+d), where

d ≥ 0), is also reduced by the same amount.

4.2.3 Optimal Scheduling Policy

Theorem 3. For given playout curves p = {pn(l)}Nn=1 and channel statistics {ρn}Nn=1

NDF algorithm provides the optimal scheduling policy ω such that ω is a solution to

following optimization problem.

argmin
ω

1− Pr(R1(l) ≥ p1(l), . . . , RN (l) ≥ pN (l)| ω). (4.22)

Proof: Optimality of the NDF algorithm is proved by using the induction method. Let

maximum video streaming duration is L. In the inductive step of the proof, we show that

if NDF algorithm is the optimal scheduling policy between [l + 1, L] then at time slot

l optimal scheduling decision should be serving to user with nearest deadline. In other

words, NDF algorithm is also the optimal scheduling policy between [l, L]. The base

case of the induction method is trivial since in the base case there is a single deadline.

Recall that scheduling the user n at time slot l is optimal decision if n maximizes the

following expression (ρnπl+1(p| (n, 1))) + ((1− ρn)πl+1(p| (n, 0))). Hence, we first show

that user i with earliest deadline mi is preferred against the user j with earliest deadline

mj if mi < mj . Then, we show that scheduling any user in the nearest deadline is

optimal decision. To prove the first part, consider two different scheduling decision at

time slot l where user i is scheduled in one case and user j is scheduled in other case.

Now we want to show that πl (p| i) ≥ πl (p| j). Recall, πl (p| n) is given as

πl (p| n) = (ρnπl+1 (p| (n, 1))) + ((1− ρn)πl+1 (p| (n, 0))) (4.23)

Remark that recursion process for πl+1 (p| (n, 1)) and πl+1 (p| (n, 0)) identical up to

Fn,m where m is the earliest deadline for user n. In addition, utilizing the property of

the F function we move ρn and (1− ρn) to right before the terms Fn,m(K, qn,m− 1) and
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Fn,m(K, qn,m). Hence, we consider a single recursion process with a new Fn,m such that

it is equal to ρnFn,m(K, qn,m− 1) + (1− ρn)Fn,m(K, qn,m). Then using the Lemma 2 we

observe that

ρnFn,m(K, qn,m − 1) + (1− ρn)Fn,m(K, qn,m) = Fn,m(K − 1, qn,m). (4.24)

Now remark that difference in the recursion process for πl (p| i) and πl (p| j) occurs in

the functions Fi,mi and Fj,mj . Recall the property of the F function which state that if

K is reduced for Fn,m(K, qn,m) than K values for all other F functions ,that are take

place after Fn,m(K, qn,m) in the recursion, also reduced by the same amount. Hence, we

have Fj,mj (K − 1, qj,mj ) also in the recursion of the πl (p| i) since mi < mj . However,

same argument is not valid for πl (p| j). Therefore, we conclude that πl (p| i) ≥ πl (p| j).

For an interruption-free video streaming, all the packets assigned to a deadline should

be transmitted to corresponding users before the deadline. Notice that if we consider

the packets in the same deadline, order of these packets in the transmission process does

not have an impact on the interruption probability since reordering does not change the

probability.

Now, we concentrate on a special case where transmission channels are identical. For

this special case, it is possible to identify the system jitter probability since we know

that NDF algorithm is the optimal scheduling policy. When the transmission channels

are identical, then in terms of system jitter probability system can be considered as if

there is a single user whose playback curve is aggregate of playback curves of the users.

4.2.4 Numerical Results

The video file used in the experiments are encoded according to single layer H.264/AVC

standard [69]. We consider the encoded vide files with CIF resolution (352x288) at 30

frames per second. A GOP size of 16 and a frame configuration of 3 B frames in between

I/P key pictures is used [69]. In the simulation scenario, we assume that there are three

users are in the system an each of them request a different video stream. We further

assume that transmission channels are identical with maximum transmission bit rate

of 1 Mb/s and probability of successful packet transmission ρ = 0.85. Users request

the following video files ; 100 seconds of Tokyo Olympics with quantization parameter

QP = 24, 60 seconds of Silence of Lambs with QP = 24 and 80 seconds of Stars

Wars with QP = 34 respectively. In the simulation we use NDF algorithm record the

number of jitter event in 106 trials. Then, we utilize method for exact jitter probability

calculation. Fig. 4.9 verifies our argument.
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Chapter 5

Conclusion and Future Works

5.1 Conclusions

In the first chapter, we have focused on discovering the optimum resource allocation

strategies for providing jitter-free video streaming service to a multitude of end users.

In the proposed multiuser video streaming setup, there are N different users requesting

N different video files from a central video streaming server over a common commu-

nication channel characterized by the cumulative data rate curve R(t). In this setup,

the playback curve pi(t) of the video file requested by user i, i = 1, . . . , N character-

izes the data rate demands placed by users on the server. For given R(t) and pi(t),

i = 1, . . . , N an important design parameter to avoid interruption, i.e., jitter, during

the video streaming process is the playback delays that allow users buffering bits before

displaying the requested video files. These playback delays need to be minimized to

maximize the end user experience. Our main finding in this work is the derivation of

the optimum rate splitting algorithm that establishes a robust procedure indicating how

to divide R(t) among N users in such a way that all users receive a jitter-free video

streaming service and the maximum of playback delays, which we call the system delay,

is minimized. More specifically, the proposed algorithm provides a family of rate split-

ting policies for any given R(t) and pi(t), i = 1, . . . , N and any such rate splitting policy

belonging to this family minimizes the system delay. In the first section, we assume that

video requests of the users are synchronized and server has the perfect channel state in-

formation. Then we show that it is possible to obtain an optimal rate splitting policy by

customizing Algorithm 1 for the case of asynchronised video requests. We further show

that customization of Algorithm 1 to case of asynchronised video requests, minimize the

residual cumulative play out curve which means that channel is fully utilized. A more
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comprehensive study can be done by increasing the variety of the video fragments and

using Zipf function to model their request frequency.

In the second chapter, we first examine different methods to measure jitter probability

when there is a single user in the video streaming system. Further, we show that NDF

algorithm ,which schedules the user whose packets are in the nearest deadline, is the

optimal scheduling policy in a sense that it minimizes the system jitter probability.

Finally, we argue that if the transmission channels are identical, then in terms of system

jitter probability system can be considered as if there is a single user whose playback

curve is aggregate of the playback curves of the users. Hence, it is possible to determine

system jitter probability. Our argument is also verified by the simulation results.

5.2 Future Works

In the future works, we will investigate the multiuser video streaming environment with

a feed-back mechanism, so that beginning of the each time slot channel state information

is known for each user. We aim to provide an optimal scheduling algorithm to minimize

the system jitter-probability. Further, we will explore how much will the feedback system

improve the quality of experience in terms of the system jitter probability.



Appendix A

NDF Algorithm

A.1 Theorem 3

Proof: Recall, Fn,m is obtained by recursion process in the following way

Fn,m(K, qn,m) =

lm−K∑
kn,m=qn,m

g(qn,m, kn,m, ρn)Fn+1,m(K + kn,m, qn+1,m).

In the recursion equation lm −K defines the distance between current time slot an the

deadline lm, at the same time lm−K indicates the maximum number of time slots that

can be allocated to user n before the deadline lm. However, we know that if there are

other users in the deadline lm, then allocating all lm − K time slots to user n result

in jitter certainly. Hence, we have a constraint for number of time slots that can be

allocated to user n before the deadline lm and let we call it Cn,m. Cn,m is interpreted

as the minimum number of time slot that should be allocated to users other than user

n before the deadline lm. Therefore, we have the following recursion instead of the

previous one

Fn,m(K, qn,m, cn,m) =

lm−K−Cn,m∑
kn,m=qn,m

g(qn,m, kn,m, ρn)Fn+1,m(K + kn,m, qn+1,m, cn+1,m).

(A.1)

Recall, we want to show that for the optimal scheduling, we are indifferent between the

users that are in the nearest deadline. If this claim is correct, then scheduling any user

in the nearest deadline should give the same jitter probability. Let assume user n is

scheduled, where qn,1 6= 0 then corresponding jitter probability is given as

πl (p| n) = (ρnπl+1 (p| (n, 1))) + ((1− ρn)πl+1 (p| (n, 0))) .
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Note that when user n is scheduled and corresponding packet transmission is successful,

then constraints Ci,1 for users i < n will be decreased by one. Hence, we have

ρn

l1−(C1,1−1)∑
k1,1=q1,1

g(q1,1, k1,1, ρ1)F1,1(k2,1, q2,, C2,1 − 1)+

(1− ρn)

l1−C1,1∑
k1,1=q1,1

g(q1,1, k1,1, ρ1)F1,1(k2,1, q2,1, C2,1). (A.2)

However, for F functions that take place after Fn,1 in the recursion, constraints Ci,j are

same for πl+1 (p| (n, 1)) and πl+1 (p| (n, 0)). Then, using the following identity

ρig (qi,1, l1 −K − (Ci,1 − 1), ρi)Fi,1 (K + ki,1, qi+1,1, Ci+1,1 − 1) +

l1−K−Ci,1∑
ki,1=qi,1

g(qi,1, ki,1, ρi)Fi,1(K − 1 + ki,1, qi+1,1, Ci+1,1)

= Fi−1,1(K − 1, qi,1, Ci,1) (A.3)

we observe that (A.2) is equivalent to

l1−(C1,1−1)∑
k1,1=q1,1

g(q1,1, k1,1, ρ1)F1,1(k1,1 − 1, q2,1, C2,1), (A.4)

and this is true for all n with qn,1 6= 0.
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