ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC FUNCTION
FIELDS AND THE HASSE-ARF THEOREM

APPROVED BY

Assoc. Prof. Dr. Cem Guneri

(Thesis Supervisor)

Prof. Dr. Alev Topuzoglu ... L2 e A SN

Assist. Prof. Dr. Seher Tutdere

DATE OF APPROVAL: O 6. OA .70\~




ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC
FUNCTION FIELDS AND THE HASSE-ARF THEOREM

by
SEZEL ALKAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Master of Science

Sabanci University

Fall 2016



ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC FUNCTION
FIELDS AND THE HASSE-ARF THEOREM

APPROVED BY

Assoc. Prof. Dr. Cem GURETT oveeneieie e,

(Thesis Supervisor)

Prof. Dr. Alev Topuzoglu .

Assist. Prof. Dr. Seher Tutdere .....ooovveeeeeeeeieiseeeieei e,

DATE OF APPROVAL: January 6, 2017



(©Sezel Alkan 2017
All Rights Reserved



ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC FUNCTION
FIELDS AND THE HASSE-ARF THEOREM

Sezel Alkan
Mathematics, Master Thesis, 2017

Thesis Supervisor: Assoc. Prof. Dr. Cem Giineri
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Abstract

This thesis starts with the basic properties of elementary abelian p-extensions of
function fields. Ramification structure and the genus computation for such extensions
are presented first. When the constant field is finite, number of rational places of
function fields is finite and this number is bounded by the Hasse-Weil bound. However
for large genus, this bound is weak. Therefore, when a sequence of function field
extensions with growing genera is considered, the growth of the ratio of the number
of rational places to the genera in the sequence is of interest. Following the work of
Frey-Perret-Stichtenoth, we show that the limit of this ratio is zero if a sequence of
elementary abelian p-extensions are considered. Hasse-Arf Theorem gives information
about the jumps in the higher ramification group filtration of a function field extension.
We also present the proof of this theorem for elementary abelian p-extensions, which
is due to Garcia and Stichtenoth.



CEBIRSEL FONKSIYON CISIMLERININ ELEMENTER ABELYEN P
GENISLEMELERI VE HASSE-ARF TEOREMI

Sezel Alkan
Matematik, Yiiksek Lisans Tezi, 2017

Tez Danigmani: Dog. Dr. Cem Giineri

Anahtar Kelimeler: Fonksiyon cismi geniglemesi, elementer abelyen genigleme,

dallanma, rasyonel yer, cins.

Ozet

Bu tezde ilk olarak fonksiyon cisimlerinin elementer abelyen p-geniglemelerinin
temel ozellikleri sunulmustur. Bu tiir geniglemeler icin dallanma yapisi ve cinsin hesap-
lanmasi gosterilmistir. Sabit cismi sonlu oldugunda fonksiyon cisminin rasyonel nokta
sayist da sonludur. Bu durumda rasyonel nokta sayisi Hasse-Weil siniri ile sinirhidir.
Ancak cins biiyiik oldugunda bu sinir zayiftir. Bu sebeple cinsi biiytiyen bir fonksiyon
cismi geniglemeleri dizisi ele alindiginda, dizideki rasyonel noktalarin sayisinin cinslere
oraninin nasil biiytidiigii onemlidir. Frey-Perret-Stichtenoth caligmasin takip ederek,
dizideki fonksiyon cismi genislemeleri elementer abelyen p-genislemeleri oldugu du-
rumda bu oranin limitinin sifir oldugu gosterilmistir. Hasse-Arf Teoremi, fonksiyon
cismi geniglemesinin tist dallanma gruplar filtrasyonundaki sicramalar hakkinda bilgi
verir. Tezde bu teoremin elementer abelyen p-geniglemeleri i¢in Garcia ve Stichtenoth

tarafindan yapilmig bir ispati da sunulmustur.
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Preliminaries

In this section, we fix some notation and state a few results which will be used in the
following sections. Our notation follows that of [S]. We assume that the reader is

familiar with the theory of algebraic function fields. Throughout, we will use

o K for a perfect field with characteristic p > 0;

o ' E F; ... for algebraic function fields over K;

P, P' for places of a function field and degP for the degree of the place P;

Pr for the set of places of F’;

vp for the discrete valuation associated to the place P;
e g(F) for the genus of the function field F.

Let us consider a finite extension E/F of function fields and a place P of F'. For any
place P’ € Py lying above P, we write P'|P. Let e(P’|P) and f(P’|P) denote the

ramification index and the relative degree of P’ over P, respectively. Then we have

Y e(PIP)f(P|P)=[E: F],

p|p
which is called the Fundamental Equality [S, Theorem 3.1.11]. In particular, if E/F is
a Galois extension, then e(P) := e(P’|P) = e(P"|P) and f(P) := f(P'|P) = f(P"|P)
for any two places P’, P"” € Pg lying over P. Hence, we have e(P)f(P)g(P) = [E : F],
where g(P) denotes the number of places of E lying over P.

The extension P'|P is said to be ramified if e(P'|P) > 1; otherwise it is called
unramified. Moreover, we say that P is totally ramified in E/F if e(P'|P) = [E : F]
for some P’|P. Clearly, in that case there is only one place lying over P.

Suppose that the extension E/F is separable, as well. Let d(P’|P) denote the
different exponent of P'|P. Then d(P’'|P) > 0, and in addition d(P’|P) = 0 for almost
all P € Pr and P’|P. Thus, we have a divisor

Diff(E/F) :== Y Y d(P'|P)P'

PePr P'|P

1



of E, called the different of E/F. Note that d(P'|P) > e(P'|P) — 1 for all P'|P
and equality holds if and only if the characteristic of F' does not divide e(P’|P). In
particular, d(P'|P) = 0 if the extension P’|P is unramified.

The genus of E can be determined by the genus of F' and the different Diff(E/F').

More precisely,
29(F) —2=[E: F|(29(F) — 2) + deg(Diff(E/ F)).

This is called the Hurwitz Genus Formula [S, Theorem 3.4.13]. Here we also assumed
E and F have the same constant field.

Now let E/F be a cyclic extension with [E : F| = p = char(F). Then there exist
elements y € E, a € F' such that

E=F(y) and y"—y=a,
and the Galois group of E/F is generated by the automorphism o defined by

oly) =y + 1.

Conversely, for any a € F, either all the roots of the polynomial ¢(t) = t» —t — a are
in F or it is irreducible. In the latter case, F'(y)/F is a cyclic extension of degree p,
where y is a root of ¢(t).

The extensions described above are called Artin-Schreier extensions. Artin-Schreier
extensions are the simplest examples of elementary abelian p-extensions which have
Galois group isomorphic to (Z/pZ)"™ for some n. This thesis presents the basic structure
of elementary abelian p-extensions and also the proof of Hasse-Arf Theorem for these

extensions.



Basics of Elementary Abelian p-Extensions

In this section we give some basic properties of elementary abelian p-extensions of
algebraic function fields, which are generalizations of Artin-Schreier extensions. Let us

recall the definition of such extensions.

Definition 2.1. An extension E/F of function fields is called an elementary abelian p-

extension if it is Galois with Gal(E/F') an elementary abelian p-group, or equivalently
if Gal(E/F) ~ (Z/pZ)" for some n.

The following theorem shows that elementary abelian p-extensions of a field F' with
characteristic p > 0 and additive subgroups of that field are closely related. It is stated
in [GS] without a proof.

Theorem 2.2. Let F be a field of characteristic p and U C F' be an additive subgroup
of F' with

ord(U) =p" and UnNp(F)=1{0},

where @ : u > uP —u is the Artin-Schreier operator. Then F(p~(U)) is an elementary

abelian p-extension of degree p™.
To prove Theorem 2.2, we need the following facts.

Lemma 2.3. /GO, Lemma 2.3] Let F be a field of characteristic p and a,b € F.
Suppose that an Artin-Schreier extension E/F can be defined by two distinct ways:

E=F(y) with y*—y=a,

E=F(z) with z—2z=0b.
Then there ezist some ¢ € F and o € F), \ {0} such that

b—aa=c—c



Lemma 2.4. [L, Corollary 1.15] Let Ey, ..., E, be Galois extensions of F with Galois
groups Gy, ...,G,. Suppose that

Elﬂ(ElEl_l) :F
for each 1 < i <n. Then the Galois group of E --- E, is isomorphic to [[;_, G;.
Now we prove the theorem.

Proof of Theorem 2.2. Note that y € o '(U) if and only if y» — y — u = 0 for some
uw € U. Then F(p~!(U)) is the splitting field of the set of polynomials

{t' —t—ueF[t]|ueU}

over F'. Furthermore, as each polynomial of this set is separable over F' the extension
F(p~'(U))/F is Galois.

Since U C F is an additive subgroup of the field F' of characteristic p > 0 we can
consider U as a vector space over F,. As ord(U) = p", there exist uy,us,...,u, € U
such that

U=TF,us ®Fus @ ... D Fpuy,.

For each u;, 1 < ¢ < n we can find y; € F(p ' (U)) such that v/ —y; = u;. We
claim that F(p~Y(U)) = F(y1,vy2,...,9n). Clearly, F(yi,vys,...,9y,) C F(p *(U)).
For the proof of the opposite inclusion, we take u € U. It is enough to show that
Flp='(u)) C F(y1,y2,---,Yn). We have

w = kuy + kaug + ... + kpuy,
for some k; € F),. Let
Yy = k1y1 + kng + ...+ knyn € F(p_l(U))

Applying the Artin-Schreier operator g to both sides of the equation we obtain

oy) = ek +koyo + ...+ knyn)
= (kwyr + kaya + .o+ kpyn)’ — (Biyn + koo + .o+ knyn)
=kl +hoys + o kY, — kg — kaye — oo — Ky
= kil — ) + k(s —v2) + -+ Ea(yh — Yn)
= ku + kus+ ...+ ku,

= Uu.

Hence, y = kyy1 +kaya+. . .+ knyy is a root of the polynomial t? —t —u € F[t]. Observe
that the other roots of ¥ —t — u are y + u, where p € F,, \ {0}. Hence all the roots



of t* —t —w live in F(y1,¥a, ..., Yn), which implies that F(p~'(u)) C F(y1, Y2, - - -, Yn)-
Since u € U is arbitrary, we have F(p ' (U)) C F(y1,v2,-- -, Yn)-

Note that y; ¢ F for any 4, since otherwise p(y;) = ¢ —y; = u; € p(F') and this
contradicts the assumption U N p(F) = {0}, as u; # 0. Hence, F(y;)/F is a degree p
(Artin-Schreier) extension for all 1 <i < n.

Now we prove the following equality:
[F(y1,--,4) : F(y1,...,yi1)]=p forall 1<i<n. (2.1)

Assume that [F(y1,...,v:) @ F(yi,...,yi-1)] = 1 for some 1 < i < n. We have seen
that [F(y;) : F] =pwith ¢y’ —y; =u;. U F C F(y;) C F(y1,...,vi—1), then there exists
G € F(y1,...,yi1) such that F(y;) = F(§) and §* — § = u for some u € ®,_ F,us.
Then by [GO, Lemma 1.2], we conclude that

w—au=c —c¢

for some o € F, \ {0} and ¢ € F. Since UNp(F) = {0}, u; —au = 0, or u; = au. This
is a contradiction to the linear independence of {uy,...,u,}, hence our claim holds.
Therefore, [F(p ' (U)) : F] = [F(y1,y2,---,yn) : F] =p".

To complete the proof, we show that the extension F (o (U)) = F(y1,y2,---,Yn)
of F' is elementary abelian.

Clearly, F(y1,y2,--.,Yys) is the compositum of the fields F'(y;), 1 < i < n satisfying
[F(y;) : F| = p. Furthermore, F(y;) N F(yi,...,yi—1) = F for every 1 < i < n, by the
previous paragraph. Then by Lemma 2.4,

Gal(F(y1,Y2y- - yn)/F) =~ HGal (y;)/F).

Since each F'(y;)/F is an Artin-Schreier extension, we have Gal(F(y;)/F) ~ Z/pZ for
all 1 <17 < n and this gives the desired result. O

The converse of Theorem 2.2 also holds. The proof we provide is similar to that

of [AA].
Theorem 2.5. Let E/F be an elementary abelian p-extension of degree p™. Then
E=F(p~(U))
for some additive subgroup U C F with
ord(U) =p" and UnNgp(F)={0}. (2.2)

Proof. Since E/F is an elementary abelian p-extension of degree p™, the Galois group
of E/F is

G:=Ga(E/F) =[] G



where each G; is a cyclic group of order p. For each 1 <1 < n, let E; be the fixed field
of the subgroup

H =Gy x...x Gy x{id} x Giz1 X ... x G,
of G. As H; is a normal subgroup of G (since G is abelian), E;/F is Galois and
Gal(E;/F) ~ G/H; ~ G,
implying that
[E; : F| = ord(Gal(E;/F)) = ord(G;) = p.
Then there exist u; € F' and y; € E; such that
Ei=F(y;) and y —y = u;
Hence, as in the proof of Theorem 2.2, we get
By Ey=Fy,...,yn) = F(p~'(U)),

where U is the additive subgroup of F' generated by ugy, ..., u,.

Let us prove that ord(U) = p". For this it is sufficient to show that the set
{uy,...,u,} is linearly independent over F,. Assume the contrary. Then there exist
c1,...,¢y € Fpy, not all 0, such that )" | c;u; = 0. Assume without loss of generality
that ¢; # 0. We have

n n

= Z Cithy = ZCi(yf — Yi)

i=1 i=1

= Z ciyy — Z CilYi
i=1 i=1
= (Z Ciyi)p - Z CiY;- (2-3)
i=1 i=1

Let y := > | ¢;y;. From (2.3) we get y? =y, i.e. y € F,. As ¢; # 0, we have

v =ci (Y — Z CiYi)-

=2

Hence,

Since Fjy - - E, is the fixed field of the subgroup

H::ﬁHi:Glx{id}x...x{z’d}

1=2



of G and Ej is the fixed field of Hy, we conclude that EyN(Es - -+ E,) is the fixed field of
the smallest subgroup of G containing H; and H, which is G. So EyN(Ey--- E,) = F.
This implies by (2.4) that y; € F, contradicting [F(y;) : F] = p. Hence, {uy,...,u,}

is linearly independent over F,, and ord(U) = p™.

We will now show that U N p(F) = {0}. Let z € U N p(F). Then

n

T = E ou; = 2P — 2
i=1

for some z € F' and o; € F),. Thus,

2P —z = Zaiui = Zai(yf — i) = (Z iy )P — Zai?/i
=1 =1 =1 =1

or equivalently

Y awi—z= 0 ) =2 = oy — 2)
i=1 i=1 i=1
implying that w := """ | ayy; — z € F,. Suppose that x # 0. Then «; # 0 for some
1 < j <mn, and by the argument used in proving ord(U) = p™, we have
ijOéj_l(w—i-Z— Z aiyi) EEjﬂ(El---Ej_1-Ej+1-'-En) =F

i#],
1<i<n

i.e. y; € F. Thisis a contradiction to [F(y;) : ] = p. Hence x = 0 and UNp(F) = {0}.
We have shown that F;--- E, = F(p *(U)) satisfies (2.2). Then by Theorem 2.2

we obtain that F'(p~'(U))/F is an elementary abelian p-extension of degree p". Finally,
since F(p~'(U)) = E,---E, C F and [E : F] = p", we have

E=E - E,=F(p'(U)).
]

Since an elementary abelian p-extension F/F is finite and Galois, there exists y € E
such that £ = F(y). In the following theorem, under some assumptions, we find such
an element and its minimal polynomaial over F. First, let us introduce some special

type of polynomials.
Definition 2.6. A polynomial of the form

a(t) = apt?" + ap 7" gt + apt € Ft]
is called an additive polynomial over F.

Note that a(t) is separable if and only if ay # 0. Moreover, since F' has characteristic
p>0,

a(z +y) = a(z) + aly) (2:5)

for any x,y € E, where F is an arbitrary extension of F'.

7



Proposition 2.7. Let E/F be an elementary abelian p-extension of degree p" and

a(t) € F[t] be a separable, monic, additive polynomial of degree p"™. Suppose that
W :={al|ala) =0} C F.

Then there ezists an element y € E with E = F(y) whose minimal polynomial over F

18 given by
o(t) =a(t) —z € F[t], for some z¢€ F.

In particular, if Fpn C F, then y € E can be chosen such that its minimal polynomial
is o(t) =" —t —z € Ft], with z € F.
Proof. We have seen that there exist yy,...,y, € E such that

E:F(yl,,yn) Wlth yf—yZEF,

for all 1 <7 < n. Now we will find generators of Gal(E/F) by extending the generators
of the Artin-Schreier extensions F(y;)/F, 1 <i<n,to E = F(y1,...,Yn). Define the

automorphisms o;, 1 <17 <n, of ¥ over F' by
oi(yi) =yi+1, oiy;) =y; for j#i.

It can easily be seen that these are actually automorphisms of F/F. In order to prove
o;’s generate Gal(E/F), it is enough to show that they are linearly independent over
[F,. Suppose not, then

v

v2 Un _ 4
oj'oo?o...o0 =1id

for some v; € F,, not all v; = 0. We can assume 14 # 0. Since 07" =0, o...00,"7,

we obtain

Y1+ =0 (1) =0, o...00,*(y1) = 1.

This is a contradiction because vy # 0. Hence, o;’s generate Gal(E/F).
By (2.5), W is an additive subgroup of F. Since a(t) € F[t] is separable and
deg(a(t)) = p", ord(W) = p™. Thus,

W = é prl-
=1

for some w; € W C F'.
Define y := " | w;y;, and let 0 € Gal(E/F). There are uy, pa, . . ., i, € F, such
that

o=o"ooh?o.. . ook (2.6)

8



Then we have
oly) = U(Z wiy;) = Z wio(yi) = Z Wiy + i) =y + Z MW (2.7)
i=1 i=1 i=1 i=1
Hence,

oly) =y < meizo
i=1
& ;=0 forall 1<i<n

& o =1d.

This implies that F'(y) = E. To see this, suppose that F(y) & E. Then there exists
id# v € Gal(E/F(y)) C Gal(E/F), but this is not possible as v(y) = y implies v = id
by the above argument. Therefore, F(y) = E.

Next, we find the minimal polynomial of y over F. Let a(y) = z, and 0 € Gal(E/F)
is an arbitrary automorphism. We assume o has a combination as in (2.6). Then we

have

(a(y))

= a(o(y))

v+ 3 pw)  (by (27)

=1

= aly) +a(}_ pw)

o(z) =

= z+0 (since Zuiwi e W)
i=1

= Z.

Thus, o(z) = z for all 0 € Gal(E/F), and this is equivalent to z € F. Therefore,
©(t) :=a(t) — z € F[t]. Now we have y is a root of the monic polynomial p(t) € F[t].
Moreover, as [F(y) : F] = [E : F| = p" and deg(¢(t)) = p", the irreducibility is clear.
Then ¢(t) € F[t] is the minimal polynomial of y over F'.

Finally, suppose that F,» C F. Then the set of roots of the separable additive
polynomial a(t) := t#" — ¢t € F[t] is exactly Fyn, which is in F' by assumption. Hence,
the rest follows. O

From now on, we present fundamental concepts of elementary abelian p-extensions
of function fields such as ramification, different exponents and genera. Let us note that
the following proposition is stated in a more general setting in [S, Proposition 3.7.10]

but its proof is omitted.



Proposition 2.8. Consider an algebraic function field F/K with constant field K.
Suppose that there exists an element uw € F'\ K which satisfies:

for every place P € Pp with vp(u) < 0, ged(p,vp(u)) = 1.

Let E = F(y) with

a(y) = u,

where a(t) € K|t] is a separable, monic, additive polynomial of degree p™ which has all
its roots in K. Then

(a) E/F is a Galois extension of degree p" and Gal(E/F') is isomorphic to the
additive group

i.e. Gal(E/F) ~ (Z/pZ)".

(b) K is algebraically closed in E.

(¢) Poles of u in F are totally ramified in E/F and the other places of F are
unramified.

(d) Let P € Pg be a pole of u with valuation vp(u) =: —mp. Then the different
exponent d(P'|P) of the extension P of P in E is

d(P'|P) = (p" = 1)(mp + 1).

(e) The genus g(E) of E is

g(B) = pg(F) + L (—24+ 57 (mp + 1)degP),

2
UP(U)<07
PePp

where g(F') is the genus of F' and mp is as in (d).

Proof. (a) Since u € F'\ K, u has at least one pole in F' [S, Corollary 1.1.20] . So we
can find a place P € P such that

vp(u) =: —mp, with mp > 0.

Let P’ € Py be a place lying over P and e := e(P’|P) be the ramification index of P’

over P. As a(t) € K[t] is a monic, additive polynomial of degree p™, we have
a(y) =y + a1y’ + ..+ ay’ +aoy
for some a; € K. Since a(y) = u, we have

vpr(a(y)) = vp(u) = evp(u) = e(—mp) < 0. (2.8)

10



This implies vp/(y) < 0, using the triangle inequality. Then by the strict triangle
inequality [S, Lemma 1.1.11] we obtain

vpr(a(y)) = min{p'vp (y) | 0 <7 < n} = p op(y). (2.9)

We conclude from (2.8) and (2.9) that
—emp = vp(ay)) = p"vp(y). (2.10)

In particular, p™ | —emp. Since ged(p, mp) = 1 by assumption, we have p" | e which
implies e > p™. Then by the Fundamental Equality we obtain

[E:F]>e>p" (2.11)

On the other hand, as y is a root of the polynomial ¢(t) := a(t) — u € F[t] and
deg(p(t)) = p™, we have [E : F] = [F(y) : F] < p". Therefore, [E : F| = p".

Now we show that the extension F/F is Galois. The rest of the proof of part (a) will
be essentially showing the converse of Proposition 2.7. As an immediate consequence
of the above argument, (t) is the minimum polynomial of y over F'. For any o € W

we have

ply+a) = aly+a)—u
= a(y) +ala) —u
= u+0—-u=0.
Then for every a € W C K the element y + « is a root of the polynomial p(t) € F/[t].
Since a(t) € K|[t] is separable, we see that ord(W) = p™. We also know deg(p(t)) = p™.
Hence, these are all the roots of ¢(t) and E = F(y) is the splitting field of the separable

polynomial ¢(t) over F, i.e. E/F is Galois.
It remains to show that Gal(F(y)/F) is isomorphic to the additive subgroup

W ={a]a(a) =0}

of K. For each o0 € Gal(F(y)/F), o(y) is a root of the polynomial ¢(¢). Thus,
o(y) = y + « for some v € W. Since « is uniquely determined by o, we have a

bijection
¢: Gal(F(y)/F) =W, o .

Finally, we show that ¢ is a group homomorphism. Let 0,09 € Gal(F(y)/F). Then

01(y) =y + aq and o3(y) = y + ay for some oy, as € W. Hence, we have
(o1002)(y) = 01(02(y)) = 01(y + a2) = 01(y) + o1(a2) = (y + 1) + z.
Therefore, ¢ sends o1 0 03 to the sum «ay + ay. This completes the proof of (a).

11



(b) Suppose that K is not algebraically closed in E. Then K’ 2 K, where K’ is
the constant field of E. Let [K’ : K] =: d. By [S, Lemma 3.6.2], we have

d=[K':K]=[FK':F).

This implies [E : FK'| = p"/d, as [E : F] = p™. Now by the proof of (a), there exists
a place P € Pr which is totally ramified in E/F (see (2.11)). Let P’ € Pg be the

extension of P in F. Then
e(P'|P)=[E:F]=p"

Set Ppy: := P'N FK'. Clearly, Prg: is a place of FK'. As FK'/F is a constant field
extension, the place P is unramified in FK'/F [S, Theorem 3.6.3(a)], so e(Ppx/|P) = 1.

Then we have
B(P/’P) = B(P/’PFK/)€<PFK/‘P) = e(P/‘PFK’),

implying that e(P’'|Prg/) = p". This is a contradiction, since [F : FK'| = p"/d for
some d > 1 and e(P'|Ppg/) < [E : FK'] by the Fundamental Equality. Hence K is
also the constant field of E.

(¢) We already know that the poles of u are totally ramified in E/F (see the proof
of (a)). Suppose that P € Pp is not a pole of u, so vp(u) > 0, i.e. u € Op, where Op

denotes the valuation ring of P. We also know
a(t) =" + cp 1 t?" + . 4 eat? + oot € K[t] C Oplt],
which implies that
o(t) = a(t) —u € Oplt].
Then by [S, Theorem 3.5.10(a)], for every extension P’ of P in E we have
0 < d(P'|P) < op( (1)) = vpr(co) = 0.

Hence, d(P'|P) = 0. Therefore, e(P'|P) = 1 for each P’ € Pg lying over P, i.e. P is
unramified.

(d) Let z € F be a prime element at the place P. Since P is totally ramified in
E/F, we have

vp/(z) = e(P'|P)vp(z) = p",

where P’ is the extension of P in . We want to find a prime element at the place P’.
Using (2.10), we see that vp/(y) = —mp. By assumption ged(p,mp) = 1. Then also
ged(p™,mp) = 1, and so we can find integers 4, j > 0 such that

1= an — jmp.
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We define z := x'y’/. Then we have
vpi(2) = ivp(x) + jup(y)
= ap" —jmp =1,
i.e. z is a prime element at the place P’ € Pg. Hence, by [S, Proposition 3.5.12]
E=F(z) and d(P'|P)=vp(¢'(2)),
where 1 (t) € F[t] is the minimal polynomial of z over F'. We have

w(t) =TI - o).

ceG

with G := Gal(E/F). Let us define a polynomial h(t) := H(t—a(z)) € Elt].
oF#id
Trivially, ¢(t) = (t — 2)h(t). Then ¢'(t) = h(t) + (t — 2)I/(¢), implying that

Y'(2) = hz) = [[ (= = a(2).

oFid
Therefore,

d(P'|P) = vp:(¢/(2) = vp (][ (z = 0(2)) = Y vpr(z = 0(2)).

oF#id o#id

Now we show that
vpr(z —0o(2) =mp+1
for all id # o € G. Let 09 € G\ {id}. Then o¢(y) = y + « for some o € W\ {0}. So
z—09(z) = 2y — 2 (oo(y)) ( sincex € F')
= 2'y —2'(y + )

j .
= iyl — o Z (}1) yj—kak
k=0
L (j
= 7 I=kak,

> (i)

Since vp/(y) = —mp < 0, the strict triangle inequality gives
vp(y’ 1) < wpil(y’ )

for £ > 1. Moreover, note that ({) = j # 0 in the constant field K (since ip"—jmp = 1)

and again « is a nonzero element of K by assumption. Then we obtain

vp(z—0o(z)) = vp (—Z (;) yf—'fo/f>

= et o (o)

= wp(z') +op(y’ ™)
= ip"+(j — D(-mp)

13



Hence, we conclude that
d(P'|P) =Y vp(z = 0(2)) = (0" = 1)(mp + 1),
o#id
as ord(G \ {id}) =p" — 1.
(e) We have proved that a place P € Pg is either unramified in £//F, in which case
d(P'|P) = 0, or totally ramified in the extension E/F. We have also proved in (d) that
if P € Pp is totally ramified in E/F, then

d(P'|P) = (p" — 1)(mp + 1).

Furthermore, since the constant field of £ is K by (b), the Hurwitz Genus Formula

yields
29(E)—2 = [E:F|2¢(F)—2)+ > > d(P|P)degP
PePp P/|P
= P'(29(F)=2)+ > (" —1)(mp+1)degP’
vp(u)<0,
PePp

or equivalently

Y2

2

(=24 ) (mp+1)degP’).

’UP(U)<0,
PePp

Finally, let P be a place of F' with vp(u) < 0. Then since P is totally ramified in E/F,

using the Fundamental Equality we obtain

g(E) = pg(F) + £

degP' = [Fp : K| = [Fpr : Fp|[Fp : K] = 1degP = degP,

where P’ is the extension of P in E (here Fp: and Fp denote the residue class fields of
P’ and P, respectively). This finishes the poof of (e). O

There is a more general way to compute the genus of an elementary abelian p-
extension of a function field, which uses the genera of some intermediate fields. Before

showing this, we need a lemma.

Lemma 2.9. Let E/F be an elementary abelian p-extension of degree p™. Then the
number of intermediate fields F C L C F with [L : F| =p is }%.

Proof. Since the extension £/ F is Galois, there is a one to one correspondence between
the intermediate fields F' C L C E with [L : F] = p and the subgroups of Gal(E/F)
of order p"~!. Because Gal(E/F) is an elementary abelian group of order p", we
can regard it as a vector space over IF, of dimension n. Hence the number of n — 1

dimensional subspaces of Gal(E/F) will give the desired number, which is well-known:

(=t =1t =p)... (prt = prmh) '
After cancellations we see (2.12) is equal to %, and this completes the proof. O
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Theorem 2.10. Let F//K be an algebraic function field with constant field K, and let
E be an elementary abelian p-extension of Fof degree p™ with the same constant field.
Assume that FEy, ..., E, are the intermediate fields F' C E; C E with [E; : F| = p,
1<i<t (heret = T% by Lemma 2.9). Then the genus g(E) of E is given by

9(B) =D g(B) = L5 — 1)g(F)

The proof of Theorem 2.10 is due to Garcia and Stichtenoth [GS]. It depends

heavily on the following fact which can be found in [K, Theorem 1].

Theorem 2.11. Suppose that we have a relation

> ruen =0€Q[G),

HCG

where G := Gal(E/F) and ey := #(H)Z o € Q[G] for any subgroup H C G. Then

cceH
the same relation exists between the genera. More precisely,

Z ng(EH) = 07
HCG

where Ey is the fized field of the subgroup H C G and g(Ey) is the genus of Ey.
Now we can prove Theorem 2.10.

Proof of Theorem 2.10. Let H; := Gal(E/E;), 1 < i < t, i.e. H; is the subgroup
of Gal(E/F) corresponding to the intermediate field F;. We choose a non-identity

element o of Gal(E/F), and we claim that o is contained in exactly pnp__lf L of the

subgroups H;. Observe that Gal(E/F)/(o) is a vector space over [, of
dim(Gal(E/F)/{0)) = dim(Gal(E/F)) — dim({c)) =n — 1.

. . n—1_1
By the same method which we used in (2.12), we see that Gal(E/F)/(o) has ==

subspaces

pnfl —1
p—1
of dimension n—1 containing o, or equivalently, among the % subgroups of Gal(E/F)

subspaces of dimension n—2. This means that Gal(E/F") has precisely

having order p"~! (namely H;’s ), pnf_ll_ ! subgroups contain ¢. This proves the claim.

Clearly, id € H; for all 1 <i <t. Let us also denote G := Gal(E/F). Then we have

t t
Y em = )0
i=1

i=1 o€H;
pn_l . pn—l_l
= () id+ (—) Y. o
p p ceG\{id}
pn_l pn—l_l ' pn—l_l
- E=—- )id+ () Yo
p—1 p—1 p—1 CZ;
n n—1 n—1
pt—p A
= =y id+ (—— )" e
(P id e (s
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Dividing the equations above by p"~!, we obtain

t

—1. -
S e =Dy a1 e
i=1 p—1

p—1

Since id = ey, (2.13) is equivalent to

t
p n—
E{idy = Zﬁﬂi - pTl(P P—1)-eq.
i—1

Then by Theorem 2.11, we conclude

9(B) =3 g(B) = L5 (" — g(F).

16
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Hasse-Arf Theorem for Elementary Abelian p-Extensions

Let E/F be a finite Galois extension of algebraic function fields, and let the character-
istic of F' be p > 0, as usual. In this section, we will introduce the higher ramification
groups, and then we will prove the Hasse-Arf Theorem in the particular case where

Gal(E/F) is an elementary abelian p-group.
Definition 3.1. Let F' and E be as above. Suppose that P is a place of F' and P’

is an extension of P in E. Then for every ¢ > —1, the i-th ramification group of the
extension P’|P is defined to be

Gi(P'|P) :={0 € G |vp(o(z) —2) > i+ 1forall 2 € Op/},
where G := Gal(E/F) and Op: is the valuation ring of the place P'.

Indeed, G;(P’|P) is a subgroup of G. To see this, let 01,09 € G;(P'|P) and z € Op..
Then by the triangle equality we have

vp((01002)(2) —2) = wvp(o1(02(2)) — 02(2) + 02(2) — 2)

v

min{vp:(01(03(2)) = 02(2)), vp(0(2) = 2)}

i+ 1,

v

as both vp/(01(02(2)) —09(2)) > i+ 1 and vp (09(2) —2) > i+ 1. So 01009 € G;(P'|P).
Note that, here we have also used that o9(2) € Op: for any z € Op.
Denote by G; := G;(P’|P) the i-th ramification group of the extension P'|P. It is

easy to see that G;’s form a decreasing sequence
GOGy2G12G, 2D ... (3.1)

of subgroups of G and G,, = {id} for m big enough.
The next result shows that this sequence helps to understand the structure of G.
For a proof, see [S, Proposition 3.5.8].

Proposition 3.2. With the notation as above we have:

(a) ord(Gy) = e(P'|P) and Gy is a normal subgroup of Ggy. Further, Gy is a p-group
and Go/G1 is cyclic of order relatively prime to p.

(b) For alli > 1, Giyq is a normal subgroup of G; and G;/Giy1 is an elementary

abelian p-group.
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Before stating the famous Hasse-Arf Theorem, we will give a definition.

Definition 3.3. Let s > 0 be an integer. We call s a jump of the extension P’|P if
Gs 2 Ggqr.

Theorem 3.4. (Hasse-Arf Theorem). Assume G is an abelian p-group and maintain
the other notation as above. Let P'|P be totally ramified, and let s < t be two subsequent
gumps of P'|P, which means that

Gs 2G3+1 ::Gt QGtJrl-
Then we have
t=s(mod (G : Gy)).

A proof of Theorem 3.4, due to Arf in a general case, can be found in [A]. The rest
of the section is devoted to the proof of Theorem 3.4 in the particular case where G is
an elementary abelian p-group. The proof is due to Garcia and Stichtenoth [GaSt]. It

only uses the following well-known facts.

Corollary 3.5. (Transitivity of the Different Exponents) [S, Corollary 3.4.12]. Let
L DO FE D F be a tower of finite separable function field extensions. Suppose that
P" 2> PO P are places of L, E and F, respectively. Then

d(P"|P) = e(P"|P"d(P'|P) + d(P"|P").

Theorem 3.6. (Hilbert’s Different Formula) [S, Theorem 3.8.7]. As before, E/F is a
finite Galois extension of algebraic function fields and P’ € Pg is an extension of the
place P € Pr in E. Then we have

d(P'|P) = (ord(G;(P'|P)) — 1).

1=0

Note that for an unramified place P of F, we have Gy = {id} by Proposition 3.2(a).
Therefore, G; = {id} for all i > 0 in this case. If a place P € Pp is totally ramified,
then by Proposition 3.2(a), (3.1) becomes

G=Gy=G12G, 2G5 ....
Now we state Hasse-Arf Theorem in the case we will prove.

Theorem 3.7. Assume that G is an an elementary abelian p-group and maintain the
other notation as above. Let P'|P be totally ramified, and let s < t be two subsequent
gumps of P'|P. Then we have

t=s (mod (G : Gy)).

18



Proof. Let s1,..., s, denote all jumps of the extension P’|P in order. Then
O0<s1 <... < 8m
and G; = {id} for all i > s,,,. We show by induction that
Sp+1 = Sp (mod (G : G, ,))
forall 1 <n <m — 1. For n = 1, we have

G:GOZGlzzG DG81+1:...:G522G52+12....

51 =

Since G is an elementary abelian p-group, we can consider it as a vector space over [F;
then so is the quotient G/G,,.;1. Clearly, Gs,/Gs, 11 is a subspace of G/Gg, 1. Then
there exists a subspace H of GG such that

G/G82+1 = (GS2/GS2+1) S (H/G52+1)'

It is easy to see that, H, regarded as a subgroup of G, satisfies the following equalities:
Gs+1 € H C G, HNGy, =Gy, ord(H) = ord(Gs,41)(G : Gg,).  (3.2)

Let Ey be the fixed field of H and @) := P'N Ey. By definition of ramification groups,

we have
Gi(P'|Q)= HNG;(P'|P)=HnNG,
for all ¢ > 0. Then Hilbert’s Different Formula yields

d(P'|P) = (s1+ 1)(ord(G) — 1) + (52 — s1)(ord(Gs,) — 1) + Z(ord(Gk) —1).

k>so

Similarly, we have
d(P'|Q) = (s1+ 1)(ord(HNG) — 1) + (s9 — s1)(ord(H N G,,) — 1)

+ Z(ord(H NGg) —1)

k>s2

=(s1+1)(ord(H) — 1) + (s2 — s1)(ord(Gs,41) — 1)
+ 3 (ord(Gy) — 1)

k>s2

By the transitivity of different exponents, we conclude

d(P'|P) —d(P'|Q) = e(FQ)d(Q|P)
= ord(H)d(Q|P) =0 (mod ord(H)).
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Here we have also used the fact that () € Pg, is totally ramified in £, which is a
consequence of the total ramification of the place P in E. Then subtracting the above

equations we obtain
(s1 — s2)(ord(Gs,) — ord(Gs,+1)) = (s1 + 1)(ord(G) — ord(H)) (mod ord(H)),
which implies
(s1 — s9)(ord(Gs,) — ord(Gs,+1)) = 0 (mod ord(H)). (3.3)
Clearly, (3.3) is equivalent to
(s1 — s2)ord(Gs,41)((Gs, : Gsyq1) — 1) = 0 (mod ord(H)). (3.4)
By (3.2), we know that ord(H) = ord(Gs,+1)(G : Gs,), so (3.4) becomes
(51— 82)((Gs; 1 Goy1) — 1) =0 (mod (G = G,)).
Finally, since (Gs, : Gs,41) — 1 and (G : G,) are relatively prime, we obtain
s1— 83 =0 (mod (G : Gg,)).
Hence, the proof of the first step is complete. Now suppose that 1 <n <m — 1 and
S0 = 5 (mod (G: Gl,,.)) (3.5)
for all 1 < 7 < n. We will show
Spt1 = Sp (mod (G : Gy, ).
For convenience, let s :=s,, and t := s,,41. Then we have the sequence
G=Gy=G12...20G;2G1=...=G 2G 12 ....

By exactly the same method as in the proof of the first step, we can find a subgroup
K C G such that

Gt+1 g K g G, Kn Gt = Gt+1, Ord(K) = Ord(GtH)(G . Gt) (36)

Let Fx be the fixed field of K and @, := P'N Ex be the restriction of P’ to Ex. Using

Hilbert’s Different Formula we obtain

n—1

d(P'|P) = (s1 + 1)(ord(G) — 1) + Z(sjﬂ —5;)(ord(G,,,,) — 1)
+(t—s)(ord(Gy) — 1) + Y _(ord(Gy) — 1),
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and also as G;(P'|Q1) = K NG,

d(P'|Q1) = (s1 + 1)(ord(K) — 1) + Z(st —s;)(ord(K NG, ) — 1)
+(t = 8)(ord(Gear) — 1) + Y _(ord(Gy) — 1).

Since d(P'|P) — d(P'|Q1) = e(P'|Q1)d(Q1|P) = ord(K)d(Q:|P), taking the difference
of the two equations we conclude

n—1

(s —t)(ord(Gy) — ord(Giyr)) = Z(SJH —55)(ord(Gs,,,) —ord(K NGy,,,)) (3.7)

Jj=1

modulo ord(K). Now by induction hypothesis, for every j with 1 < j < n there exists

some c¢; € Z such that
Sj+1 — S5 = Cj(G : stJrl).

Then we have

(5541 — 85)ord(Gy,,,) = ¢;(G : Gy, )ord(Gs,, ) = cjord(G)
and
(sj01 —sj)ord(KNGy,,,) = ¢;(G: Gy, )ord(KNG,,,,)
ord(K)ord(Gs, . )

= CJ(G : G3j+1)

ord(K -G, ,)
ord(Q)

; d(K).
Cjord(K.GSHI)OT (K)

This implies

i(st —55)(ord(Gs,,,) —ord(K N G,,,,)) =0 (mod ord(K)).

j=1

So we conclude from (3.7) that
(s —t)(ord(Gt) — ord(Gis1)) = 0 (mod ord(K)). (3.8)

In what follows, we will just repeat the argument which we used in the proof of the
first step. By (3.8), we have

(s = t)ord(Gii1)((Gy : Gyi1) — 1) = 0 (mod ord(K)).
Since ord(K) = ord(Gi41)(G : Gyt) by (3.6), we have
(s = t)((Gt : Gea) —1) =0 (mod (G : Gy)),
and this completes the proof, as (G; : Gy+1) — 1 and (G : Gy) are relatively prime. [J
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More generally, let the extension P’|P be ramified (not necessarily totally ramified).
We consider the fixed field Eg, of Go. Let P, := P'N Eg,. Then P, € Pgg, 1s totally
ramified in F [S, Theorem 3.8.2], and G;(P’'|Py) = G;(P’'|P) for all i > 0, by definition

of ramification groups. Hence, by the argument used in proving Theorem 3.7, we obtain
t =s (mod (Gy : Gy)),

where s < t are two subsequent jumps of P’|P.
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Asymptotic Theory of Elementary Abelian p-Extensions

Let F, be a finite field with ¢ = p°® elements, where s is a positive integer, and let
F/F, be an algebraic function field with constant field F,. Function fields over finite
fields is a subject of interest, not only due to theoretical reasons but also due to their
relation to coding theory. One of the central problems is the number of rational places.
This number is bounded by the celebrated Hasse-Weil bound ( [S, Theorem 5.2.3]),
although the bound is big when the genus is big. Moreover, again partly due to coding
theoretic reasons, the growth of the number of rational places relative to genus in an
infinite sequence of function fields over finite fields (of growing genera) is of interest
too. When this ratio for a given sequence has a positive limit, the sequence said to be
asymptotically good.

Suppose that E;/F are abelian extensions with
FCECEC...,

and [, is the constant field of each £;,7 > 1, as well. The aim of this section is to show
that the genus of F; increases much faster than the number of its rational places as
[E; : F] goes to infinity, which is a disappointing result. The proof of this fact will use
Hasse-Arf Theorem. Since we proved Hasse-Arf for elementary abelian p-extensions,
we will formulate the results only for such extensions. The general (abelian) case can
be seen in [FPS].

In the following, we will assume that E/F is an extension of function fields with
Galois group G = Gal(E/F) an elementary abelian p-group. Let P be a place of F//IF,,
and let P’ be the only place of E/F, lying over P. Moreover, let Fp := Op/P and
Ep := Op: /P’ denote the residue class fields of P and P’, respectively.

Lemma 4.1. Under the above assumptions we have:
(a) The field extension Ep/Fp is Galois.
(b) Every o € G induces an automorphism & of Ep//Fp given by

g(xr+ P)=o(x)+ P,
where x + P’ € Op:/P' = Ep/, and each automorphism of Ep//Fp arises in this way.
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Note that the above lemma holds even the constant field is not finite. For a proof,
see [S, Theorem 3.8.2].
Now we consider the factor groups (P')'/(P")*1 i > 1. We have the following

lemma.

Lemma 4.2. For each i > 1, the factor group (P')'/(P')" is a vector space over Ep:

via the multiplication
(x + P)(a+ (P)™) = za+ (P,
where x € Opr, a € (P')". The dimension of (P')!/(P')"™ over Ep/ is one.

Proof. 1t is straightforward to show that the scalar multiplication is well-defined and
(P /(P! is an Ep/-vector space.

In order to prove (P')!/(P')""! is a one-dimensional vector space over Ep/, we
choose a nonzero element a + (P')* € (P)//(P")". So a € (P')*\ (P')"!. Let 7
be a prime element at the place P’. Then by [S, Theorem 1.1.6(b)], a = w'u for some
unit v € (Op/)*. Now let y + (P') € (P')!/(P")™! be an arbitrary element. We can
assume y # 0. Then y = m/v for some j > i and v € (Op/)*. Hence, we have

y+ (P = aly+ (P)*!
= (@ ut + P (x'u+ (P)")
= (a7 ut + P (a + (P,
As vp (77~ vu™t) = j — i > 0, we conclude that 7/ ~vu~! + P' € Op//P' = Ep/, and
the result follows. O

Define a map from G x (P")/(P")* to (P')!/(P")* by
(o,a+ (P = o(a) + (Pt = o(a+ (P)™). (4.1)

As P is a place of F' and 0 € G = Gal(E/F), we have o(P) = P. Then o(P’) is a
place of E lying over P. By assumption P’ is the only place of F lying over P. Hence,
o(P’) = P’ and (4.1) makes sense. For i > 1, we set

X; = {a+ (P)*™ e (P)/(P)Y* |o(a+ (P)) =a+ (P)* for all o € G}.
It is easy to check that X; is an Fp-subspace of (P')!/(P")i+L.

Proposition 4.3. X, as a vector space over Fp has dimension at most one.

Proof. Suppose that X; # {0} and choose an element 0 # a + (P')"™' € X;. Then by
Lemma 4.2, for every a; + (P')"! € X, there exists some ¢ € Op: such that

a; + (P = (c+ P)(a+ (P)H).
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We need to show that ¢+ P’ € Fp. Let 0 € G. Then

(c+P)a+(P)*) = a+(P)H
o(ar + (P)™)
= o((c+P)a+(P)")
= ofca+ (P)*)
(ca) + (P)™
= o(c)o(a) + (P)*
a(c) + P')(o(a) + (P')'*)
(c+ Po(a+ (P')*)
= &lc+ P)(a+ (P)*h.

= 0

—~

Il
Qi

Hence, 6(c+P’) = c+P' forall o € G. So using Lemma 4.1 we can conclude c+P’ € Eps

is invariant under the automorphisms of Fp//Fp, and this implies ¢ + P’ € Fp. ]

Next we consider the map
’17[)2 GO — (Ep/)*

OH@"—P,,
T

and for ¢ > 1, the maps
it Gy — (P')' /(P

o T Py,
™

where 7 is a prime element at the place P’ and Gg, G, ... are defined as in Section 3.
Then ¢ is a well-defined homomorphism from Gy to the multiplicative group of Ep
with kernel G;. In particular, it is independent of the choice of the prime element.
For details we refer to [S, Proposition 3.8.5]. With a slight adjustment of the proof
of [S, Proposition 3.8.5], one can also show that ¢; is a homomorphism from G; to the
additive group of (P')"/(P')"*! and ker(p;) = Giy1. We omit the proof.

Proposition 4.4. With the notation above, we have:
(a) The image of ¢ is contained in (Fp)*.
(b) Foralli>1, Im(p;) C X;.

Proof. For the proof of (a), see [FPS, Proposition 2]. The proof of (b) is similar to that
of (a). Let a+ (P")"™ € Im(p;) with ¢ > 1. Then a+ (P')"*! = p;(7) for some 7 € G;.
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Thus, for all o € G we obtain
ola+(P)*h) = o(pi(r))
= oM 1 g Py
(

_ 0 7(77)) ryit1
= U(W) -1+ (P

— % — 14 (P! (since G is abelian)

= (1) (because o(7) is a prime at P’)
= a+ (Pl)z—i-l

which implies a + (P')"*! € X;. O

Note that the results we obtained till now are valid independent of the finiteness of

the constant field. In the following we need a finite constant field.

Corollary 4.5. Let e(P'|P) be the ramification index of P' over P. Then we have
e(P'|P) < (ord(Fp))", (4.2)

where P, P' and Fp are defined as above, and r is the number of jumps of the extension
P'|P.

Proof. The field Fp is finite, as F' is a function field over a finite field. For ¢ > 0, let
g; »= ord(G;). We know by Proposition 3.2 that gy = e(P’|P). Then since g, = 1 for
sufficiently large n, we have

e(P'|P) = go = (90/91)(91/92) - - - (9n-1/n)-

Now using Proposition 4.4 we see that go/g1 < ord(Fp). Since X; is an Fp vector space
with dimension at most one (Proposition 4.3) and I'm(p;) C X; (Proposition 4.4), we
can also see that ¢;/gi11 < ord(Fp) for all 1 <i < n — 1. Moreover, as ¢;/g;y1 = 1 in

the case 7 is not a jump, we obtain (4.2). O

The following proposition, which is due to Frey, Perret and Stichtenoth [FPS], gives
an estimate for the different exponent d(P'|P).

Proposition 4.6. Under the assumptions of this section, we have
/ 1 /
A(P|P) > Sre(P|P),

where r is the number of jumps of P'|P.
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Proof. Let 0 < 51 < ... < s, denote the jumps of P’|P, and let g; := ord(G;) for i > 0,

as before. Since GG is an elementary abelian p-group, for each 1 < ¢ < r we have

(Sz' - Si—l)gsi = kigo (4-3)

for some positive integer k;, by the Hasse-Arf Theorem. As ord(Gy) = go = e(P’'|P),
(4.3) becomes

(si = si-1)gs, = kie(P'|P), (4.4)

where k; € Z* and 1 < ¢ < r. Then using Hilbert’s Different Formula we obtain

d(P'|P) = Z(gz-— 1)
= Z(gi—l)fz (9: — 1)

= (s1+1)(gs, — 1)+ Z(Sj —8j-1)(gs; — 1)

T

= (s14+ Dga(L=g) + D (55— sj-1)95,(1 = g;.1)
=2

T

= (si+ De(P'|P)1—g.) + D ke(P|P)(1 =gt  (by (44))

Jj=2

1
> 57“6(P |P").
In the last inequality we used the fact that g;, > 1 forall1 <¢ <7, as s; is a jump. [

Note that Proposition 4.6 remains true in the case P’ is not the only extension of
the place P.
Now we consider the ramification group

Go(P|P) ={0c € G|vp(o(z) —2) > 1forall z€ Op,},

where P; is one of the extensions of P in E. Let g(P) be the number of places lying
over P. Since E/F is a Galois extension, for each j = 1,...,g(P) there exists an
automorphism o € G such that P; = o(F;). Then as G is abelian, we conclude that
Go(P) := Go(P;|P) is independent of the choice of the extension P;,. Here we have
used Go(7(P;)|P) = 77 Go(P;|P)7 for all 7 € G [S, p.130]. Let Tp be the fixed field of
Go(P). Then Tp is the maximal subextension of F' where P is unramified [S, Theorem
3.8.3(c)]. Therefore, the field M := NpesTp is the maximal unramified subextension
of F, where § denotes the set of ramified places of F'in E/F. Note that S is a finite
set (for a proof see [S, Corollary 3.5.5]).
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Lemma 4.7. With the notations above, we have

Z log,e(P) > log,[E : F] —log,[M : F].

PeS

Proof. The subgroup corresponding to intermediate field M is Gal(E /M) = H Go(P),

Pes
which is the subgroup generated by all Go(P)’s with P € S. Then since G is abelian

and ord(Gy(P)) = e(P) for all P € S, we have

[E : M] = ord(Gal(E/M)) < [] ord(Go(P)) = ] e(P).

PeS Pes

Finally, as [E : M| = [E : F]/[M : F], by taking logarithms we obtain the desired
inequality. O

We can now prove an important estimate for the degree of the different Diff(E/F').

Theorem 4.8. Let E/F be an elementary abelian p-extension of function fields having
the same constant field F,, and let ' C M C E be the mazimal unramified subextension.
Then the degree of the different Diff E/F) satisfies

deg(Dif(E/F)) > %[E : Fl(logy[E : F] —log,[M : F1).

Proof. Let P be a place of F', and let us consider the group G_;(P’|P), where P’ is an

extension of P in E. It is easy to show that
G_(P'|P)={0ce€eG|o(P) =P}

Clearly, G_1(P'|P) C Go(P). Similar to Go(P), it is independent of the choice of the
extension P’. Let Zp be the fixed field of G_1(P) := G_1(P’|P), and let P; := P'NZp.
Then the place P, of Zp has only one extension in E.

Using Hilbert’s Different Formula we see that

[e.e]

d(P'|P) = Z(Ord(Gi(P’IP)) —1) = d(P'|Py). (4.5)
Moreover,
e(P'|P) = e(P'|P;) and [(P|P) = [(P|Py), (4.6)

since e(Pz|P) = f(Pz|P) = 1 [S, Theorem 3.8.2]. Now let S denotes the set of
ramified place of F'in E, and let 7(P) be the number of jumps for P'|P. Note that
d(P) := d(P'|P) = d(P"|P) for any two places P', P" € Pg lying over P, since the
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extension E/F' is Galois [S, Corollary 3.7.2(c)]. Then we have
deg(Diff(E/F)) = > ) d(P)degP’

PES P!|P

= Y g(P)d(P)degP’

= Y _g(P)d(Pz)degP"  (by (4.5))

1
5 g(P)r(Pyz)e(Py)degP’ (by Proposition 4.6)

v

:% g(P)r(Pz)e(P)degP’  (by (4.6))

= 5 S AP (PL)e(P)f(PdegP

pPeS

[E : F| Z r(Py)degP

PeS

L F] Z 7(Pz)degPz  (by (4.6))
pes

. F) Z logq(qdegPZ)T(Pz)
PeS

. F Z log,e(Pyz) (by Corollary 4.5)
Pes

FI Y log,e(P) (by (46))

PeS

: Fl(logy[E : F] — log,[M : F]) (by Lemma 4.7)

AV4
N = N = N= N= N = N =
3 &= & &

&

>
and this gives the estimate that we want. O]

We are ready to prove the main result of this section. Let us note that N(F)

denotes the number of rational places, i.e. the number of degree one places of F'/F,.

Theorem 4.9. Let F'/F, be an algebraic function field, and let (E,),>1 be a sequence
of elementary abelian p-extensions of F' with the same constant field F,. Then the
quotient N(E,)/g(E,) goes to zero as [E, : F| — oc.

Proof. By Theorem 4.8, for each v > 1 we have
1
deg(Diff(E,/F)) > §[EU : Fl(logy[Ey : F| —log,[M : FY)), (4.7)

where FF C M C E, is the maximal unramified subextension. Any unramified abelian
extension My/F with constant field I, is of degree [My : F] < h, where h is the class
number of F' (see [AT]). Let us note that class number is defined as the order of the
group of divisor classes of degree zero. Then (4.7) becomes
1
deg(Diff(E,/F)) > §[EU : Fl(logy|Ey = F| — loggh), (4.8)
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where h is the class number of F'. The Hurwitz Genus Formula for E,/F gives
29(E,) — 2 = [E, : Fl(29(F) - 2) + deg(Difi(E, / F)).
So we obtain
1 .
9(Ey) = [|Ev: Fl(g(F) = 1) + 5deg(Diff(E,/F))
1
> (B, Fl(9(F) 1) + 4Fu: Fl(logy B, F] —logh)  (by (48))
for each v > 1. Moreover, N(E,) < [E, : F]N(F') by the Fundamental Equality. Hence
for every v > 1,
N(E) _ N(F)
9(Ey) ~ g(F) =1+ ;(logy[Ey : F] — logyh)

holds. Since the right hand side of the inequality goes to zero as [E, : F| — oo, the
result follows.
[
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