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Abstract

This thesis starts with the basic properties of elementary abelian p-extensions of

function fields. Ramification structure and the genus computation for such extensions

are presented first. When the constant field is finite, number of rational places of

function fields is finite and this number is bounded by the Hasse-Weil bound. However

for large genus, this bound is weak. Therefore, when a sequence of function field

extensions with growing genera is considered, the growth of the ratio of the number

of rational places to the genera in the sequence is of interest. Following the work of

Frey-Perret-Stichtenoth, we show that the limit of this ratio is zero if a sequence of

elementary abelian p-extensions are considered. Hasse-Arf Theorem gives information

about the jumps in the higher ramification group filtration of a function field extension.

We also present the proof of this theorem for elementary abelian p-extensions, which

is due to Garcia and Stichtenoth.



CEBİRSEL FONKSİYON CİSİMLERİNİN ELEMENTER ABELYEN P

GENİŞLEMELERİ VE HASSE-ARF TEOREMİ

Sezel Alkan

Matematik, Yüksek Lisans Tezi, 2017

Tez Danışmanı: Doç. Dr. Cem Güneri

Anahtar Kelimeler: Fonksiyon cismi genişlemesi, elementer abelyen genişleme,

dallanma, rasyonel yer, cins.

Özet

Bu tezde ilk olarak fonksiyon cisimlerinin elementer abelyen p-genişlemelerinin

temel özellikleri sunulmuştur. Bu tür genişlemeler için dallanma yapısı ve cinsin hesap-

lanması gösterilmiştir. Sabit cismi sonlu olduğunda fonksiyon cisminin rasyonel nokta

sayısı da sonludur. Bu durumda rasyonel nokta sayısı Hasse-Weil sınırı ile sınırlıdır.

Ancak cins büyük olduğunda bu sınır zayıftır. Bu sebeple cinsi büyüyen bir fonksiyon

cismi genişlemeleri dizisi ele alındığında, dizideki rasyonel noktaların sayısının cinslere

oranının nasıl büyüdüğü önemlidir. Frey-Perret-Stichtenoth çalışmasını takip ederek,

dizideki fonksiyon cismi genişlemeleri elementer abelyen p-genişlemeleri olduğu du-

rumda bu oranın limitinin sıfır olduğu gösterilmiştir. Hasse-Arf Teoremi, fonksiyon

cismi genişlemesinin üst dallanma grupları filtrasyonundaki sıçramalar hakkında bilgi

verir. Tezde bu teoremin elementer abelyen p-genişlemeleri için Garcia ve Stichtenoth

tarafından yapılmış bir ispatı da sunulmuştur.
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1

Preliminaries

In this section, we fix some notation and state a few results which will be used in the

following sections. Our notation follows that of [S]. We assume that the reader is

familiar with the theory of algebraic function fields. Throughout, we will use

• K for a perfect field with characteristic p > 0;

• F , E, Ei, . . . for algebraic function fields over K;

• P , P ′ for places of a function field and degP for the degree of the place P ;

• PF for the set of places of F ;

• vP for the discrete valuation associated to the place P ;

• g(F ) for the genus of the function field F .

Let us consider a finite extension E/F of function fields and a place P of F . For any

place P ′ ∈ PE lying above P , we write P ′|P . Let e(P ′|P ) and f(P ′|P ) denote the

ramification index and the relative degree of P ′ over P , respectively. Then we have∑
P ′|P

e(P ′|P )f(P ′|P ) = [E : F ],

which is called the Fundamental Equality [S, Theorem 3.1.11]. In particular, if E/F is

a Galois extension, then e(P ) := e(P ′|P ) = e(P ′′|P ) and f(P ) := f(P ′|P ) = f(P ′′|P )

for any two places P ′, P ′′ ∈ PE lying over P . Hence, we have e(P )f(P )g(P ) = [E : F ],

where g(P ) denotes the number of places of E lying over P .

The extension P ′|P is said to be ramified if e(P ′|P ) > 1; otherwise it is called

unramified. Moreover, we say that P is totally ramified in E/F if e(P ′|P ) = [E : F ]

for some P ′|P . Clearly, in that case there is only one place lying over P .

Suppose that the extension E/F is separable, as well. Let d(P ′|P ) denote the

different exponent of P ′|P . Then d(P ′|P ) ≥ 0, and in addition d(P ′|P ) = 0 for almost

all P ∈ PF and P ′|P . Thus, we have a divisor

Diff(E/F ) :=
∑
P∈PF

∑
P ′|P

d(P ′|P )P ′
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of E, called the different of E/F . Note that d(P ′|P ) ≥ e(P ′|P ) − 1 for all P ′|P
and equality holds if and only if the characteristic of F does not divide e(P ′|P ). In

particular, d(P ′|P ) = 0 if the extension P ′|P is unramified.

The genus of E can be determined by the genus of F and the different Diff(E/F ).

More precisely,

2g(E)− 2 = [E : F ](2g(F )− 2) + deg(Diff(E/F )).

This is called the Hurwitz Genus Formula [S, Theorem 3.4.13]. Here we also assumed

E and F have the same constant field.

Now let E/F be a cyclic extension with [E : F ] = p = char(F ). Then there exist

elements y ∈ E, a ∈ F such that

E = F (y) and yp − y = a,

and the Galois group of E/F is generated by the automorphism σ defined by

σ(y) = y + 1.

Conversely, for any a ∈ F , either all the roots of the polynomial ϕ(t) = tp − t− a are

in F or it is irreducible. In the latter case, F (y)/F is a cyclic extension of degree p,

where y is a root of ϕ(t).

The extensions described above are called Artin-Schreier extensions. Artin-Schreier

extensions are the simplest examples of elementary abelian p-extensions which have

Galois group isomorphic to (Z/pZ)n for some n. This thesis presents the basic structure

of elementary abelian p-extensions and also the proof of Hasse-Arf Theorem for these

extensions.
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2

Basics of Elementary Abelian p-Extensions

In this section we give some basic properties of elementary abelian p-extensions of

algebraic function fields, which are generalizations of Artin-Schreier extensions. Let us

recall the definition of such extensions.

Definition 2.1. An extension E/F of function fields is called an elementary abelian p-

extension if it is Galois with Gal(E/F ) an elementary abelian p-group, or equivalently

if Gal(E/F ) ' (Z/pZ)n for some n.

The following theorem shows that elementary abelian p-extensions of a field F with

characteristic p > 0 and additive subgroups of that field are closely related. It is stated

in [GS] without a proof.

Theorem 2.2. Let F be a field of characteristic p and U ⊆ F be an additive subgroup

of F with

ord(U) = pn and U ∩ ℘(F ) = {0},

where ℘ : u 7→ up−u is the Artin-Schreier operator. Then F (℘−1(U)) is an elementary

abelian p-extension of degree pn.

To prove Theorem 2.2, we need the following facts.

Lemma 2.3. [GO, Lemma 2.3] Let F be a field of characteristic p and a, b ∈ F .

Suppose that an Artin-Schreier extension E/F can be defined by two distinct ways:

E = F (y) with yp − y = a,

E = F (z) with zp − z = b.

Then there exist some c ∈ F and α ∈ Fp \ {0} such that

b− αa = cp − c.
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Lemma 2.4. [L, Corollary 1.15] Let E1, . . . , En be Galois extensions of F with Galois

groups G1, . . . , Gn. Suppose that

Ei ∩ (E1 · · ·Ei−1) = F

for each 1 < i ≤ n. Then the Galois group of E1 · · ·En is isomorphic to
∏n

i=1Gi.

Now we prove the theorem.

Proof of Theorem 2.2. Note that y ∈ ℘−1(U) if and only if yp − y − u = 0 for some

u ∈ U . Then F (℘−1(U)) is the splitting field of the set of polynomials

{tp − t− u ∈ F [t] | u ∈ U}

over F . Furthermore, as each polynomial of this set is separable over F the extension

F (℘−1(U))/F is Galois.

Since U ⊆ F is an additive subgroup of the field F of characteristic p > 0 we can

consider U as a vector space over Fp. As ord(U) = pn, there exist u1, u2, . . . , un ∈ U
such that

U = Fpu1 ⊕ Fpu2 ⊕ . . .⊕ Fpun.

For each ui, 1 ≤ i ≤ n we can find yi ∈ F (℘−1(U)) such that ypi − yi = ui. We

claim that F (℘−1(U)) = F (y1, y2, . . . , yn). Clearly, F (y1, y2, . . . , yn) ⊆ F (℘−1(U)).

For the proof of the opposite inclusion, we take u ∈ U . It is enough to show that

F (℘−1(u)) ⊆ F (y1, y2, . . . , yn). We have

u = k1u1 + k2u2 + . . .+ knun

for some ki ∈ Fp. Let

y = k1y1 + k2y2 + . . .+ knyn ∈ F (℘−1(U)).

Applying the Artin-Schreier operator ℘ to both sides of the equation we obtain

℘(y) = ℘(k1y1 + k2y2 + . . .+ knyn)

= (k1y1 + k2y2 + . . .+ knyn)p − (k1y1 + k2y2 + . . .+ knyn)

= k1y
p
1 + k2y

p
2 + . . .+ kny

p
n − k1y1 − k2y2 − . . .− knyn

= k1(y
p
1 − y1) + k2(y

p
2 − y2) + . . .+ kn(ypn − yn)

= k1u1 + k2u2 + . . .+ knun

= u.

Hence, y = k1y1+k2y2+ . . .+knyn is a root of the polynomial tp−t−u ∈ F [t]. Observe

that the other roots of tp − t − u are y + µ, where µ ∈ Fp \ {0}. Hence all the roots
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of tp− t− u live in F (y1, y2, . . . , yn), which implies that F (℘−1(u)) ⊆ F (y1, y2, . . . , yn).

Since u ∈ U is arbitrary, we have F (℘−1(U)) ⊆ F (y1, y2, . . . , yn).

Note that yi /∈ F for any i, since otherwise ℘(yi) = ypi − yi = ui ∈ ℘(F ) and this

contradicts the assumption U ∩ ℘(F ) = {0}, as ui 6= 0. Hence, F (yi)/F is a degree p

(Artin-Schreier) extension for all 1 ≤ i ≤ n.

Now we prove the following equality:

[F (y1, . . . , yi) : F (y1, . . . , yi−1)] = p for all 1 < i ≤ n. (2.1)

Assume that [F (y1, . . . , yi) : F (y1, . . . , yi−1)] = 1 for some 1 < i ≤ n. We have seen

that [F (yi) : F ] = p with ypi −yi = ui. If F ⊆ F (yi) ⊆ F (y1, . . . , yi−1), then there exists

ỹ ∈ F (y1, . . . , yi−1) such that F (yi) = F (ỹ) and ỹp − ỹ = u for some u ∈ ⊕i−1k=1Fpuk.
Then by [GO, Lemma 1.2], we conclude that

ui − αu = cp − c

for some α ∈ Fp \ {0} and c ∈ F . Since U ∩℘(F ) = {0}, ui−αu = 0, or ui = αu. This

is a contradiction to the linear independence of {u1, . . . , un}, hence our claim holds.

Therefore, [F (℘−1(U)) : F ] = [F (y1, y2, . . . , yn) : F ] = pn.

To complete the proof, we show that the extension F (℘−1(U)) = F (y1, y2, . . . , yn)

of F is elementary abelian.

Clearly, F (y1, y2, . . . , yn) is the compositum of the fields F (yi), 1 ≤ i ≤ n satisfying

[F (yi) : F ] = p. Furthermore, F (yi) ∩ F (y1, . . . , yi−1) = F for every 1 < i ≤ n, by the

previous paragraph. Then by Lemma 2.4,

Gal(F (y1, y2, . . . , yn)/F ) '
n∏
i=1

Gal(F (yi)/F ).

Since each F (yi)/F is an Artin-Schreier extension, we have Gal(F (yi)/F ) ' Z/pZ for

all 1 ≤ i ≤ n and this gives the desired result.

The converse of Theorem 2.2 also holds. The proof we provide is similar to that

of [AA].

Theorem 2.5. Let E/F be an elementary abelian p-extension of degree pn. Then

E = F (℘−1(U))

for some additive subgroup U ⊆ F with

ord(U) = pn and U ∩ ℘(F ) = {0}. (2.2)

Proof. Since E/F is an elementary abelian p-extension of degree pn, the Galois group

of E/F is

G := Gal(E/F ) =
n∏
i=1

Gi,
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where each Gi is a cyclic group of order p. For each 1 ≤ i ≤ n, let Ei be the fixed field

of the subgroup

Hi := G1 × . . .×Gi−1 × {id} ×Gi+1 × . . .×Gn

of G. As Hi is a normal subgroup of G (since G is abelian), Ei/F is Galois and

Gal(Ei/F ) ' G/Hi ' Gi,

implying that

[Ei : F ] = ord(Gal(Ei/F )) = ord(Gi) = p.

Then there exist ui ∈ F and yi ∈ Ei such that

Ei = F (yi) and ypi − yi = ui.

Hence, as in the proof of Theorem 2.2, we get

E1 · · ·En = F (y1, . . . , yn) = F (℘−1(U)),

where U is the additive subgroup of F generated by u1, . . . , un.

Let us prove that ord(U) = pn. For this it is sufficient to show that the set

{u1, . . . , un} is linearly independent over Fp. Assume the contrary. Then there exist

c1, . . . , cn ∈ Fp, not all 0, such that
∑n

i=1 ciui = 0. Assume without loss of generality

that c1 6= 0. We have

0 =
n∑
i=1

ciui =
n∑
i=1

ci(y
p
i − yi)

=
n∑
i=1

ciy
p
i −

n∑
i=1

ciyi

= (
n∑
i=1

ciyi)
p −

n∑
i=1

ciyi. (2.3)

Let y :=
∑n

i=1 ciyi. From (2.3) we get yp = y, i.e. y ∈ Fp. As c1 6= 0, we have

y1 = c−11 (y −
n∑
i=2

ciyi).

Hence,

y1 ∈ E1 ∩ (E2 · · ·En). (2.4)

Since E2 · · ·En is the fixed field of the subgroup

H :=
n⋂
i=2

Hi = G1 × {id} × . . .× {id}
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of G and E1 is the fixed field of H1, we conclude that E1∩(E2 · · ·En) is the fixed field of

the smallest subgroup of G containing H1 and H, which is G. So E1∩ (E2 · · ·En) = F .

This implies by (2.4) that y1 ∈ F , contradicting [F (y1) : F ] = p. Hence, {u1, . . . , un}
is linearly independent over Fp, and ord(U) = pn.

We will now show that U ∩ ℘(F ) = {0}. Let x ∈ U ∩ ℘(F ). Then

x =
n∑
i=1

αiui = zp − z

for some z ∈ F and αi ∈ Fp. Thus,

zp − z =
n∑
i=1

αiui =
n∑
i=1

αi(y
p
i − yi) = (

n∑
i=1

αiyi)
p −

n∑
i=1

αiyi

or equivalently

n∑
i=1

αiyi − z = (
n∑
i=1

αiyi)
p − zp = (

n∑
i=1

αiyi − z)p,

implying that w :=
∑n

i=1 αiyi − z ∈ Fp. Suppose that x 6= 0. Then αj 6= 0 for some

1 ≤ j ≤ n, and by the argument used in proving ord(U) = pn, we have

yj = α−1j (w + z −
∑
i 6=j,

1≤i≤n

αiyi) ∈ Ej ∩ (E1 · · ·Ej−1 · Ej+1 · · ·En) = F,

i.e. yj ∈ F . This is a contradiction to [F (yj) : F ] = p. Hence x = 0 and U∩℘(F ) = {0}.
We have shown that E1 · · ·En = F (℘−1(U)) satisfies (2.2). Then by Theorem 2.2

we obtain that F (℘−1(U))/F is an elementary abelian p-extension of degree pn. Finally,

since F (℘−1(U)) = E1 · · ·En ⊆ E and [E : F ] = pn, we have

E = E1 · · ·En = F (℘−1(U)).

Since an elementary abelian p-extension E/F is finite and Galois, there exists y ∈ E
such that E = F (y). In the following theorem, under some assumptions, we find such

an element and its minimal polynomaial over F. First, let us introduce some special

type of polynomials.

Definition 2.6. A polynomial of the form

a(t) = ant
pn + an−1t

pn−1

+ . . .+ att
p + a0t ∈ F [t]

is called an additive polynomial over F .

Note that a(t) is separable if and only if a0 6= 0. Moreover, since F has characteristic

p > 0,

a(x+ y) = a(x) + a(y) (2.5)

for any x, y ∈ E, where E is an arbitrary extension of F .

7



Proposition 2.7. Let E/F be an elementary abelian p-extension of degree pn and

a(t) ∈ F [t] be a separable, monic, additive polynomial of degree pn. Suppose that

W := {α | a(α) = 0} ⊆ F.

Then there exists an element y ∈ E with E = F (y) whose minimal polynomial over F

is given by

ϕ(t) = a(t)− z ∈ F [t], for some z ∈ F.

In particular, if Fpn ⊆ F , then y ∈ E can be chosen such that its minimal polynomial

is ϕ(t) = tp
n − t− z ∈ F [t], with z ∈ F .

Proof. We have seen that there exist y1, . . . , yn ∈ E such that

E = F (y1, . . . , yn) with ypi − yi ∈ F,

for all 1 ≤ i ≤ n. Now we will find generators of Gal(E/F ) by extending the generators

of the Artin-Schreier extensions F (yi)/F , 1 ≤ i ≤ n, to E = F (y1, . . . , yn). Define the

automorphisms σi, 1 ≤ i ≤ n, of E over F by

σi(yi) = yi + 1, σi(yj) = yj for j 6= i.

It can easily be seen that these are actually automorphisms of E/F . In order to prove

σi’s generate Gal(E/F ), it is enough to show that they are linearly independent over

Fp. Suppose not, then

σν11 ◦ σν22 ◦ . . . ◦ σνnn = id

for some νi ∈ Fp, not all νi = 0. We can assume ν1 6= 0. Since σν11 = σ−νnn ◦ . . . ◦ σ−ν22 ,

we obtain

y1 + ν1 = σν11 (y1) = σ−νnn ◦ . . . ◦ σ−ν22 (y1) = y1.

This is a contradiction because ν1 6= 0. Hence, σi’s generate Gal(E/F ).

By (2.5), W is an additive subgroup of F . Since a(t) ∈ F [t] is separable and

deg(a(t)) = pn, ord(W ) = pn. Thus,

W =
n⊕
i=1

Fpwi

for some wi ∈ W ⊆ F .

Define y :=
∑n

i=1wiyi, and let σ ∈ Gal(E/F ). There are µ1, µ2, . . . , µn ∈ Fp such

that

σ = σµ11 ◦ σ
µ2
2 ◦ . . . ◦ σµnn . (2.6)

8



Then we have

σ(y) = σ(
n∑
i=1

wiyi) =
n∑
i=1

wiσ(yi) =
n∑
i=1

wi(yi + µi) = y +
n∑
i=1

µiwi. (2.7)

Hence,

σ(y) = y ⇔
n∑
i=1

µiwi = 0

⇔ µi = 0 for all 1 ≤ i ≤ n

⇔ σ = id.

This implies that F (y) = E. To see this, suppose that F (y) $ E. Then there exists

id 6= γ ∈ Gal(E/F (y)) ⊆ Gal(E/F ), but this is not possible as γ(y) = y implies γ = id

by the above argument. Therefore, F (y) = E.

Next, we find the minimal polynomial of y over F . Let a(y) = z, and σ ∈ Gal(E/F )

is an arbitrary automorphism. We assume σ has a combination as in (2.6). Then we

have

σ(z) = σ(a(y))

= a(σ(y))

= a(y +
n∑
i=1

µiwi) (by (2.7))

= a(y) + a(
n∑
i=1

µiwi)

= z + 0 (since
n∑
i=1

µiwi ∈ W )

= z.

Thus, σ(z) = z for all σ ∈ Gal(E/F ), and this is equivalent to z ∈ F . Therefore,

ϕ(t) := a(t)− z ∈ F [t]. Now we have y is a root of the monic polynomial ϕ(t) ∈ F [t].

Moreover, as [F (y) : F ] = [E : F ] = pn and deg(ϕ(t)) = pn, the irreducibility is clear.

Then ϕ(t) ∈ F [t] is the minimal polynomial of y over F .

Finally, suppose that Fpn ⊆ F . Then the set of roots of the separable additive

polynomial a(t) := tp
n − t ∈ F [t] is exactly Fpn , which is in F by assumption. Hence,

the rest follows.

From now on, we present fundamental concepts of elementary abelian p-extensions

of function fields such as ramification, different exponents and genera. Let us note that

the following proposition is stated in a more general setting in [S, Proposition 3.7.10]

but its proof is omitted.
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Proposition 2.8. Consider an algebraic function field F/K with constant field K.

Suppose that there exists an element u ∈ F \K which satisfies:

for every place P ∈ PF with vP (u) < 0, gcd(p, vP (u)) = 1.

Let E = F (y) with

a(y) = u,

where a(t) ∈ K[t] is a separable, monic, additive polynomial of degree pn which has all

its roots in K. Then

(a) E/F is a Galois extension of degree pn and Gal(E/F ) is isomorphic to the

additive group

W := {α | a(α) = 0} ⊆ K,

i.e. Gal(E/F ) ' (Z/pZ)n.

(b) K is algebraically closed in E.

(c) Poles of u in F are totally ramified in E/F and the other places of F are

unramified.

(d) Let P ∈ PF be a pole of u with valuation vP (u) =: −mP . Then the different

exponent d(P ′|P ) of the extension P ′ of P in E is

d(P ′|P ) = (pn − 1)(mP + 1).

(e) The genus g(E) of E is

g(E) = png(F ) +
pn − 1

2
(−2 +

∑
vP (u)<0,
P∈PF

(mP + 1)degP ),

where g(F ) is the genus of F and mP is as in (d).

Proof. (a) Since u ∈ F \K, u has at least one pole in F [S, Corollary 1.1.20] . So we

can find a place P ∈ PF such that

vP (u) =: −mP , with mP > 0.

Let P ′ ∈ PE be a place lying over P and e := e(P ′|P ) be the ramification index of P ′

over P . As a(t) ∈ K[t] is a monic, additive polynomial of degree pn, we have

a(y) = yp
n

+ an−1y
pn−1

+ . . .+ a1y
p + a0y

for some ai ∈ K. Since a(y) = u, we have

vP ′(a(y)) = vP ′(u) = evP (u) = e(−mP ) < 0. (2.8)

10



This implies vP ′(y) < 0, using the triangle inequality. Then by the strict triangle

inequality [S, Lemma 1.1.11] we obtain

vP ′(a(y)) = min{pivP ′(y) | 0 ≤ i ≤ n} = pnvP ′(y). (2.9)

We conclude from (2.8) and (2.9) that

−emP = vP ′(a(y)) = pnvP ′(y). (2.10)

In particular, pn | −emP . Since gcd(p,mP ) = 1 by assumption, we have pn | e which

implies e ≥ pn. Then by the Fundamental Equality we obtain

[E : F ] ≥ e ≥ pn. (2.11)

On the other hand, as y is a root of the polynomial ϕ(t) := a(t) − u ∈ F [t] and

deg(ϕ(t)) = pn, we have [E : F ] = [F (y) : F ] ≤ pn. Therefore, [E : F ] = pn.

Now we show that the extension E/F is Galois. The rest of the proof of part (a) will

be essentially showing the converse of Proposition 2.7. As an immediate consequence

of the above argument, ϕ(t) is the minimum polynomial of y over F . For any α ∈ W
we have

ϕ(y + α) = a(y + α)− u
= a(y) + a(α)− u
= u+ 0− u = 0.

Then for every α ∈ W ⊆ K the element y + α is a root of the polynomial ϕ(t) ∈ F [t].

Since a(t) ∈ K[t] is separable, we see that ord(W ) = pn. We also know deg(ϕ(t)) = pn.

Hence, these are all the roots of ϕ(t) and E = F (y) is the splitting field of the separable

polynomial ϕ(t) over F , i.e. E/F is Galois.

It remains to show that Gal(F (y)/F ) is isomorphic to the additive subgroup

W = {α | a(α) = 0}

of K. For each σ ∈ Gal(F (y)/F ), σ(y) is a root of the polynomial ϕ(t). Thus,

σ(y) = y + α for some α ∈ W . Since α is uniquely determined by σ, we have a

bijection

φ : Gal(F (y)/F ) → W, σ 7→ α.

Finally, we show that φ is a group homomorphism. Let σ1, σ2 ∈ Gal(F (y)/F ). Then

σ1(y) = y + α1 and σ2(y) = y + α2 for some α1, α2 ∈ W . Hence, we have

(σ1 ◦ σ2)(y) = σ1(σ2(y)) = σ1(y + α2) = σ1(y) + σ1(α2) = (y + α1) + α2.

Therefore, φ sends σ1 ◦ σ2 to the sum α1 + α2. This completes the proof of (a).
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(b) Suppose that K is not algebraically closed in E. Then K ′ ) K, where K ′ is

the constant field of E. Let [K ′ : K] =: d. By [S, Lemma 3.6.2], we have

d = [K ′ : K] = [FK ′ : F ].

This implies [E : FK ′] = pn/d, as [E : F ] = pn. Now by the proof of (a), there exists

a place P ∈ PF which is totally ramified in E/F (see (2.11)). Let P ′ ∈ PE be the

extension of P in E. Then

e(P ′|P ) = [E : F ] = pn.

Set PFK′ := P ′ ∩ FK ′. Clearly, PFK′ is a place of FK ′. As FK ′/F is a constant field

extension, the place P is unramified in FK ′/F [S, Theorem 3.6.3(a)], so e(PFK′ |P ) = 1.

Then we have

e(P ′|P ) = e(P ′|PFK′)e(PFK′|P ) = e(P ′|PFK′),

implying that e(P ′|PFK′) = pn. This is a contradiction, since [E : FK ′] = pn/d for

some d > 1 and e(P ′|PFK′) ≤ [E : FK ′] by the Fundamental Equality. Hence K is

also the constant field of E.

(c) We already know that the poles of u are totally ramified in E/F (see the proof

of (a)). Suppose that P ∈ PF is not a pole of u, so vP (u) ≥ 0, i.e. u ∈ OP , where OP
denotes the valuation ring of P . We also know

a(t) = tp
n

+ cn−1t
pn−1

+ . . .+ c1t
p + c0t ∈ K[t] ⊆ OP [t],

which implies that

ϕ(t) = a(t)− u ∈ OP [t].

Then by [S, Theorem 3.5.10(a)], for every extension P ′ of P in E we have

0 ≤ d(P ′|P ) ≤ vP ′(ϕ
′(y)) = vP ′(c0) = 0.

Hence, d(P ′|P ) = 0. Therefore, e(P ′|P ) = 1 for each P ′ ∈ PE lying over P , i.e. P is

unramified.

(d) Let x ∈ F be a prime element at the place P . Since P is totally ramified in

E/F , we have

vP ′(x) = e(P ′|P )vP (x) = pn,

where P ′ is the extension of P in E. We want to find a prime element at the place P ′.

Using (2.10), we see that vP ′(y) = −mP . By assumption gcd(p,mP ) = 1. Then also

gcd(pn,mP ) = 1, and so we can find integers i, j ≥ 0 such that

1 = ipn − jmP .
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We define z := xiyj. Then we have

vP ′(z) = ivP ′(x) + jvP ′(y)

= ipn − jmP = 1,

i.e. z is a prime element at the place P ′ ∈ PE. Hence, by [S, Proposition 3.5.12]

E = F (z) and d(P ′|P ) = vP ′(ψ
′(z)),

where ψ(t) ∈ F [t] is the minimal polynomial of z over F . We have

ψ(t) =
∏
σ∈G

(t− σ(z)),

with G := Gal(E/F ). Let us define a polynomial h(t) :=
∏
σ 6=id

(t− σ(z)) ∈ E[t].

Trivially, ψ(t) = (t− z)h(t). Then ψ′(t) = h(t) + (t− z)h′(t), implying that

ψ′(z) = h(z) =
∏
σ 6=id

(z − σ(z)).

Therefore,

d(P ′|P ) = vP ′(ψ
′(z)) = vP ′(

∏
σ 6=id

(z − σ(z))) =
∑
σ 6=id

vP ′(z − σ(z)).

Now we show that

vP ′(z − σ(z)) = mP + 1

for all id 6= σ ∈ G. Let σ0 ∈ G \ {id}. Then σ0(y) = y + α for some α ∈ W \ {0}. So

z − σ0(z) = xiyj − xi(σ0(y))j ( since x ∈ F )

= xiyj − xi(y + α)j

= xiyj − xi
j∑

k=0

(
j

k

)
yj−kαk

= −xi
j∑

k=1

(
j

k

)
yj−kαk.

Since vP ′(y) = −mP < 0, the strict triangle inequality gives

vP ′(y
j−1) < vP ′(y

j−k)

for k > 1. Moreover, note that
(
j
1

)
= j 6= 0 in the constant field K (since ipn−jmP = 1)

and again α is a nonzero element of K by assumption. Then we obtain

vP ′(z − σ0(z)) = vP ′

(
−xi

j∑
k=1

(
j

k

)
yj−kαk

)

= vP ′(x
i) + vP ′

((
j

1

)
αyj−1

)
= vP ′(x

i) + vP ′(y
j−1)

= ipn + (j − 1)(−mP )

= (ipn − jmP ) +mP = 1 +mP .
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Hence, we conclude that

d(P ′|P ) =
∑
σ 6=id

vP ′(z − σ(z)) = (pn − 1)(mP + 1),

as ord(G \ {id}) = pn − 1.

(e) We have proved that a place P ∈ PF is either unramified in E/F , in which case

d(P ′|P ) = 0, or totally ramified in the extension E/F . We have also proved in (d) that

if P ∈ PF is totally ramified in E/F , then

d(P ′|P ) = (pn − 1)(mP + 1).

Furthermore, since the constant field of E is K by (b), the Hurwitz Genus Formula

yields

2g(E)− 2 = [E : F ](2g(F )− 2) +
∑
P∈PF

∑
P ′|P

d(P ′|P )degP ′

= pn(2g(F )− 2) +
∑

vP (u)<0,
P∈PF

(pn − 1)(mP + 1)degP ′

or equivalently

g(E) = png(F ) +
pn − 1

2
(−2 +

∑
vP (u)<0,
P∈PF

(mP + 1)degP ′).

Finally, let P be a place of F with vP (u) < 0. Then since P is totally ramified in E/F ,

using the Fundamental Equality we obtain

degP ′ = [FP ′ : K] = [FP ′ : FP ][FP : K] = 1degP = degP,

where P ′ is the extension of P in E (here FP ′ and FP denote the residue class fields of

P ′ and P , respectively). This finishes the poof of (e).

There is a more general way to compute the genus of an elementary abelian p-

extension of a function field, which uses the genera of some intermediate fields. Before

showing this, we need a lemma.

Lemma 2.9. Let E/F be an elementary abelian p-extension of degree pn. Then the

number of intermediate fields F ⊆ L ⊆ E with [L : F ] = p is pn−1
p−1 .

Proof. Since the extension E/F is Galois, there is a one to one correspondence between

the intermediate fields F ⊆ L ⊆ E with [L : F ] = p and the subgroups of Gal(E/F )

of order pn−1. Because Gal(E/F ) is an elementary abelian group of order pn, we

can regard it as a vector space over Fp of dimension n. Hence the number of n − 1

dimensional subspaces of Gal(E/F ) will give the desired number, which is well-known:

(pn − 1)(pn − p) . . . (pn − p(n−1)−1)
(pn−1 − 1)(pn−1 − p) . . . (pn−1 − p(n−1)−1)

, (2.12)

After cancellations we see (2.12) is equal to pn−1
p−1 , and this completes the proof.
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Theorem 2.10. Let F/K be an algebraic function field with constant field K, and let

E be an elementary abelian p-extension of Fof degree pn with the same constant field.

Assume that E1, . . . , Et are the intermediate fields F ⊆ Ei ⊆ E with [Ei : F ] = p,

1 ≤ i ≤ t (here t = pn−1
p−1 by Lemma 2.9). Then the genus g(E) of E is given by

g(E) =
t∑
i=1

g(Ei)−
p

p− 1
(pn−1 − 1)g(F ).

The proof of Theorem 2.10 is due to Garcia and Stichtenoth [GS]. It depends

heavily on the following fact which can be found in [K, Theorem 1].

Theorem 2.11. Suppose that we have a relation∑
H⊆G

rHεH = 0 ∈ Q[G],

where G := Gal(E/F ) and εH := 1
ord(H)

∑
σ∈H

σ ∈ Q[G] for any subgroup H ⊆ G. Then

the same relation exists between the genera. More precisely,∑
H⊆G

rHg(EH) = 0,

where EH is the fixed field of the subgroup H ⊆ G and g(EH) is the genus of EH .

Now we can prove Theorem 2.10.

Proof of Theorem 2.10. Let Hi := Gal(E/Ei), 1 ≤ i ≤ t, i.e. Hi is the subgroup

of Gal(E/F ) corresponding to the intermediate field Ei. We choose a non-identity

element σ of Gal(E/F ), and we claim that σ is contained in exactly pn−1−1
p−1 of the

subgroups Hi. Observe that Gal(E/F )/〈σ〉 is a vector space over Fp of

dim(Gal(E/F )/〈σ〉) = dim(Gal(E/F ))− dim(〈σ〉) = n− 1.

By the same method which we used in (2.12), we see that Gal(E/F )/〈σ〉 has pn−1−1
p−1

subspaces of dimension n−2. This means thatGal(E/F ) has precisely pn−1−1
p−1 subspaces

of dimension n−1 containing σ, or equivalently, among the pn−1
p−1 subgroups ofGal(E/F )

having order pn−1 (namely Hi’s ), pn−1−1
p−1 subgroups contain σ. This proves the claim.

Clearly, id ∈ Hi for all 1 ≤ i ≤ t. Let us also denote G := Gal(E/F ). Then we have

pn−1 ·
t∑
i=1

εHi
=

t∑
i=1

∑
σ∈Hi

σ

= (
pn − 1

p− 1
) · id+ (

pn−1 − 1

p− 1
) ·

∑
σ∈G\{id}

σ

= (
pn − 1

p− 1
− pn−1 − 1

p− 1
) · id+ (

pn−1 − 1

p− 1
) ·
∑
σ∈G

σ

= (
pn − pn−1

p− 1
) · id+ (

pn−1 − 1

p− 1
)pn · εG.
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Dividing the equations above by pn−1, we obtain

t∑
i=1

εHi
= (

p− 1

p− 1
) · id+

p

p− 1
(pn−1 − 1) · εG. (2.13)

Since id = ε{id}, (2.13) is equivalent to

ε{id} =
t∑
i=1

εHi
− p

p− 1
(pn−1 − 1) · εG.

Then by Theorem 2.11, we conclude

g(E) =
t∑
i=1

g(Ei)−
p

p− 1
(pn−1 − 1)g(F ).
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3

Hasse-Arf Theorem for Elementary Abelian p-Extensions

Let E/F be a finite Galois extension of algebraic function fields, and let the character-

istic of F be p > 0, as usual. In this section, we will introduce the higher ramification

groups, and then we will prove the Hasse-Arf Theorem in the particular case where

Gal(E/F ) is an elementary abelian p-group.

Definition 3.1. Let F and E be as above. Suppose that P is a place of F and P ′

is an extension of P in E. Then for every i ≥ −1, the i-th ramification group of the

extension P ′|P is defined to be

Gi(P
′|P ) := {σ ∈ G | vP ′(σ(z)− z) ≥ i+ 1 for all z ∈ OP ′},

where G := Gal(E/F ) and OP ′ is the valuation ring of the place P ′.

Indeed, Gi(P
′|P ) is a subgroup of G. To see this, let σ1, σ2 ∈ Gi(P

′|P ) and z ∈ OP ′ .
Then by the triangle equality we have

vP ′((σ1 ◦ σ2)(z)− z) = vP ′(σ1(σ2(z))− σ2(z) + σ2(z)− z)

≥ min{vP ′(σ1(σ2(z))− σ2(z)), vP ′(σ2(z)− z)}
≥ i+ 1,

as both vP ′(σ1(σ2(z))−σ2(z)) ≥ i+1 and vP ′(σ2(z)−z) ≥ i+1. So σ1 ◦σ2 ∈ Gi(P
′|P ).

Note that, here we have also used that σ2(z) ∈ OP ′ for any z ∈ OP ′ .
Denote by Gi := Gi(P

′|P ) the i-th ramification group of the extension P ′|P . It is

easy to see that Gi’s form a decreasing sequence

G ⊇ G0 ⊇ G1 ⊇ G2 ⊇ . . . (3.1)

of subgroups of G and Gm = {id} for m big enough.

The next result shows that this sequence helps to understand the structure of G.

For a proof, see [S, Proposition 3.5.8].

Proposition 3.2. With the notation as above we have:

(a) ord(G0) = e(P ′|P ) and G1 is a normal subgroup of G0. Further, G1 is a p-group

and G0/G1 is cyclic of order relatively prime to p.

(b) For all i ≥ 1, Gi+1 is a normal subgroup of Gi and Gi/Gi+1 is an elementary

abelian p-group.
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Before stating the famous Hasse-Arf Theorem, we will give a definition.

Definition 3.3. Let s ≥ 0 be an integer. We call s a jump of the extension P ′|P if

Gs ) Gs+1.

Theorem 3.4. (Hasse-Arf Theorem). Assume G is an abelian p-group and maintain

the other notation as above. Let P ′|P be totally ramified, and let s < t be two subsequent

jumps of P ′|P , which means that

Gs ) Gs+1 = . . . = Gt ) Gt+1.

Then we have

t ≡ s (mod (G : Gt)).

A proof of Theorem 3.4, due to Arf in a general case, can be found in [A]. The rest

of the section is devoted to the proof of Theorem 3.4 in the particular case where G is

an elementary abelian p-group. The proof is due to Garcia and Stichtenoth [GaSt]. It

only uses the following well-known facts.

Corollary 3.5. (Transitivity of the Different Exponents) [S, Corollary 3.4.12]. Let

L ⊇ E ⊇ F be a tower of finite separable function field extensions. Suppose that

P ′′ ⊇ P ′ ⊇ P are places of L, E and F , respectively. Then

d(P ′′|P ) = e(P ′′|P ′)d(P ′|P ) + d(P ′′|P ′).

Theorem 3.6. (Hilbert’s Different Formula) [S, Theorem 3.8.7]. As before, E/F is a

finite Galois extension of algebraic function fields and P ′ ∈ PE is an extension of the

place P ∈ PF in E. Then we have

d(P ′|P ) =
∞∑
i=0

(ord(Gi(P
′|P ))− 1).

Note that for an unramified place P of F , we have G0 = {id} by Proposition 3.2(a).

Therefore, Gi = {id} for all i ≥ 0 in this case. If a place P ∈ PF is totally ramified,

then by Proposition 3.2(a), (3.1) becomes

G = G0 = G1 ⊇ G2 ⊇ G3 ⊇ . . . .

Now we state Hasse-Arf Theorem in the case we will prove.

Theorem 3.7. Assume that G is an an elementary abelian p-group and maintain the

other notation as above. Let P ′|P be totally ramified, and let s < t be two subsequent

jumps of P ′|P . Then we have

t ≡ s (mod (G : Gt)).
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Proof. Let s1, . . . , sm denote all jumps of the extension P ′|P in order. Then

0 < s1 < . . . < sm

and Gi = {id} for all i > sm. We show by induction that

sn+1 ≡ sn (mod (G : Gsn+1))

for all 1 ≤ n ≤ m− 1. For n = 1, we have

G = G0 = G1 = . . . = Gs1 ) Gs1+1 = . . . = Gs2 ) Gs2+1 ⊇ . . . .

Since G is an elementary abelian p-group, we can consider it as a vector space over Fp;
then so is the quotient G/Gs2+1. Clearly, Gs2/Gs2+1 is a subspace of G/Gs2+1. Then

there exists a subspace H of G such that

G/Gs2+1 = (Gs2/Gs2+1)⊕ (H/Gs2+1).

It is easy to see that, H, regarded as a subgroup of G, satisfies the following equalities:

Gs2+1 ⊆ H ⊆ G, H ∩Gs2 = Gs2+1, ord(H) = ord(Gs2+1)(G : Gs2). (3.2)

Let EH be the fixed field of H and Q := P ′∩EH . By definition of ramification groups,

we have

Gi(P
′|Q) = H ∩Gi(P

′|P ) = H ∩Gi

for all i ≥ 0. Then Hilbert’s Different Formula yields

d(P ′|P ) = (s1 + 1)(ord(G)− 1) + (s2 − s1)(ord(Gs2)− 1) +
∑
k>s2

(ord(Gk)− 1).

Similarly, we have

d(P ′|Q) = (s1 + 1)(ord(H ∩G)− 1) + (s2 − s1)(ord(H ∩Gs2)− 1)

+
∑
k>s2

(ord(H ∩Gk)− 1)

= (s1 + 1)(ord(H)− 1) + (s2 − s1)(ord(Gs2+1)− 1)

+
∑
k>s2

(ord(Gk)− 1).

By the transitivity of different exponents, we conclude

d(P ′|P )− d(P ′|Q) = e(P ′|Q)d(Q|P )

= ord(H)d(Q|P ) ≡ 0 (mod ord(H)).
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Here we have also used the fact that Q ∈ PEH
is totally ramified in E, which is a

consequence of the total ramification of the place P in E. Then subtracting the above

equations we obtain

(s1 − s2)(ord(Gs2)− ord(Gs2+1)) ≡ (s1 + 1)(ord(G)− ord(H)) (mod ord(H)),

which implies

(s1 − s2)(ord(Gs2)− ord(Gs2+1)) ≡ 0 (mod ord(H)). (3.3)

Clearly, (3.3) is equivalent to

(s1 − s2)ord(Gs2+1)((Gs2 : Gs2+1)− 1) ≡ 0 (mod ord(H)). (3.4)

By (3.2), we know that ord(H) = ord(Gs2+1)(G : Gs2), so (3.4) becomes

(s1 − s2)((Gs2 : Gs2+1)− 1) ≡ 0 (mod (G : Gs2)).

Finally, since (Gs2 : Gs2+1)− 1 and (G : Gs2) are relatively prime, we obtain

s1 − s2 ≡ 0 (mod (G : Gs2)).

Hence, the proof of the first step is complete. Now suppose that 1 < n ≤ m− 1 and

sj+1 ≡ sj (mod (G : Gsj+1
)) (3.5)

for all 1 ≤ j < n. We will show

sn+1 ≡ sn (mod (G : Gsn+1)).

For convenience, let s := sn and t := sn+1. Then we have the sequence

G = G0 = G1 ⊇ . . . ⊇ Gs ) Gs+1 = . . . = Gt ) Gt+1 ⊇ . . . .

By exactly the same method as in the proof of the first step, we can find a subgroup

K ⊆ G such that

Gt+1 ⊆ K ⊆ G, K ∩Gt = Gt+1, ord(K) = ord(Gt+1)(G : Gt). (3.6)

Let EK be the fixed field of K and Q1 := P ′∩EK be the restriction of P ′ to EK . Using

Hilbert’s Different Formula we obtain

d(P ′|P ) = (s1 + 1)(ord(G)− 1) +
n−1∑
j=1

(sj+1 − sj)(ord(Gsj+1
)− 1)

+ (t− s)(ord(Gt)− 1) +
∑
l>t

(ord(Gl)− 1),
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and also as Gi(P
′|Q1) = K ∩Gi,

d(P ′|Q1) = (s1 + 1)(ord(K)− 1) +
n−1∑
j=1

(sj+1 − sj)(ord(K ∩Gsj+1
)− 1)

+ (t− s)(ord(Gt+1)− 1) +
∑
l>t

(ord(Gl)− 1).

Since d(P ′|P )− d(P ′|Q1) = e(P ′|Q1)d(Q1|P ) = ord(K)d(Q1|P ), taking the difference

of the two equations we conclude

(s− t)(ord(Gt)− ord(Gt+1)) ≡
n−1∑
j=1

(sj+1 − sj)(ord(Gsj+1
)− ord(K ∩Gsj+1

)) (3.7)

modulo ord(K). Now by induction hypothesis, for every j with 1 ≤ j < n there exists

some cj ∈ Z such that

sj+1 − sj = cj(G : Gsj+1
).

Then we have

(sj+1 − sj)ord(Gsj+1
) = cj(G : Gsj+1

)ord(Gsj+1
) = cjord(G)

and

(sj+1 − sj)ord(K ∩Gsj+1
) = cj(G : Gsj+1

)ord(K ∩Gsj+1
)

= cj(G : Gsj+1
)
ord(K)ord(Gsj+1

)

ord(K ·Gsj+1
)

= cj
ord(G)

ord(K ·Gsj+1
)
ord(K).

This implies

n−1∑
j=1

(sj+1 − sj)(ord(Gsj+1
)− ord(K ∩Gsj+1

)) ≡ 0 (mod ord(K)).

So we conclude from (3.7) that

(s− t)(ord(Gt)− ord(Gt+1)) ≡ 0 (mod ord(K)). (3.8)

In what follows, we will just repeat the argument which we used in the proof of the

first step. By (3.8), we have

(s− t)ord(Gt+1)((Gt : Gt+1)− 1) ≡ 0 (mod ord(K)).

Since ord(K) = ord(Gt+1)(G : Gt) by (3.6), we have

(s− t)((Gt : Gt+1)− 1) ≡ 0 (mod (G : Gt)),

and this completes the proof, as (Gt : Gt+1)− 1 and (G : Gt) are relatively prime.
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More generally, let the extension P ′|P be ramified (not necessarily totally ramified).

We consider the fixed field EG0 of G0. Let P1 := P ′ ∩ EG0 . Then P1 ∈ PEG0
is totally

ramified in E [S, Theorem 3.8.2], and Gi(P
′|P1) = Gi(P

′|P ) for all i ≥ 0, by definition

of ramification groups. Hence, by the argument used in proving Theorem 3.7, we obtain

t ≡ s (mod (G0 : Gt)),

where s < t are two subsequent jumps of P ′|P .
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4

Asymptotic Theory of Elementary Abelian p-Extensions

Let Fq be a finite field with q = ps elements, where s is a positive integer, and let

F/Fq be an algebraic function field with constant field Fq. Function fields over finite

fields is a subject of interest, not only due to theoretical reasons but also due to their

relation to coding theory. One of the central problems is the number of rational places.

This number is bounded by the celebrated Hasse-Weil bound ( [S, Theorem 5.2.3]),

although the bound is big when the genus is big. Moreover, again partly due to coding

theoretic reasons, the growth of the number of rational places relative to genus in an

infinite sequence of function fields over finite fields (of growing genera) is of interest

too. When this ratio for a given sequence has a positive limit, the sequence said to be

asymptotically good.

Suppose that Ei/F are abelian extensions with

F ⊆ E1 ⊆ E2 ⊆ . . . ,

and Fq is the constant field of each Ei, i ≥ 1, as well. The aim of this section is to show

that the genus of Ei increases much faster than the number of its rational places as

[Ei : F ] goes to infinity, which is a disappointing result. The proof of this fact will use

Hasse-Arf Theorem. Since we proved Hasse-Arf for elementary abelian p-extensions,

we will formulate the results only for such extensions. The general (abelian) case can

be seen in [FPS].

In the following, we will assume that E/F is an extension of function fields with

Galois group G = Gal(E/F ) an elementary abelian p-group. Let P be a place of F/Fq,
and let P ′ be the only place of E/Fq lying over P . Moreover, let FP := OP/P and

EP ′ := OP ′/P ′ denote the residue class fields of P and P ′, respectively.

Lemma 4.1. Under the above assumptions we have:

(a) The field extension EP ′/FP is Galois.

(b) Every σ ∈ G induces an automorphism σ̄ of EP ′/FP given by

σ̄(x+ P ′) = σ(x) + P ′,

where x+ P ′ ∈ OP ′/P ′ = EP ′, and each automorphism of EP ′/FP arises in this way.
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Note that the above lemma holds even the constant field is not finite. For a proof,

see [S, Theorem 3.8.2].

Now we consider the factor groups (P ′)i/(P ′)i+1, i ≥ 1. We have the following

lemma.

Lemma 4.2. For each i ≥ 1, the factor group (P ′)i/(P ′)i+1 is a vector space over EP ′

via the multiplication

(x+ P ′)(a+ (P ′)i+1) := xa+ (P ′)i+1,

where x ∈ OP ′, a ∈ (P ′)i. The dimension of (P ′)i/(P ′)i+1 over EP ′ is one.

Proof. It is straightforward to show that the scalar multiplication is well-defined and

(P ′)i/(P ′)i+1 is an EP ′-vector space.

In order to prove (P ′)i/(P ′)i+1 is a one-dimensional vector space over EP ′ , we

choose a nonzero element a + (P ′)i+1 ∈ (P ′)i/(P ′)i+1. So a ∈ (P ′)i \ (P ′)i+1. Let π

be a prime element at the place P ′. Then by [S, Theorem 1.1.6(b)], a = πiu for some

unit u ∈ (OP ′)∗. Now let y + (P ′)i+1 ∈ (P ′)i/(P ′)i+1 be an arbitrary element. We can

assume y 6= 0. Then y = πjv for some j ≥ i and v ∈ (OP ′)∗. Hence, we have

y + (P ′)i+1 = πjv + (P ′)i+1

= (πj−ivu−1 + P ′)(πiu+ (P ′)i+1)

= (πj−ivu−1 + P ′)(a+ (P ′)i+1).

As vP ′(π
j−ivu−1) = j − i ≥ 0, we conclude that πj−ivu−1 + P ′ ∈ OP ′/P ′ = EP ′ , and

the result follows.

Define a map from G× (P ′)i/(P ′)i+1 to (P ′)i/(P ′)i+1 by

(σ, a+ (P ′)i+1) 7→ σ(a) + (P ′)i+1 =: σ(a+ (P ′)i+1). (4.1)

As P is a place of F and σ ∈ G = Gal(E/F ), we have σ(P ) = P . Then σ(P ′) is a

place of E lying over P . By assumption P ′ is the only place of E lying over P . Hence,

σ(P ′) = P ′ and (4.1) makes sense. For i ≥ 1, we set

Xi := {a+ (P ′)i+1 ∈ (P ′)i/(P ′)i+1 | σ(a+ (P ′)i+1) = a+ (P ′)i+1 for all σ ∈ G}.

It is easy to check that Xi is an FP -subspace of (P ′)i/(P ′)i+1.

Proposition 4.3. Xi as a vector space over FP has dimension at most one.

Proof. Suppose that Xi 6= {0} and choose an element 0 6= a + (P ′)i+1 ∈ Xi. Then by

Lemma 4.2, for every a1 + (P ′)i+1 ∈ Xi there exists some c ∈ OP ′ such that

a1 + (P ′)i+1 = (c+ P ′)(a+ (P ′)i+1).
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We need to show that c+ P ′ ∈ FP . Let σ ∈ G. Then

(c+ P ′)(a+ (P ′)i+1) = a1 + (P ′)i+1

= σ(a1 + (P ′)i+1)

= σ((c+ P ′)(a+ (P ′)i+1))

= σ(ca+ (P ′)i+1)

= σ(ca) + (P ′)i+1

= σ(c)σ(a) + (P ′)i+1

= (σ(c) + P ′)(σ(a) + (P ′)i+1)

= σ̄(c+ P ′)σ(a+ (P ′)i+1)

= σ̄(c+ P ′)(a+ (P ′)i+1).

Hence, σ̄(c+P ′) = c+P ′ for all σ ∈ G. So using Lemma 4.1 we can conclude c+P ′ ∈ EP ′
is invariant under the automorphisms of EP ′/FP , and this implies c+ P ′ ∈ FP .

Next we consider the map

ψ : G0 → (EP ′)
∗

σ 7→ σ(π)

π
+ P ′,

and for i ≥ 1, the maps

ϕi : Gi → (P ′)i/(P ′)i+1

σ 7→ σ(π)

π
− 1 + (P ′)i+1,

where π is a prime element at the place P ′ and G0, G1, . . . are defined as in Section 3.

Then ψ is a well-defined homomorphism from G0 to the multiplicative group of EP ′

with kernel G1. In particular, it is independent of the choice of the prime element.

For details we refer to [S, Proposition 3.8.5]. With a slight adjustment of the proof

of [S, Proposition 3.8.5], one can also show that ϕi is a homomorphism from Gi to the

additive group of (P ′)i/(P ′)i+1 and ker(ϕi) = Gi+1. We omit the proof.

Proposition 4.4. With the notation above, we have:

(a) The image of ψ is contained in (FP )∗.

(b) For all i ≥ 1, Im(ϕi) ⊆ Xi.

Proof. For the proof of (a), see [FPS, Proposition 2]. The proof of (b) is similar to that

of (a). Let a+ (P ′)i+1 ∈ Im(ϕi) with i ≥ 1. Then a+ (P ′)i+1 = ϕi(τ) for some τ ∈ Gi.
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Thus, for all σ ∈ G we obtain

σ(a+ (P ′)i+1) = σ(ϕi(τ))

= σ(
τ(π)

π
− 1 + (P ′)i+1)

=
σ(τ(π))

σ(π)
− 1 + (P ′)i+1

=
τ(σ(π))

σ(π)
− 1 + (P ′)i+1 (since G is abelian)

= ϕi(τ) (because σ(π) is a prime at P ′)

= a+ (P ′)i+1,

which implies a+ (P ′)i+1 ∈ Xi.

Note that the results we obtained till now are valid independent of the finiteness of

the constant field. In the following we need a finite constant field.

Corollary 4.5. Let e(P ′|P ) be the ramification index of P ′ over P . Then we have

e(P ′|P ) ≤ (ord(FP ))r, (4.2)

where P , P ′ and FP are defined as above, and r is the number of jumps of the extension

P ′|P .

Proof. The field FP is finite, as F is a function field over a finite field. For i ≥ 0, let

gi := ord(Gi). We know by Proposition 3.2 that g0 = e(P ′|P ). Then since gn = 1 for

sufficiently large n, we have

e(P ′|P ) = g0 = (g0/g1)(g1/g2) . . . (gn−1/gn).

Now using Proposition 4.4 we see that g0/g1 ≤ ord(FP ). Since Xi is an FP vector space

with dimension at most one (Proposition 4.3) and Im(ϕi) ⊆ Xi (Proposition 4.4), we

can also see that gi/gi+1 ≤ ord(FP ) for all 1 ≤ i ≤ n− 1. Moreover, as gi/gi+1 = 1 in

the case i is not a jump, we obtain (4.2).

The following proposition, which is due to Frey, Perret and Stichtenoth [FPS], gives

an estimate for the different exponent d(P ′|P ).

Proposition 4.6. Under the assumptions of this section, we have

d(P ′|P ) ≥ 1

2
re(P ′|P ),

where r is the number of jumps of P ′|P .
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Proof. Let 0 ≤ s1 < . . . < sr denote the jumps of P ′|P , and let gi := ord(Gi) for i ≥ 0,

as before. Since G is an elementary abelian p-group, for each 1 < i ≤ r we have

(si − si−1)gsi = kig0 (4.3)

for some positive integer ki, by the Hasse-Arf Theorem. As ord(G0) = g0 = e(P ′|P ),

(4.3) becomes

(si − si−1)gsi = kie(P
′|P ), (4.4)

where ki ∈ Z+ and 1 < i ≤ r. Then using Hilbert’s Different Formula we obtain

d(P ′|P ) =
∞∑
i=0

(gi − 1)

=

s1∑
i=0

(gi − 1) +
∞∑

i=s1+1

(gi − 1)

= (s1 + 1)(gs1 − 1) +
r∑
j=2

(sj − sj−1)(gsj − 1)

= (s1 + 1)gs1(1− g−1s1 ) +
r∑
j=2

(sj − sj−1)gsj(1− g−1sj )

= (s1 + 1)e(P ′|P )(1− g−1s1 ) +
r∑
j=2

kje(P
′|P )(1− g−1sj ) (by (4.4))

≥ 1

2
re(P |P ′).

In the last inequality we used the fact that gsi > 1 for all 1 ≤ i ≤ r, as si is a jump.

Note that Proposition 4.6 remains true in the case P ′ is not the only extension of

the place P .

Now we consider the ramification group

G0(Pi|P ) = {σ ∈ G | vPi
(σ(z)− z) ≥ 1 for all z ∈ OPi

},

where Pi is one of the extensions of P in E. Let g(P ) be the number of places lying

over P . Since E/F is a Galois extension, for each j = 1, . . . , g(P ) there exists an

automorphism σ ∈ G such that Pj = σ(Pi). Then as G is abelian, we conclude that

G0(P ) := G0(Pi|P ) is independent of the choice of the extension Pi. Here we have

used G0(τ(Pi)|P ) = τ−1G0(Pi|P )τ for all τ ∈ G [S, p.130]. Let TP be the fixed field of

G0(P ). Then TP is the maximal subextension of F where P is unramified [S, Theorem

3.8.3(c)]. Therefore, the field M := ∩P∈STP is the maximal unramified subextension

of F , where S denotes the set of ramified places of F in E/F . Note that S is a finite

set (for a proof see [S, Corollary 3.5.5]).
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Lemma 4.7. With the notations above, we have∑
P∈S

logqe(P ) ≥ logq[E : F ]− logq[M : F ].

Proof. The subgroup corresponding to intermediate fieldM isGal(E/M) =
∏
P∈S

G0(P ),

which is the subgroup generated by all G0(P )’s with P ∈ S. Then since G is abelian

and ord(G0(P )) = e(P ) for all P ∈ S, we have

[E : M ] = ord(Gal(E/M)) ≤
∏
P∈S

ord(G0(P )) =
∏
P∈S

e(P ).

Finally, as [E : M ] = [E : F ]/[M : F ], by taking logarithms we obtain the desired

inequality.

We can now prove an important estimate for the degree of the different Diff(E/F ).

Theorem 4.8. Let E/F be an elementary abelian p-extension of function fields having

the same constant field Fq, and let F ⊆M ⊆ E be the maximal unramified subextension.

Then the degree of the different Diff(E/F ) satisfies

deg(Diff(E/F )) ≥ 1

2
[E : F ](logq[E : F ]− logq[M : F ]).

Proof. Let P be a place of F , and let us consider the group G−1(P
′|P ), where P ′ is an

extension of P in E. It is easy to show that

G−1(P
′|P ) = {σ ∈ G | σ(P ′) = P ′}.

Clearly, G−1(P
′|P ) ⊆ G0(P ). Similar to G0(P ), it is independent of the choice of the

extension P ′. Let ZP be the fixed field of G−1(P ) := G−1(P
′|P ), and let PZ := P ′∩ZP .

Then the place PZ of ZP has only one extension in E.

Using Hilbert’s Different Formula we see that

d(P ′|P ) =
∞∑
i=0

(ord(Gi(P
′|P ))− 1) = d(P ′|PZ). (4.5)

Moreover,

e(P ′|P ) = e(P ′|PZ) and f(P ′|P ) = f(P ′|PZ), (4.6)

since e(PZ |P ) = f(PZ |P ) = 1 [S, Theorem 3.8.2]. Now let S denotes the set of

ramified place of F in E, and let r(P ) be the number of jumps for P ′|P . Note that

d(P ) := d(P ′|P ) = d(P ′′|P ) for any two places P ′, P ′′ ∈ PE lying over P , since the
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extension E/F is Galois [S, Corollary 3.7.2(c)]. Then we have

deg(Diff(E/F )) =
∑
P∈S

∑
P ′|P

d(P )degP ′

=
∑
P∈S

g(P )d(P )degP ′

=
∑
P∈S

g(P )d(PZ)degP ′ (by (4.5))

≥ 1

2

∑
P∈S

g(P )r(PZ)e(PZ)degP ′ (by Proposition 4.6)

=
1

2

∑
P∈S

g(P )r(PZ)e(P )degP ′ (by (4.6))

=
1

2

∑
P∈S

g(P )r(PZ)e(P )f(P )degP

=
1

2
[E : F ]

∑
P∈S

r(PZ)degP

=
1

2
[E : F ]

∑
P∈S

r(PZ)degPZ (by (4.6))

=
1

2
[E : F ]

∑
P∈S

logq(q
degPZ )r(PZ)

≥ 1

2
[E : F ]

∑
P∈S

logqe(PZ) (by Corollary 4.5)

=
1

2
[E : F ]

∑
P∈S

logqe(P ) (by (4.6))

≥ 1

2
[E : F ](logq[E : F ]− logq[M : F ]) (by Lemma 4.7)

and this gives the estimate that we want.

We are ready to prove the main result of this section. Let us note that N(F )

denotes the number of rational places, i.e. the number of degree one places of F/Fq.

Theorem 4.9. Let F/Fq be an algebraic function field, and let (Ev)v≥1 be a sequence

of elementary abelian p-extensions of F with the same constant field Fq. Then the

quotient N(Ev)/g(Ev) goes to zero as [Ev : F ]→∞.

Proof. By Theorem 4.8, for each v ≥ 1 we have

deg(Diff(Ev/F )) ≥ 1

2
[Ev : F ](logq[Ev : F ]− logq[M : F ]), (4.7)

where F ⊆ M ⊆ Ev is the maximal unramified subextension. Any unramified abelian

extension M0/F with constant field Fq is of degree [M0 : F ] ≤ h, where h is the class

number of F (see [AT]). Let us note that class number is defined as the order of the

group of divisor classes of degree zero. Then (4.7) becomes

deg(Diff(Ev/F )) ≥ 1

2
[Ev : F ](logq[Ev : F ]− logqh), (4.8)
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where h is the class number of F . The Hurwitz Genus Formula for Ev/F gives

2g(Ev)− 2 = [Ev : F ](2g(F )− 2) + deg(Diff(Ev/F )).

So we obtain

g(Ev) ≥ [Ev : F ](g(F )− 1) +
1

2
deg(Diff(Ev/F ))

≥ [Ev : F ](g(F )− 1) +
1

4
[Ev : F ](logq[Ev : F ]− logqh) (by (4.8))

for each v ≥ 1. Moreover, N(Ev) ≤ [Ev : F ]N(F ) by the Fundamental Equality. Hence

for every v ≥ 1,

N(Ev)

g(Ev)
≤ N(F )

g(F )− 1 + 1
4
(logq[Ev : F ]− logqh)

holds. Since the right hand side of the inequality goes to zero as [Ev : F ] → ∞, the

result follows.
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