Elementary abelian p-extensions of algebraic function fields and the Hasse-Arf Theorem

Alkan, Sezel (2017) Elementary abelian p-extensions of algebraic function fields and the Hasse-Arf Theorem. [Thesis]

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://risc01.sabanciuniv.edu/record=b1649241 (Table of Contents)


This thesis starts with the basic properties of elementary abelian p-extensions of function fields. Rami cation structure and the genus computation for such extensions are presented first. When the constant field is finite, number of rational places of function fields is finite and this number is bounded by the Hasse-Weil bound. However for large genus, this bound is weak. Therefore, when a sequence of function field extensions with growing genera is considered, the growth of the ratio of the number of rational places to the genera in the sequence is of interest. Following the work of Frey-Perret-Stichtenoth, we show that the limit of this ratio is zero if a sequence of elementary abelian p-extensions are considered. Hasse-Arf Theorem gives information about the jumps in the higher ramification group filtration of a function eld extension. We also present the proof of this theorem for elementary abelian p-extensions, which is due to Garcia and Stichtenoth.

Item Type:Thesis
Uncontrolled Keywords:Function eld extension, elementary abelian extension, rami cation, rational place, genus. -- Fonksiyon cismi geni slemesi, elementer abelyen geni sleme, dallanma, rasyonel yer, cins.
Subjects:Q Science > QA Mathematics
ID Code:34029
Deposited By:IC-Cataloging
Deposited On:10 Oct 2017 10:37
Last Modified:10 Oct 2017 10:37

Repository Staff Only: item control page