
PRIVACY RISKS OF SPATIO-TEMPORAL DATA

TRANSFORMATIONS

by

EMRE KAPLAN

Submitted to the Graduate School of Engineering and

Natural Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Sabancı University

January, 2017

c� Emre Kaplan 2017

All Rights Reserved

PRIVACY RISKS OF SPATIO-TEMPORAL DATA

TRANSFORMATIONS

Emre Kaplan

Computer Science and Engineering

Ph.D. Thesis, 2017

Thesis Supervisor: Prof. Yücel Saygın

Keywords: privacy attack, spatio-temporal data, trajectory, distance preserving data

transformation

Abstract

In recent years, we witness a great leap in data collection thanks to increasing number

of mobile devices. Millions of mobile devices including smart phones, tablets and even

wearable gadgets embedded with GPS hardware enable tagging data with location. New

generation applications rely heavily on location information for innovative business in-

telligence which may require data to be shared with third parties for analytics. However,

location data is considered to be highly sensitive and its processing is regulated especially

in Europe where strong data protection practices are enforced. To preserve privacy of

individuals, first precaution is to remove personal identifiers such as name and social se-

curity number which was shown to be problematic due to possible linking with public

data sources. In fact, location itself may be an identifier, for example the locations in the

evening may hint the home address which may be linked to the individual. Since location

cannot be shared as it is, data transformation techniques have been developed with the aim

of preventing user re-identification. Data transformation techniques transform data points

from their initial domain into a new domain while preserving certain statistical properties

of data.

In this thesis, we show that distance-preserving data transformations may not fully

preserve privacy in the sense that location information may be estimated from the trans-

formed data when the attacker utilizes information such as public domain knowledge and

iii

known samples. We present attack techniques based on adversaries with various back-

ground information. We first focus on spatio-temporal trajectories and propose an attack

that can reconstruct a target trajectory using a few known samples from the dataset. We

show that it is possible to create many similar trajectories that mimic the target trajectory

according to the knowledge (i.e. number of known samples). The attack can identify

locations visited or not visited by the trajectory with high confidence. Next, we consider

relation-preserving transformations and develop a novel attack technique on transforma-

tion of sole location points even when only approximate or noisy distances are present. We

experimentally demonstrate that an attacker with a limited background information from

the dataset is still able to identify small regions that include the target location points.

iv

KONUM ZAMAN VERİLERİNİN DÖNÜŞÜMÜNDE GİZLİLİK

RİSKLERİ

Emre Kaplan

Bilgisayar Bilimi ve Mühendisliği

Doktora Tezi, 2017

Tez Danışmanı: Prof. Dr. Yücel Saygın

Anahtar Sözcükler: gizlilik atakları, konum zaman verisi, hareket yörüngeleri, mesafe

koruyan veri dönüşümü

Özet

Son yıllarda artan mobil cihazlar sayesinde üretilen ve saklanan verinin miktarında

büyük artışlar gerçekleşmektedir. Milyonlarca mobil cihaz (akıllı telefon, tablet ve hatta

giyilebilir teknolojiler) GPS çipi ile topladığı verileri konum-zaman verisi ile eşleştirerek

saklamaktadır. Yeni nesil uygulamalar konum verisine dayalı geliştirilmekte olup top-

ladıkları bu veriler üzerinden yürütülen analiz çalışmalarıyla ticari fayda sağlamaktadırlar.

Toplanan bu veriler, analiz için üçüncü parti kimselerle de paylaşılabilir. Konum verisi

hassas kabul edilerek işlenmesi, başta Avrupa’da olmak üzere kanunlarla belirlenmiş olup,

veri işleme için öncelikle veri koruma uygulamaları tatbik edilmesi zorunlu kılınmıştır.

Paylaşım esnasında kişinin sadece kimlik bilgilerinin çıkarılması mahremiyeti korumaya

yetmemektedir. Kamuya açık bilgiler ile eşleştirilerek mahremiyet açıklarına sebebiyet

verdiği bilinmektedir. Örneğin kişinin akşam saatindeki konumu ev adresini işaret etmek-

tedir ve buradan kimliğine dair bilgilere erişilebilir. Konum verisinin bu şekilde açıklara

yol açmaması için veri dönüşüm teknikleri geliştirilmiştir. Veri dönüşüm teknikleri, ve-

riyi, istatistiksel özelliklerini koruyarak, bir tanım kümesinden başka bir tanım kümesine

dönüştüren ve böylece kişinin kimliğini gizlemeyi hedefleyen mahremiyet koruyucu tek-

niklerden biridir. Bu tez çalışmasında, mesafe koruyan veri dönüşüm tekniklerinin de

mahremiyeti koruma açısından güvenilir olmadığını göstermekteyiz. Bu çalışmada iki

farklı atak yöntemi ortak bir atak senaryosunu icra etmektedirler.

v

Çalışmalarımızı konum verisi alanına yoğunlaştırıp konum ve hareket yörüngeleri

üzerinde detaylandırdık. Bu çalışmalarda saldırganın veri tabanına dayalı, erişebildiği tüm

kaynaklardan edinebileceği bilgileri de kullanarak gerçekleştireceği ataklar ile mahremi-

yet açıkları ortaya çıktığını göstermekteyiz. Bu ataklar ile hedef hareket yörüngesinin el-

deki bilgiler ışığında benzerlerinin tekrar oluşturulmasının mümkün olduğu gösterilmiştir.

Ayrıca bu ataklar ile bir hareket yörüngesinin geçtiği veya geçmediği yerler hakkında yo-

rum yapmak mümkün hale gelmektedir. Konum verisi üzerinde olan diğer çalışmamızda

geliştirdiğimiz teknik ile, mesafe koruyan dönüşüm teknikleri ile dönüştürülen bir veri

tabanının ilişkileri yayınlandığında, saldırgan bu veriler üzerinden veri tabanındaki diğer

konum bilgilerine erişebilmekte ve mahremiyet ihlallerini göstermektedir. Bu çalışmada,

saldırgan büyük bir şehirde toplanan konum veri tabanı hakkında biraz bilgi ile hedef

konumları sokak seviyesinde bulabilmektedir.

vi

To my grandparents Müzeyyen, Mehmet Ali and my aunt Nermin

Acknowledgments

I wish to express my sincere gratitude to Prof. Yücel Saygın, for his continuous

support, guidance, patience and help in both my thesis and graduate studies. He has

always been helpful, positive, and supportive.

I am especially grateful to Assoc. Prof. Mehmet Ercan Nergiz for his continuous

support throughout my thesis work. Without his support, his guidance, and his great

ideas, it would be not be possible to carry out this research.

I also thank Mehmet Emre Gürsoy for valuable discussions and comments throughout

my thesis work.

I would like to thank the thesis committee for their helpful comments. Last, but not

the least, I would like to thank my family, especially my dear mother for their patience

and support throughout my life.

viii

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Outline . 7

2 Related Work 9

2.1 Privacy Preserving Techniques . 9

2.2 Preserving Privacy in Spatio-Temporal Data 11

2.3 Attacks on Data Transformations . 15

3 Preliminaries 17

4 Location Disclosure Risks of Releasing Trajectory Distances 26

4.1 Brief Summary . 26

4.1.1 Problem Setting . 27

4.2 Attack Algorithm . 29

4.2.1 Overview of the Approach . 29

4.2.2 Creating a Generic Trajectory 32

4.2.3 Solving for a Candidate Trajectory 33

4.2.4 Robustness to Noise . 39

4.3 Experiments and Evaluations . 45

4.3.1 Experiment Setup . 45

4.3.2 Results and Evaluations . 46

4.3.3 Comparison with Previous Work 60

ix

5 Location Disclosure Risks of Releasing Relation-preserving Data Transfor-

mations 63

5.1 Brief Summary . 63

5.2 Attack Algorithm . 64

5.2.1 Attack Formalization . 68

5.2.2 Implementation and Noise Resilience 71

5.3 Experiments and Evaluations . 74

5.3.1 Experiment Setup . 74

5.3.2 Results and Evaluations . 75

6 Conclusions and Future Work 83

x

List of Figures

3.1 Linear interpolation of partial trajectories 19

3.2 A 90� counter-clockwise rotation . 23

4.1 Building a generic trajectory T g . 33

4.2 Attacking a trajectory in Milan when |KT | = 10 47

4.3 Attacking a trajectory in Milan when |KT | = 30 48

4.4 Attacking a trajectory in Milan when |KT | = 50 49

4.5 Attacking a trajectory in San Francisco when |KT | = 10 50

4.6 Attacking a trajectory in San Francisco when |KT | = 30 51

4.7 Attacking a trajectory in San Francisco when |KT | = 50 52

4.8 Average confidence in true positives against different number of known

trajectories (Milan) . 53

4.9 Average confidence in true positives against different number of known

trajectories (San Francisco) . 54

4.10 Average confidence in true positives against different radiuses (Milan) . . 54

4.11 Average confidence in true positives against different radiuses (San Fran-

cisco) . 55

4.12 Average confidence in false positives (Milan) 57

4.13 Average confidence in false positives (San Francisco) 57

4.14 Average confidence in negative disclosure (Milan) 59

4.15 Average confidence in negative disclosure (San Francisco) 60

xi

5.1 Sample 2-dimensional database D with three records. Actual locations of

records in R2 (on the left) and the distance matrix published after trans-

formation (on the right). 66

5.2 Discretization of the universe using uniform 2-dimensional cells. 72

5.3 Attacking a target with knowns=2 (half of the space is pruned) 75

5.4 Attacking a target with knowns=2 (target lies in the perimeter of a known

sample) . 76

5.5 Attacking a target with knowns=4 . 76

5.6 Attacking a target with knowns=4 (very small unpruned region) 76

a Gowalla dataset . 78

b Istanbul dataset . 78

5.7 Success rate (in percentage) in noisy and non-noisy scenarios 78

a Gowalla dataset . 80

b Istanbul dataset . 80

5.8 Accuracy in the noisy scenario . 80

a Gowalla dataset . 82

b Istanbul dataset . 82

5.9 Effects of the voting threshold on accuracy 82

xii

List of Tables

3.1 Creating the distance matrix of a spatial database 21

3.2 Trajectories and distances . 22

3.3 A relation-preserving transformation of D 24

4.1 Comparison with previous work . 61

xiii

List of Algorithms

1 Find location disclosure confidence . 31

2 Find candidate trajectory . 37

3 Locating a target record using a distance matrix and known samples 70

xiv

Chapter 1

Introduction

We live in a digitalized world with various smart devices which assist us in all aspects.

Digital devices such as smart phones, smart watches, bracelets, and vehicles embedded

with Global Positioning Systems (GPS) devices collect massive amounts of data every

second. In our highly interconnected world, collected data can easily be shared among

different devices and service providers seamlessly through cloud systems. Although data

is collected in many different forms, it has one common key attribute that is the location

with time-stamp. Time-stamped location data is mostly collected in the form of GPS co-

ordinates as latitude, longitude pairs together with time-stamp of the measurement. This

form of data is also called spatio-temporal data where ’spatio’ stands for the location and

’temporal’ stands for the time dimension. Seamless collection of spatio-temporal traces

is even more pervasive with the use of applications deployed on aforementioned devices.

This is because users with or without notice and care often report their location informa-

tion via the applications that they frequently use (e.g. while taking a photo, checking in

to a venue, texting to each other or even playing video games).

When we consider the mobile applications, almost all free applications collect infor-

mation about its users as much as it is allowed to do. In order to use and benefit from the

application, one should share his or her data. Some features of the applications depend

on the location data (such as check-in) where user cannot use the application unless he

shares his location data.

1

For instance, Swarm needs your location in order for the user to check-in which is the

core functionality of the application. Facebook uses location information when the user

uploads a picture in order to add location and time. In sum, most of the new generation

companies base their core businesses over user data. They tend to analyze and sell data

analytics as product and individuals’ private information becomes the raw material of such

businesses. Outcome of data analytics is about the tendency of users i.e., how frequently

they visit places, how long they stay at a certain location, popular places and roads, traffic

information, and many more derivatives regarding to the business needs. Data analytics

is used to identify hot spots, campaign to targeted users (such as marketing to potential

buyers) and hints more information about the user (his social status, wealth, etc.) which

means that a company knows its users much more than his desire to share his private

information. On the other side, those data can be used for research purposes to enhance

technology. In all cases, users are concerned about their data and most of the time have

no other chance but trust the data processors. For instance, one can analyse the user

transitions from the distance and time-stamp differences between the check-ins [1] to

detect user activity patterns. The relation of the social ties from the social networks with

the user movement and its temporal dynamics can be captured through the location based

social networks [2]. Moreover, location based social network data allows to measure

user similarity to cluster similar users for targeted advertisement, product enhancement

and even discover shared similar preferences and interests [3, 4]. Through location data

analytics, one may discover the friendships as discussed in [5] by analysing behavioural

characteristics. On the other hand, the analysis of this data can also help the society, e.g.,

via traffic management in metropolitan areas though the analysis of traffic and passenger

flows [6, 7], road condition sensing [8], and fleet management. The potential value of

location from a business perspective is clear and in the last decade, we witnessed a leap in

machine learning and data analytics. Many techniques have been proposed [4, 6, 9, 10],

to extract more and more value out of personal data. While sharing and mining spatio-

temporal trajectory data is beneficial for the society, the sensitive nature of location data

arises privacy concerns. This has led to substantial research in location privacy [11, 12],

2

and privacy-preserving trajectory data management [13, 14, 15].

Privacy [16, 17, 18] can be informally expressed as the right of an individual in con-

trolling the release and use of his own information. Location data is considered sensitive.

In the context of privacy of individuals and digital assets, which yield business value, data

holders should always be on alert and design their data release keeping privacy in mind

to ensure data owners’ privacy requirements. As the digital information grows very fast,

combining different sources of information becomes easier from the attacker’s perspec-

tive. Even more, the data sources may contain released data in anonymized, transformed

or perturbed forms. Data swapping and shuffling, additive or multiplicative perturbations

and aggregation-based methods are used for privacy protection. For instance, one can

use noise addition or rotation perturbation as further discussed in Section 2.1. Our work

applies on distance-preserving transformations and relation-preserving transformations.

In the first case, the released data consists of pairwise distances of the trajectories in the

dataset. In the latter, the released dataset contains only the relative order of the location

point pairs. Note that we do not need to know neither the exact location points nor the

pairwise distances but only the relative ordering.

Various privacy-preserving data processing and publishing techniques have been pro-

posed [19, 20, 21, 22, 23, 24] to achieve the a desired level of privacy while retaining

valuable statistical properties of the data. These techniques tend to transform or perturb

data so that the privacy requirement is satisfied [25, 26, 27, 28].

As a motivating scenario, consider logistics companies with fleets that track their ve-

hicles through a vehicle tracking service. These logistics companies have an incentive

to cooperate. For example, if two vehicles that have similar routes are half-loaded, they

could be merged into a single vehicle, thus reducing the cost and also reducing the carbon

emission. If these two vehicles belong to the same company, then this can be done by just

querying the local trajectories. However if they belong to different companies then things

may get complicated since location data is commercially critical for competing compa-

nies. For example, rival mobile sales teams may observe the regions that are visited or

not visited to estimate the sales figures in different areas, which may be commercially

3

critical. Therefore, companies may not want to share their exact trajectory data with third

parties. As an alternative, a distance matrix can be constructed from the trajectories by

the service provider from the collective set of trajectories in order to do analytics such as

finding the common routes. This way logistics companies can do distance based queries

on the released distances without seeing the exact trajectories which is one of the motivat-

ing applications of releasing distances as a dissimilarity matrix. Without such a matrix,

each fleet can only do local load balancing and merging of the loads for the similar routes.

Publishing the matrix enables them to do global optimization without seeing each others

trajectories. One may argue that, as an alternative scenario, the service provider may keep

the distance matrix and do data analytics. However, in practice the fleet management

service providers are specialized in machine-to-machine (M2M) data collection and they

may not expected to do data analytics.

A fleet company can provide its own data and the dissimilarity matrix to data analytics

companies for analysis and revealing hidden valuable information such as common routes

across the all fleets in the system or pinpoint potential uncovered regions by the other

fleets.

Even though privacy preserving techniques exist and data holders apply them, they

should be very careful while releasing their transformed datasets due to potential privacy

leaks which may not be foreseen prior to the release. Those leaks can be in various ways

such as recovering the original data.

In order to empower the privacy attacks, other data sources such as public datasets or

any piece of information that may be related to the transformed spatio-temporal dataset

can be incorporated. There are plenty of attack techniques such as mentioned in [12, 29,

30, 31, 32] pointing to privacy risks of transformed spatio-temporal datasets, which were

considered to respect privacy after applying privacy preserving methods. For instance, in

[33], location traces of mobile device owners are highly unique and can be re-identified

using few location points. They showed that with four data points they can identify up

to 95% of the individuals in a European country. The study reveals the sensitivity of the

location data from privacy perspective.

4

In our work, we show that we can generate sufficient candidate trajectories of the

target trajectory with 50 known trajectories. With 50 known samples, we can show if the

target passes through a given region with confidence over 80% to 100%. Our false positive

rate is around 5%. We also show that negative disclosure of the the target around 80%.

In the latter work which we focus on sole location points, our success rate is more

than 95% and even up to 100% with 10 known samples. We studied noisy data and show

that our success rate decreases only by 10%.

To sum up, release of transformed data may lead to privacy risks which may not be

foreseen without a careful analysis. Our thesis is that, privacy breaches are possible in the

case of transformed spatio-temporal data release. We show that an attacker can utilize his

background knowledge to reveal data which is otherwise considered to be safe. Our work

concludes that the data transformation techniques in question is not satisfactory to meet

the privacy demands when the attacker knows even few data points from the transformed

dataset.

1.1 Contributions

In this thesis, we impersonate the attacker and explore privacy risks due to the release

of the transformed spatio-temporal datasets. The attacker knows a few data points from

the original dataset as background information. Utilizing his knowledge, he carries out a

known-sample attack.

Consider each location data in the form of (user id, latitude, longitude, time-stamp).

The data owner can remove the user id from the dataset prior to data release.

Moreover, the data owner may apply data transformation and perturbation techniques

to mask original data in the released dataset. The goal is to make sure that the transformed

data can not be linked back to the original data in order to ensure privacy. We assume that

a distance-preserving transformation is applied on the dataset such that only the pairwise

distances of the trajectories are released. In our second work, we study the privacy leaks

when the relation-preserving transformation is applied so that released data contains only

5

the ranking of the data points with respect to their pairwise distances.

We assume that the attacker knows a few data points from the original dataset. The

attacker may obtain those points, for instance, as being a user of the system and storing his

own data or may collaborate with others who are using the system. For sure, the attacker

may benefit from any side information from public domain (e.g. over the Internet, social

hacking, etc.) and use it to enhance his attack.

Our work has two folds:

1. We show the privacy risks when the transformed dataset of trajectories (collection

of traces) is released and the attacker has only access to mutual distances in the

form of a distance matrix beside his own few background data.

2. We analyze the privacy risks when the transformed dataset of locations (e.g. check-

in data) is released but the attacker has access to the relation of mutual relations of

the location points. The attacker has access to very limited background information

about the dataset (i.e. knows few of locations).

In the first part, we focus on trajectory datasets. The mutual distances between tra-

jectories are released for data mining purposes. The attacker has his own trajectory data

(collected over a time with his own device). The attacker use his own data together with

the released mutual distances to discover the remaining trajectories in the dataset. More-

over, the attacker can infer if the target individual passed through a given area on the map.

If the inference is made, the attacker can discuss about the confidence of the inference,

which tells us if the inference is strong or not in order to conclude the target individual

passed through or not. Specifically, given a set of known trajectories and their distances

to a private, unknown trajectory, we devise an attack that yields the locations that the pri-

vate trajectory has visited, with high confidence. The attack can be used to disclose both

positive results (i.e., the victim has visited a certain location) and negative results (i.e.,

the victim has not visited a certain location). Experiments on real and synthetic datasets

demonstrate the accuracy of our attack.

In the second part, we focus on inferring the possible locations of the target. The

6

attacker can access to the relations of the dataset. The relations of the data points are

derived from their pairwise distances. The attacker presumed to log his own locations

that is also shared with the application. By using his own location data and the relation

information that is released, the attacker tries to infer the target location (i.e. location

trace of an individual at a time). The attacker limits the space using the relations and his

own data until he can’t limit the space anymore. The remaining region containing the

target location becomes the output of the attack. As the remaining region gets smaller, it

is easier to pinpoint the target location. Experiments on real datasets show that attacker

can narrow the space up to 1% of the entire space. Considering the entire space as a city,

target location can be pinpointed at a street level.

In our studies, we focus on privacy risks of transformed spatio-temporal data release

of two different data types: trajectories and locations. In the case of indirect data release

through transformation and perturbation, we can demonstrate attacks that recover a target

location or a trajectory.

In both studies, we assume that the attacker has a few data points and show that the

attacker can recover target trajectories from the mutual distances, infer if the target passes

through a given location with high confidence. We also show that when the attacker has

access to the relations, then he can discover the potential regions where the target location

resides.

1.2 Outline

The organization of this thesis is as follows:

We describe the contributions and the motivation behind the discussions in this thesis

in Section 1. We discuss the related work and the background information regarding to

our work in Chapter 2. Preliminaries of the work including the definitions and the basic

concept are defined in Chapter 3. We describe two privacy attacks that embrace each

other from the attacker’s perspective. In Chapter 4, we discuss location leaks from a

transformed dataset preserving the distances of the spatio-temporal dataset. We point out

7

the leaks in the form of location points, given an area or even a segment of a trajectory.

We further analyse the probability of the outputs and verifying the target is actually there,

turns out to be the performance indicator of the attack. In Chapter 5, we discuss location

leaks from a transformed spatio-temporal dataset resulting an area from the map that the

target data of the individual resides in. The attacker’s performance measured through

how small the regions, the attack concludes. Finally, in Chapter 6 we conclude the thesis

stating the results and discuss the future work.

8

Chapter 2

Related Work

Our work is related to privacy preserving data transformation techniques. We studied

the privacy risks of data transformation techniques from the attacker’s perspective. Since

our work is on spatio-temporal datasets, location privacy is utmost important. Our work

involves privacy of trajectories and locations. Although the trajectories are formed of a

series of locations, privacy risks of such datasets show characteristic differences. We or-

ganize this chapter as follows: In Section 2.2, we discuss the location privacy techniques,

in Section 2.1, we provide a general overview of the data privacy literature discussing

perturbation and aggregation methods from recent works. Finally, in Section 2.3, we de-

scribe previous works on attacking various types of data transformations to prepare the

reader for our work discussed in Chapter 5.

2.1 Privacy Preserving Techniques

Data swapping and shuffling. Perhaps the oldest and most basic techniques in privacy

preservation are the simple swapping or shuffling of data values [34],[35]. A desirable

property of these techniques is that the shuffled values have the same marginal distribution

as the original values. Hence, univariate analyses on shuffled data yield the same results as

the original data [36]. On the other hand, no guarantees can be given in terms of attribute

correlation and multivariate analyses. Thus, although these techniques were studied in

9

the earlier days of data privacy, they are no longer popular in the literature. In addition,

neither swapping nor shuffling guarantees that its output will be distance-preserving.

Additive perturbation. Another common technique is based on noise addition [37, 38].

In this technique, instead of releasing the original data X , the data owner releases Y =

X + R where R is a collection of random values (sometimes called white noise) drawn

from a statistical distribution. The distribution is often Gaussian or uniform. Additive

perturbation techniques have been heavily criticized in the literature, as several studies

have shown that it is possible to estimate original data from perturbed data, thus violat-

ing privacy [23, 39, 40]. Additive perturbation is often not distance-preserving, but may

preserve relation depending on the magnitude of noise. We evaluate our attack with and

without additive noise in Section 5.2.2.

Multiplicative perturbation. Multiplicative perturbation techniques can either perfectly

or approximately preserve distances between tuples. Oliveira and Zaiane introduced ro-

tation perturbation in [41] and showed its applicability to data clustering. In [42] and

[43], Chen et al. showed that rotation perturbation is also useful in classification, as many

classifiers are rotation-invariant, i.e., they are unaffected by arbitrary rotations. Rotation-

invariant classifiers include k-NN, SVM (polynomial and radial basis) and hyperplane-

based classifiers. Note that rotation perturbation perfectly preserves distances between

tuples, and are therefore susceptible to the attack presented in our work discussed in

Chapter 5.

In contrast, random projection based methods approximately preserve distances be-

tween tuples [19]. Giannella et al. argue that by tuning the parameters of projection, one

can ensure arbitrarily high probabilities of preserving distances [44]. They point to [30]

for preliminary results in this direction. Even though distance preservation is desirable

from a utility point of view, it also makes our attack more plausible. As we show in

Section 5.3, higher distance preservation increases the success rate of our attack.

Aggregation-based methods. Aggregation relies on grouping similar tuples together.

Then, one can sanitize and release either some statistical aggregates [45], some represen-

tative tuple [46] etc. from each group. Among popular aggregation-based methods are

10

k-anonymization and micro-aggregation.

Sweeney and Samarati proposed k-anonymity [26], and sparked a plethora of work

in this area. We refer the interested reader to [47] for a survey. In k-anonymity, each

tuple is grouped with k�1 other tuples and these tuples’ values are generalized so that an

adversary that knows quasi-identifying information regarding an individual can, at best,

map this individual to a group of k tuples.

Micro-aggregation assigns tuples into groups of size at least k, and then computes and

releases average values per group [48]. Groups are formed based on similarity. The recent

work of Domingo-Ferrer et al. [49] provides a detailed overview of micro-aggregation and

its applications.

Aggregation-based methods are, in general, not distance or relation-preserving. A

straightforward example demonstrates this: Two tuples with non-zero distance can be

placed in the same group and aggregated (or generalized) to the same set of values, in

which case the distance between them will be zero.

Differential privacy. Differential privacy is a recent definition of statistical database

privacy [50]. It ensures that the computation of an algorithm stays insensitive to changes

in one tuple. The protection of differential privacy is different than the data model we

consider - differential privacy releases statistical properties after noise addition, whereas

in our studies, we assume that tuples (or pairwise distances between tuples) are released

after a transformation. Thus, our works are not applicable to differential privacy.

2.2 Preserving Privacy in Spatio-Temporal Data

Location privacy has been an important problem in various fields including vehicular

networks, location-based services, location and proximity-based social networks (e.g.,

Foursquare, Tinder) and mobile crowd-sourcing. Since it is implausible to review all of

these areas in detail, we present only some of the major approaches and findings.

In [51], Gruteser and Grunwald introduce the notions of spatial and temporal cloak-

ing for privacy-preserving access to location-based services. These rely on perturbing the

11

resolution of data, through e.g., k-anonymization. In contrast, mix-zones break the conti-

nuity of location exposure by ensuring that users’ movements cannot be traced while they

are inside a mix-zone. Palanisamy and Liu [52] describe the state of the art approaches

in building mix-zones over road networks. We refer the reader to [53] for a comparison

between mix-zones and spatial cloaking. Gedik and Liu [54] offer privacy in mobile sys-

tems via the application of location k-anonymity. Andres et al. [55] introduce the notion

of geo-indistinguishability, a generalization of differential privacy for location-based ser-

vices. Alternative approaches to protect location privacy include path confusion [56], data

obfuscation [20] and addition of dummies [22].

There have also been efforts to unify the aforementioned approaches. Shokri et al. [28]

describe a framework that captures different types of users, privacy protection mech-

anisms and metrics. The authors also propose a new metric to measure location pri-

vacy, based on the expected distortion in reconstructing users’ trajectories. In follow-up

work [11], they use their framework to quantify location privacy under various types of

adversarial information and attacks. They conclude that there is a lack of correlation

between previously existing privacy metrics (e.g., k-anonymity) and the adversary’s abil-

ity to infer users’ location. Wernke et al. [12] offer a survey on attacks and defenses in

location privacy.

The main differences between our work and the location privacy literature are as fol-

lows: The threat in location privacy is often application and domain-dependent, and in

real-time, i.e., there is a need to anonymize the location of a user while she is actually

using a location-based service. Also, the knowledge of the adversary is a snapshot of

users’ locations or proximity to certain entities (e.g., a restaurant, another user) rather

than a complete trajectory. On the other hand, our work detailed in Chapter 4 assumes

that complete trajectories were collected and stored in a central, private database. We ini-

tially assume that privacy protection mechanisms such as mix-zones or cloaking are not

used. Although we then show the feasibility of the attack on partial and imperfect trajec-

tory data, modifying the attack so that it defeats a particular location privacy mechanism

is not the main purpose of our work.

12

In privacy-preserving trajectory data publishing, the data owner has a database of

trajectories and aims to publish this database while preserving individuals’ privacy. In

our work in Chapter 4, we do not assume that a trajectory database must be shared with

the adversary in order to run the attack (and hence, most work in this area is orthogonal

to ours), only a distance calculation interface to a private database is sufficient. However,

trajectory publishing is relevant to our work in two aspects: an adversary who receives a

copy of the published trajectories can (1) calculate distances between them, and (2) add

the published database to his background knowledge, i.e., his set of known trajectories.

We first study anonymization-based techniques for trajectory publishing. In [13],

Terrovitis and Mamoulis show that given partial trajectory information, it is possible

to identify the full trajectory of an individual in a published database. They propose

a suppression-based technique to combat this problem. A similar suppresion-based ap-

proach is later taken in [57], where the authors implement the (K,C)
L

privacy model

for trajectory anonymization. Abul et al. [58] propose (k, �)-anonymity, similar to k-

anonymity but with an additional � factor to account for location imprecision. Nergiz

et al. [59] introduce generalizations in the area of trajectory anonymization, and study

extensions of k-anonymity as their privacy model. Domingo-Ferrer et al. [60] present a

novel distance metric for trajectories that is useful for clustering, and then use this met-

ric for anonymization via microaggregation (i.e., replacing each cluster with synthetic

trajectories).

With the widespread acceptance of differential privacy, the literature in trajectory pub-

lishing has also started shifting towards this privacy model. In [61], Chen et al. model

trajectories as sequential data, and devise a method to publish such sequences in a differ-

entially private manner. The main criticism of this work is that it only allows trajectories

that consist of points from a small, fixed domain (e.g., only a few subway stops). Jiang

et al. [62] try to address this shortcoming by privately sampling a suitable distance and

direction at each position of a trajectory to infer the next possible position. More recently,

Hua et al. [14] use differentially private generalizations and merging of trajectories to

publish trajectory data. In contrast, He et al. [63] build and publish synthetic datasets

13

using differentially private statistics obtained from a private trajectory database.

Secure computation over trajectory databases enable users to perform various compu-

tations (e.g., statistical queries, k-NN queries, similarity search) on a trajectory database

securely and accurately, while the data remains at its owner (i.e., never published). As

argued earlier, the advent of these methods are sometimes a benefit rather than a burden

for our attack.

In [64], Gkoulalas-Divanis and Verykios propose using a secure query engine that

sits between a user and a trajectory database. This engine restricts users’ queries, issues

them on the database and then perturbs the results (e.g., by introducing fake trajectories)

to fulfill certain privacy goals (e.g., disable tracking). The authors enhance their work in

[65], supporting many types of queries useful for spatio-temporal data mining, e.g., range,

distance and k-NN queries. Liu et al. [15] develop a method to securely compute the

distance between two encrypted trajectories, which reveals nothing about the trajectories

but the final result. Most similar to this work is the work of Zhu et al. [66], where authors

describe a protocol to compute the distance between two time-series in a client-server

setting. In [67], Gowanlock and Casanova develop a framework that efficiently computes

distance and similarity search queries on in-memory trajectory datasets.

Last, we survey known sample attacks on private databases. In known sample (or

known input) attacks, the adversary is assumed to know a sample of objects in the pri-

vate database, and tries to infer the remaining objects. This is the setting we consider

in our work discussed in Chapter 4. Liu et al. [32] develop a known sample attack that

assumes the attacker has a collection of samples chosen from the same distribution as the

private data. Chen et al. [42] develop an attack against privacy-preserving transforma-

tions involving data perturbation and additive noise. They assume a stronger adversary,

one that knows input samples and the corresponding outputs after transformation. Turgay

et al. [31] consider cases where the adversary knows input samples as well as distances

between these samples and unknown, private objects. More recently, Giannella et al. [44]

study and breach the privacy offered by Euclidean distance-preserving data transforma-

tions. Although the settings of these works are similar to ours, they are based on tabular or

14

numeric datasets. On the other hand, the data model we assume in our first work is trajec-

tories. Kaplan et al. [29] present a distance-based, known-sample attack on trajectories.

While the main goal of [29] is rebuilding a private trajectory as accurately as possible,

our work is concerned with location disclosure - that is via probabilistically identifying

the locations that a private trajectory has and has not visited.

2.3 Attacks on Data Transformations

We start this section with attacks on distance-preserving data transformations, and then

describe attacks on other types of transformations (e.g., approximate distance-preserving

transformations, additive perturbation etc.)

In [32], Liu et al. develop two attacks on distance-preserving data transformations:

(1) The attacker has a set of known samples, which are i.i.d. from the same distribution

as the private (original) data. The attack is based on mapping the principal components

of the sample (which represents the distribution of the original data) to that of the per-

turbed data. This helps the attacker estimate the perturbation matrix. Since this attack

is a known-sample attack, it is comparable to ours. However, as pointed out in [44], it

requires a significant number of samples that accurately represent the distribution of the

original data, otherwise it will be unsuccessful. (2) The second attack is a known input-

output attack, in which the attacker has a set of original data tuples and their perturbed

versions. The attacker then constructs a perturbation matrix that would yield the input-

output pairs. They assume the attacker has several (v, v0) pairs and reverse-engineer the

matrix R that would satisfy v0 = Rv for the pairs the attacker has. In this attack, the

attacker’s background information is different and stronger than ours.

In [31], Turgay et al. extend the attacks in [32] by assuming that the attacker only

has a similarity/distance matrix (instead of the perturbed data) and the global distribution

of the original data. They develop attacks based on principal component analysis, with

and without known samples. Our proposed attack works without knowledge of the global

distribution.

15

Mukherjee et al. [68] use a perturbation algorithm based on Fourier transform to

achieve privacy. The proposed approach approximately preserves distances between tu-

ples. Their privacy relies on a random permutation of the Fourier transform parameters.

Therefore, they analyze cases where the permutation is known by the attacker. How-

ever, they do not consider known sample attacks. Since one of their goals is to preserve

distances, their approach could well be susceptible to attacks on distance-preserving and

relation-preserving transformations, such as our work.

Both [19] and [69] study independent component analysis (ICA) based attacks on

multiplicative perturbation. Specifically, in [19], Liu et al. consider ICA-based attacks

on random projection. In [69], Guo and Wu assume that the attacker knows some data

columns and aims to retrieve the remaining columns using ICA. On the other hand, Chen

and Liu [43] argue that ICA attacks are ineffective against random perturbation and rota-

tions.

Closely related to our work is Giannella et al.’s attack in [44]. In their study, Giannella

et al. assume that the attacker has a set of known samples, and focus on the case where

the number of known samples is less than the number of data dimensions. Their attack

links the known samples to their perturbed tuples, and furthermore, for unlinked perturbed

tuples they estimate the probability of retrieving their original values.

Finally, for a recent and more detailed survey on deriving information from data trans-

formations and perturbed data, we refer the reader to [70].

16

Chapter 3

Preliminaries

In this chapter, we provide the main terms and the notions that we use in our works. These

are the building block components given in the form of definitions. Note that some of the

definitions are common for the entire work while the remaining definitions are referred

only within its own chapter.

We first formally define what a trajectory is in Definition 1. In order to discuss the in-

terpolation based attack detailed in Chapter 4, we formally define the linear interpolation

function in Definition 2. Then, we also describe an interpolated trajectory in Definition 3.

Formal definition of Euclidean Distance which is used in entire work given in Definition 4.

We maintain our attack scenarios over the distance matrix defined in Definition 5. Based

on Euclidean distance, we define the distance between trajectories in Definition 6. We

also present the notion of distance compliant trajectory to differentiate generated trajec-

tories according to predefined constraints formally described in 7. We discuss the notion

of proximity oracle in Definition 8. We introduce the location disclosure confidence in

Definition 9. In our latter work detailed in Chapter 5, we describe distance-preserving

transformation in Definition 10. Then, we define the notion of relation-preserving trans-

formation in Definition 11. In order to discuss the attack operators, we formally define

the high dimension concepts of Hypersphere, Hyperball in Definition 12 and Definition

13 respectively. Then, we present the notion of equidistant hyperplane in Definition 14.

We finally introduce the notion of Half-space in Definition 15 and conclude this chapter.

17

Definition 1 (Trajectory). We represent a trajectory T as a finite list of locations with

time-stamps, as follows: T = ((p1, t1), (p2, t2), ..., (pn, tn)). t
i

corresponds to the time-

stamp, and a trajectory is sorted by its time-stamps, i.e., 8i 2 T , t
i

< t
i+1. Each p

i

represents a 2-dimensional location with x and y coordinates, i.e., p
i

= (x
i

, y
i

). |T |
denotes the size of the trajectory, i.e., |T | = n.

We define the following operations on locations: The scalar multiplication of a con-

stant k with location p
i

is defined as k · p
i

= (k ⇥ x
i

, k ⇥ y
i

), where ⇥ is the arithmetic

multiplication operator. We use the norm of a location to refer to the Euclidean vector

norm, i.e., ||p
i

|| = x2
i

+ y2
i

. Also, for two locations p
i

and p
j

, p
i

� p
j

= (x
i

�x
j

, y
i

� y
j

),

where � represents addition or subtraction. When there are multiple trajectories, we use

superscripts to refer to the trajectory and subscripts for the locations within a trajectory,

e.g., T j is the j’th trajectory in the database and pj
i

is the i’th location in T j .

We consider that mobile devices signal their location at desired time-stamps Q =

(t1, t2, ..., tn), and each signal is collected and stored as an ordered pair within the device’s

trajectory (p
i

, t
i

) 2 T . This implies that the time-stamps of all trajectories in the database

are synchronous. We reckon, however, that this is a strong assumption in real-life uses

of mobile devices, e.g., some samples might not be gathered due to signal loss etc. If

such cases are rare, the data owner may decide to keep only those time-stamps for which

a location entry exists in all trajectories, and drop those time-stamps where one or more

trajectories imply a signal loss. Alternatively, to fill in the missing entries in a trajectory,

one can use linear interpolation as follows.

Definition 2 (Linear Interpolation Function). Let p
i

= (x
i

, y
i

) and p
j

= (x
j

, y
j

) be two

locations in a trajectory, sampled at time t
i

and t
j

respectively, where t
i

< t
j

. A location

p
k

= (x
k

, y
k

) at time-stamp t
k

, where t
i

< t
k

< t
j

is interpolated using the interpolation

function I((p
i

, t
i

), (p
j

, t
j

), t
k

) = p
k

where:

x
k

= x
i

+ (x
j

� x
i

) · tk � t
i

t
j

� t
i

, y
k

= y
i

+ (y
j

� y
i

) · tk � t
i

t
j

� t
i

Let T be a imperfect trajectory with missing entries. For each missing entry (i.e.,

18

Figure 3.1: Linear interpolation of partial trajectories

t
k

where a (p
k

, t
k

) 62 T), e.g., the signal at time t
k

was lost, we interpolate p
k

: Let t
i

,

t
i

< t
k

, be the largest time-stamp such that (p
i

, t
i

) 2 T ; and t
j

, t
j

> t
k

, be the smallest

time-stamp such that (p
j

, t
j

) 2 T . Then, p
k

= (x
k

, y
k

) is computed using I as above and

(p
k

, t
k

) is inserted into T . After this operation is performed for all missing t
k

, T is sorted

using time-stamps and we end up with the interpolated trajectory.

Definition 3 (Interpolation). Let T be a trajectory and Q be the list of desired time-

stamps. We say that the interpolated trajectory T ⇤ = ((p1, t1), ..., (pn, tn)), is constructed

via:

• For all t
i

where (p
i

, t
i

) 2 T and t
i

2 Q, (p
i

, t
i

) 2 T ⇤.

• For all t
i

where (p
i

, t
i

) 62 T but t
i

2 Q, (p
i

, t
i

) is added to T ⇤ using the linear

interpolation process described above.

Linear interpolation also becomes an integral part of the attack algorithm when re-

building trajectories using partial information. Essentially, for a missing entry at time t
k

,

linear interpolation finds the closest time-stamps to t
k

, i.e., (p
i

, t
i

) and (p
j

, t
j

). It forms

19

a line between p
i

and p
j

, and then places the missing location p
k

on that line, using the

time-stamp t
k

to find the distance of p
k

from p
i

and p
j

.

We now illustrate interpolation using examples. In Figure 3.1, let T be the actual tra-

jectory of a vehicle and assume a constant location sampling rate of 30 seconds. In T ⇤, the

samples at time 60s and 120s are lost. To reconstruct T ⇤, we interpolate independently to

find (x2, y2) and (x4, y4). For the former, we draw a line between (x1, y1) and (x3, y3) and

place (x2, y2) on that line, equidistant to (x1, y1) and (x3, y3) (due to constant sampling

rate). Similar is done to interpolate (x4, y4), but this time using (x3, y3) and (x5, y5). In

T ⇤⇤, the samples at time 90s and 120s are lost. We reconstruct both with one interpolation

involving (x2, y2) and (x5, y5).

As can be observed from these examples, interpolation is almost never perfect. This

becomes a source of error later in the attack, which we try to quantify in Section 4.3.

Also, the quality of interpolation depends on which sample is non-retrievable after the

attack: If the non-retrievable sample actually sits on a perfect line with its neighbors, then

its reconstruction will be accurate, hence minimal error. Otherwise, a larger error can be

expected.

For the sake of simplicity, we will assume that all trajectories in the database are

perfectly known or already interpolated by the data owner. This need not be linear inter-

polation, although it serves the purpose. As such, we often treat a trajectory simply as a

collection of locations: T = (p1, p2, ..., pn).

To compute distances between trajectories, we use Euclidean distance, the traditional

method for distance measurement. Euclidean distance has been assumed heavily in the

data privacy literature [44], and can be used as a basis for building more complex distance

measures for trajectories (e.g., Dynamic Time Warping [71], Longest Common Subse-

quence [72]). The interested reader is referred to [73] for a thorough discussion.

Definition 4 (Euclidean distance). Let x and y be two data points in Rm, with coordinates

x = (x1, ..., xm

) and y = (y1, ..., ym). We say that the Euclidean distance between x and

y is: �(x, y) = ||x� y|| =
r

mP
i=1

(x
i

� y
i

)2, where ||.|| denotes the L2-norm.

20

Definition 5 (Distance matrix). The distance matrix of a database D(r1, .., rn) is an n⇥n,

symmetric, real-valued matrix M such that M
i,j

= M
j,i

= �(r
i

, r
j

).

Table 3.1: Creating the distance matrix of a spatial database

(a)

ID Coordinates
r1 (34.0, 122.6)
r2 (13.1, 57.8)
r3 (2.5, 51.9)
r4 (98.4, 193.2)

(b)

r1 r2 r3 r4
r1 0 68.1 77.4 95.6
r2 68.1 0 12.1 160
r3 77.4 12.1 0 170.8
r4 95.6 160 170.8 0

We introduce the distance matrix (also known as the dissimilarity matrix presented

in [41]) that captures pairwise distances between records in a database. For example let

D be a spatial database containing (latitude, longitude) coordinates of 2D data points.

A sample database D is shown in Table 3.1a. D’s distance matrix is given in 3.1b. As

an example, we compute one of the entries in the distance matrix: M1,2 = �(r1, r2) =
p

(34.0� 13.1)2 + (122.6� 57.8)2 = 68.1.

Definition 6 (Euclidean Distance Between Trajectories). The Euclidean distance between

two trajectories, T = (p1, p2, ..., pn) and T 0 = (p01, p
0
2, ..., p

0
n

) is calculated as:

d(T � T 0) =

vuut
nX

i=1

kp
i

� p0
i

k

In Table 3.2, we provide three simple trajectories and calculate the distances between

them.

Definition 7 (Distance Compliant Trajectory). Given KT = {T 1, ..., T k} and � =

{�1, ..., �k}, a trajectory T is distance compliant if and only if d(T i � T) = �
i

for all

i 2 [1, k].

21

Trajectories Distances
Trajectory 1: [(1,1),(2,2),(3,3)] d(T 1,T 2) =

p
3

Trajectory 2: [(2,1),(3,2),(4,3)] d(T 1,T 3) =
p
15

Trajectory 3: [(2,3),(3,4),(4,5)] d(T 2,T 3) =
p
12

Table 3.2: Trajectories and distances

Definition 8 (Proximity Oracle). Given a location p, radius u and trajectory T , let C
p,u

denote a circle with center p and radius u. We define the proximity oracle O as:

O
p,u

(T) =

8
><

>:

1 if T \ C
p,u

6= ;

0 otherwise

Definition 9 (Location Disclosure Confidence). Given a set of candidate trajectories CT ,

a location p and radius u, the location disclosure confidence of the adversary is given by:

conf
p,u

(CT) =

P
T2CT

O
p,u

(T)

|CT |

Definition 10 (Distance-preserving transformation). A function T : Rm ! Rm is a

distance-preserving transformation if for all x, y 2 Rm, �(x, y) = �(T (x), T (y)).

Let D be the data owner’s private database. Instead of releasing D, for privacy protec-

tion the data owner first perturbs D using a distance-preserving transformation T and then

releases the perturbed data D0 = (T (r1), ..., T (r
n

)). By definition, T preserves pairwise

distances between records, and thus the distance matrix M is constant before and after T .

Informally, a distance-preserving transformation satisfies the condition that the dis-

tance between a pair of tuples in the transformed data is the same as their distance in

the original data. Many popular clustering and classification algorithms rely solely on

distances between tuples. Such algorithms are unaffected by distance-preserving trans-

formations. In [74], Chen and Liu show that the following are unaffected: k-NN classi-

fiers, kernel methods, SVM classifiers using polynomial, radial basis and neural network

kernels, linear classifiers, and some clustering and regression models. Considering this,

22

Figure 3.2: A 90� counter-clockwise rotation

distance-preserving transformations are of great interest.

The three fundamental techniques for distance-preserving transformations are trans-

lations, reflections and rotations [41, 43]. Translations shift tuples a constant distance

in parallel directions. Reflections map tuples to their mirror images in fixed-dimensional

space. Rotations can be written in various ways, one of which is in terms of a matrix

multiplication: Let v be a column vector containing the coordinates of a 2D data tuple.

Then, v0 = Rv is a rotation perturbation where the 2⇥ 2 rotation matrix R is defined as:

R =

2

4 cos✓ sin✓

�sin✓ cos✓

3

5

The angle ✓ is the rotation angle, measuring the amount of clockwise rotation. Sim-

ilar rotation matrices can be written for 3D and 4D space. Any rotation matrix R is an

orthogonal matrix, and thus has a determinant of +1 or �1.

In more recent work, Huang et al. [75] present FISIP. They aim to preserve first order

and second order sums and inner products of tuples. Then, they retrieve distances and

correlations based on these properties.

In Figure 3.2, we present a rotation on 2D data as a sample distance-preserving trans-

formation. The original data on the left is kept private and never released. The rotated

data on the right is released. The adversary that only has the rotated data and no other

background information cannot determine the perturbation angle ✓, and thus cannot re-

trieve the original data. In this example, the perturbation angle is 90� in counter-clockwise

direction.

Definition 11 (Relation-preserving transformation). A function S : Rm ! Rm is a

23

relation-preserving transformation if for all x, y, z, t 2 Rm and for arithmetic compari-

son operators op 2 {<,>,=}, �(S(x),S(y)) op �(S(z),S(t)) if and only if �(x, y) op

�(z, t).

Theorem 1. Every distance-preserving transformation is relation-preserving.

Proof. Let T : Rm ! Rm be a distance-preserving transformation. Since T is distance-

preserving, for all x, y, z, t 2 Rm, �(T (x), T (y)) = �(x, y) and �(T (z), T (t)) = �(z, t).

Therefore, trivially for any comparison operator op, �(T (x), T (y)) op �(T (z), T (t)) if

and only if �(x, y) op �(z, t).

We use Theorem 1 to show that distance-preserving transformations are a subset of

relation-preserving transformations. Notice that the converse of Theorem 1 is not true:

A relation-preserving transformation is not necessarily distance-preserving. For example,

let D0 in Table 3.3b be obtained via transforming D in Table 3.1 in a relation-preserving

manner. One can verify that the pairwise relation of distances in Table 3.3b is the same as

in Table 3.1, but none of the distances actually stay the same.

Table 3.3: A relation-preserving transformation of D

(a)

ID Coordinates
r01 (32.7, 123.6)
r02 (14.5, 60.3)
r03 (8.8, 54.1)
r04 (100.0, 196.9)

(b)

r01 r02 r03 r04
r01 0 65.9 73.5 99.5
r02 65.9 0 8.4 161.2
r03 73.5 8.4 0 169.4
r04 99.5 161.2 169.4 0

Definition 12 (Hypersphere). In n-dimensional Euclidean space, a hypersphere S
C,r

is

defined by a fixed centre point C 2 Rn and a radius r, and denotes the set of points in the

n-dimensional space that are at distance r from C. That is, each point X(X1, X2, ..., Xn

)

on S
C,r

satisfies: r2 =
nP

i=1
(X

i

� C
i

)2.

24

Definition 13 (Hyperball). In n-dimensional Euclidean space, given a hypersphere S
C,r

,

the hyperball B
C,r

denotes the space enclosed by S
C,r

. B
C,r

is said to be closed if it

includes S
C,r

and open otherwise.

Definition 14 (Equidistant hyperplane). In n-dimensional Euclidean space, the locus of

points equidistant from two points A,B 2 Rn is a hyperplane H
AB

that contains all

points P that satisfy the equality ||P � A|| = ||P � B||.

Definition 15 (Half-space). A half-space is either of the two parts into which a hyperplane

divides the n-dimensional Euclidean space. A half-space is said to be closed if it includes

the hyperplane, and open otherwise.

25

Chapter 4

Location Disclosure Risks of Releasing

Trajectory Distances

4.1 Brief Summary

As a motivating scenario, consider that the adversary has access to a “secure” trajectory

database querying service, from which he can obtain statistical information (e.g., distance,

nearest neighbors). Let X denote the victim’s true trajectory that the adversary wishes to

infer, and KT denote the adversary’s set of known trajectories. We often use the term

target trajectory to refer to the victim’s trajectory X . For each trajectory T in KT , the

adversary issues a query of the form: “Return the distance between X and the trajectory

corresponding to T ” or “Return the top-k most similar trajectories and their distances

to T ”. A querying service, such as [15] or [67], is able to answer such queries. Using

the answer, the adversary obtains the distance between X and T . The same process is

repeated for as many T in KT as the querying service allows, and at the end the adversary

has a set of known trajectories KT and the pairwise distances between trajectories in KT

and his target trajectory X .

The question we ask in this work is: Given a set of known trajectories KT and their

pairwise distances to a target trajectory X , how much can an adversary learn about X? It

turns out that a lot can be learned about X using a novel attack we devised, which yields

26

the locations that the target trajectory visited with significant confidence. The adversary

can also infer, with even higher confidence, the locations that the target trajectory has

not visited. Therefore, we show that we can achieve privacy violations by disclosing

the whereabouts of a victim using only pairwise distances between trajectories, which are

seemingly harmless information and easily obtainable from existing mechanisms [15, 67].

If such mechanisms are blindly assumed safe, it becomes increasingly possible for an

adversary to run a known-sample attack.

The sketch of the attack is as follows: Given |KT | many known trajectories, we build

a system of equations that yield b|KT |/2c locations when solved, that are possibly in

the target trajectory. The remaining entries are interpolated using the previously found

locations. We call the resulting trajectory a candidate trajectory. We repeat this process

many times to obtain a set of candidate trajectories. We decide that there is a location

disclosure based on the set of candidate trajectories. That is, if most candidates indicate

that the target trajectory visited a certain location p, then the attack declares that the target

visited p. Similarly, if no candidates indicate that the target trajectory visited p, the attack

can be used to declare that the target has not visited p. An interesting property of the

attack is its robustness to noise: Even if random noise was added to the adversary’s known

trajectories KT or the distances between KT and the target trajectory, in expectation the

adversary would build the same set of equations when launching the attack. Thus, the

attack also works with a known probability distribution of trajectories or distances rather

than exact trajectories or exact distances.

4.1.1 Problem Setting

In this section, we formally describe the setting we consider in our attack. The data

owner has a set of private trajectories PT = {T 1, ..., T q}. The adversary has a set of

known trajectories, KT = {T 1, ..., T k} and KT ⇢ PT . As we state in Section 4.1,

an adversary may have a set of known trajectories due to various reasons, e.g., some

trajectories correspond to a car that he or a close friend or relative drives, he can physically

track some of the cars etc. The goal of the adversary is to infer the locations in a target

27

trajectory, T r 2 (PT �KT). Without loss of generality, we assume KT constitutes the

first k trajectories in PT and the target trajectory is T r for some k < r q.

When an adversary attacks T r and knows the trajectories in KT = {T 1, ..., T k}, the

pairwise distances between T r and each trajectory in {T 1, ..., T k} are of interest. We

denote these distances � = {�1, ..., �k}, where �
i

= d(T i � T r), i.e., each distance is

calculated via the Euclidean formula defined in Definition 4. We do not consider how the

Euclidean distance is actually retrieved, it can be done due to for example a published

database, or following the secure distance calculation protocol for trajectories given in

[15].

Given KT and �, one can build many trajectories that satisfy �. In other words, there

are many trajectories that have the desired distances � to a set of known trajectories KT

defined as distance compliant trajectory defined in Definition 7.

Without further information, any distance compliant trajectory can potentially cor-

respond to the target T r, which the adversary is trying to infer. The brute force attack

method is to generate all distance compliant trajectories and make inferences based on

them. While finding all such trajectories is infeasible, the adversary can use side-channel

information to limit the domain of distance compliant trajectories and prune out some

trajectories that cannot be T r. We will discuss sources of side-channel information in

Section 4.2.3. In the next sections, we will refer to those trajectories that satisfy side

channel information and are distant compliant as candidate trajectories.

In our attack, the goal of the adversary is to infer, with high confidence, where a

victim has been and has not been. We argue that even though the complete trajectory of

the victim T r cannot be reconstructed based on KT , � and side channel information,

an adversary can still gain significant knowledge regarding the locations of the victim at

some points of interest. For instance, a hospital could be one point of interest. If the

adversary is very confident that T r passes through the hospital, then he infers that the

victim could have a health problem. We call this positive disclosure. On the other hand, if

the adversary is confident that T r does not pass through a certain area, then the adversary

infers e.g., that the victim did not take part in a social event or rally. We call this negative

28

disclosure which is defined in Definition 9.

The proximity oracle, defined in Definition 8, builds a circular area centered at lo-

cation p and with radius u. p is often the main point of interest, e.g., the hospital. If a

trajectory passes through this area, the oracle returns 1. The attack employs the oracle as

follows: The adversary will build, to the best of his abilities, a set of candidate trajectories

CT for victim V . If conf
p,u

(CT) is greater than a certain threshold, i.e., the vast majority

of trajectories in CT agree that V passes through the proximity of p, the adversary has

achieved positive disclosure. If conf
p,u

(CT) is small (e.g., below a threshold such as 0.1

or 0.05), the adversary has achieved negative disclosure.

The success of the attack obviously depends on how accurate the trajectories in CT

are, i.e., do they closely resemble the victim’s trajectory? Therefore, the attack needs to

ensure that an accurate set of CT is built. This will be the main purpose of the attack

algorithm, which we describe in the next section.

4.2 Attack Algorithm

4.2.1 Overview of the Approach

In this section we present the main algorithm for our attack, which returns the location

disclosure confidence of an area of interest. Although we built the proximity oracle using

a circular area, the area of interest may in fact be of arbitrary shape. This has no bearing

on the attack.

Given KT and �, the main idea of the attack is to build a set of candidate trajectories

CT , such that any one of the trajectories in CT could be the victim’s trajectory T r. It is

also possible that none of the trajectories in CT is actually T r. If every possible candidate

could be generated, only then we would be certain that T r is one of the trajectories in

CT . But this is computationally infeasible: Locations can be in high granularity, or the

adversary’s knowledge can be very limited (i.e., KT might not be sufficient to effectively

limit the number of candidates). Thus, we try to generate only some of the candidate

trajectories, and this acts as a sample of all possible candidates. Since candidates are

29

generated randomly (i.e., we have a random sample) we argue that our sample captures

the probabilistic properties of all possible candidates. This is an accurate assumption if

the sample size is reasonably large.

The pseudocode for our attack is given in Algorithm 1. Apart from KT and �, we

take the proximity oracle O and an iteration parameter itr as inputs. itr is used to limit the

sample size discussed above. Higher itr yields a larger set of candidates, which increases

the accuracy of the attack, but decreases efficiency. The attack works as follows: Using

KT and �, we are able to infer t = b|KT |/2c locations in a candidate trajectory T c.

However, T c is often much larger, i.e., the adversary has 20 known trajectories but the

victim’s trajectory (and therefore T c) contains 25 locations. Then, 20/2 = 10 of the

locations in T c can be calculated using the FindCandidate function (described in the next

section), but the remaining 15 are still unknown. These unknown locations are linearly

interpolated by FindCandidate.

We now go through Algorithm 1 line by line. We initialize our set of candidate trajec-

tories CT as empty, and in line 3, we find how many main locations will be calculated by

FindCandidate. Within the while loop (lines 4-9) we randomly generate the set of indices

S for interpolation. S contains the indices that determine which locations will be calcu-

lated and which ones will be interpolated. The FindCandidate method is invoked in line

6, which calculates the interpolated locations and returns a set of candidate trajectories.

There can be cases where a valid candidate cannot be built with the given parameters (due

to e.g., n
i,k

being misplaced), and in such cases the set returned by FindCandidate will

be empty. If one or more candidates are returned, they are added to CT and we move

on to the next iteration of the main while loop. After itr iterations of the loop, we start

computing conf
p,u

according to Definition 9. The result is returned in line 16.

Example 1. We present an example to demonstrate the creation of indices. Let |KT | = 6

and the trajectory sizes be 5 (i.e., |T r| = 5). In line 3, we get t = b6/2c = 3. Therefore

in line 5, S = (s1, s2), and
P2

i=1 si = 5� 3 = 2. Say that the random creation of indices

yields S = (1, 1). This will be passed over to Algorithm 2.

30

ALGORITHM 1: Find location disclosure confidence
Input : KT : set of known trajectories

�: set of distances between the trajectories in KT and the target trajectory T r

O
p,u

: the proximity oracle
itr: number of iterations

Output: conf
p,u

: location disclosure confidence

1 CT {}
2 j 0

3 t
j
|KT |
2

k

4 while j < itr do
5 Randomly create an ordered set of non-negative integer indices S = (s1, ..., st�1) such that

t�1P
i=1

s
i

= |T r|� t

6 R FindCandidate(KT,�, S)
7 CT CT [R
8 j j + 1

9 end
10 cnt 0
11 for T 2 CT do
12 if O

p,u

(T) = 1 then
13 cnt cnt+ 1
14 end
15 end
16 return cnt/|CT |

31

4.2.2 Creating a Generic Trajectory

In this section we describe the FindCandidate algorithm, given in Algorithm 2. As can

be seen from the algorithm, the first step is to build a generic trajectory T g using S (the

set of indices for interpolation). The current section will focus on this step, while the next

section will present the second and third steps of FindCandidate.

As discussed earlier, FindCandidate is able to calculate t = b|KT |/2c locations, and

interpolates the rest. We refer to the locations that are actually calculated as the main

locations and denote them by m
i

, where i 2 [1...t]. The rest are interpolated locations,

denoted by n
i,j

. n
i,j

sit between m
i

and m
i+1, and the index s

i

determines how many n
i,j

sit between m
i

and m
i+1. If s

i

= 0, then m
i

and m
i+1 are directly adjacent without any

n
i,j

between them. If s
i

> 0, then there is one interpolated location n
i,j

per j 2 [1...s
i

].

In the remainder of this and the next section, a generic trajectory refers to a collection of

m
i

and n
i,j

.

For example, consider the generic trajectory in Figure 4.1. Let s6 = 4 and s9 = 0.

Let the main locations m6, m7, m9 and m10 be placed as shown. Then, since s6 = 4,

we place the interpolated locations n6,1, n6,2, n6,3 and n6,4 between m6 and m7. Since

s9 = 0, there are no interpolated locations between m9 and m10. Notice that interpolated

locations are uniformly distributed on the linear interpolant (i.e., line) between m6 and

m7. That is, they are equi-distant from one another, and also from the main points. This

is because we do not know any information regarding the time-stamps or speed, hence

we assume uniform speed. At this point, the actual coordinates of all of the points are

unknowns, and they need to be solved for in the next steps of FindCandidate. Once they

are actually solved, the coordinates will be populated, and the resulting trajectory will

become a candidate trajectory.

We write the interpolated locations n
i,k

in terms of the main locations. This allows us

to reduce the number of unknown locations in a generic trajectory such that inferring only

b|KT |/2c locations will be sufficient to solve for a candidate trajectory T c later, using a

generic trajectory. Mathematically, using the interpolation function I given in Definition

32

Figure 4.1: Building a generic trajectory T g

2 we write:

n
i,k

= I((m
i

, 0), (m
i+1, si + 1), k)

The choice of time-stamps 0, s
i

+ 1 and k comes from the uniform speed assumption

explained above. Let m
i

= (x
i

, y
i

), m
i+1 = (x

i+1, yi+1) and n
i,k

= (x
i,k

, y
i,k

). Applying

Definition 2, we derive:

x
i,k

= x
i

+ (x
i+1 � x

i

)
k

s
i

+ 1
y
i,k

= y
i

+ (y
i+1 � y

i

)
k

s
i

+ 1

Notice that n
i,k

is dependent only on the main points m
i

, m
i+1 (will be obtained by Find-

Candidate), s
i

(generated by Algorithm 1) and k (its position on the linear interpolant).

Example 2. We continue from Example 1. Recall that trajectory size was 5, S = (1, 1)

and thus s1 = 1 and s2 = 1. Then in FindCandidate, T g is: (m1, n1,1,m2, n2,1,m3).

4.2.3 Solving for a Candidate Trajectory

The pivotal part of the attack is to compute a candidate trajectory given KT , �, and

a generic trajectory T g consisting of main and interpolated points. This constitutes the

second and third steps of Algorithm 2.

Let T g = (pg1, p
g

2, ..., p
g

n

) = ((xg

1, y
g

1), (x
g

2, y
g

2), ..., (x
g

n

, yg
n

)) be the generic trajectory.

As T g needs to be distance compliant, due to Definition 7 we have:

X

i

kpg
i

� pj
i

k = (�
j

)2 (4.1)

for all T j 2 KT , i.e., j 2 [1, |KT |] and i 2 [1, n]. We rewrite the requirement above

inductively:

33

X

i

kpg
i

� p1
i

k = (�1)
2 (4.2)

X

i

kpg
i

� pj+1
i

k � kpg
i

� pj
i

k = (�
j+1)

2 � (�
j

)2 (4.3)

where, in Equation 4.3, j 2 [1, |KT |� 1]. The derivation of Equation 4.3 from Equation

4.1 is simple: We write Equation 4.1 for j and j + 1, and subtract the former from the

latter, side by side. One can see that Equations 4.2 and 4.3 hold, using also an inductive

argument: T g should be distance compliant to T 1, and then should preserve the difference

in distances between all consecutive j’s, i.e., j to j + 1.

Lemma 1. For all trajectories T g, T j , and i, ||pg
i

� pj
i

|| = (xg

i

� xj

i

)2 + (yg
i

� yj
i

)2.

Proof.

||pg
i

� pj
i

|| = (xg

i

� xj

i

)2 + (yg
i

� yj
i

)2

||(xg

i

, yg
i

)� (xj

i

, yj
i

)|| = (xg

i

� xj

i

)2 + (yg
i

� yj
i

)2

||(xg

i

� xj

i

, yg
i

� yj
i

)|| = (xg

i

� xj

i

)2 + (yg
i

� yj
i

)2

(xg

i

� xj

i

)2 + (yg
i

� yj
i

)2 = (xg

i

� xj

i

)2 + (yg
i

� yj
i

)2

The first step is due to the definition of locations: p = (x, y). The second step follows

from the properties of arithmetic operations defined in Chapter 3. Finally, the last step is

due to the definition of the Euclidean norm.

Theorem 2. For a fixed j 2 [1, |KT |� 1] and i 2 [1, n], Equation 4.3 can be reduced to

a linear equation of the form:

X

i

(↵
i,j

)xg

i

+ (�
i,j

)yg
i

= �
j

(4.4)

where ↵,�,� are constants, and xg

i

, yg
i

, for all i, are unknowns.

Proof. We begin by applying Lemma 1 to trajectory pairs (T g, T j) and (T g, T j+1) to

34

replace the two factors of the left hand side sum in Equation 4.3:

X

i

(xg

i

� xj+1
i

)2 + (yg
i

� yj+1
i

)2 � (xg

i

� xj

i

)2 � (yg
i

� yj
i

)2 = (�
j+1)

2 � (�
j

)2

Let a2 = (xg

i

� xj+1
i

)2, b2 = (xg

i

� xj

i

)2, c2 = (yg
i

� yj+1
i

)2 and d2 = (yg
i

� yj
i

)2. By

a2 � b2 = (a� b)(a+ b) and c2 � d2 = (c� d)(c+ d), we get:

X

i

(xg

i

� xj+1
i

� xg

i

+ xj

i

)(xg

i

� xj+1
i

+ xg

i

� xj

i

)

+(yg
i

� yj+1
i

� yg
i

+ yj
i

)(yg
i

� yj+1
i

+ yg
i

� yj
i

) = (�
j+1)

2 � (�
j

)2

X

i

(xj

i

� xj+1
i

)(2xg

i

� xj+1
i

� xj

i

) + (yj
i

� yj+1
i

)(2yg
i

� yj+1
i

� yj
i

) = (�
j+1)

2 � (�
j

)2

X

i

2xj

i

xg

i

� xj

i

xj+1
i

� xj

i

xj

i

� 2xj+1
i

xg

i

+ xj+1
i

xj+1
i

+ xj

i

xj+1
i

+2yj
i

yg
i

� yj
i

yj+1
i

� yj
i

yj
i

� 2yj+1
i

yg
i

+ yj+1
i

yj+1
i

+ yj
i

yj+1
i

= (�
j+1)

2 � (�
j

)2

Some of the terms in the sum cancel. We group the remaining terms and break the sum

into several parts.

X

i

(2xj

i

� 2xj+1
i

)xg

i

+ (2yj
i

� 2yj+1
i

)yg
i

+
X

i

(xj+1
i

)2 + (yj+1
i

)2 �
X

i

(xj

i

)2 + (yj
i

)2 = (�
j+1)

2 � (�
j

)2

Substituting ||p
i

|| = (x
i

)2 + (y
i

)2 and re-arranging the terms, we get:

X

i

(2xj

i

� 2xj+1
i

)xg

i

+ (2yj
i

� 2yj+1
i

)yg
i

= (�
j+1)

2 � (�
j

)2 �
X

i

||pj+1
i

||+
X

i

||pj
i

||

By replacing ↵
i,j

= 2xj

i

� 2xj+1
i

, �
i,j

= 2yj
i

� 2yj+1
i

and �
j

= (�
j+1)2 � (�

j

)2 �
P

i

||pj+1
i

||+P
i

||pj
i

||, we arrive at Equation 4.4, which concludes the proof.

Notice that ↵ and � are functions of i, j and j + 1. Furthermore, since the adversary

has a set of known trajectories, xj

i

, xj+1
i

, yj
i

and yj+1
i

are all known to the adversary.

35

Hence, the adversary can compute ↵ and �. � is a function of j and j+1, and can also be

computed by the adversary using the known trajectories and distances �. Consequently,

the only unknowns in Equation 4.4 are the coordinates of the generic trajectory, i.e., xg

i

and yg
i

.

We would like to underline that Equation 4.4 is linear, whereas Equation 4.1 and Equa-

tion 4.3 are quadratic. Solving a system (i.e., collection) of linear equations is achievable

and well-studied. In contrast, solving a system of quadratic equations is difficult. The

reduction from quadratic equations to linear equations makes the attack feasible.

Theorem 2 builds a linear equation for one j among the set of known trajectories.

Since Equation 4.3 holds for j 2 [1, |KT | � 1], a linear equation can be built for all

j 2 [1, |KT | � 1]. Therefore, we obtain a system of |KT | � 1 linear equations. Plus,

we have one quadratic equation due to Equation 4.2. We can solve this system for |KT |
unknowns. In the case when the generic trajectory is not been interpolated, then we

would have 2 ⇥ |T g| unknowns (both x and y coordinates are unknowns per location,

hence twice the number of locations in T g), and oftentimes 2 ⇥ |T g| > |KT |. (If not,

T g can be completely retrieved.) This is why interpolated locations were necessary: By

acknowledging that we can solve for b|KT |/2c number of unknown locations, we reduced

the number of unknowns in T g in advance and settled for approximating the rest of T g.

We now discuss the FindCandidate method in Algorithm 2 in detail. The algorithm

works in three steps. In the first step, we build a generic trajectory T g using the input S

(indices for interpolation). This process was explained and exemplified in the previous

section. In the second step, we obtain the linear equations using Theorem 2. Then, we

obtain one quadratic equation using Equation 4.2. In the third step, we solve this system

of equations. There are various ways to solve a set of equations, e.g., writing it as a

matrix and column vector multiplication, variable elimination, Gaussian elimination and

row reduction. Any one of these can be used to solve the linear equations, and the solution

is then fed into the quadratic equation.

The quadratic equation often yields two roots (since it is quadratic), which implies

that there are two solution trajectories (denoted T sol in Algorithm 2). We check whether

36

ALGORITHM 2: Find candidate trajectory
Input : KT : set of known trajectories

�: set of distances between the trajectories. in KT and the target trajectory T r

S: indices for interpolation
Output: R: a set of candidate trajectories

/

*

Step 1: Build a generic trajectory T g

using S
*

/

1 T g ()
2 for i = 1 to |S| do
3 T g T g +m

i

4 for k = 1 to s
i

do
5 Let interpolated location n

i,k

= I((m
i

, 0), (m
i+1, si + 1), k)

6 T g T g + n
i,k

7 end
8 end
9 T g T g +m

t

/

*

Step 2: Build the set of equations EQNS
*

/

10 EQNS {}
11 for j = 1 to 2⇥

j
|KT |
2

k
� 1 do

12 Let Q be the linear equation
P

i

(↵
i,j

)xg
i

+ (�
i,j

)yg
i

= �
j

, where ↵
i,j

= 2xj
i

� 2xj+1
i

,
�
i,j

= 2yj
i

� 2yj+1
i

and �
j

= (�
j+1)2 � (�

j

)2 �P
i

||pj+1
i

||+P
i

||pj
i

||
13 EQNS EQNS [Q

14 end
/

*

Let the first trajectory in KT be denoted ((x11, y
1
1), ..., (x

1
n

, y1
n

))
*

/

15 Let Q be the quadratic equation
P

i

(xg
i

� x1
i

)2 + (yg
i

� y1
i

)2 = (�1)2

// using Equation 4.2 and Lemma 1

16 EQNS EQNS [Q
/

*

Step 3: Solve EQNS and obtain candidate trajectories

*

/

17 R {}
18 for each solution T sol to EQNS do
19 if T sol satisfies side channel information then
20 R R [T sol

// see text for types of side channel information

21 end
22 end
23 return R

37

a solution trajectory is valid and satisfies our side channel information before returning

it. First, the validity of T sol requires that the roots of the quadratic equation are real

(i.e., not imaginary numbers). Second, we use the following observations as side channel

information in this work:

1. Geographic assumptions: The locations in each trajectory should be within the

boundaries of a certain map. For example, if trajectories originate from vehicles

traveling in a city, then all locations would fall within the boundaries of that city.

2. Mobility characteristics: Consecutive locations in a trajectory are not independent.

For example, speed limits and road segments in urban areas constrain the mobility

of a vehicle.

Due to these reasons, not all generic trajectories T g or solutions T sol yield a plausible

candidate for the target trajectory. However, when Algorithm 1 is run for a reasonable

number of iterations, as will be shown experimentally, Algorithm 2 usually builds a large

and accurate set of candidate trajectories.

Example 3. We present an example for building and solving the system of equations

using Algorithm 2. For the sake of simplicity, let trajectories contain a single location,

and thus S be an empty set. In the first step (lines 1-9 of Algorithm 2) the following

generic trajectory is built: T g = ((xg

1, y
g

1)).

In the following for loop (lines 10-14) we construct one linear equation: ↵1,1x
g

1 +

�1,1y
g

1 = �1. We compute ↵1,1 = 2x1
1 � 2x2

1 = 4� 1 = 3, �1,1 = 2y11 � 2y21 = 8� 3 = 5

and �1 = (�2)2 � (�1)2 � ||p21|| + ||p11|| = 40.5 � 40 � 2.5 + 20 = 18. Hence the linear

equation we get is: 3xg

1 +5yg1 = 18. This is added to our system of equations, EQNS. In

lines 15-16, we add the following quadratic equation to EQNS: (xg

1�2)2+(yg1�4)2 = 40.

To solve the two equations, we can first write yg1 in terms of xg

1 using the linear equa-

tion. That is, yg1 = (18 � 3xg

1)/5. Then, we replace yg1 with this term in the quadratic

equation. Thus we obtain:

(xg

1 � 2)2 + (
18� 3xg

1

5
� 4)2 = 40

38

Solving the above for xg

1, we find the two roots xg

1 = �4 or xg

1 = 6.59. We can retrieve

yg1 = 6 or yg1 = �0.35 for the two roots respectively, hence we have two T sol: T sol1 =

((�4, 6)) and T sol2 = ((6.59,�0.35)). We check if they satisfy side-channel information

and return those that do. For example, the adversary may know that due to the borders of

his map, the victim’s trajectory cannot have a negative y coordinate. In this case, T sol2

would be eliminated in line 19 in Algorithm 2.

We had only one linear equation above, but in general we may have more than just

one. However, the number of unknowns in those equations will always be one more than

the number of equations (e.g., |KT | unknowns but |KT | � 1 equations). A reliable way

to solve the equations is to designate one variable as the free variable and the rest of the

variables depend on the free variable. In the example above, xg

1 was the free variable and

yg1 depended on xg

1. The designation of the free variable and re-writing all variables can

be done in a variety of ways including row reduction and variable elimination.

4.2.4 Robustness to Noise

There is a vast amount of work on location privacy that relies on adding noise to location

data in order to protect individuals’ privacy. Our goal in this section is to prove that the

attack is robust against such methods. This shows that even though the adversary’s back-

ground knowledge is noisy (i.e., imperfect) the attack can be carried out with reasonable

accuracy. In particular, we consider two cases: (1) trajectories are noisy, and (2) distances

between trajectories are noisy.

We assume Gaussian noise with mean 0 and variance �2, i.e., N (0, �2). This has two

primary reasons. First, Gaussian is by far the most commonly used method in additive

data perturbation. (See [30] and [39]). Second, Gaussian noise is also used in the scope

of differential privacy (i.e., (", �)-DP), which is currently the most active area in statis-

tical database privacy. Given a function f with numeric output, answering f by adding

Gaussian noise with variance calibrated to �f ⇥ ln(1/�)/" (where �f is the sensitivity

of f) to the true output of f satisfies (", �)-DP [50]. Although we assume Gaussian noise,

a number of derivations below apply to other noise distributions with mean 0. (e.g. differ-

39

ential privacy also employs Laplace noise with mean 0 to achieve privacy.) We note such

instances where applicable.

Noisy Trajectories

We let random noise to be added to each location in a trajectory, such that the adversary’s

background knowledge of KT becomes imperfect. Such a setting is plausible in real life

(perhaps even more plausible than having perfect knowledge of all trajectories in KT).

For example, the adversary’s background information might consist of trajectories that

were published in an external database, but this publication was noisy to achieve privacy

protection. (See the related work on privacy-preserving trajectory data publishing.) Al-

ternatively, some location privacy techniques (e.g., cloaking) might have been used to

disable the adversary from observing actual locations, but instead the adversary observes

similar, perturbed locations.

Let T j = (pj1, p
j

2, ..., p
j

n

) = ((xj

1, y
j

1), (x
j

2, y
j

2), ..., (x
j

n

, yj
n

)) be a trajectory and T̂ j =

(p̂j1, p̂
j

2, ..., p̂
j

n

) = ((x̂j

1, ŷ
j

1), (x̂
j

2, ŷ
j

2), ..., (x̂
j

n

, ŷj
n

)) be its noisy variant. We say that for all

i 2 [1, n] and for all j, x̂j

i

= xj

i

+ X
i,j

and ŷj
i

= yj
i

+ Y
i,j

where X
i,j

and Y
i,j

are

independent random variables: X
i,j

⇠ N (0, �2) and Y
i,j

⇠ N (0, �2).

Recall that we employ several linear equations and one quadratic equation when solv-

ing for a candidate trajectory. We first study the effect of noise on the linear equations.

That is, we answer the following question: How are the parameters in linear equations

built using Theorem 2 affected by noise? The three parameters in question are ↵
i,j

, �
i,j

and �
j

.

Theorem 3. Let ↵̂
i,j

denote the ↵
i,j

parameter in the noisy world. Then, ↵̂
i,j

is an unbi-

ased estimator of ↵
i,j

.

40

Proof. We prove this by computing the expected value of ↵̂
i,j

.

E[↵̂
i,j

] = E[2x̂j

i

� 2x̂j+1
i

]

= 2E[x̂j

i

]� 2E[x̂j+1
i

]

= 2E[xj

i

+ X
i,j

]� 2E[xj+1
i

+ X
i,j+1]

= 2E[xj

i

] + 2E[X
i,j

]� 2E[xj+1
i

]� 2E[X
i,j+1]

= 2xj

i

� 2xj+1
i

= ↵
i,j

The final step follows from the fact that xj

i

, xj+1
i

are constants, and since X ⇠ N (0, �2)

it has an expected value of 0. The above holds for any noise distribution with mean 0 and

finite variance (not just for Gaussian).

It is trivial to see that �̂
i,j

has the same guarantees - just swap x coordinates with y

coordinates and the proof stays the same. That is, �̂
i,j

is an unbiased estimator of �
i,j

.

Theorem 4. Let �̂
j

denote the �
j

parameter in the noisy world. Then, �̂
j

is an unbiased

estimator of �
j

.

Proof. We first expand �̂
j

and write it in open form.

�̂
j

= (�
j+1)

2 � (�
j

)2 +
X

i

||p̂j
i

||� ||p̂j+1
i

||

= (�
j+1)

2 � (�
j

)2 +
X

i

(xj

i

+ X
i,j

)2 + (yj
i

+ Y
i,j

)2

� (xj+1
i

+ X
i,j+1)

2 � (yj+1
i

+ Y
i,j+1)

2

= (�
j+1)

2 � (�
j

)2 +
X

i

(xj

i

)2 + 2xj

i

X
i,j

+ (X
i,j

)2 + (yj
i

)2 + 2yj
i

Y
i,j

+ (Y
i,j

)2

� (xj+1
i

)2 � 2xj+1
i

X
i,j+1 � (X

i,j+1)
2

� (yj+1
i

)2 � 2yj+1
i

Y
i,j+1 � (Y

i,j+1)
2

We now find E[�̂
j

]. Note that �
j

, �
j+1, xj

i

, yj
i

, xj+1
i

and yj+1
i

are all constants, and their

41

expected values are equal to themselves. Therefore we have:

E[�̂
j

] = (�
j+1)

2 � (�
j

)2 +
X

i

(xj

i

)2 + 2xj

i

E[X
i,j

] + (yj
i

)2 + 2yj
i

E[Y
i,j

]� (xj+1
i

)2

� 2xj+1
i

E[X
i,j+1]� (yj+1

i

)2 � 2yj+1
i

E[Y
i,j+1]

+ E[(X
i,j

)2] + E[(Y
i,j

)2]� E[(X
i,j+1)

2]� E[(Y
i,j+1)

2]

We know that E[X
i,j

] = E[Y
i,j

] = E[X
i,j+1] = E[Y

i,j+1] = 0 due to the proper-

ties of the Gaussian distribution. Therefore some terms cancel. Also, since all X and

Y are independent and identically distributed, E[(X
i,j

)2] + E[(Y
i,j

)2] will cancel with

�E[(X
i,j+1)2]� E[(Y

i,j+1)2]. (An alternate method for this step of the proof is to model

the square of the Gaussian distribution as a Gamma distribution, and then compute the

expected values of the Gamma distribution. We stick with the aforementioned argument

for brevity and clarity.) Thus:

E[�̂
j

] = (�
j+1)

2 � (�
j

)2 +
X

i

(xj

i

)2 + (yj
i

)2 � (xj+1
i

)2 � (yj+1
i

)2

= (�
j+1)

2 � (�
j

)2 �
X

i

||pj+1
i

||+
X

i

||pj
i

||

= �
j

Theorems 3 and 4 together show that, in expectation, all parameters of the linear

equations should stay the same despite the added noise to trajectories. That is, we expect

to build the same system of linear equations regardless of whether trajectories are noisy

or not.

We now study the effect of noise on the quadratic equation. Recall the quadratic

equation in line 6 of Algorithm 2. The right hand side is not affected by the addition of

noise to trajectories, but the left hand side (LHS) is. Let ˆLHS denote its noisy version.

Theorem 5. ˆLHS is a biased estimator of LHS, with a fixed bias of 2n�2.

42

Proof.

E[ˆLHS] = E[
X

i

(xc

i

� x̂1
i

)2 + (yc
i

� ŷ1
i

)2]

= E[
X

i

(xc

i

� x1
i

� X
i,1)

2 + (yc
i

� y1
i

� Y
i,1)

2]

=
X

i

E[(xc

i

� x1
i

)2]� 2(xc

i

� x1
i

)E[X
i,1] + E[(X

i,1)
2] + E[(yc

i

� y1
i

)2]

� 2(yc
i

� y1
i

)E[Y
i,1] + E[(Y

i,1)
2]

As in the previous proofs, E[X
i,1] = E[Y

i,1] = 0. For E[(X
i,1)2] and E[(Y

i,1)2], we

make the following observation: The square of a Gaussian variable ⇠ N (0, �2) yields

a scaled chi-square, which in turn yields a random variable Q with Gamma distribution

Q ⇠ �(1/2, 2�2). The expected value of this is: E[Q] = �2. Plugging this into the last

equation above, we get:

E[ˆLHS] =
X

i

((xc

i

� x1
i

)2 + �2 + (yc
i

� y1
i

)2 + �2)

= LHS + 2n�2

This result is significant in the following sense: An adversary knows how many en-

tries there are in a trajectory (hence, n). If the adversary also knows the variance of the

noise, he can remove the fixed bias from ˆLHS when building the quadratic equation (i.e.,

subtract 2n�2 from both sides of the equation).

Noisy Distances

We let random noise to be added to each distance � between the candidate trajectory

and the known trajectories. That is, the adversary’s knowledge of � becomes imperfect.

This may arise in real life because the protocol for computing trajectory distance can be

(deliberately or non-deliberately) made noisy. Or, for each � 2 �, instead of exact �, the

43

adversary may have a probability distribution for �. (This makes the attack also a known

probability-distribution attack instead of a known distance attack.)

Let � = {�1, �2, ..., �k} be the set of actual distances. Instead of �, we say that the

adversary observes �̂ = {�̂1, �̂2, ..., �̂k}, where for all i 2 [1, k], �̂
i

= �
i

+ X
i

and X
i

⇠
N (0, �2) is an independent random variable. (Equivalently, the adversary has a known

probability distribution of distances: �̂ = {Y1,Y2, ...,Yk

}, where Y
i

⇠ N (�
i

, �2).)

Again, we first focus on the linear equations. Since parameters ↵
i,j

and �
i,j

do not

depend on �, they remain unaffected from the noise added to �. In addition, even though

�
j

is affected, its noisy version �̂
j

turns out to be an unbiased estimator of �
j

.

Theorem 6. �̂
j

is an unbiased estimator of �
j

.

Proof.

E[�̂
j

] = E[(�
j+1 + X

j+1)
2 � (�

j

+ X
j

)2 �
X

i

||pj+1
i

||+
X

i

||pj
i

||]

= E[(�
j+1)

2] + E[2�
j+1Xj+1] + E[(X

j+1)
2]� E[(�

j

)2]� E[2�
j

X
j

]� E[(X
j

)2]

� E[
X

i

||pj+1
i

||] + E[
X

i

||pj
i

||]]

= (�
j+1)

2 + 2�
j+1E[X

j+1] + E[(X
j+1)

2]� (�
j

)2 � 2�
j

E[X
j

]� E[(X
j

)2]

�
X

i

||pj+1
i

||+
X

i

||pj
i

||

E[X
j+1] = E[X

j

] = 0 and E[(X
j+1)2] cancels with E[(X

j

)2] since they are independent

and identically distributed. Hence:

E[�̂
j

] = (�
j+1)

2 � (�
j

)2 �
X

i

||pj+1
i

||+
X

i

||pj
i

||

= �
j

Next, we study the quadratic equation. Unlike the previous subsection, the LHS does

44

not change due to noise, but the RHS = (�1)2 does. Let ˆRHS denote its noisy version.

We show below that the bias of ˆRHS is fixed.

Theorem 7. ˆRHS is a biased estimator of RHS, with a fixed bias of �2.

Proof.

E[ˆRHS] = E[(�1 + X1)
2]

= E[(�1)
2] + E[2�1X1] + E[(X1)

2]

= �21 + 2�1E[X1] + E[(X1)
2]

E[X1] = 0, and (X1)2 ⇠ �(1/2, 2�2), for which the expected value is �2. (See the proof

of Theorem 5.)

E[ˆRHS] = �21 + �2

= RHS + �2

Similar to Section 4.2.4, the system of equations we build using noisy distances (or

probability distributions of distances) behaves as if there were no noise in the adversary’s

background knowledge. This shows that the attack is robust to noise.

4.3 Experiments and Evaluations

4.3.1 Experiment Setup

We ran our attack on two different datasets. The first dataset was generated using Brinkhoff’s

spatiotemporal data generator [76]. This is a well-known framework that generates network-

based moving object trajectories, and is often used to benchmark spatiotemporal applica-

tions. We used the map of San Francisco to generate trajectories that each contained 500

45

locations. The second dataset is a real dataset obtained during the GeoPKDD project 1.

This dataset contains the GPS traces of taxis in Milan, acquired over a timespan of one

month. We will refer to these datasets as San Francisco and Milan datasets, respectively.

We performed various experiments by changing the number of known trajectories

(i.e., |KT |), the known trajectories themselves (hence, �) and the target trajectory T r.

In every experiment, we ran Algorithm 1 for several thousand iterations itr to obtain a

reasonably large set of candidate trajectories.

4.3.2 Results and Evaluations

To demonstrate the attack, we first present Figure 4.2, 4.3, 4.4 and Figure 4.5, 4.6, 4.7.

In all these figures, the target trajectory is marked in red and the candidate trajectories

are marked in blue. Notice that the candidates are close to the target even with few

known trajectories, i.e., |KT | = 10. However, the candidates in this case are crude

rather than smooth: In Figure 4.2, it looks as if the candidates are collections of lines with

sharp edges. They do not follow the smooth movement patterns observed in the target

trajectory. However, when we have |KT | = 30 or 50, the candidate trajectories are much

more refined. First, they cover a smaller area, condensing more on the target. Second,

they are smoother, better resembling the curvatures and movement patterns of the target.

Yet, even when |KT | = 10, based on the candidate trajectories, the adversary: (1) has a

rough idea on the whereabouts of the target trajectory, and (2) can rule out more than half

of the map as not visited by the victim. These will be quantified in detail next sections, as

we discuss positive and negative disclosure.

Positive Location Disclosure

As discussed earlier, the attack outputs the location disclosure confidence conf
p,u

of a

(circular) area defined by a location p and radius u. This describes the adversary’s level

of confidence regarding where the victim has been, e.g., if conf
p,u

= 85% then the attack

asserts that the victim has been near p with probability 85%.
1
http://www.geopkdd.eu/

46

http://www.geopkdd.eu/

Figure 4.2: Attacking a trajectory in Milan when |KT | = 10

47

Figure 4.3: Attacking a trajectory in Milan when |KT | = 30

48

Figure 4.4: Attacking a trajectory in Milan when |KT | = 50

49

Figure 4.5: Attacking a trajectory in San Francisco when |KT | = 10

50

Figure 4.6: Attacking a trajectory in San Francisco when |KT | = 30

51

Figure 4.7: Attacking a trajectory in San Francisco when |KT | = 50

52

Figure 4.8: Average confidence in true positives against different number of known tra-
jectories (Milan)

We say that positive location disclosure occurs when p is a location on the victim’s

trajectory, u is reasonably small and conf
p,u

is large. That is, at the end of the attack,

the adversary is very confident that the target trajectory passes through the vicinity of

p. Notice that these are essentially true positives, i.e., the victim was actually at/near p

and the attack correctly finds that he was near p. The real-world use of such an attack is

to set p to a sensitive location, e.g., a hospital or a school; and learning with very high

confidence that the victim has been to the hospital.

To conduct experiments regarding positive location disclosure, we chose several lo-

cations on victims’ trajectories as p and obtained conf
p,u

for various u. We repeated this

experiment for different victims’ trajectories T r and known trajectories KT . We then

quantified the adversary’s average confidence in true positives (i.e., conf
p,u

where p is a

location the victim has actually been to) versus the number of known trajectories (i.e.,

|KT |) and the radius u. The results are given in Figure 4.8, 4.9 and Figure 4.10, 4.11

respectively.

Analyzing Figure 4.8, we make the following observations: On a real dataset (i.e.,

53

Figure 4.9: Average confidence in true positives against different number of known tra-
jectories (San Francisco)

Figure 4.10: Average confidence in true positives against different radiuses (Milan)

54

Figure 4.11: Average confidence in true positives against different radiuses (San Fran-
cisco)

Milan), even with very few trajectories (e.g., 10) it is possible to infer (with confidence

> 55%) the whereabouts of the victim. As expected, by increasing the number of known

trajectories we can increase the adversary’s confidence, which implies a more successful

attack. Also, |KT | seems to affect the San Francisco dataset more than Milan as shown in

Figure 4.9. We believe that this is because the San Francisco dataset is synthetic and the

attack ends up creating candidates that are too scattered around the city due to the random

nature of the known trajectories.

Analyzing Figure 4.10 and 4.11, we make the following observations: With a larger

radius (i.e., u in conf
p,u

) the area in question has a larger size, which decreases precision

but increases the probability that a candidate passes through it. In the extreme case, if u

is the diameter of the map then conf
p,u

would always be 100%. In that sense, a positive

correlation between u and conf
p,u

is expected, which was verified using the experimental

results. Considering that a city block in Manhattan, NYC is 80m⇥274m, the attack might

not be able to identify precisely a street address, but can find that the victim was within a

55

two-block radius with reasonable confidence (> 60%) - see Figure 4.10. The implications

of this is even more significant in non-urban settings. For example, if the adversary were

to pursue whether the victim has gone near a large university campus out of town (e.g.,

boundaries > 2km) in both datasets (i.e., Figure 4.10 and 4.11) the attack could output

that he indeed has, with > 85% confidence.

So far, we focused on true positives. On the other hand, the attack may also yield

false positives. We say that a false positive occurs when the location p in question is not

located on (or very near) the target trajectory, but conf
p,u

is large. That is, the victim

has not actually been near p but the attack says otherwise. An attack that outputs many

false positives is highly undesirable, as it may lead to real-life problems. For instance,

the attack claims that Alice has been to an illegal public protest, but in fact she was never

there. To further motivate the need to decrease false positives, note that an attack can

be devised to claim that all locations on a map have conf
p,u

= 100%, without making

any calculations whatsoever. This trivially discovers all true positives and outputs perfect

confidence for all of them. However, it is useless: The remaining map is full of false

positives.

We note that only those locations that are visited at least once by some candidate

trajectory have non-zero probability of being raised as a false positive. That is, for a

location p, if no candidate passes through the vicinity of p, then trivially conf
p,u

= 0 and

p is never considered a false positive. On the other hand, if a candidate passes through p

but the target trajectory does not, then conf
p,u

> 0 and p can be a false positive. Thus,

in this experiment we select those locations that appear at least once in some candidate

trajectory, with an approximate distance of u to the target trajectory. Mathematically, we

find p 2 T for T 2 CT , where 9p
i

2 T r with ||p � p
i

|| ⇡ u; and 8p
j

2 T r such that

p
i

6= p
j

, ||p � p
j

|| � u. In each experiment setting, we build a set of locations {p} with

these properties and measure their average conf
p,u

. This measurement yields the average

confidence in false positives: For locations that are not on the target trajectory, with what

average confidence does the attack claim that the victim has been there?

In Figure 4.12 and 4.13, we graph the average confidence in false positives with re-

56

Figure 4.12: Average confidence in false positives (Milan)

Figure 4.13: Average confidence in false positives (San Francisco)

57

spect to various KT and u. In all cases, confidence in false positives is at most 25%. That

is, the conf
p,u

of a location that is not on the target trajectory is less than 25% (in many

cases, significantly less than 25%). We can therefore safely conclude that the attack does

not raise false positives.

Two observations from Figure 4.12 and 4.13 are: (1) With an increase in u, average

confidence in false positives decreases. This is because we find locations u away from

T r; and with higher u we are farther away from T r. Hence there is a decrease in the

number of candidate trajectories that pass through those regions, and consequently a de-

crease in conf
p,u

. (2) With an increase in |KT |, average confidence in false positives

decreases. This is because higher |KT | yields candidates that are less scattered and more

concentrated on T r, which decreases the probability of raising a false positive. In Fig-

ure 4.12, there seems to be an exception to this case, where average confidence increases

from |KT | = 10 to 30. We believe that this is due to the length of the trajectories in

Milan. Observe that in Figure 4.2 the algorithm can create only a few candidates. In Fig-

ure 4.3, candidates are more scattered, and in Figure 4.4, candidates are condensed again.

Whereas in Figure 4.5, candidates get more and more condensed as we move from 4.5 to

4.6 and 4.7.

Negative Location Disclosure

We say that negative location disclosure occurs when conf
p,u

is significantly small. That

is, for a location p, an adversary is very confident that the target trajectory does not pass

through the vicinity of p. A real-life use of this attack could be to find if a student has been

to school on a particular day, and the outcome would be that s/he most probably has not.

We measure confidence in negative disclosure as (1 � conf
p,u

) ⇤ 100%. For example, let

p denote the location of the school. If the attack yields conf
p,u

= 0.05, then the adversary

is 95% confident that the target has not been to school.

For this experiment, we could choose locations that are far away from the victim’s

trajectory, but this does not yield an interesting experiment. We can see from Figure 4.2,

4.3, 4.4 and Figure 4.5, 4.6, 4.7 that the conf
p,u

of a location far away from the victim is

58

Figure 4.14: Average confidence in negative disclosure (Milan)

zero, or almost zero. For example, consider a location on the bottom-right corner of the

map of Milan (Figure 4.2, 4.3, 4.4). Not a single candidate trajectory passes through that

region, so conf
p,u

for this location is 0, and confidence in negative disclosure is 100%. To

make the experiment more challenging and meaningful, we choose only those locations

roughly 3-4 km away from the target trajectory, and compute the adversary’s confidence

in negative disclosure for those locations.

We graph the results in Figure 4.14 and 4.15. We make two observations from these

graphs. First, with an increase in |KT | we obtain higher confidence in negative disclosure.

This is because when |KT | increases, the candidates are more dense (i.e., concentrated)

on the target trajectory, as can be observed in Figure 4.2, 4.3, 4.4 and Figure 4.5, 4.6, 4.7.

This decreases the probability of being scattered near the trajectory, and conf
p,u

is smaller

for the locations we measure. Thus, there is higher confidence in negative disclosure.

Second, with an increase in the radius (i.e., u), we obtain smaller confidence in negative

disclosure. Consider that in this case, |KT | and the rest of the parameters are fixed, and

the same candidates are generated. But, with higher u, more candidates satisfy O
p,u

and

59

Figure 4.15: Average confidence in negative disclosure (San Francisco)

conf
p,u

increases, which in turn decreases confidence in negative disclosure.

Overall, even with limited background knowledge (e.g., |KT | = 10 or 30) and a

reasonable radius (e.g., u = 0.5, 1 km), we obtain higher than 75% confidence in negative

location disclosure. We remind that these are for locations that are only 3-4km away from

the target. For locations farther away, we can expect even higher confidence.

4.3.3 Comparison with Previous Work

We compare our attack with the previous work of [29]. The goal of the previous work is

to build a candidate trajectory that best resembles a target trajectory T r, given adversarial

background information. The authors employ a heuristic-based algorithm that randomly

forms a candidate trajectory first, and then tries to converge this trajectory to T r in an

iterative manner. The heuristic is based on finding a location that is closest to T r with

a matching time-stamp, and then building the rest of the trajectory in guidance of that

location.

60

Table 4.1: Comparison with previous work

of Known Traj. SR of Previous Work SR of Our Method Improvement %
10 0.4287 0.4567 6.53
30 0.6421 0.7391 15.11
50 0.7783 0.8280 6.39
70 0.8217 0.8511 3.58

100 0.8635 0.8942 3.56

Since the aim of [29] is building one trajectory best resembling T r, there is no notion

of keeping a set of candidate trajectories. Therefore the evaluation metrics used in this

work are not applicable to [29]’s setting. On the other hand, [29] uses its own metric,

Success Rate (SR). To measure the success rate of a trajectory T ⇤ in resembling T r, i.e.,

SR(T ⇤|T r), the authors first find the Average Sample Distance (ASD) between T ⇤ and

T r. The ASD is simply the Euclidean distance between T ⇤ and T r divided by the size of

the trajectories.

ASD(T ⇤, T r) =
(T ⇤ � T r)2

|T r|
The authors then observe that ASD is dependent on the magnitude of the locations/coordinates

in the trajectories. Therefore they compute the magnitude of T r as follows:

MAG(T r) =
n�1X

i=1

||p
i

� p
i+1||

Finally, the success rate is defined as:

SR(T ⇤|T r) = e�↵⇤ASD(T⇤,Tr)
MAG(Tr)

where ↵ is a sensitivity factor which decides how steeply SR goes to 1 as the candidate

approaches the target. They show that SR(T r|T r) = 1, SR tends to 0 as ASD tends to

infinity (since e�1 = 0), SR 2 [0, 1], and that SR has other desirable properties.

We implemented the attack algorithm in [29] and their metric SR. We compare our

work with theirs as follows: For the candidates CT we generate, we measure their SR

61

and compare this with the best SR obtained from [29]. We used ↵ = 20 to mimic their

setting. The results are given in Table 4.1. We see that our work outperforms [29] in all

experiments. Although the improvement with large KT is not that significant (e.g., only

3.5%) for smaller and medium-amount of background knowledge (e.g., |KT | is 10, 30

or 50) our improvement is obvious (e.g., more than 15%). We emphasize that, compared

to [29], we also study the positive and negative location disclosure risks. We believe that

these have clearer real-life consequences and are therefore of higher impact.

62

Chapter 5

Location Disclosure Risks of Releasing

Relation-preserving Data

Transformations

5.1 Brief Summary

In this work, we are in the attacker’s role exploring valuable information from transformed

spatio-temporal dataset with few known points. We propose a way of breaching the pri-

vacy of relation-preserving transformations based on background knowledge in the form

of a set of known input points. Those points are a bunch locations known by the attacker

that are also present in the transformed dataset.

We make the following contributions:

• We generalize from distance-preserving transformation to relation-preserving trans-

formation and attack on the relation-preserving transformation.

• The attack is based on solely on a set of known samples from the dataset (so the pair-

wise distances among them can be calculated) and their relations on transformed

dataset.

• The attack is applicable on the perturbed data publication model.

63

• Our attack is computationally feasible, which has been an issue for some earlier

works [29].

The data owner’s private database D is denoted with transcript D(r1, ..., rn), where

r
i

2 D are the tuples in D. We make no assumptions regarding the structure or type of

data contained in D, apart from the ability to map D to a m-dimensional Euclidean space

Rm. As such, we view each r
i

as a point in Euclidean space, and use the terms tuple and

point interchangeably in the remainder of this chapter.

The starting point of our attack is pairwise distances (or similarity) between points in

Euclidean space: As the name implies, distance-preserving transformations preserve pair-

wise distances. Pairwise distances between elements r
i

, r
j

2 D can be computed using

commonly used distance metrics, e.g., Minkowsi (p-norm) distance, Euclidean distance

[29]. Without loss of generality, we assume that Euclidean distance is used for distance

calculations.

5.2 Attack Algorithm

We propose a novel strategy to attack relation-preserving transformations. We assume

that the following information is available to the attacker:

• Distance matrix of the transformed data, M 0. The distance matrix can be either

obtained directly as a result of distance matrix publication [31],[41] or computed

by the attacker after the publication of the transformed data. For example, given the

transformed database in Table 3.3a, its distance matrix in Table 3.3b can be easily

computed. In this work, we consider a broader type of transformations that we

call relation-preserving transformations. Such transformations allow the distance

matrix to change, but only in a way that the relative order of the cells in the matrix is

conserved. That is, assuming M is the distance matrix of the original data and M 0 is

the distance matrix of the transformed data, if M
i,j

is greater than [less than] M
k,l

,

M 0
i,j

must be greater than [less than] M 0
k,l

. Relation-preserving transformations

have the desirable property that similar data mining results can be obtained although

64

exact pairwise distances between records are not revealed. For example, a record’s

k nearest neighbors do not change, therefore k-NN classification on a transformed

dataset would produce the same output as it would produce if run on the original

dataset.

• A set of known samples. The attacker has a set of records r
i

2 D. That is, the

attacker knows where each r
i

maps to in the original Rm space (prior to transfor-

mation).

Known-sample attacks are popular in the literature [29, 31, 32, 44]. There are multiple

ways in which an attacker can obtain a set of known samples, e.g., the attacker may know

that his and a few other friends’ information is in the data, or may be able to inject a

tuple into the data. Notice that our attack makes no assumptions regarding the underlying

transformation function used or the transformed output. That is, we do not require the

attacker to obtain input-output pairs or any output points from the transformation function

S . However, we do require that the distance matrix M 0 of the transformed data D0 is

available. This is not a strict assumption since data owner transform data to share it for

data analytics purposes.

We introduce our attack using the example in Figure 5.1. Suppose that database D is

2-dimensional (i.e., records are in R2), and let r
A

, r
B

in D be the known samples of the

adversary. Say that the goal of the adversary is to find the position of r
E

, i.e., locate r
E

in R2 space. Let M 0 be the distance matrix that is published after a relation-preserving

transformation S is applied to D.

65

Figure 5.1: Sample 2-dimensional database D with three records. Actual locations of
records in R2 (on the left) and the distance matrix published after transformation (on the
right).

Observation 1. If M 0
A,B

< M 0
A,E

, then in the original dataset r
E

must be located outside

the circle with centre r
A

and radius �(r
A

, r
B

).

Proof. From the definition of distance matrices (Definition 5), M 0
A,B

< M 0
A,E

implies

that �(S(r
A

),S(r
B

)) < �(S(r
A

),S(r
E

)). Since transformation S is relation-preserving,

the previous statement implies that �(r
A

, r
B

) < �(r
A

, r
E

) must hold. The attacker knows

the locations of r
A

and r
B

, therefore he may compute �(r
A

, r
B

) = ||r
A

� r
B

|| and draw

a circle with centre r
A

and radius �(r
A

, r
B

). This circle forms an infinite collection of

points that have the same distance to r
A

, and all points X that are in the area enclosed by

the circle (including points on the circle) satisfy �(r
A

, X) �(r
A

, r
B

). Since �(r
A

, r
E

) >

�(r
A

, r
B

), r
E

cannot be located within or on the circle, and hence must be located outside

the circle.

Observation 2. If M 0
A,B

= M 0
A,E

, then in the original dataset r
E

must be located on the

circle with centre r
A

and radius �(r
A

, r
B

).

Observation 3. If M 0
A,B

> M 0
A,E

, then in the original dataset r
E

must be located within

the area enclosed by the circle with centre r
A

and radius �(r
A

, r
B

).

Observations 2 and 3 follow trivially from the first observation, therefore we omit

their proofs. The key idea of our attack is that given the known points r
A

, r
B

and the

66

transformed distance matrix of D0, the attacker iteratively prunes the search space (which

is initially equal to the entire data space). Observations 1, 2 and 3 demonstrate one way

of “pruning” the search space while the adversary searches for r
E

. The main idea is

to compare the distance between the two known samples (r
A

and r
B

) and the distance

between the target (r
E

) and the known samples after the transformation is applied. The

relation-preservingness of the transformation allows the adversary to make inferences on

the original dataset and prune out those portions in R2 that r
E

cannot be located in. In all

of the observations above, we compare M 0
A,B

to M 0
A,E

, however the same can be compared

to M 0
B,E

that would result in circles centered at r
B

with radius �(r
A

, r
B

). The procedure

can also be repeated for every pair of samples the adversary has (we considered only one

pair (r
A

, r
B

) so far for the sake of simplicity and clarity).

We now present a second type of pruning. For the two known data samples r
A

and

r
B

, let L denote the perpendicular bisector of the hypothetical line connecting r
A

and

r
B

. (Given the locations of r
A

and r
B

, it is trivial to draw both the hypothetical line and

its perpendicular bisector.) As seen in Figure 5.1, L divides the search space into two

portions. Let P
rA denote the portion that contains r

A

and P
rB denote the portion that

contains r
B

.

Observation 4. If M 0
A,E

> M 0
B,E

then r
E

must be located in P
rB .

Proof. M 0
A,E

> M 0
B,E

implies �(S(r
A

),S(r
E

)) > �(S(r
B

),S(r
E

)) due to the definition

of distance matrices. Since S is relation-preserving, this implies �(r
A

, r
E

) > �(r
B

, r
E

).

L is a line containing points that are equidistant to r
A

and r
B

. All points X 2 P
rB have

the property �(r
B

, X) < �(r
A

, X), whereas points Y on L satisfy �(r
B

, Y) = �(r
A

, Y)

and points Z 2 P
rA satisfy �(r

A

, Z) < �(r
B

, Z). Hence, r
E

is in P
B

.

Observation 5. If M 0
A,E

= M 0
B,E

then r
E

must be located on L.

Observation 6. If M 0
A,E

< M 0
B,E

then r
E

must be located in P
rA .

The second type of observations we make examine the distance between the target

r
E

and the two known samples (i.e., �(r
A

, r
E

) and �(r
B

, r
E

)). Again, this process can

67

be repeated for every pair of known samples. At this point, we would like to note two

characteristics of our attack: (1) The pruning process is fully deterministic, i.e., the ad-

versary is 100% confident that pruned areas may not contain the target data point. (2) We

are placing constraints on where r
E

can/cannot be located in the original dataset, not the

transformed dataset. The adversary’s goal is to locate r
E

in the original data space, not in

the transformed space.

5.2.1 Attack Formalization

In this section we formalize our attack and generalize it to n-dimensional space Rn, where

n � 2. Let A,B 2 R3 have the following coordinates: A(�2, 1, 4), B(0, 6, 3). We say

that P has the coordinates P (x, y, z) and solve:

||P � A|| = ||P � B||
p

(x+ 2)2 + (y � 1)2 + (z � 4)2 =
p
(x� 0)2 + (y � 6)2 + (z � 3)2

x2 + 4x+ 4 + y2 � 2y + 1 + z2 � 8z + 16 = x2 + y2 � 12y + 36 + z2 � 6z + 9

4x+ 10y � 2z = 24

H
AB

is therefore the plane given by the final equation above. Half-spaces, defined in

Definition 15, are often specified using linear inequalities derived from the hyperplane

that seperates them. For the previous example, the two open half-spaces of R3 are given

by the equations:

P
A

: 4x+ 10y � 2z < 24

P
B

: 4x+ 10y � 2z > 24

It is clear to see that since H
AB

is the hyperplane, defined in Definition 14 that is equidis-

tant to A and B, one of the half-spaces will contain point A whereas the other will contain

B. We call these half-spaces P
A

and P
B

respectively. Circles are hyperspheres, defined

in Definition 12, in 2-dimensional space. A circle with centre C(3, 4) and radius 7 would

be characterized by the equation: (x � 3)2 + (y � 4)2 = 49. Then, the open hyperball,

68

defined in Definition 13, B(3,4),7 specifies the area enclosed by this circle, excluding those

points that are on the circle. This is given by the equation: (x� 3)2 + (y � 4)2 < 49.

We present our attack strategy in Algorithm 3. We have the following inputs: The uni-

verse U is a collection of all possible points that may exist in the database. The universe

often has boundaries that are dictated by the semantics of the underlying database, e.g.,

the boundaries of a dimension age could be 0 and 110. Or, if the database contains the

locations or spatial information regarding people living in a particular city, the universe

is bounded by the borders of that city. M 0 is the distance matrix that is obtained after a

relation-preserving transformation. The attacker has a set of legitimate known samples

(i.e., all samples are within the universe U). We describe the attack assuming the adver-

sary would like to compromise the location of one target record r
E

, but the attack can be

run on an arbitrary record. We specify the identifier of the target record, E, as one of our

inputs.

Initially, we say that r
E

can be anywhere in the universe, by setting the search space

variable (which we denote by s) to U . For every pair of known samples, we iteratively

prune the search space several times using the observations made in the previous section.

Here, pruning refers to deleting certain geometric objects, or areas that do not intersect

with a given geometric object, from the search space. For example, pruning a hyperball

off of s would delete all points in s that intersect with that hyperball. Note that some

points in the hyperball might have already been deleted in previous steps, and therefore

would not be present in s. For such points no further action needs to be taken. Computing

the intersection between the search space s and a given geometric object/region would

delete all points in s that lie outside that object/region. The final output of the attack is the

region of the universe that has not been pruned, i.e., the area where r
E

must be located in.

To make the algorithm easier to follow, we give the specific observations that lead

to each of the pruning operations. The pruning between lines 3-12 and 13-22 both stem

from Observations 1, 2 and 3. Between lines 4-6 we apply Observation 1, between lines

7-9 we apply Observation 3, and between lines 10-12 we apply Observation 2. These

three steps are based on the distances between (r
A

, r
B

) and (r
A

, r
E

). We then apply the

69

ALGORITHM 3: Locating a target record using a distance matrix and known samples
Input : U : the data space with its boundaries,

M 0: distance matrix of transformed data,
K = {r1, .., rn|ri 2 U}: set of known samples,
E: an identifier to denote the target record r

E

Output: U 0 ✓ U : portion of the universe where the target record is located

1 s U
2 for each pair (r

A

, r
B

) 2 K do
3 Build the hypersphere S

rA,�(rA,rB) and open hyperball B
rA,�(rA,rB)

4 if M 0
A,B

< M 0
A,E

then
5 s s� (B

rA,�(rA,rB) [S
rA,�(rA,rB))

6 end
7 else if M 0

A,B

> M 0
A,E

then
8 s s \B

rA,�(rA,rB)

9 end
10 else
11 s s \ S

rA,�(rA,rB)

12 end
13 Build the hypersphere S

rB ,�(rA,rB) and open hyperball B
rB ,�(rA,rB)

14 if M 0
A,B

< M 0
B,E

then
15 s s� (B

rB ,�(rA,rB) [S
rB ,�(rA,rB))

16 end
17 else if M 0

A,B

> M 0
B,E

then
18 s s \B

rB ,�(rA,rB)

19 end
20 else
21 s s \ S

rB ,�(rA,rB)

22 end
23 Build the equidistant hyperplane H

rArB and resulting open half-spaces P
rA , P

rB

24 if M 0
A,E

> M 0
B,E

then
25 s s \ P

rB

26 end
27 else if M 0

A,E

< M 0
B,E

then
28 s s \ P

rA

29 end
30 else
31 s s \H

rArB

32 end
33 end
34 return s

70

same approach to the distances between (r
A

, r
B

) and (r
B

, r
E

) to obtain the three steps

between lines 13-22: Between lines 14-16 we apply Observation 1, between lines 17-19

we apply Observation 3, and between lines 20-22 we apply Observation 2. Afterwards,

between lines 23-32, we apply Observations 4, 5 and 6. Specifically, between lines 24-26

we apply Observation 4, between lines 27-29 we apply Observation 6, and between lines

30-32 we apply Observation 5. On line 34, we return the final result after all pruning.

5.2.2 Implementation and Noise Resilience

As can be seen in Algorithm 3, our attack involves many union, intersection and difference

operations. These are non-trivial to implement in continuous n-dimensional space. For

the sake of reproducibility, we comment on the specifics of our implementation.

We implement the attack by discretizing the search space: We assume that the uni-

verse U is made up of uniform n-dimensional cells. Smaller the cells are, higher the total

number of cells and finer the granularity of the attack will be. However, due to the in-

creased number of cells, execution time will also be higher. We take a defensive approach

when we prune cells, that is, in each pruning decision we prune only those cells that can

be completely pruned off the search space. For example, consider Figure 5.2. When we

prune the half-space P
rA , we only prune those cells that are completely contained by P

rA .

For all borderline cells (e.g., those that lie on L) we keep them instead of pruning them.

As such, we guarantee that we never over-prune, e.g., if in Figure 5.2 we prune cell Y

then we would have over-pruned by removing the portion that is to the right of L, which

includes area that r
E

could actually be located in. This would violate the correctness of

our attack. On the other hand, by not pruning cell Y we also keep the portion in cell Y that

is to the left of L, which we are certain that r
E

is not located in. We ideally would like to

prune the latter portions off, but since our cells were too coarse (i.e., too big) in this case,

we could not do so. On the other hand, we safely prune cell X since the whole cell lies

within P
rA .

71

Figure 5.2: Discretization of the universe using uniform 2-dimensional cells.

Next, we comment on the noise resilience of the attack. As noted in Section 2.1, one

of the prominent techniques in data privacy is additive perturbation, which adds noise

to the published information. Thus, it is interesting to make our attack resilient to the

addition of noise. Note that noise addition will likely destroy the relation-preservingness

of a transformation, and the correctness of our attack can no longer be guaranteed. That

is, given data space U the attack may output that r
E

resides in space U 0, but in fact r
E

resides in U � U 0.

Algorithm 3 is not resilient to noise, since it prunes a region of the search space imme-

diately when one pair decides that that region should be pruned. For instance, let (r
C

, r
D

)

be a pair that decides to prune cell X when searching for target record r
E

. Algorithm 3

would immediately prune X from the search space variable s and proceed. This is not

problematic in the non-noisy case. However, in the noisy case, M 0
C,E

, M 0
D,E

or M 0
C,D

may be inaccurate due to the added noise. Thus, (r
C

, r
D

)’s decision to prune X could be

wrong.

To account for these cases, we implemented a voting mechanism. For each cell, we

keep track of the pairs of points that have voted in favor of pruning that cell. If, at any

72

point, the number of votes for pruning cell X exceeds an input voting threshold, we prune

X off the search space. The voting threshold depends simply on the number of known

points. That is, let t denote the voting threshold. If t% of the point pairs vote in favor of

pruning X , then X will be pruned. We use the voting mechanism only when the data is

noisy (i.e., the transformation is not guaranteed to be relation-preserving).

Having presented our implementation details, we can now discuss metrics for mea-

suring the accuracy and success rate of our attack. Following the inputs and outputs of

Algorithm 3, we use the following transcript to denote the attack: A(U,M 0, K,E) = U 0,

where A denotes the attack, (U,M 0, K,E) denote the four parameters our attack takes as

inputs (as described in Algorithm 3), and U 0 is the output, i.e., the portion of the search

space that the attack claims the target record r
E

is located in. We quantify the accuracy

of our attack as follows:

Accuracy = Pr(r
E

2 U 0|A(U,M 0, K,E) = U 0)

The probability boils down to the ratio of trials where the attack was right in predicting

that r
E

was located in portion U 0 divided by the total number of trials. We underline that

the accuracy of our attack is always 100% when there is no added noise, i.e., the data

transformation is relation-preserving.

Our second metric is success rate, which is essentially the precision of our attack.

Given that U is the universe, an attack that simply outputs A(U,M 0, K,E) = U without

doing anything achieves 100% accuracy, but it cannot be considered successful since it

is very imprecise. The success of the attack lies in its ability to identify a small portion

U 0 ✓ U that r
E

is located in. This is captured by the success rate metric we define below.

Let vol(.) denote the volume of a given n-dimensional region. Given A(U,M 0, K,E) =

U 0:

Success Rate =
vol(U 0)

vol(U)

In a uniform-cell based implementation, the success rate can be calculated simply by

73

dividing the number of unpruned cells (i.e., those in U 0) by the total number of cells in

the universe U .

5.3 Experiments and Evaluations

5.3.1 Experiment Setup

We implemented our attack in Java and ran experiments on the relation-preserving trans-

formations of two datasets. We ran various experiments by changing the number of known

samples and the known samples themselves. In each experiment setting, we attacked mul-

tiple target records, and we report the average results.

Consider the following practical application of our attack: The data owner runs a

mobile service and collects private location check-ins of users. This data is shared with

third parties after a relation-preserving transformation. Since the attacker and a few close

friends of his are users of the mobile service, the attacker knows their check-in locations

and this constitutes his set of known points. Then, the goal of the attacker is to infer the

locations of remaining users (whose locations he cannot directly observe, since, e.g., they

are not in his social circle).

Motivated by this scenario, we use 2D location data in our experiments. The datasets

are explained below in detail.

Gowalla dataset [2]. Gowalla was a location-based social networking website where

users shared their locations by checking-in. A total of 6, 442, 890 check-ins over the

period of February 2009 and October 2010 were collected and made available1. This

dataset was recently used in other privacy related works, e.g., [77],[78]. From the Gowalla

data, we extracted those check-ins made in New York.

Istanbul dataset. We collected location data of 60, 000 vehicles in Istanbul, Turkey using

a vehicle tracking system. From this data, we extracted the last known locations of 200

randomly chosen vehicles and formed our experimental dataset. The data consists of the

vehicle ids, latitude and longitude coordinates.
1
http://snap.stanford.edu/data/loc-gowalla.html

74

http://snap.stanford.edu/data/loc-gowalla.html

Figure 5.3: Attacking a target with knowns=2 (half of the space is pruned)

We use our grid-based implementation explained in Section 5.2.2. We pick the grid

cell size such that the area of each cell is 0.01km2. We believe that locating an individual

within such a small area is reasonable and challenging considering the entire search space

is a big city. Given this cell size, we have a total of approximately 1.1millions cells in the

Istanbul dataset and 240k cells in the Gowalla dataset.

5.3.2 Results and Evaluations

The most interesting aspect of our attack is how success rate changes with respect to the

number of known samples. With this, we can directly infer how many samples would

be needed to locate a private target record. We run this experiment in two scenarios:

noisy and non-noisy. In the non-noisy scenario, a distance-preserving transformation is

applied to the data and the attacker observes the resulting distance matrix M 0. Since the

transformation is distance-preserving, M 0 = M , where M is the distance matrix of the

original data. In the noisy scenario, random noise is added to M 0 after the transformation.

That is, the attacker observes: M 00 = M 0 + noise. In Section 2.1 we noted previous work

on additive noise. Parallel with this previous work, we choose to add Gaussian noise to

M 0, with mean 0 and variance scaled to the variance of the actual data. We calculated that

the average noise is 16% in the noisy experiments.

75

Figure 5.4: Attacking a target with knowns=2 (target lies in the perimeter of a known
sample)

Figure 5.5: Attacking a target with knowns=4

Figure 5.6: Attacking a target with knowns=4 (very small unpruned region)

76

We graph our results in Figure 5.7. In the non-noisy case, the attack achieves success

rates of above 96% with 4 or more samples. Even with only 2 known samples, the attack

achieves 69% and 76% success rates on the Istanbul and Gowalla datasets respectively.

Considering that it is easy to obtain a sample of 2-4 records (e.g., check-ins of the attacker

himself and 1-3 acquaintances) we can deduce that our attack is very feasible in practice.

Thus, relation-preserving transformations are not robust against our known-sample attack.

We present the outputs of the attacks with 2 and 4 knowns in Figure 5.3, 5.4 and Figure

5.5, 5.6 respectively. Note that dark gray color denotes unpruned regions. In Figure

5.3, hyperplane pruning dividing the search space is shown. In Figure 5.4, hypersphere

pruning is shown. In Figure 5.5 and 5.6, we show that all 2-combinations of 4 known

points pruned the universe to locate the target point which in fact yield better results.

Using Figure 5.7, we also compare the success rate between noisy and non-noisy

scenarios. For the noisy scenario, we only consider the success rate of those records that

are correctly located, i.e., r
E

2 U 0 given that A(U,M 0, K,E) = U 0. Compared to the

non-noisy scenario, in the noisy scenario success rate drops only by 10% in the Istanbul

dataset and 8% in the Gowalla dataset. With these numbers, it is reasonable to conclude

that the attack is resilient to additive white noise.

Next, in Figure 5.8, we show the accuracy of our attack with respect to the number of

known samples. Interestingly, accuracy drops as we have more samples. This is because

we prune for every pair of samples (see Algorithm 3) and more samples imply more

pruning iterations. Since the transformed data has noise, it is more likely to hit noisy

data with more pruning iterations. Then it becomes more likely to prune some regions

that actually contain the target record which causes accuracy loss. This gives a clear

trade-off between success rate and accuracy: If we are more aggressive by pruning many

regions, we increase our success rate by definition. However, at the same time, it becomes

more likely that the region containing the target record will also be pruned if we are too

aggressive. This would decrease our accuracy.

Bearing in mind both Figure 5.7 and Figure 5.8, we describe some guidelines for the

attacker. The goal of the attacker is to first remain accurate in his prediction, and second to

77

a: Gowalla dataset

b: Istanbul dataset

Figure 5.7: Success rate (in percentage) in noisy and non-noisy scenarios

78

make his prediction very precise by having a high success rate. Note that, if the attacker

very precisely locates his target within 0.01% of the search space but the target is not

actually located there, this is potentially a bigger problem than having a somewhat poorer

precision, e.g., 4%, but remaining accurate in the prediction. The first factor is concerned

with accuracy, while the second is concerned with success rate. As such, it is best for the

attacker to choose a setting that maximizes both, but accuracy should not be sacrificed in

favor of success rate - while vice versa is considerable.

For example, assume that the attacker is operating on the Gowalla dataset and wishes

to remain 85% accurate in his predictions. Then, by Figure 5.8, the attacker needs 4 or less

samples. The expected success rate is between 73% and 88%, according to Figure 5.7.

In general, there are two factors affecting accuracy:

1. number of samples

2. the voting threshold

We discussed the number of samples above. The voting threshold was explained in Sec-

tion 5.2.2. The attacker can set the voting threshold so high that the probability of erro-

neous pruning would be very small. We note that a third factor affecting accuracy would

be the amount of noise added to the transformed data. If the noise is high, then the data is

very distorted, and hence the accuracy would eventually drop. However, the quantity of

noise is beyond the control (and usually beyond the knowledge) of the attacker. Therefore,

we do not propose guidelines based on the amount of noise.

To better understand the factor of the voting threshold, we conduct the experiment

in Figure 5.9. Here we show the effect of the voting threshold for different number of

samples. We make the following observations: First, as the voting threshold increases,

accuracy increases. This is because a higher voting threshold implies that more point

pairs need to agree in order to prune a region, and therefore a single noisy entry is less

likely to cause an erroneous pruning. Second, as we have more samples, we should have

higher voting thresholds in order to remain accurate. This is in parallel with the results

and discussion of Figure 5.8. More samples usually cause accuracy to drop, and the

79

a: Gowalla dataset

b: Istanbul dataset

Figure 5.8: Accuracy in the noisy scenario

80

voting threshold should be increased to compensate that. Finally, we observe that for both

datasets, voting thresholds below 0.4 cause very inaccurate results, and a threshold of at

least 0.6 is needed to remain roughly 80% accurate.

81

a: Gowalla dataset

b: Istanbul dataset

Figure 5.9: Effects of the voting threshold on accuracy

82

Chapter 6

Conclusions and Future Work

In this thesis, we studied the privacy risks of spatio-temporal data transformations. We

highlight that the distance preserving data transformation techniques are prone to privacy

breaches. We developed two different attack methods exploring the potential of a common

attack scenario with different input-output settings and the context. Our work focus on

both location and trajectory cases. A few tuples from the dataset itself is what the attacker

actually needs as background information. Then, the attacker can predict the target data of

individuals or limit the possible region as small as possible. The output of such attacks can

easily answer the questions like ”is the target passed through a specific location?” or ”has

the target been around a specific location?”. In both works, we explore through attacker’s

perspective and assume that the attacker can reach reasonable number of input data that

are highly likely to be his own data or accessible data. The attacker has also access to the

public properties of the dataset. He has access to released pairwise distances and relations.

Both of the works discuss attacks on transformed datasets of location information without

observing the transformed data itself. Only a few points from the dataset compared to the

size of the dataset are sufficient to conduct the attack.

In our first work detailed in Chapter 4, we present an attack method for discovering,

with significant confidence, if an unknown private trajectory passes (or does not pass)

through the region of interest. The region of interest could be arbitrary, and sometimes

even passing through an area constitutes a privacy attack, e.g., the adversary could learn

83

if the victim attended a public protest. The attack uses a set of known trajectories (i.e.,

KT) and their pairwise distances to the target trajectory. It works by generating a set

of candidate trajectories that resemble the target trajectory, and then studying the prop-

erties of the candidate trajectories. Our experiments on real and synthetic datasets show

that: (1) The attack can disclose, with high confidence, the locations that are visited and

not visited by the private trajectory. (2) The attack has a low probability of raising false

positives, i.e., identifying un-visited locations as visited. We believe that having a set of

known samples in a private database is a reasonable assumption in today’s world. Also,

with the introduction of trajectory querying services that rely on encryption but are not

resilient to known-sample attacks, will make the attacks like ours much more attainable.

Naively assuming that these services are safe may lead to serious disclosure risks, as this

work shows. To combat this danger, one needs additional countermeasures: E.g., limit

the number of trajectories that can be queried, or limit the number of times a trajectory

can be queried by the same user, or block distance-retrieval queries altogether. These can

be investigated as potential directions for future work. We also plan to study distance

metrics other than Euclidean distance, to see whether the attack is applicable to the set-

tings other than the trajectory data. In addition, we point out that the adversaries that have

better knowledge of the trajectories or a city’s road map can use different types of inter-

polation, e.g., polynomial or spline interpolation, rather than linear interpolation. Given

two locations (x1, y1) and (x2, y2) retrieved by the attack, these locations can be marked

on the map and the interpolation between them can be decided by taking into account the

shape and directions of the roads between them. Such a study will enable the adversary

to achieve better results when the sampling rate is low or the background information is

more limited.

In our study on location disclosure of releasing relation preserving data transforma-

tions, discussed in Chapter 5, we show the privacy risks of individual location points. The

attacker does not need to observe the transformed dataset but the relations are sufficient.

The attacker can then infer the probable locations of the target using his limited knowl-

edge from the dataset. A few known points from the dataset in the range of [2 � 10] is

84

sufficient to carry out a successful attack. The success of the attack, as it depends on

how small the probable region, is varies in between 75% and 100%. We also examine

the noisy data set as if the data owner publishes data with deliberate noise in order to

prevent attacks. In this case, the attacker can perform the attack with less success rate

in the range of 70% - 90% when the noise is on average 16%. In the noisy case we also

discuss the accuracy of the attack with respect to the number of known data points. We

show that the accuracy tends to drop as the number of known points increases because

as the known points increase it is high chance to hit a noisy data from the relations. To

refine the attack, we propose a voting mechanism which takes the average accuracy of the

attacks up to 80%. The goal of this work is to attack relation-preserving transformations

that also allow distance matrices to change slightly. In comparison, attacks on distance-

preserving transformations assume no changes to distance matrices. Therefore attacks on

relation-preserving transformations are applicable to distance-preserving transformations

(whereas the literature mostly focuses on attacks on distance-preserving transformations).

We intend to extend our second study to allow attacks on tabular data. We theoretically

show that our attack is not limited to spatio-temporal datasets but can be applicable to

tabular data. We also plan to incorporate noise models other than Gaussian to test our

attack against different noise scenarios. Another improvement for this attack is to include

its best attack outcomes into his knowledge set after each iteration. This will increase

the known points which is the main source of information. However in this case, the

attacker’s knowledge set will contain predicted points that will decrease the certainty of

the conclusions as the number of predicted points increases. Another direction to extend

this work is to attack different transformation techniques that are known to preserve data

relations. This will eventually lead us to develop new techniques to prevent this kind of

attacks that benefits the vulnerability of released relations.

In this thesis, we study privacy risks of spatio-temporal data transformations from the

attacker’s perspective utilizing his background information and the insights of the dataset

if any. Using the common scenario in both works, we focus on trajectories and individual

location points. We show that data transformation techniques preserving distances among

85

the dataset as well as their relations are prone to such kind of attacks. As a future work,

although the alternative techniques developed so far discussed in Chapter 2, one should

consider preventive countermeasures to develop a privacy preserving transformation that

maintains the pairwise distances and the relations but at the same time prevent such attacks

studied in this thesis.

86

Bibliography

[1] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil, “An empirical study of geo-

graphic user activity patterns in foursquare,” in Proc. of the 5th Int’l AAAI Confer-

ence on Weblogs and Social Media, pp. 570–573, 2011.

[2] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and Mobility: User Movement

in Location-based Social Networks,” in Proceedings of the 17th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, KDD ’11, (New

York, NY, USA), pp. 1082–1090, ACM, 2011.

[3] M.-J. Lee and C.-W. Chung, A User Similarity Calculation Based on the Location

for Social Network Services, pp. 38–52. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2011.

[4] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining user similarity

based on location history,” in Proceedings of the 16th ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems, GIS ’08, (New

York, NY, USA), pp. 34:1–34:10, ACM, 2008.

[5] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network structure

by using mobile phone data,” Proceedings of the National Academy of Sciences,

vol. 106, pp. 15274–15278, Sept. 2009.

[6] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern mining,”

in KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 330–339, ACM, ACM, 2007.

87

[7] M. Ghasemzadeh, B. C. Fung, R. Chen, and A. Awasthi, “Anonymizing trajectory

data for passenger flow analysis,” Transportation Research Part C: Emerging Tech-

nologies, vol. 39, pp. 63–79, 2014.

[8] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao, “Privacy vulnerability of published

anonymous mobility traces,” IEEE/ACM Transactions on Networking, vol. 21, no. 3,

pp. 720–733, 2013.

[9] X. Li, J. Han, J.-G. Lee, and H. Gonzalez, “Traffic density-based discovery of hot

routes in road networks,” in SSTD 2007: 10th International Symposium on Advances

in Spatial and Temporal Databases, Lecture Notes in Computer Science, pp. 441–

459, Springer, 2007.

[10] “Geopkdd.” http://www.geopkdd.eu.

[11] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, “Quantify-

ing location privacy,” in IEEE Symposium on Security and privacy (S&P), 2011,

pp. 247–262, IEEE, 2011.

[12] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification of location

privacy attacks and approaches,” Personal and Ubiquitous Computing, vol. 18, no. 1,

pp. 163–175, 2014.

[13] M. Terrovitis and N. Mamoulis, “Privacy preservation in the publication of trajecto-

ries,” in 9th International Conference on Mobile Data Management 2008, pp. 65–72,

IEEE, 2008.

[14] J. Hua, Y. Gao, and S. Zhong, “Differentially private publication of general time-

serial trajectory data,” in IEEE Conference on Computer Communications (INFO-

COM), 2015, pp. 549–557, IEEE, 2015.

[15] A. Liu, K. Zhengy, L. Liz, G. Liu, L. Zhao, and X. Zhou, “Efficient secure similarity

computation on encrypted trajectory data,” in IEEE 31st International Conference

on Data Engineering (ICDE) 2015, pp. 66–77, IEEE, 2015.

88

[16] C. Clifton, M. Kantarcioglu, and J. Vaidya, “Defining privacy for data mining,” in

National Science Foundation Workshop on Next Generation Data Mining, vol. 1,

p. 1, Citeseer, 2002.

[17] J. Domingo-Ferrer and V. Torra, “Privacy in data mining,” Data Mining and Knowl-

edge Discovery, vol. 11, pp. 117–119, September 2005.

[18] “Privacy.” http://en.wikipedia.org/wiki/Privacy.

[19] K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplicative data

perturbation for privacy preserving distributed data mining,” IEEE Trans. Knowl.

Data Eng., vol. 18(1), no. 1, pp. 92–106, 2006.

[20] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati, “An

obfuscation-based approach for protecting location privacy,” IEEE Transactions on

Dependable and Secure Computing, vol. 8, no. 1, pp. 13–27, 2011.

[21] C. Bettini, X. S. Wang, and S. Jajodia, “Protecting privacy against location-based

personal identification,” in Workshop on Secure Data Management, pp. 185–199,

Springer, 2005.

[22] H. Kido, Y. Yanagisawa, and T. Satoh, “Protection of location privacy using dum-

mies for location-based services,” in 21st International Conference on Data Engi-

neering Workshops, 2005, pp. 1248–1248, IEEE, 2005.

[23] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On the privacy preserving

properties of random data perturbation techniques,” in ICDM, pp. 99–106, IEEE,

2003.

[24] X. LIU, “Protecting privacy in continuous location-tracking applications,” Min-

nesota Web-Based Traffic Generator, 2004.

[25] V. S. Iyengar, “Transforming data to satisfy privacy constraints,” in KDD ’02: Pro-

ceedings of the eighth ACM SIGKDD international conference on Knowledge dis-

covery and data mining, (New York, NY, USA), pp. 279–288, ACM Press, 2002.

89

[26] P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-

anonymity and its enforcement through generalization and suppression,” tech. rep.,

Technical report, SRI International, 1998.

[27] P. Samarati, “Protecting respondents’ identities in microdata release,” IEEE Trans-

actions on Knowledge and Data Engineering, vol. 13, pp. 1010–1027, 2001.

[28] R. Shokri, J. Freudiger, M. Jadliwala, and J.-P. Hubaux, “A distortion-based metric

for location privacy,” in Proceedings of the 8th ACM Workshop on Privacy in the

Electronic Society, pp. 21–30, ACM, 2009.

[29] E. Kaplan, T. B. Pedersen, E. Savaş, and Y. Saygın, “Discovering private trajectories

using background information,” Data & Knowledge Engineering, vol. 69, no. 7,

pp. 723–736, 2010.

[30] K. Liu, C. Giannella, and H. Kargupta, “A survey of attack techniques on

privacy-preserving data perturbation methods,” in Privacy-Preserving Data Mining,

pp. 359–381, Springer, 2008.

[31] E. O. Turgay, T. B. Pedersen, Y. Saygın, E. Savaş, and A. Levi, “Disclosure risks of

distance preserving data transformations,” in SSDBM 2008: Scientific and Statistical

Database Management Conference, pp. 79–94, Springer, 2008.

[32] K. Liu, C. Giannella, and H. Kargupta, “An attacker’s view of distance preserving

maps for privacy preserving data mining,” in European Conference on Principles of

Data Mining and Knowledge Discovery, pp. 297–308, Springer, Springer, 2006.

[33] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the

crowd: The privacy bounds of human mobility,” Scientific Reports, vol. 3, pp. 1376

EP –, 03 2013.

[34] S. E. Fienberg and J. McIntyre, “Data swapping: Variations on a theme by dalenius

and reiss,” in International Workshop on Privacy in Statistical Databases, pp. 14–

29, Springer, 2004.

90

[35] K. Muralidhar and R. Sarathy, “Data shuffling-a new masking approach for numeri-

cal data,” Management Science, vol. 52, no. 5, pp. 658–670, 2006.

[36] J. Domingo-Ferrer, K. Muralidhar, and G. Rufian-Torrell, “Anonymization meth-

ods for taxonomic microdata,” in International Conference on Privacy in Statistical

Databases, pp. 90–102, Springer, 2012.

[37] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proc. of the ACM

SIGMOD Conference on Management of Data, vol. 29, pp. 439–450, ACM, ACM

Press, May 2000.

[38] L. Liu, M. Kantarcioglu, and B. Thuraisingham, “The applicability of the perturba-

tion based privacy preserving data mining for real-world data,” Data & Knowledge

Engineering, vol. 65, no. 1, pp. 5–21, 2008.

[39] J. Domingo-Ferrer, F. Sebé, and J. Castella-Roca, “On the security of noise addi-

tion for privacy in statistical databases,” in International Workshop on Privacy in

Statistical Databases, pp. 149–161, Springer, 2004.

[40] Z. Huang, W. Du, and B. Chen, “Deriving private information from randomized

data,” in Proceedings of the 2005 ACM SIGMOD International Conference on Man-

agement of Data, pp. 37–48, ACM, 2005.

[41] S. R. Oliveira and O. R. Zaı̈ane, “Achieving privacy preservation when sharing data

for clustering,” in Workshop on Secure Data Management, pp. 67–82, Springer,

2004.

[42] K. Chen, G. Sun, and L. Liu, “Towards attack-resilient geometric data perturbation.,”

in SDM, pp. 78–89, SIAM, 2007.

[43] K. Chen and L. Liu, “Privacy preserving data classification with rotation pertur-

bation,” in IEEE International Conference on Data Mining (ICDM), 2005, IEEE,

2005.

91

[44] C. R. Giannella, K. Liu, and H. Kargupta, “Breaching euclidean distance-preserving

data perturbation using few known inputs,” Data & Knowledge Engineering, vol. 83,

pp. 93–110, 2013.

[45] C. C. Aggarwal and S. Y. Philip, “A condensation approach to privacy preserv-

ing data mining,” in International Conference on Extending Database Technology,

pp. 183–199, Springer, 2004.

[46] I. Ozalp, M. E. Gursoy, M. E. Nergiz, and Y. Saygin, “Privacy-preserving publishing

of hierarchical data,” ACM Transactions on Privacy and Security (TOPS), vol. 19,

no. 3, 2016.

[47] B. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data publishing: A

survey of recent developments,” ACM Computing Surveys (CSUR), vol. 42, no. 4,

p. 14, 2010.

[48] J. Domingo-Ferrer and J. M. Mateo-Sanz, “Practical data-oriented microaggrega-

tion for statistical disclosure control,” IEEE Transactions on Knowledge and Data

Engineering, vol. 14, no. 1, pp. 189–201, 2002.

[49] J. Domingo-Ferrer, D. Sánchez, and J. Soria-Comas, “Database anonymization: Pri-

vacy models, data utility, and microaggregation-based inter-model connections,”

Synthesis Lectures on Information Security, Privacy, & Trust, vol. 8, no. 1, pp. 1–

136, 2016.

[50] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foun-

dations and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407,

2014.

[51] M. Gruteser and D. Grunwald, “Anonymous usage of location-based services

through spatial and temporal cloaking,” in Proceedings of the 1st international con-

ference on Mobile systems, applications and services, pp. 31–42, ACM, 2003.

92

[52] B. Palanisamy and L. Liu, “Attack-resilient mix-zones over road networks: archi-

tecture and algorithms,” IEEE Transactions on Mobile Computing, vol. 14, no. 3,

pp. 495–508, 2015.

[53] B. Palanisamy and L. Liu, “Effective mix-zone anonymization techniques for mobile

travelers,” GeoInformatica, vol. 18, no. 1, pp. 135–164, 2014.

[54] B. Gedik and L. Liu, “Protecting location privacy with personalized k-anonymity:

Architecture and algorithms,” IEEE Transactions on Mobile Computing, vol. 7,

pp. 1–18, January 2008.

[55] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Geo-

indistinguishability: Differential privacy for location-based systems,” in Proceed-

ings of the 2013 ACM SIGSAC Conference on Computer & Communications Secu-

rity, pp. 901–914, ACM, 2013.

[56] B. Hoh and M. Gruteser, “Protecting location privacy through path confusion,” in

First International Conference on Security and Privacy for Emerging Areas in Com-

munications Networks (SecureComm), 2005, pp. 194–205, IEEE, 2005.

[57] R. Chen, B. C. Fung, N. Mohammed, B. C. Desai, and K. Wang, “Privacy-preserving

trajectory data publishing by local suppression,” Information Sciences, vol. 231,

pp. 83–97, 2013.

[58] O. Abul and F. Bonchi, “Never walk alone: Uncertainty for anonymity in mov-

ing objects databases,” in The 24th International Conference on Data Engineering

(ICDE 2008), pp. 376–385, IEEE, 2008.

[59] E. Nergiz, M. Atzori, and Y. Saygin., “Towards trajectory anonymization: a

generalization-based approach,” in In Proceedings of ACM GIS Workshop on Se-

curity and Privacy in GIS and LBS, (CA, USA), pp. 52–61, ACM, 2008.

[60] J. Domingo-Ferrer, M. Sramka, and R. Trujillo-Rasúa, “Privacy-preserving pub-

lication of trajectories using microaggregation,” in Proceedings of the 3rd ACM

93

SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS,

pp. 26–33, ACM, 2010.

[61] R. Chen, B. Fung, B. C. Desai, and N. M. Sossou, “Differentially private transit data

publication: a case study on the montreal transportation system,” in Proceedings

of the 18th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 213–221, ACM, 2012.

[62] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan, “Publishing trajectories with

differential privacy guarantees,” in Proceedings of the 25th International Conference

on Scientific and Statistical Database Management, p. 12, ACM, 2013.

[63] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and D. Srivastava, “Dpt:

differentially private trajectory synthesis using hierarchical reference systems,” Pro-

ceedings of the VLDB Endowment, vol. 8, no. 11, pp. 1154–1165, 2015.

[64] A. Gkoulalas-Divanis and V. S. Verykios, “A privacy-aware trajectory tracking query

engine,” ACM SIGKDD Explorations Newsletter, vol. 10, no. 1, pp. 40–49, 2008.

[65] N. Pelekis, A. Gkoulalas-Divanis, M. Vodas, D. Kopanaki, and Y. Theodoridis,

“Privacy-aware querying over sensitive trajectory data,” in Proceedings of the

20th ACM International Conference on Information and Knowledge Management,

pp. 895–904, ACM, 2011.

[66] H. Zhu, X. Meng, and G. Kollios, “Privacy preserving similarity evaluation of time

series data.,” in EDBT, pp. 499–510, 2014.

[67] M. Gowanlock and H. Casanova, “In-memory distance threshold queries on moving

object trajectories,” in Proceedings of the Sixth International Conference on Ad-

vances in Databases, Knowledge, and Data Applications, pp. 41–50, 2014.

[68] S. Mukherjee, Z. Chen, and A. Gangopadhyay, “A privacy-preserving technique

for euclidean distance-based mining algorithms using fourier-related transforms,”

VLDB Journal, vol. 15, no. 4, pp. 293–315, 2006.

94

[69] S. Guo and X. Wu, “Deriving private information from arbitrarily projected data,”

in Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 84–95,

Springer, 2007.

[70] B. D. Okkalioglu, M. Okkalioglu, M. Koc, and H. Polat, “A survey: deriving pri-

vate information from perturbed data,” Artificial Intelligence Review, vol. 44, no. 4,

pp. 547–569, 2015.

[71] S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and A. P. Boedihardjo, “Model-

driven matching and segmentation of trajectories,” in Proceedings of the 21st ACM

SIGSPATIAL International Conference on Advances in Geographic Information Sys-

tems, pp. 234–243, ACM, 2013.

[72] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional

trajectories,” in Data Engineering, 2002. Proceedings. 18th International Confer-

ence on, pp. 673–684, IEEE, 2002.

[73] H. Wang, H. Su, K. Zheng, S. Sadiq, and X. Zhou, “An effectiveness study on trajec-

tory similarity measures,” in Proceedings of the 24th Australasian Database Con-

ference, pp. 13–22, Australian Computer Society, Inc., 2013.

[74] K. Chen and L. Liu, “Geometric data perturbation for privacy preserving outsourced

data mining,” Knowledge and Information Systems, vol. 29, no. 3, pp. 657–695,

2011.

[75] J.-W. Huang, J.-W. Su, and M.-S. Chen, “Fisip: A distance and correlation preserv-

ing transformation for privacy preserving data mining,” in 2011 International Con-

ference on Technologies and Applications of Artificial Intelligence, pp. 101–106,

IEEE, 2011.

[76] T. Brinkhoff, “A framework for generating network-based moving objects,” GeoIn-

formatica, vol. 6, no. 2, pp. 153–180, 2002.

95

[77] Y. Xiao and L. Xiong, “Protecting locations with differential privacy under temporal

correlations,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, pp. 1298–1309, ACM, 2015.

[78] K. Chatzikokolakis, C. Palamidessi, and M. Stronati, “Constructing elastic distin-

guishability metrics for location privacy,” Proceedings on Privacy Enhancing Tech-

nologies, vol. 2015, no. 2, pp. 156–170, 2015.

96

	Introduction
	Contributions
	Outline

	Related Work
	Privacy Preserving Techniques
	Preserving Privacy in Spatio-Temporal Data
	Attacks on Data Transformations

	Preliminaries
	Location Disclosure Risks of Releasing Trajectory Distances
	Brief Summary
	Problem Setting

	Attack Algorithm
	Overview of the Approach
	Creating a Generic Trajectory
	Solving for a Candidate Trajectory
	Robustness to Noise

	Experiments and Evaluations
	Experiment Setup
	Results and Evaluations
	Comparison with Previous Work

	Location Disclosure Risks of Releasing Relation-preserving Data Transformations
	Brief Summary
	Attack Algorithm
	Attack Formalization
	Implementation and Noise Resilience

	Experiments and Evaluations
	Experiment Setup
	Results and Evaluations

	Conclusions and Future Work

