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Abstract Bus rapid transit systems in developing and newly industrialized countries
often consist of a trunk with a path topology. On this trunk, several overlapping lines
are operated which provide direct connections. The demand varies heavily over the
day, with morning and afternoon peaks typically in reverse directions. The construc-
tion of a line plan for such a system can be seen as a multi-period covering problem
on an interval graph. We propose an integer programming model for this problem,
derive a structural property of line plans in the static (or single period) “unimodal
demand” case, and consider approaches to the solution of the multi-period version
that rely on clustering the demand into peak and off-peak service periods. An appli-
cation to the Metrobüs system of Istanbul is discussed.

1 Introduction

The establishment of a public transportation system involves decision making on
network design, line planning, timetabling, and fare planning. Due to the (contra-
dictory) objectives of minimizing the costs and maximizing the level of service, each
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task is already challenging on its own, such that the planning process is typically
conducted in succession [1]. Its integrated treatment has been taken up only re-
cently [2], and it is still quite unclear how a “globally optimal system” should look
like or how it could be identified. The investigation of basic, but practically relevant,
classes of networks is one way to advance in this direction.

We consider an interesting type of transportation systems with the simplest possible
network structure: a path topology is often found in bus rapid transit (BRT) systems
in developing or newly industrialized countries, such as Trolébus in Quito [5], or
our subject of investigation, the Metrobüs in Istanbul, see Fig. 1. Even though such
systems may, at first sight, look small in terms of numbers of stations or links, they
typically service the bulk of the demand, exerting a trunk function.

In BRT systems such as Metrobüs, the demand is typically highly asymmetric w.r.t.
its distribution on the line and notably fluctuating w.r.t. time: There is a morning
peak towards the center, an evening peak towards the outskirts, and significantly less
demand during other times, see Fig. 2. Traditional line planning addresses this de-
mand fluctuation by constructing a base service, which is augmented in peak hours,
or vice versa. But is this prevalent procedure conclusive? This is the question that
we study in this article. In fact, as far as we know, multiperiod line planning (much
less time continuous) has not been considered in the optimization literature so far.

The paper studies the line planning problem on path networks over a planning hori-
zon of an entire day. In a path network, the passenger travel paths are uniquely deter-
mined. This gives rise to a fixed passenger load (or volume) on every individual link
of the path network. These loads have to be covered by lines that must offer appro-
priate capacities and frequencies. We concentrate on the two dominating features of
the demand characteristics of the problem: (i) asymmetricity of the demand towards
the center of the network creates a unimodal (increasing to a maximum and then
decreasing) demand distribution along the path, (ii) the level of difference in the to-
tal number of passengers between peak and off-peak hours requires partitioning the
day into multiple sections. We show that unimodal demand leads to a unimodal line
plan in the single period case. This gives an indication that line plans that augment
a base service in peak hours might work well, i.e., that augmentations in space and
time are reasonable. A computational comparison of two solutions approaches for
the multiperiod case on Metrobüs data corroborates this claim.

Fig. 1 The Metrobüs in Istanbul with its 44 stations (visualization by PTV Visum [4]).
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2 The Static Demand Case

We study the following demand coverage model to assign frequencies to a given set
of lines, that are modeled as paths on a traffic network, which in our setting itself has
path topology, in the static demand or single period case. Consider a traffic network
N =(V = [n],A=A→∪A←) as a path with forward arcs A→= {(i, i+1) : i∈ [n−1]}
and backward arcs A← = {(i+1, i) : i ∈ [n−1]}. Let c : A→ R+ be a cost and d :
A→R+

0 the demand, i.e., the number of passengers traveling across each arc. Let the
set of lines L consist of all non-trivial (directed) paths on N with endpoints in some
set T = {t1, . . . , tm} ⊆V of terminal stations, t1 < · · ·< tm, and denote the beginning
and end of line l ∈ L by α(l) and ω(l). It is reasonable to require the beginning and
end of P to be in T , i.e., t1 = 1 and tm = n. A function p : L→ N0 is called a line
plan, and p(l) is the frequency of line l. We say that a line plane is balanced if the
flow balance conditions ∑l∈L:α(l)=v p(l) = ∑l∈L:ω(l)=v p(l) hold for every vertex v.
The (capacity) supply provided by p is s : A→ R+

0 ,a 7→ ∑l∈L,a∈l p(l)κ , where κ is
some positive constant specifying the number of passengers that can be transported
per vehicle. p is feasible (for the demand d) if it is balanced and if s(a) ≥ d(a)
for every a ∈ A. A feasible line plan p is optimal if it minimizes the overall cost
C := ∑l∈L:p(l)>0 c f (l)+∑l∈L co

l p(l), where c f : L→ R+
0 denotes a fixed setup cost

for each line, and co : L→ R+
0 , l 7→ ∑a∈l,a∈A c(a) the operational cost per vehicle.

The demand coverage model can be formulated as an integer program as follows.
Let xl ∈ {0,1} be a binary variable that takes value one if line l ∈ L is selected, and
vl an integer variable that defines how many vehicles are operating line l.

min ∑
l∈L

c f
l xl +∑

l∈L
co

l vl (DCMMIP)

∑
l∈La

κvl ≥ da ∀a ∈ A, (1)

Mxl− vl ≥ 0 ∀ l ∈ L, (2)

∑
l∈L

vl ≤V (3)

xl ∈ {0,1} ∀ l ∈ L, (4)
vl ∈ N ∀ l ∈ L. (5)

Inequalities (1) of program (DCMMIP) make sure that the demand da on each seg-
ment a ∈ A is covered by the capacity of the set La of lines that contain a. The
v-variables are coupled with the x-variables via inequalities (2) in order to as-
sure that only chosen lines are assigned a positive number of up to M vehicles
each. Constraint (3) limits the overall number of vehicles. The objective of pro-
gram (DCMMIP) models both the minimization of fixed and operational costs.
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3 Unimodality

By examination of the passenger data for the Istanbul Metrobüs system it becomes
apparent that, for any given time, the distribution of the passenger demand volume
per station is approximately unimodal: More centrally located stations experience
higher traffic. Under these conditions, and if the fixed costs c f are negligible, an
optimal line plan is unimodal as well, i.e., for any two lines, one is contained in the
other. This greatly reduces the complexity of the problem and allows to solve it in
linear time.

Denote by ā the reverse of arc a ∈ A, and by d↔(a) := max{d(a),d(ā))} the maxi-
mum demand on a ∈ A in both directions. A line plan p is unimodal if p(l)p(l′) = 0
for any two forward lines l and l′ that do not satisfy [α(l),ω(l)] ⊇ [α(l′),ω(l′)] or
[α(l′),ω(l′)]⊇ [α(l),ω(l)], and similar for backward lines.

Theorem 1. If the maximum demand is unimodal and the fixed costs are zero, then
there is an optimal unimodal line plan.

Proof. It is easy to see that every balanced line plan p satisfies s(a) = s(ā) for all
a ∈ A. Therefore, p is feasible if and only if s(a) ≥ d↔(a) for all a ∈ A→, i.e., we
can restrict our attention to A→.

Call two forward arcs equivalent if they are not separated by a terminal. Then any
two equivalent arcs a ∼ a′ are always assigned the same capacity supply by every
line plan, because they are covered by the same set of lines. For any forward arc
a ∈ A→, let

s∗(a) := max
a′∼a

d↔(a′) and k∗(a) := ds∗(a)/κe.

Then any feasible line plan must provide a capacity supply of at least s∗(a) on
a ∈ A→, and use at least k∗(a) vehicles. The unimodality of d↔ implies unimodality
of s∗ and, in turn, of k∗.

It is easy to construct a unimodal line plan p on A→ with supply s= s∗, using exactly
k∗(a) vehicles on any arc. Namely, let l1,n be the line from t1 = 1 to node tm = n, set

p∗(l1,n) := min{k∗(1,2),k∗(n−1,n)},

subtract p∗(l1,n) from k∗(a) for all a ∈ A→, and remove all arcs such that k∗(a) = 0;
then iterate until all arcs have been removed. Proceed in the same way for A←.

The resulting line plan is unimodal, feasible, and also optimal, because its cost

C = ∑
l∈L

p(l) ∑
a∈l

a∈A→

c(a) = ∑
a∈A→

s(a)
κ

= ∑
a∈A→

s∗(a)
κ

= ∑
a∈A→

k∗(a)

is minimal by minimality of k∗. ut
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4 The Multiperiod Case

The case at hand, the Istanbul Metrobüs system, is characterized by a highly fluc-
tuating and asymmetrical demand caused primarily by commuters. In the morning
hours a high volume of passengers needs to be transported from the periphery to
the center, while the flow is reversed in the evening hours. In between the demand
falls sharply. Figure 2 gives a more detailed impression of the passenger demands
in both directions. In the figure, the x-axis accounts for time and the y-axis for the
corresponding demand. The peak-times stand out, and there is a relatively constant
demand in between. At any point in time, the spatial demand distribution is very
close to being unimodal.

We identify the peak and the off-peak time intervals as follows. Running the demand
covering model (DCMMIP) for every hour from 6 to 23 o’clock produces 18 line
plans, represented by their p-vectors. We check these vectors for similarities using
the classical k-means clustering algorithm [3]. Fig. 3 shows the results for k = 2:
The algorithm clusters the time windows from 7 to 9 and 17 to 20 together, which
correspond to the peaks. All other time windows form a common off-peak section.

Two line planning strategies that exploit this temporal subdivision suggest them-
selves: On the one hand it might be advisable to run separate schedules during peak
and off-peak times to cope with the different demands. On the other hand, the peak
demands exceed the base demands. It might therefore be possible to run a continued
base line plan throughout the entire day, augmented by additional resources dur-

(a) Demands in direction from east to west. (b) Demands in direction from west to east.

Fig. 2 Traffic demand in the Istanbul Metrobüs system over 24 hours, summed over all OD pairs.

Fig. 3 Identifying peak and off-peak times by clustering hourly line plans.
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ing peak times. Such an augmentation can be seen as an analogon over time of a
unimodal line plan, which can be seen as a capacity augmentation in space. Our
theoretical findings on unimodal line plans suggest that resorting to unimodal line
plans is feasible for almost unimodal demands. In combination with a similar result
over time, this would make a good case for this traditional planning procedure.

We consider the following two computational scenarios in a setting without fixed
costs and operational costs based on driven distance:

(1) a discontinued base schedule with independent peak time line plans and

(2) a continued base schedule with peak time line plans on top.

Computations were performed on a Intel i7-4790 3.60GHz CPU using CPLEX 12.6
as a MIP solver.

Scenario MIP solution unimodular solution

value [km] computation time value [km] computation time

(1) 12 041 1.9 s 12 056 0.9 s

(2) 12 144 1.8 s 12 164 0.8 s

Table 1 Comparing different line planning approaches for the Istanbul Metrobüs on weekdays.

The computations corroborate our expectations that service augmentation in space
and time produces results whose quality is on a par with unrestricted planning w.r.t.
operational costs.
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