
Minimizing Value-at-Risk in Single-Machine Scheduling

Semih Atakan, Kerem Bülbül, Nilay Noyan
Sabancı University, Industrial Engineering Program, Orhanlı-Tuzla, 34956 İstanbul, Turkey.

semihatakan@sabanciuniv.edu, bulbul@sabanciuniv.edu, nnoyan@sabanciuniv.edu

Abstract: The vast majority of the machine scheduling literature focuses on deterministic problems in which all data

is known with certainty a priori. In practice, this assumption implies that the random parameters in the problem are

represented by their point estimates in the scheduling model. The resulting schedules may perform well if the variability

in the problem parameters is low. However, as variability increases accounting for this randomness explicitly in the

model becomes crucial in order to counteract the ill effects of the variability on the system performance. In this paper,

we consider single-machine scheduling problems in the presence of uncertain parameters. We impose a probabilistic

constraint on the random performance measure of interest, such as the total weighted completion time or the total

weighted tardiness, and introduce a generic risk-averse stochastic programming model. In particular, the objective of

the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR)

of the random performance measure at a specified confidence level. We propose a Lagrangian relaxation-based scenario

decomposition method to obtain lower bounds on the optimal VaR and provide a stabilized cut generation algorithm to

solve the Lagrangian dual problem. Furthermore, we identify promising schedules for the original problem by a simple

primal heuristic. An extensive computational study on two selected performance measures is presented to demonstrate

the value of the proposed model and the effectiveness of our solution method.

Keywords: single-machine scheduling; stochastic scheduling; value-at-risk; probabilistic constraint; stochastic program-

ming; scenario decomposition; cut generation; dual stabilization; K−assignment problem

1. Introduction In the traditional single-machine problems, all parameters including the processing

times, release dates, due dates, and weights are assumed to be known with certainty at the time the dispatcher

determines the job processing sequence or the full schedule. However, in many practical settings the exact

values of one or several of these parameters may not be available in advance. For instance, possible machine

breakdowns, variable setup times, inconsistency of the worker performance, or changes in tool quality may

introduce uncertainty into the processing times. The uncertainty in the processing time of a job is then only

resolved at the time of the job completion. Along these lines, we focus on the uncertainty in the parameters

which leads to random scheduling performance measures such as the total weighted completion time (TWCT),

the total tardiness (TT), and the total weighted tardiness (TWT). Ultimately, our objective in this work is

to determine a risk-averse fixed job processing sequence that hedges against the inherent uncertainty. In the

stochastic scheduling terminology (see, e.g., Pinedo, 2008), we construct a non-preemptive static list policy.

Traditional models for decision making under uncertainty define optimality criteria based on expected values

and disregard the variability inherent in the system. Following this mainstream risk-neutral approach, most of

the classical stochastic scheduling puts a lot of effort into analyzing the expected performance by assuming that

the uncertain parameters such as the processing times follow specific distributions. See Pinedo (2008) for an

excellent overview of conventional stochastic scheduling. However, variability typically implies a deterioration

in performance, and risk-neutral models may provide solutions that perform poorly under certain realizations

of the random data. For capturing the effect of variability, we incorporate the value-at-risk (VaR) – a very

popular and widely applied risk measure in the finance literature – into our models. Moreover, we avoid

assuming specific distributions by using a scenario-based approach, where the randomness associated with the

uncertain parameters is characterized by a finite set of scenarios and a scenario represents a joint realization

of all random parameters. In our context, we select a commonly considered scheduling performance measure,

such as TWCT , TT , or TWT , as the random outcome of interest associated with a fixed job processing

sequence. The goal is to specify the smallest possible upper bound on the random performance measure that

will be exceeded with at most a prespecified small probability. Here, the determined upper bound (threshold)

is the VaR of the random performance measure at the desired probability level, and we minimize VaR.

1

mailto:semihatakan@sabanciuniv.edu, bulbul@sabanciuniv.edu, nnoyan@sabanciuniv.edu
mailto:semihatakan@sabanciuniv.edu, bulbul@sabanciuniv.edu, nnoyan@sabanciuniv.edu

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 2

VaR is a relatively simple risk management concept with a clear interpretation: an estimate of the maxi-

mum potential loss with a certain confidence level α, i.e., the quantile of the random outcome at a specified

probability level α. Many non-academic decision makers/investors are familiar and feel comfortable with such

a concept of reliability. Production managers often formulate goals in terms of service level constraints, such

as keeping the percentage of defective items under 5% or delivering 95% of the orders on time. Adopting VaR

as a risk measure in constructing a machine schedule is aligned with this line of reasoning and has a natural

appeal to shop floor managers. Furthermore, VaR is closely related to chance (or probabilistic) constraints,

which are used pervasively in many engineering applications in a variety of fields to restrict the probability

of certain undesirable events; the interested reader is referred to Prékopa (1995) and Dentcheva (2006) for

reviews and a comprehensive list of references.

The frequent emphasis on reliability-based models in engineering applications motivates VaR as the risk

measure of choice for this study. However, there is no universally accepted single risk measure given the variety

of criteria for the selection of risk measures (see, e.g., Artzner et al., 1999; Ogryczak and Ruszczyński, 2002;

Pflug and Römisch, 2007). The findings in the literature imply that each risk measure has its own advantages

and disadvantages. Moreover, the choice of a risk measure also reflects a subjective preference of the decision

maker in many real world problems. One of the limitations of our selected risk measure recognized in the

literature (see, e.g., Sarykalin et al., 2008) is that it does not take into account the outcomes exceeding VaR,

i.e., it disregards the tail of the distribution beyond the confidence level. Alternatively, a closely related risk

measure known as conditional value-at-risk (CVaR) has been introduced by Rockafellar and Uryasev (2000).

CVaR is roughly equal to the conditional expected value of the random outcome beyond VaR in the tail

region. If a decision maker is not only concerned with the frequency of undesirable outcomes, but also with

their severity, CVaR is recommended instead of VaR. This advantage of CVaR is particularly relevant in

the presence of low frequency high severity risks. Such extreme tail behavior often occurs in domains such as

finance and disaster management, but is not typical for scheduling problems, where the makespan has a natural

upper bound that limits the losses. On the other hand, CVaR possesses certain nice mathematical properties

over VaR as acknowledged in the literature, such as coherence and the availability of linear programming

(LP) representations for discrete distributions (see, e.g., Sarykalin et al., 2008). However, we point out that

recent theoretical and empirical findings indicate that holding the lack of coherence categorically against VaR

is not necessarily justified (see Appendix A). Ultimately, the choice of VaR versus CVaR as a risk measure

is a matter of risk preferences, depends on the decision making context, and is also a question of the data

available for estimating the distributions of the uncertain parameters. Without taking a particular stance in

the debate of CVaR versus VaR, we provide further viewpoints about the advantages and disadvantages of

VaR and CVaR in Appendix A. Given that only a handful of papers exist on the subject (Beck and Wilson,

2007; Sarin et al., 2014), studying risk-averse machine scheduling problems involving either risk measure is a

contribution to the literature.

It is well known that problems incorporating VaR in the finite probability case exhibit a non-convex and non-

smooth structure even if the underlying deterministic problem is convex. The approaches to solve such models

are mainly based on approximation (see, e.g., Gaivoronski and Pflug, 2005) or global optimization methods

(see, e.g., Pang and Leyffer, 2004; Wozabal, 2012); we refer to Larsen et al. (2002) and Wozabal et al. (2010)

for a review of the available algorithms. These studies are generally concerned with portfolio optimization

problems and the existing solution methods primarily deal with VaR integrated into an LP. However, in our

study the underlying problem involves sequencing decisions that can only be expressed by employing binary

variables. These lead to further complications. On the other hand, CVaR is convex (Artzner et al., 1999) and

easier to optimize than VaR. For instance, if the underlying deterministic problem is an LP and the uncertainty

is captured by a finite set of scenarios then minimizing CVaR is formulated as an LP (Rockafellar and Uryasev,

2000). However, a fundamental point that should not be overlooked is the impact of the difficulty of the

underlying deterministic optimization problem. It is well known that most machine scheduling problems

have a notoriously complex combinatorial structure, and this structure is directly embedded into a risk-averse

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 3

machine scheduling problem regardless of whether VaR or CVaR is the risk measure of choice. In other words,

despite the availability of linear representations of CVaR, minimizing CVaR in machine scheduling is also a

tough endeavor and is far from being a well-solved problem. This is illustrated by the fact that the largest

instances solved to optimality reported in the literature are still moderate-sized with 15 jobs and 400 scenarios

(Sarin et al., 2014).

Not limited to VaR, stochastic programming models are generally known to be computationally challeng-

ing. This can partially be attributed to the potentially large number of scenario-dependent variables and

constraints. Introducing integer variables into stochastic programs further complicates the solving of these

models. Various decomposition-based solution methods have been proposed to deal with such large-scale

models with an emphasis on the risk-neutral two-stage stochastic programs. For example, exploiting the

decomposable structure of CVaR allows for solution methods that draw upon the classical Benders decompo-

sition (Noyan, 2012; Sarin et al., 2014). However, our formulations with the objective of minimizing VaR do

not exhibit the well-known decomposable structure of traditional risk-neutral two-stage stochastic programs

due to the presence of the linking constraint that reflects the fundamental structure of VaR. Adapting the

Lagrangian relaxation-based scenario decomposition approach designed by Carøe and Schultz (1999) offers a

way of tackling this challenging issue. In particular, we consider a split-variable formulation which is essen-

tially based on the idea of creating copies of the sequencing variables and then relaxing the constraints that

force all these variables to be equal. In studies that focus on two-stage models (Carøe and Schultz, 1999;

Schultz and Tiedemann, 2003), these constraints enforce that the first-stage decisions do not depend on the

realized scenario and are referred to as “non-anticipativity” conditions. In our setting, non-anticipativity

guarantees that the static job sequence is identical for all scenarios. We solve the Lagrangian dual problem

by cut generation over a dynamically updated shrinking feasible region in an effort to improve the quality of

the final lower bound for the optimal objective value of our stochastic integer programming model. This is

one of the most interesting characteristics of this paper from a methodological point of view. The cut gener-

ation algorithm is enhanced by dual stabilization to achieve faster convergence. The Lagrangian subproblems

are solved through a set of combinatorial techniques that exploit their structure, and we also utilize parallel

programming in order to improve the computational performance of our algorithm. In addition, we design a

primal heuristic based on a simple local search that employs the Lagrangian subproblem solutions as starting

points to find promising schedules for the original problem. The computed lower and upper bounds provide

a quality certificate for our algorithm and they may also benefit alternate solution approaches – including

branch and bound – in the future. We note that our proposed solution method is not limited to machine

scheduling but could also be applied to a wide variety of VaR minimization problems. To the best of our

knowledge, using such a variable splitting-based Lagrangian relaxation algorithm for minimizing VaR is a first

in the literature.

Following the review of the related literature in the next section, we formally define a general risk-averse

machine scheduling problem and present the corresponding mathematical programming formulations in Section

3. In Section 4, we introduce our scenario decomposition-based solution method and discuss the details of the

proposed cut generation algorithm and the primal heuristic. Section 5 is dedicated to additional algorithmic

features and computational enhancements, while Section 6 presents the computational results. We conclude

in Section 7 with further research directions.

2. Literature Review In this section, we review the relevant literature on machine scheduling problems

and stochastic programming algorithms.

2.1 Machine Scheduling Under Uncertainty In the single-machine scheduling literature,

Akker and Hoogeveen (2008) study a chance constrained problem to minimize the number of late jobs; a

job is considered to be on time if the probability that it is completed by its due date is at least equal to a given

probability. However, the authors assume that the processing times follow specific distributions (normal,

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 4

gamma, or negative binomial distribution) and the probability calculations require restrictive assumptions

such as the independence of the stochastic processing times. Daniels and Carrillo (1997) and Wu et al. (2009)

focus on maximizing the probability that the total completion time (TCT) is smaller than a given threshold.

Thus, they focus on improving the probability level for a given threshold instead of improving the threshold for

a given probability level. These studies also make restrictive distributional assumptions; Daniels and Carrillo

(1997) assume that the processing times are independent and use the normal approximation for the TCT ,

while in Wu et al. (2009) the processing times are independent and normally distributed. We also note that

these three studies on probabilistic scheduling only consider the randomness in the processing times and their

modeling approaches cannot be generalized to incorporate randomness into the other parameters without

making further restrictive assumptions on the corresponding joint distributions. Our scenario-based VaR

minimization approach is an intuitive and practical alternative way of modeling a service level requirement

for a selected performance measure under the stochastic setup and leads to a novel risk-averse stochastic

programming model.

The scenario approach allows us to generate data from any distribution and model the correlation of the

random parameters among different jobs by considering their joint realizations. On the down side, the compu-

tational complexity of solving the problem is closely affected by the number of scenarios. There are relatively

few studies utilizing a scenario-based approach for machine scheduling problems. Among these, we briefly

review the relevant papers that consider a single-machine scheduling environment. Gutjahr et al. (1999) min-

imize the expected TWT with stochastic processing times and propose a stochastic branch-and-bound tech-

nique, where a sampling approach is embedded into their bounding schemes. Alternatively, the other existing

scenario-based studies mainly develop robust optimization models in order to optimize the worst-case system

performance over all scenarios. The benefit of such a robust analysis is that it does not require the probabilities

of the scenarios. However, it may lead to overly conservative decisions by focusing on the worst-case situa-

tion. The sum of completion times is employed in Daniels and Kouvelis (1995); Yang and Yu (2002); Lu et al.

(2012), and the weighted sum of completion times is considered by de Farias et al. (2010), while Kasperski

(2005) focuses on the maximum lateness as the random performance criterion. One or several of the robustness

measures known as the maximum deviation from optimality, the maximum relative deviation from optimality,

and the maximum value over all scenarios are incorporated in these papers. Except for de Farias et al. (2010),

all these studies design specialized algorithms for the robustness measure and random performance criterion

of interest. de Farias et al. (2010) identify a family of valid inequalities to strengthen the mixed-integer for-

mulation of their problem. Furthermore, Aloulou and Croce (2008) provide several complexity results in the

domain of robust single-machine scheduling. There also exist a few recent papers that propose scenario-based

models for scheduling problems with multiple machines (see, e.g., Alonso-Ayuso et al., 2007; Kasperski et al.,

2012); however, these also rely on risk-neutral or robust approaches. The only other works which adopt a

risk-averse approach for machine scheduling problems are Beck and Wilson (2007) and Sarin et al. (2014).

The former paper focuses on minimizing VaR of a specific performance measure – the makespan – in job

shops; the authors use the term “probabilistic minimum makespan” or “α-minimum makespan” instead of

VaR at the confidence level of 1−α. In particular, Beck and Wilson (2007) assume that the processing times

are independent random variables with known probability distributions and develop several heuristic search

algorithms which integrate Monte Carlo sampling with deterministic scheduling algorithms. Thus, their ap-

proaches are based on solving a particular deterministic counterpart problem and evaluating the given solutions

using Monte Carlo simulation instead of solving a scenario-based optimization model. On the other hand,

Sarin et al. (2014) 1 focus on minimizing CVaR in single-machine scheduling as mentioned in the introduction.

As in our study, Sarin et al. (2014) propose a scenario-based optimization model independent of the specific

performance measure of interest and devise a scenario decomposition-based exact algorithm.

In contrast to the robust approaches which adopt a conservative worst-case view, we define our optimality

1The work in Sarin et al. (2014) was done independently and at the same time as the work described in this paper. Note that

a preliminary version of our work was presented in a conference proceeding (Atakan et al., 2011).

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 5

criterion based on VaR which is a quantile of the random outcome at a specified probability level. That is, we

utilize probabilistic information and develop a risk-averse stochastic programming model alternative to exist-

ing robust optimization models. Note that setting the required probability level to exactly one subsumes the

robust optimization problem of minimizing the maximum performance measure over all scenarios. However,

when the required probability level is specified as α < 1, we minimize the maximum performance measure

over a subset of the scenarios with an aggregate probability of at least α. Our risk-averse model identifies the

optimal subset of scenarios with the specified minimum aggregate probability level and minimizes the maxi-

mum performance measure over this subset. Thus, it is less conservative than the robust point of view which

considers all scenarios. In our computational study, we also analyze the behavior of the proposed model in

comparison to that of the corresponding risk-neutral and deterministic models and provide insights on the im-

pact of incorporating the risk preference. Note that the preliminary version of this work (Atakan et al., 2011)

mentioned above only focuses on the total weighted tardiness as the performance measure and implements

a standard tabu search heuristic to solve the proposed model. In this paper, we introduce a general model-

ing framework that can be applied to alternate random performance measures and develop a new effective

mathematical programming based solution method.

2.2 Stochastic Programming Algorithms In the stochastic programming literature, the studies that

concentrate on developing solution methods for stochastic integer programs mainly consider the risk-neutral

two-stage framework for the case of a finite probability space. In such models, the first-stage decisions are

taken before the uncertainty is revealed, while the second-stage (recourse) decisions are optimized given the

first-stage decisions and the realized uncertainty. Various decomposition-based solution methods have been

proposed to deal with such large-scale programs. If the integer variables appear only in the first stage,

relying on the duality of the second-stage problems results in Benders-type decomposition algorithms. In

particular, we can employ variants of the continuous L-shaped method (Van Slyke and Wets, 1969), which is a

Benders decomposition approach to solve two-stage stochastic linear programming problems with the expected

recourse function. Its variants have also been developed for two-stage stochastic programming models that

involve risk measures (see, e.g., Ahmed, 2006; Noyan, 2012). The integer L-shaped algorithm proposed by

Laporte and Louveaux (1993) is the first decomposition method for stochastic programs with integer decisions

in the second stage. It utilizes a branch-and-cut scheme in the master problem and requires pure binary first-

stage decision variables. Carøe and Tind (1998) use the general duality theory and extend the integer L-shaped

algorithm for the models with mixed-integer variables in both stages. Alternatively, Carøe and Schultz (1999)

use the scenario decomposition approach of Rockafellar and Wets (1991) for the same setting and develop a

branch-and-bound algorithm based on the Lagrangian relaxation of non-anticipativity. Recently, this solution

approach has been adapted to two-stage stochastic integer programs incorporating risk measures such as

excess probabilities (Schultz and Tiedemann, 2003) and CVaR (Schultz and Tiedemann, 2006). For a detailed

discussion on various algorithms for stochastic integer programming we refer the reader to the overviews

by Birge and Louveaux (1997); Klein Haneveld and van der Vlerk (1999); Louveaux and Schultz (2003); Sen

(2005) and a comprehensive bibliography (van der Vlerk, 2007).

Among the existing methods discussed above, the L-shaped method and its variants approximate the re-

course function implicitly through cut generation by exploiting the specific directly decomposable two-stage

structure, where the first-stage objective function is separable over the set of scenarios and the scenario-

dependent second-stage decisions decouple for any given set of first-stage decisions. Relying on the de-

composable structure of CVaR in this framework allows Sarin et al. (2014) to devise a classical Benders

decomposition-based method for minimizing CVaR – similar to those in Ahmed (2006) and Noyan (2012) – in

the context of machine scheduling. In contrast, Carøe and Schultz (1999) explicitly model the contribution of

the second-stage decisions to the objective function, and in this paper we adapt their Lagrangian relaxation-

based decomposition approach to obtain a lower bound for the optimal objective value of our stochastic integer

programming model. A significant advantage of this approach is that it allows us to specifically deal with the

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 6

VaR-related linking constraint which couples the individual scenarios in our formulation and is not amenable

to decomposition via an L-shaped method. A generic solution framework based on scenario decomposition

obtained through Lagrangian relaxation for minimizing the widely popular risk measure VaR in stochastic

single-machine scheduling problems is a key contribution of this work.

3. Optimization Models In this section, we first present the underlying deterministic model of the

generic stochastic single-machine scheduling problem under consideration. Then, we discuss how to model the

uncertainty inherent in the system and develop our generic risk-averse stochastic programming model.

3.1 Underlying Deterministic Model A machine scheduling problem can be considered as a two-

phase optimization problem. In the first phase, a feasible job processing sequence is determined for each

machine involved, and then in the second phase the optimal start and completion times are computed for

fixed job processing sequences. The difficult combinatorial structure of machine scheduling problems stems

from the first phase, while the second phase - also referred to as the optimal timing problem - is a simple opti-

mization problem for many important machine scheduling problems. On a single machine, the optimal timing

problem is trivial for regular performance measures, such as TWCT and TWT , which are non-decreasing in

the completion times, and it can often be solved by a low-order polynomial time algorithm or as a linear pro-

gramming problem for non-regular performance measures (Kanet and Sridharan, 2000). Moreover, a feasible

job processing sequence can be expressed as an assignment (Keha et al., 2009), and for any assignment and

performance measure the optimal job completion times and the resulting value of the performance measure

can be identified by solving an appropriate optimal timing problem. This enables us to formulate a general

single-machine scheduling model valid for both regular and non-regular performance measures without assum-

ing an explicit form for the objective function. In Section 4, we leverage the separation of the sequencing

and timing aspects of the model to design a combinatorial algorithm that can handle the subproblems in the

proposed Lagrangian relaxation-based scenario decomposition for several regular and non-regular scheduling

performance criteria.

We define the set of jobs to be processed as N := {1, . . . , n}, where n denotes the number of jobs. Associated

with each job j ∈ N are several parameters: a processing time pj , a due date dj if the performance criterion

is due date related – such as the maximum lateness or the total tardiness –, and a weight wj if job-dependent

priorities are taken into account by the performance criterion. The binary variable xjk takes the value 1, if

job j is located at position k in the processing sequence, and is zero otherwise. Assuming zero release dates,

a deterministic single-machine scheduling problem with a generic objective function, described as 1||f(x)

following the common three field notation of Graham et al. (1979), is formulated below:

(G) minimize f(x) (1)

subject to
∑

k∈N

xjk = 1, ∀j ∈ N, (2)

∑

j∈N

xjk = 1, ∀k ∈ N, (3)

xjk ∈ {0, 1} ∀j, k ∈ N. (4)

Constraints (2)-(3) ensure that each job j is allocated to a single position and each position k accommodates

a single job, respectively. Constraints (4) are the binary variable restrictions required for the sequencing

decisions.

The constraints (2)-(4) model the sequencing aspect of the scheduling problem, and to customize the

formulation for a specific performance measure of interest the objective function f(x) of (G) must be set as

appropriate. This process is equivalent to integrating the timing aspect, and the formulation may need to be

augmented with new variables and constraints to this end. For instance, the objective function of (G) takes

the form f(x) =
∑

j∈N pj
∑n

k=1(n − k + 1)xjk for minimizing TCT . It is also relatively simple to formulate

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 7

the common due-date related performance measure TT . We denote the tardiness of the job at position k by

Tk, set f(x) =
∑

k∈N Tk, and enforce the following additional set of constraints (Baker and Keller, 2010):

Tk ≥
∑

j∈N

pj

k
∑

i=1

xji −
∑

j∈N

djxjk, ∀k ∈ N, (5)

Tk ≥ 0, ∀k ∈ N. (6)

Along with the objective, the constraints (5)-(6) collectively mandate that Tk = max(0, Cj − dj) if job j is in

position k in the sequence, where Cj represents the completion time of job j.

Modeling the weighted versions TWCT and TWT of these performance measures is more complicated

because in this case we need to know explicitly the job assigned to position k so that we can match the

job-dependent priorities to the correct completion times and tardiness values. To this end, we designate the

completion time of the kth job in sequence by γk and append the following set of constraints (Keha et al.,

2009) to (G) in order to compute the completion times Cj for all j ∈ N :

γ1 ≥
∑

j∈N

pjxj1, (7)

γk ≥ γk−1 +
∑

j∈N

pjxjk, k = 2, ..., n, (8)

γk ≥ 0, ∀k ∈ N, (9)

Cj ≥ γk −M(1− xjk) ∀j, k ∈ N, (10)

Cj ≥ 0 ∀j ∈ N. (11)

For minimizing TWCT , it then suffices to define f(x) =
∑

j∈N wjCj . However, for minimizing TWT the

following set of constraints are required in addition to (7)-(11) so that the tardiness variables assume their

correct values, where the tardiness Tj of job j is expressed as Tj = max(0, Cj − dj).

Tj ≥ Cj − dj , ∀j ∈ N, (12)

Tj ≥ 0, ∀j ∈ N. (13)

The objective is then specified as f(x) =
∑

j∈N wjTj .

Before we proceed to present our generic stochastic programming model to minimize VaR we elaborate

on our choice of using the assignment-based formulation (G). For deterministic single-machine scheduling

problems, four frequently used alternate deterministic formulations appear in the literature (see Keha et al.,

2009): disjunctive (DF), time-indexed (TIF), linear ordering (LOF), and the assignment and positional date

(APDF) formulations. TIF has a tight LP relaxation and is the best contender among these four formulations

in terms of solution speed and LP bound quality if the processing times are small. However, it is not clear how

to adapt TIF to our stochastic setting, because it infers the sequence from the completion times represented

by binary decision variables. In particular, expressing the conditions in the model which enforce a non-

preemptive static job processing sequence – independent of the random realizations of data – through the

scenario-dependent completion time variables does not seem to be possible. Our preliminary results indicate

that DF is outperformed by LOF and APDF. This observation is also supported by the extensive computational

study presented in Keha et al. (2009). Thus, among the common formulations only LOF and APDF are viable

options for our proposed risk-averse model. In this study, we focus on APDF as it proves useful in developing

effective solution algorithms; however, the proposed modeling framework would apply to LOF in a similar

way.

3.2 Stochastic programming model In the remainder of this paper, we restrict our attention to

scheduling problems with random processing times for ease of exposition and in order to keep the discussion

focused. However, we emphasize that the models and solution methods laid out in this study can be extended in

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 8

a straightforward manner to capture the uncertainty in several problem parameters simultaneously. Moreover,

from a practical point of view it is reasonable to presume that a due date is quoted (deterministically) as a

result of a mutual agreement with the customer, and the weight assigned to a job is a reflection of the internal

priority of the associated customer or a contractual agreement and is known.

In our stochastic setup, the actual values of the processing times are not certain at the time we determine

the job processing sequence, and the processing times can be represented by random variables. This implies

that the completion times and the performance measure associated with a sequence are also random variables,

because they are functions of the random processing times. In this setting, comparing alternate candidate

sequences requires comparing their respective random f(x) values, where we assume that a feasible sequence

is represented as an assignment x ∈ {0, 1}n×n satisfying the constraints (2)-(4). In this paper, we propose a

risk-averse approach which evaluates a sequence x with respect to a certain quantile of the distribution of the

associated random outcome f(x). For instance, the random total tardiness is expressed by

f(x) =

n
∑

k=1

max





n
∑

j=1

ξj

k
∑

i=1

xji −
n
∑

j=1

djxjk, 0



 (14)

as a function of the decision vector x, where ξj denotes the random processing time of job j ∈ N . We intend

to model the risk associated with the variability of the random outcome f(x) by introducing the following

probabilistic constraint:

P (f(x) ≤ θ) ≥ α, (15)

where α is a specified large probability such as 0.90 or 0.95. Here θ denotes an upper bound on f(x) that

is exceeded with at most a small probability of 1 − α. If α = 1, f(x) ≤ θ holds almost surely. As discussed

in more depth in Section 1, such a probabilistic constraint is intuitive and allows us to model a service level

requirement for the performance measure of interest under the stochastic setup. We refer to α as the risk

parameter which reflects the level of risk-aversion of the decision maker. Clearly, increasing α results in

allowing a higher value of the upper bound θ. We propose not to specify the value of θ as an input, but

consider it as a decision variable with the purpose of identifying the sequence with the smallest possible value

of θ given the risk aversion of the decision maker. Thus, in our model we minimize θ for a specified parameter

α, which is equivalent to minimizing the α-quantile of the random f(x). The α-quantile has a special name

in risk theory as presented in the next definition.

Definition 3.1 Let X be a random variable with a cumulative distribution function denoted by FX . The

α-quantile

inf{η ∈ R : FX(η) ≥ α}

is called the Value-at-Risk (VaR) at the confidence level α and denoted by VaRα(X), α ∈ (0, 1].

The probabilistic constraint (15) can equivalently be formulated as a constraint on the VaR of the random

f(x):

VaRα(f(x)) ≤ θ. (16)

In other words, by considering the proposed probabilistic constraint (15) we specify VaR as the risk measure

on the random f(x), and minimizing θ corresponds to seeking the sequence with the smallest possible VaR

measure for a specified α value.

A model with a probabilistic constraint similar to that in (15) with randomness on the left hand side was

first studied by van de Panne and Popp (1963) and Kataoka (1963). Kataoka introduces a transportation type

model and van de Panne and Popp present a diet (cattle feed) optimization model with a single probabilistic

constraint. In both studies, all the decision variables are continuous, the random outcome of interest is a

linear function of the decision vector, and the solution methods are specific to random coefficients with a joint

normal distribution. In contrast, our main decision variables are binary, the random outcome f(x) in our

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 9

work is not necessarily a linear function of the decision vector as evident from (14), and we do not assume

that the random parameters have a special distribution.

We characterize the random processing times by a finite set of scenarios denoted by S, where a scenario

represents a joint realization of the processing times of all jobs and πs denotes the probability of scenario s ∈ S.

To develop our stochastic programming formulation, the previously introduced parameters and variables are

augmented with scenario indices. More specifically, we use psj , Cs
j , and T s

j to denote the processing time, the

completion time, and the tardiness of job j under scenario s ∈ S, respectively. For a feasible job processing

sequence x, the realization of the random performance criterion f(x) under scenario s is represented by

fs(x). Then, we formulate the problem of minimizing the VaR of a generic random performance criterion in

the single-machine environment as follows:

(G−VaR) minimize θ (17)

subject to (2)− (4),

fs(x)− θ ≤ fs
maxβ

s, ∀s ∈ S, (18)
∑

s∈S

πsβs ≤ 1− α, (19)

βs ∈ {0, 1}, ∀s ∈ S, (20)

θLB ≤ θ ≤ θUB . (21)

We emphasize that the constraints (2)-(4) in the generic deterministic formulation (G) are directly incorpo-

rated into the generic risk-averse stochastic programming model (G−VaR). That is, the sequencing decisions

are independent of the uncertainty. The parameter fs
max is no smaller than the maximum possible realization

of the random performance measure f(x) under scenario s for any sequence x. Thus, βs is set to 1 by the

corresponding constraint (18) without violating feasibility if the realization of the random performance mea-

sure f(x) under scenario s exceeds the threshold value θ. Constraint (19) prescribes that the probability of

exceeding the threshold value θ is no more than 1 − α for the random performance measure f(x). Finally,

constraint (21) is enforced to tighten the formulation and plays an instrumental role in improving the quality

of the lower bound on the optimal objective value of (G−VaR) attained by our solution method. We further

discuss this issue in Section 4.5. Clearly, θLB and θUB might trivially be set to zero and infinity, respectively,

and observe that the VaR associated with any feasible sequence yields a valid upper bound on the optimal

value of θ.

In the formulation above, fs(x) represents the optimal objective value of the optimal timing problem

solved over the data pertinent to scenario s under a fixed job processing sequence x. With this point of view,

(G−VaR) is a two-stage stochastic program, where the optimal timing problem corresponds to the second-

stage problem. However, for regular scheduling performance measures the solution of the optimal timing

problem is obtained trivially by scheduling jobs consecutively without idle time in between. Consequently, the

completion times may be expressed in closed form for any feasible x, and for this case we can also view the

proposed model as a single-stage stochastic program.

Following a rationale similar to that in Section 3.1 for the deterministic case, we can explicitly reflect the

timing aspect of the problem in the model in order to construct a monolithic model that minimizes VaR.

For any specific performance measure, we would then need to incorporate constraints and variables in the

formulation above to ensure that the value of fs(x) is computed correctly for any s ∈ S and its relationship to

θ and βs is properly established. For instance, the set of constraints below – derived from constraints (7)-(13)

– accomplishes this task for a given scenario s under the performance measure TWT , where the completion

time of the kth job in the sequence under scenario s is denoted by γs
k. These constraints are replicated for each

scenario s ∈ S and replace (18) for a valid formulation that minimizes VaR under the performance measure

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 10

TWT .

γs
1 ≥

∑

j∈N

psjxj1, (22)

γs
k ≥ γs

k−1 +
∑

j∈N

psjxjk, k = 2, ..., n, (23)

γs
k ≥ 0, ∀k ∈ N, (24)

Cs
j ≥ γs

k −M(1− xjk) ∀j, k ∈ N, (25)

Cs
j ≥ 0 ∀j ∈ N, (26)

T s
j ≥ Cs

j − dj , ∀j ∈ N, (27)

T s
j ≥ 0, ∀j ∈ N, (28)
∑

j∈N

wjT
s
j − θ ≤ fs

maxβ
s. (29)

To complete the formulation for TWT , we must also determine the upper bounds fs
max, ∀s ∈ S. In order to

compute a reasonably small value for fs
max given a scenario s, we sort the processing times under scenario

s in non-increasing order and denote the jth largest processing time by ps[j]. Then, the maximum possible

completion time of the kth job in the sequence, k = 1, . . . , n, under scenario s is computed as Cs
[k] =

∑k
j=1 p

s
[j].

Next, the due dates and the unit tardiness weights are assigned to the completion times in non-increasing

and non-decreasing order, respectively. A standard pairwise interchange argument (not necessarily adjacent)

demonstrates that the resulting TWT is an upper bound on the TWT of any job processing sequence under

scenario s.

At the end of Section 3.1, we pointed out that the formulations APDF and LOF are the only reasonable

choices in our stochastic programming setup. We focus on the former because representing a job processing

sequence as an assignment leads to some powerful combinatorial solution algorithms in Section 4 for solving

a relaxation of our risk-averse model. For benchmarking purposes, we also solve the monolithic formulation

(G−VaR) by an off-the-shelf mixed-integer programming solver in Section 6. However, in this case, repre-

senting a sequence as a linear order described by the constraints (30)-(32) instead of an assignment given by

(2)-(4) turns out to be computationally more effective for large instances (see Section 6.3):

δjj = 1, ∀j ∈ N, (30)

δjk + δkj = 1, ∀j, k ∈ N : 1 ≤ j < k ≤ n, (31)

δjk + δkl + δlj ≤ 2, ∀j, k, l ∈ N : j 6= k, k 6= l, l 6= j. (32)

The variable δjk takes the value 1 if job j precedes job k in the processing sequence. The constraints (31)

ensure that job j cannot precede and succeed job k in a feasible sequence, while constraints (32) prevent cyclic

subsequences of length three. Finally, by convention a job precedes itself, and δjj is set to 1 for all j. Note that

Cj =
∑

k∈N pkδkj yields the completion time of job j for a regular performance with zero job release dates.

The monolithic formulation (G−VaR) for TT and TWT employed in Section 6 relies on this relationship

to express constraints similar to (22)-(29).

We conclude this section with a brief discussion on the general applicability of our stochastic modeling and

solution framework. One of the main points that has to come across in this section is that the separation of the

sequencing and timing aspects of scheduling enables us to provide a generic optimization framework to minimize

VaR in the next section based on enumerating a potentially large set of job processing sequences in a certain

order. From a theoretical point of view, the basic requirement specific to the performance measure of interest is

that the associated optimal timing problem can be solved effectively for a given job processing sequence. That

is, non-regular performance measures such as total earliness/tardiness and non-linear performance measures

such as total squared tardiness are within the boundaries of our modeling and solution framework. From a

computational point of of view, however, the total effort expended may wildly differ from one performance

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 11

measure to another – see Section 6. Moreover, as part of our solution method we sometimes have to resort to

solving linear mixed-integer programs in combination with our enumerative algorithms. Then, the ability to

express f(x) with a set of linear constraints is of course crucial for computational effectiveness. Ultimately,

we employ TT and TWT as the performance measures of interest in our experimental study in Section 6.

These are two of the well-studied classical regular performance measures in deterministic scheduling and are

known to give rise to practically and theoretically challenging problems. Note that the deterministic problems

of minimizing TT and TWT on a single machine are both NP−hard (Du and Leung, 1990; Lenstra et al.,

1977). These results establish that minimizing VaR under either performance measure is NP−hard as well

because the associated deterministic problem is a special case of our risk-averse problem with a single scenario

and α = 1.

4. Solution Methods As discussed in the introduction, several decomposition-based solution methods

have been offered to solve stochastic programming models with an emphasis on the two-stage stochastic integer

programs. However, (G−VaR) does not exhibit the well-known decomposable structure of traditional risk-

neutral two-stage stochastic programs due to the presence of the coupling constraint (19) that reflects the

fundamental structure of VaR. Adapting the Lagrangian relaxation-based scenario decomposition approach

designed by Carøe and Schultz (1999) offers a way of tackling this challenging issue as detailed in the sequel.

In this section, we first reformulate (G−VaR) through variable splitting – initially due to Jörnsten et al.

(1985) – so that it is amenable to scenario decomposition through Lagrangian relaxation. Then, we focus on the

Lagrangian subproblems in Section 4.2 which turn out to be the computationally most demanding component

of our solution framework. The job processing sequences obtained from the Lagrangian subproblems are

excellent seeds for constructing good primal feasible solutions for the original problem, as explained briefly in

Section 4.3. The cut generation algorithm to solve the Lagrangian dual problem is presented in Section 4.4;

however, we relegate the dual stabilization to Section 5, where we discuss numerous computational features and

enhancements, so as not to detract the attention from the fundamentals. The dynamic nature of our scenario

decomposition algorithm is introduced in Section 4.5, where we explain how to exploit the structure of the

problem to obtain and solve progressively tighter Lagrangian relaxations of (G−VaR). We collectively refer

to this solution framework as SD-SMS which stands for Scenario Decomposition for Single-Machine Scheduling.

4.1 Scenario Decomposition We begin by reformulating (G−VaR) through variable splitting. Es-

sentially, we first create copies of θ and xjk, ∀j, k ∈ N , for each scenario by defining θs, ∀s ∈ S, and xs
jk,

∀j, k ∈ N, ∀s ∈ S, and then ensure that all copies of a variable assume the same value by augmenting the

formulation with new constraints. Accordingly, θ is replaced by θs in constraints (18) and (21), the constraints

(2)-(4) and (21) are replicated for each scenario, and the following non-anticipativity constraints are enforced:

θ1 = θs, ∀s ∈ S, s 6= 1, (33)

(1− π1)x1
jk =

|S|
∑

s=2

πsxs
jk, ∀j, k ∈ N. (34)

VaR is set to the same value for all scenarios through the constraints (33). Non-anticipativity constraints

may be expressed in different ways (Shapiro et al., 2009); we opt for using (33) for θ which is implemented

as the default option in the NEOS solver DDSIP for solving two-stage stochastic linear programs with mixed-

integer recourse. In general, O(|S|) non-anticipativity constraints are required for a single variable; however,

a binary variable allows for a compact representation with a single constraint (Carøe and Schultz, 1999) as

in (34). These constraints mandate that the static job processing sequence determined at the time zero is

identical for all scenarios, and are only valid because all scenario probabilities are strictly positive and the

variables xs
jk, ∀j, k ∈ N, ∀s ∈ S, are binary. Moreover, in order to attain a formulation with a decomposable

structure the objective term θ in (17) is replaced by the equivalent expression
∑

s∈S πsθs based on (33) and
∑

s∈S πs = 1. Similarly, the term (1 − α) on the right hand side of (19) is substituted by
∑

s∈S πs(1 − α).

http://www.neos-server.org/neos/solvers/slp:ddsip/MPS.html

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 12

The resulting model presented below is equivalent to (G−VaR).

minimize
∑

s∈S

πsθs (35)

subject to
∑

k∈N

xs
jk = 1, ∀j ∈ N, s ∈ S, (36)

∑

j∈N

xs
jk = 1, ∀k ∈ N, s ∈ S, (37)

fs(x)− θs ≤ fs
maxβ

s, ∀s ∈ S, (38)
∑

s∈S

πsβs ≤
∑

s∈S

πs(1− α), (39)

βs ∈ {0, 1}, ∀s ∈ S, (40)

xs
jk ∈ {0, 1}, ∀j, k ∈ N, s ∈ S, (41)

θLB ≤ θs ≤ θUB , ∀s ∈ S, (42)

(1− π1)x1
jk =

|S|
∑

s=2

πsxs
jk, ∀j, k ∈ N, (43)

θ1 = θs, ∀s ∈ S, s 6= 1. (44)

In this formulation, the scenarios are linked together by the non-anticipativity constraints (43)-(44), and the

constraint (39). Consequently, we obtain a Lagrangian relaxation of (35)-(44) which decomposes by scenario

if we dualize the constraint (39) by a non-negative dual multiplier λ, and the constraints (43) and (44) by

unrestricted dual multipliers ujk, ∀j, k ∈ N , and µs, s = 2, . . . , |S|, respectively. The Lagrangian function

L(λ,µ,u) is then stated as a sum of the Lagrangian functions for the individual scenarios:

L(λ,µ,u) =
∑

s∈S

Ls(λ, µs,u) (45)

=
∑

s∈S



(πs + µs)θs + λπs(βs − 1 + α) +
∑

j∈N

∑

k∈N

ujkH
sxs

jk



 , (46)

where

µ =
[

µ1 µ2 µ3 · · · µ|S|
]⊺

,

µ1 = −

|S|
∑

s=2

µs, (47)

u =
[

u11 u12 · · · u1n u21 · · · unn

]⊺

,

H =
[

(π1 − 1) π2 π3 · · · π|S|
]⊺

, and

Hs represents the sth component of H. The analysis above provides us with the Lagrangian dual problem

(LD) zLD = maximize
λ≥0,µ,u

D(λ,µ,u) =maximize
λ≥0,µ,u

∑

s∈S

Ds(λ, µs,u), (48)

where D(λ,µ,u) is the dual function and the Lagrangian subproblem (LSs) for scenario s is expressed as:

(LSs) Ds(λ, µs,u) =minimize Ls(λ, µs,u) (49)

subject to
∑

k∈N

xs
jk = 1, ∀j ∈ N, (50)

∑

j∈N

xs
jk = 1, ∀k ∈ N, (51)

fs(x)− θs ≤ fs
maxβ

s, (52)

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 13

βs ∈ {0, 1}, (53)

xs
jk ∈ {0, 1}, ∀j, k ∈ N, (54)

θLB ≤ θs ≤ θUB . (55)

From the theory of Lagrangian relaxation, the value of the dual function for any λ ≥ 0, µ, and u is a lower

bound on the optimal objective value of (G−VaR). However, this lower bound is trivial if µs + πs < 0 for

some scenario s. In this case, Ls(λ, µs,u) tends to negative infinity because the value of θs may be increased

arbitrarily without violating feasibility, assuming that θUB = ∞ for the sake of argument. Therefore, we

assume that µs + πs ≥ 0 holds ∀s ∈ S from now on. This requirement is also incorporated into our search

for the optimal set of dual multipliers in Sections 4.4 and 4.5, where we focus on maximizing the Lagrangian

lower bound. In the sequel, we first devise an effective solution strategy for solving (LSs).

4.2 Solving the Lagrangian Subproblems Solving the mixed-integer formulation (49)-(55) for each

scenario at every iteration of the Lagrangian algorithm is clearly not a viable option from a computational

point of view. Therefore, the main goal of the proposed solution framework for the Lagrangian subproblems

is to obtain the optimal solution through fast combinatorial algorithms if possible and then, if necessary, turn

to solving (LSs) by an off-the-shelf solver as a last resort. We are driven by two fundamental observations in

this endeavor. First, each subproblem features a single binary variable βs in addition to the binary sequencing

variables xs
jk, ∀j, k ∈ N , and we can attain the optimal solution to (LSs) by analyzing the dichotomy that

results from fixing βs = 0 or βs = 1. Essentially, the two resulting branches
(

LSs
βs=0

)

and
(

LSs
βs=1

)

can be

solved separately, and the branch with the smaller objective value determines the optimal solution to (LSs):
(

LSs
βs=0

)

minimize Ls(λ, µs,u/βs = 0)
(

LSs
βs=1

)

minimize Ls(λ, µs,u/βs = 1)

(50)− (51) (50)− (51)

(54)− (55) (54)

fs(x)− θs ≤ 0

, (56)

where

Ls(λ, µs,u/βs = 0) =
∑

j∈N

∑

k∈N

ujkH
sxs

jk + (µs + πs)θs + λ(α− 1)πs and (57)

Ls(λ, µs,u/βs = 1) =
∑

j∈N

∑

k∈N

ujkH
sxs

jk + (µs + πs)θLB + λαπs (58)

express the objective function of the Lagrangian subproblem under the restriction that βs is forced to take

the value zero or one, respectively. Observe that the constraints (52) and (55) are redundant for βs = 1,

and the best strategy in this case is to set θs to θLB . This is taken directly into account in the definition of
(

LSs
βs=1

)

. Consistent with the notation above, Ds(λ, µs,u/βs = 0) and Ds(λ, µs,u/βs = 1) represent the

optimal objective function values of
(

LSs
βs=0

)

and
(

LSs
βs=1

)

, respectively.

The final term in (57) and the last two terms in (58) are constant terms. Consequently,
(

LSs
βs=1

)

is a

classical assignment problem, and
(

LSs
βs=0

)

is basically a bi-objective optimization problem. There is a trade-

off between the cost of assigning the jobs to the positions in the sequence represented by the first term in (57)

and the cost of the performance measure associated with the sequence under scenario s. The latter cost is

expressed by the term (µs + πs)θs in (57) because the structure of
(

LSs
βs=0

)

imposes that θs is set to fs(x)

at optimality as long as this is feasible with respect to (55). This trade-off between the direct cost of the job

assignments and the cost of the resulting performance measure is the second fundamental observation that we

exploit thoroughly in the design of an effective solution algorithm for (LSs).

With the discussion above in mind, we solve (LSs) by a three-phase approach. In the first phase, we

investigate various special cases of (LSs) that are relatively easy to tackle. Here, we also resolve how to detect

whether
(

LSs
βs=0

)

is infeasible; the assignment problem
(

LSs
βs=1

)

is always feasible. If we fail to identify

the optimal solution in the first phase, we proceed with a combinatorial algorithm based on enumerating and

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 14

evaluating a subset of all job processing sequences. In theory, this algorithm is exact; however, the number

of sequences to be enumerated may be exponentially large. Therefore, from a practical point of view we

only consider a limited number of sequences for computational performance. Finally, if (LSs) is not solved

to optimality after the initial two phases, we invoke an off-the-shelf solver on the formulation (49)-(55). We

detail these steps in the remainder of this section.

The first task at hand in Phase I is to determine the feasibility of
(

LSs
βs=0

)

because there may be no job

processing sequence x such that the constraint fs(x)− θs ≤ 0 is satisfied when θLB ≤ θs ≤ θUB . This check

is accomplished by identifying the minimum possible value of the performance measure under scenario s; that

is, by solving a deterministic single-machine scheduling problem with the data pertinent to scenario s. We

denote the resulting optimal solution and objective function value by xs
min and fs

min, respectively, and conclude

that
(

LSs
βs=0

)

is feasible if and only if fs
min ≤ θUB . In the absence of an exact algorithm for the performance

measure of interest, a lower bound fs
LB from a relaxation of the deterministic problem associated with scenario

s may also be used to a less powerful effect. In this case, we arrive at the conclusion that
(

LSs
βs=0

)

is infeasible

if fs
LB > θUB ; however, f

s
LB ≤ θUB does not necessarily imply the feasibility of

(

LSs
βs=0

)

. If we determine

that
(

LSs
βs=0

)

is infeasible, then the optimal solution to (LSs) is identified as βs
∗ = 1, θs∗ = θLB , and xs

∗ = x1
AP

with an objective value of

Ds(λ, µs,u) = Ds(λ, µs,u/βs = 1) = z1AP + (µs + πs)θLB + λαπs, (59)

where x1
AP and z1AP denote the optimal solution and the associated objective value of the assignment problem

that minimizes the first term of (58) over the feasible region of
(

LSs
βs=1

)

, respectively. This optimization may

be carried out by any standard assignment algorithm, such as the famous Hungarian algorithm. Note that

the motivation for employing a superscript of ‘1’ in x1
AP and z1AP is clarified later in this section.

The feasibility check explained in the previous paragraph requires us to solve |S| deterministic single-

machine scheduling problems for the performance measure of interest. This immediately establishes that

(LSs) is NP−hard for the performance measures TT and TWT considered in this paper because the deter-

ministic single-machine TT and TWT problems are both NP−hard as mentioned in Section 3.2. From an

implementation point of view, the |S| deterministic problems are clearly only solved once during the initializa-

tion step of the algorithm for solving the Lagrangian dual (LD) (see Section 5.1). In subsequent iterations of

the algorithm, we only compare fs
min against the current best upper bound on θ which may decrease over the

iterations. For ease of exposition, the remaining discussion in this section assumes that
(

LSs
βs=0

)

is feasible.

The solution of (LSs) deserves special attention if we have u = 0. Our preliminary computational experience

with (LD) revealed a critical observation. Many components of the optimal u are frequently identical to zero,

but the variability in u from one iteration to the next is a major source of instability in the dual problem

and slows down the convergence. To alleviate this issue, we apply a dual stabilization scheme, which initially

imposes the restriction u = 0 in (LD) (see Section 5.3 for more details). The solution of (LSs) turns out to be

particularly simple for this case, and the optimal solution of the deterministic problem associated with scenario

s plays a crucial role here as well. For u = 0, the objective value of
(

LSs
βs=1

)

is a constant independent of

the sequence. We have Ds(λ, µs,u/βs = 1) = (µs + πs)θLB + λαπs, θs∗ = θLB , and set xs
∗ = xs

min by

convention. On the other hand, for
(

LSs
βs=0

)

the constraint fs(x) − θs ≤ 0 and the second objective term

in (57) prescribe that we pick the sequence that minimizes fs(x) without violating (55). Consequently, the

optimal solution of
(

LSs
βs=0

)

is attained at θs∗ = max(θLB , f
s
min), x

s
∗ = xs

min and results in the objective value

Ds(λ, µs,u/βs = 0) = (µs + πs)max(θLB , f
s
min) + λ(α− 1)πs.

In the next special case considered in the first phase, we allow for u 6= 0 and observe that if fs(x1
AP) ≤ θUB

and (µs+πs)(fs(x1
AP)−θLB) ≤ 0 then x1

AP is optimal for
(

LSs
βs=0

)

and (LSs). The former condition ensures

that (55) is not violated, and the latter prescribes that the cost of the performance measure associated with

the job sequence with the minimum assignment cost is no more than (µs + πs)θLB . Thus, Ds(λ, µs,u/βs =

0) = z1AP + (µs + πs)θLB + λ(α− 1)πs < z1AP + (µs + πs)θLB + λαπs = Ds(λ, µs,u/βs = 1) and the optimal

solution of (LSs) is stated as βs
∗ = 0, θs∗ = max(θLB , f

s(x1
AP)), and xs

∗ = x1
AP . This rule benefits from the

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 15

progressively larger lower bounds on θ obtained during the course of the algorithm and turns more powerful

over the iterations.

The final step of the first phase is to check whether the assignment cost incurred by xs
min – computed by the

first term in (57) or (58) – is identical to z1AP . If this holds, then we set xs
∗ = xs

min, compare Ds(λ, µs,u/βs =

0) = z1AP + (µs + πs)max(θLB , f
s
min) + λ(α− 1)πs to Ds(λ, µs,u/βs = 1) = z1AP + (µs + πs)θLB + λαπs, and

then set βs
∗ and θs∗ as appropriate. The motivation for this check is rooted in our observation that the problem

of minimizing the first term of (57) or (58) subject to (50), (51), (54) does frequently feature multiple optima.

In Phase II of our solution approach for (LSs), we exploit two dominance relations to devise an exact

combinatorial algorithm. The key point to both of these conditions derives from the expression for the

optimal objective value of
(

LSs
βs=0

)

under a feasible fixed job processing sequence xs:

Ds(λ, µs,u/βs = 0,xs) = zAP (x
s) + (µs + πs)max(θLB , f

s(xs)) + λ(α− 1)πs, where (60)

zAP (x
s) =

∑

j∈N

∑

k∈N

ujkH
sxs

jk (61)

is the value of the first term in (57) corresponding to xs.

Lemma 4.1 If βs
∗ = 0 in the optimal solution of (LSs), then

zAP (x
s
∗) ≤ z1AP + λπs (62)

must hold for the corresponding optimal job processing sequence xs
∗.

Proof. For a given fixed sequence xs we have

Ds(λ, µs,u/βs = 1)−Ds(λ, µs,u/βs = 0,xs) ≥ 0

⇐⇒ (z1AP − zAP (x
s)) + (µs + πs)(θLB −max(θLB , f

s(xs))) + λπs ≥ 0

⇐⇒ zAP (x
s)− z1AP ≤ (µs + πs)(θLB −max(θLB , f

s(xs))) + λπs. (63)

In other words, if the direct cost of the job assignments associated with xs exceeds the minimum possible

assignment cost z1AP by more than the right hand side of (63), then we set βs
∗ = 1 instead of setting βs

∗ = 0 and

choosing the sequence xs. We can extend this argument by noting that (µs+πs)(θLB−max(θLB , f
s(xs))) ≤ 0

and arrive at the conclusion formalized in the statement of the lemma. �

Lemma 4.1 discards a set of inferior sequences from consideration in
(

LSs
βs=0

)

because one is better off

by setting βs = 1 instead. The next lemma is based on similar concepts and identifies a dominant set of

job processing sequences which must include the optimal solution for
(

LSs
βs=0

)

. In either case, the focus is

on
(

LSs
βs=0

)

because computing the optimal solution of
(

LSs
βs=1

)

requires no more than solving a classical

assignment problem. In the following, a set of feasible job processing sequences x1
AP ,x

2
AP , . . . ,x

k
AP , . . . are

ordered so that zAP (x
1
AP) ≤ zAP (x

2
AP) ≤ · · · ≤ zAP (x

k
AP) ≤ · · · . For brevity of notation, we use zkAP for

zAP (x
k
AP).

Lemma 4.2 The optimal job processing sequence for
(

LSs
βs=0

)

must belong to the set of the first Ks
2 least costly

assignments x1
AP , . . . ,x

Ks

2

AP , where K
s
2 = argmin{k ∈ Z

+ | fs(xk
AP) ≤ θUB and (µs+πs)(fs(xk

AP)−θLB) ≤ 0}.

Proof. The sequence z
Ks

2

AP is feasible with respect to (55) and the cost of the performance measure

associated with it does not exceed (µs + πs)θLB . Therefore, for any job processing sequence xs such that

zAP (x
s) > z

Ks

2

AP , we have Ds(λ, µs,u/βs = 0,xs) = zAP (x
s) + (µs + πs)max(θLB , f

s(xs)) + λ(α − 1)πs >

z
Ks

2

AP + (µs + πs)θLB + λ(α − 1)πs = Ds(λ, µs,u/βs = 0,x
Ks

2

AP). Thus, the sequence xs can be excluded from

consideration. �

Lemmas 4.1 and 4.2 motivate an algorithm for solving (LSs) that hinges upon ranking the job processing

sequences based on their assignment costs expressed in (61) for any given xs. We start enumerating assignments

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 16

x1
AP ,x

2
AP , . . ., in non-decreasing order of their costs. If zk

′

AP ≤ z1AP + λπs and zk
′+1

AP > z1AP + λπs are

satisfied for the k′th least costly assignment, then we set Ks
1 = k′ and terminate the enumeration by applying

Lemma 4.1. We then calculate the minimum value of Ds(λ, µs,u/βs = 0,xk
AP) over x

k
AP , k = 1, . . . ,Ks

1 , and

compare it to Ds(λ, µs,u/βs = 1) given in (59). We thus solve (LSs) optimally. Alternatively, we stop the

enumeration at the k′′th least costly assignment and set Ks
2 = k′′ according to Lemma 4.2, if fs(xk′′

AP) ≤ θUB

and (µs + πs)(fs(xk′′

AP) − θLB) ≤ 0. Then, we proceed similarly to obtain the optimal solution of (LSs). In

practice, Lemma 4.1 is hardly employed, and the enumeration we implement – described below – is almost

always brought to completion by Lemma 4.2. Note that this lemma can be regarded as a generalization of the

special case considered in the first phase, where z1AP turns out to be the optimal solution of both
(

LSs
βs=0

)

and (LSs). In addition, the condition of the lemma gets easier to satisfy as θLB is improved over the course

of solving (LD).

Several polynomial algorithms of complexity O(n3K) are discussed in Section 5.4.1 of Burkard et al. (2009)

for identifying the first K least costly assignments for any fixed K. Thus, the ultimate computational ef-

fectiveness of our proposed strategy for a given scenario s ∈ S depends on the value of Ks = min(Ks
1 ,K

s
2),

which cannot be computed a priori but is only revealed whenever either the condition of Lemma 4.1 or that

of Lemma 4.2 is satisfied while the assignments are evaluated. On the positive side, we only need to solve

the K−assignment problem twice regardless of the number of scenarios |S|. The objective coefficients in (61)

are a function of the vector of dual multipliers u, which is independent of the scenario s, and Hs. Note

that H1 = π1 − 1 < 0 and Hs = πs > 0 for s ≥ 2. Consequently, for s = 1 the objective is to minimize
∑

j∈N

∑

k∈N −ujkx
1
jk, and for any s ≥ 2 the objective is to minimize

∑

j∈N

∑

k∈N ujkxjk. In the latter case,

the superscript s on the variables xjk is omitted deliberately because the least costly assignments are not

scenario-dependent for s ≥ 2.

The enumerative algorithm we have just presented provides the optimal solution to (LSs) in theory. How-

ever, its complexity is not polynomial because the number of assignments (job processing sequences) to be

enumerated is unknown at the start of the algorithm and may grow to n! in the worst case. Therefore, for

practical purposes we use a scenario-independent fixed upper bound κ on the number of assignments to be

enumerated. Then, we evaluate x1
AP ,x

2
AP , . . . ,x

κ
AP one by one and check whether the conditions of Lemmas

4.1 and 4.2 are satisfied. If it turns out that either Ks
1 ≤ κ or Ks

2 ≤ κ, then we attain a provably optimal

solution of (LSs). Otherwise, we only have a suboptimal solution for (LSs) at the conclusion of the second

phase of our solution algorithm for the Lagrangian subproblems, and this subproblem is relegated to the final

phase.

The optimal solutions of a large portion of the subproblems are available when the first two phases described

above are completed. If we insist that all Lagrangian subproblems are solved to optimality, then the remaining

subproblems are tackled by solving the formulation (49)-(55) through a mixed-integer programming solver. In

Section 5, we discuss the circumstances under which we do not necessarily seek optimality for all subproblems

and the final phase is skipped. Algorithm 1 summarizes the discussion in this section by presenting a pseudo-

code for the three phases of solving (LSs) to optimality for all s ∈ S given a set of dual multipliers λ, µ, and u.

For ease of presentation, both K−assignment problems are solved during the initialization stage in Algorithm

1. However, for an actual implementation it is more efficient to execute the K−assignment algorithm within

the main for-loop that starts on line 2 and only if it is necessary.

We emphasize that Algorithm 1 is widely applicable to different performance measures because our mathe-

matical model clearly differentiates between the sequencing and timing aspects of scheduling. Regardless of the

specific performance measure of interest, the sequences are generated by the same K−assignment algorithm.

Algorithm 1, however, requires that we have a fast optimal timing procedure at our disposal for computing

the performance measure because this procedure is called for every sequence produced by the K−assignment

algorithm. In addition, the existence of an exact algorithm for the associated deterministic single-machine

scheduling problem is essential.

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 17

Finally, we revisit and finalize the discussion on our preference of APDF over LOF for our modeling and

solution framework. The structure of the Lagrangian subproblems would stay intact under LOF; however, this

would rule out an effective method for the ranking of sequences in the second phase of Algorithm 1 because

the linear ordering problem is NP−hard (Karp, 1972).

4.3 Primal Feasible Solutions By definition, a good relaxation that captures the essence of the original

problem provides a tight lower bound on the optimal objective value of the original problem. However, equally

important is the information extracted from the solution of the relaxation that paves the way for easily

constructing feasible solutions of good quality. To demonstrate that the latter characteristic is present in our

scenario decomposition, we keep our primal algorithm very simple.

One of the desirable properties of (G−VaR) is that any job processing sequence is a feasible solution, and

the best solutions of the Lagrangian subproblems yield |S| feasible job processing sequences at every iteration

of SD-SMS . It turns out that good primal feasible solutions for the original problem may be obtained starting

from one or several of these sequences. Our primal algorithm consists of computing the VaR associated with

these sequences and updating our best solution available. We further extend this idea by evaluating the

neighborhood of each subproblem sequence by means of a simple local search algorithm. The neighborhood

structure is defined by a general pairwise interchange of the jobs, and we allow up to 5 consecutive non-

improving moves to prevent getting stuck at a local optimum.

4.4 Solving the Lagrangian Dual Problem The set of candidate solutions in the feasible region Φs

of the Lagrangian subproblem (LSs) consists of exponentially many but a finite set of points (xs
p, β

s
p, θ

s
p), p =

1, . . . , φs, because there is only a finite number of job processing sequences and θs may be set optimally for

any given xs and βs by following the simple observations in Section 4.2. Based on this representation, the

Lagrangian dual problem (LD) specified in (48) in Section 4.1 may be posed in a different form (Wolsey, 1998,

Section 10.2):

zLD = maximize
λ≥0,µ,u

∑

s∈S

Ds(λ, µs,u) =maximize
λ≥0,µ,u

∑

s∈S

{

minimize
(xs,βs,θs)∈Φs

Ls(λ, µs,u)

}

(64)

=maximize
λ≥0,µ,u

∑

s∈S

{

min
p=1,...,φs

Ls(λ, µs,u/(xs
p, β

s
p, θ

s
p))

}

, where (65)

Ls(λ, µs,u/(xs
p, β

s
p, θ

s
p)) = (πs + µs)θsp + λπs(βs

p − 1 + α) +
∑

j∈N

∑

k∈N ujkH
sxs

jkp represents the value

of Ls(λ, µs,u) – see (46) – evaluated at the point (xs
p, β

s
p, θ

s
p). The components of xs

p are indicated by

xs
jkp, ∀j, k ∈ N . The dual function Ds(λ, µs,u) associated with scenario s is then equal to the maximum

value of ηs which satisfies ηs ≤ Ls(λ, µs,u/(xs
p, β

s
p, θ

s
p)) for p = 1, . . . , φs. The key observation here is that

Ls(λ, µs,u/(xs
p, β

s
p, θ

s
p)) is an affine function of λ, µs,u, which allows us to reformulate (LD) as an LP:

zLD = maximize
∑

s∈S

ηs (66)

subject to ηs ≤ (πs + µs)θsp + λπs(βs
p − 1 + α) +

∑

j∈N

∑

k∈N

ujkH
sxs

jkp, ∀s ∈ S, p = 1, . . . , φs, (67)

∑

s∈S

ηs ≤ θUB , (68)

µs ≥ −πs, ∀s ∈ S, (69)
∑

s∈S

µs = 0, (70)

λ ≥ 0, (71)

The set of constraints (67) defines Ds(λ, µs,u) for any s ∈ S as the minimum of a finite number of affine

functions as explained above and establishes that it is piecewise affine and concave. The same property clearly

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 18

Algorithm 1: Solving the Lagrangian subproblems.

input : Values of the dual variables λ, µ, and u. xs
min and fs

min for the deterministic single-machine

problem associated with scenario s for all s ∈ S. The bounds θLB and θUB on θ.

output: The optimal solution xs
∗, β

s
∗, θ

s
∗ and the associated objective value Ds(λ, µs,u) for all s ∈ S.

1 Solve a K−assignment problem with K = κ for s = 1 with the objective of minimizing (61) subject to

(50), (51), (54). Repeat for s = 2. For ease of notation, in either case the assignments retrieved and

their associated objective values are labeled as x1
AP ,x

2
AP , . . . ,x

κ
AP and z1AP , z

2
AP , . . . , z

κ
AP , respectively;

2 for s = 1 to |S| do

3 if fs
min ≤ θUB then //

(

LSs
βs=0

)

is feasible.

// Phase I. Consider the special cases.

4 if u = 0 then

5 if Ds(λ, µs,u/βs = 0) ≤ Ds(λ, µs,u/βs = 1) then

6 βs
∗ = 0, θs∗ = max(θLB , f

s
min), x

s
∗ = xs

min,

Ds(λ, µs,u) = (µs + πs)max(θLB , f
s
min) + λ(α− 1)πs;

7 else βs
∗ = 1, θs∗ = θLB , x

s
∗ = xs

min, D
s(λ, µs,u) = (µs + πs)θLB + λαπs ;

8 Continue with the next scenario;

9 end

10 if fs(x1
AP) ≤ θUB & (µs + πs)(fs(x1

AP)− θLB) ≤ 0 then // x1
AP is optimal for

(

LSs
βs=0

)

.

11 βs
∗ = 0, θs∗ = max(θLB , f

s(x1
AP)), x

s
∗ = x1

AP , D
s(λ, µs,u) = z1AP +(µs+πs)θLB +λ(α−1)πs;

12 Continue with the next scenario;

13 end

14 if u⊺Hsx1
AP = u⊺Hsxs

min then // xs
min is a minimum cost assignment.

15 if Ds(λ, µs,u/βs = 0) ≤ Ds(λ, µs,u/βs = 1) then

16 βs
∗ = 0, θs∗ = max(θLB , f

s(xs
min)), x

s
∗ = xs

min,

Ds(λ, µs,u) = z1AP + (µs + πs)max(θLB , f
s
min) + λ(α− 1)πs;

17 else βs
∗ = 1, θs∗ = θLB , x

s
∗ = xs

min, D
s(λ, µs,u) = z1AP + (µs + πs)θLB + λαπs ;

18 Continue with the next scenario;

19 end

// Phase II. The optimal solution was not obtained in Phase I.

20 βs
∗ = 1, θs∗ = θLB , x

s
∗ = x1

AP , D
s(λ, µs,u) = Ds(λ, µs,u/βs = 1) = z1AP + (µs + πs)θLB + λαπs;

21 for k = 1 to κ do

22 if fs(xk
AP) ≤ θUB & Ds(λ, µs,u/βs = 0,xk

AP) ≤ Ds(λ, µs,u) then // New incumbent.

23 βs
∗ = 0, θs∗ = max(θLB , f

s(xk
AP)), x

s
∗ = xk

AP ,

Ds(λ, µs,u) = zkAP + (µs + πs)max(θLB , f
s(xk

AP)) + λ(α− 1)πs;

24 end

25 if k > 1 & zkAP > z1AP + λπs then // Based on Lemma 4.1.

26 Ks
1 = k − 1, continue with the next scenario;

27 end

28 if fs(xk
AP) ≤ θUB & (µs + πs)(fs(xk

AP)− θLB) ≤ 0 then // Based on Lemma 4.2.

29 Ks
2 = k, continue with the next scenario;

30 end

31 end

// Phase III. The optimal solution was not obtained in Phases I-II.

32 Solve the formulation (49)-(55) through a mixed-integer programming solver;

33 else // Only
(

LSs
βs=1

)

is feasible.

34 βs
∗ = 1, θs∗ = θLB , x

s
∗ = x1

AP , D
s(λ, µs,u) = Ds(λ, µs,u/βs = 1) = z1AP + (µs + πs)θLB + λαπs;

35 end

36 end

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 19

holds for D(λ, µ,u) =
∑

s∈S Ds(λ, µs,u) as well. Constraint (68) imposes that (66)-(71) is always bounded

even if a subset of the constraints (67) is omitted from the formulation as described in the sequel. During the

initialization step of SD-SMS detailed in Section 5.1, the right hand side of (68) is set to the VaR associated

with an initial primal feasible solution of the original problem. The constraints (69) are required for bounded

Lagrangian subproblems as discussed in Section 4.1. Finally, constraint (70) reflects the condition (47).

The exponential size of the set of constraints (67) prompts a cut generation scheme for solving the master

problem (66)-(71). Initially, a relaxed master problem (RMP) is set up only with a small portion of the

constraints (67), where ηs is now interpreted as an upper bound on the dual function Ds(λ, µs,u) associated

with scenario s. New constraints are generated and added to the model on the fly as necessary. More

specifically, the cut generation algorithm iteratively solves RMP , updates the values of the dual variables,

solves the Lagrangian subproblems, and then employs the subproblem solutions to generate new cuts of the

form (67) until the optimality gap between the optimal objective value of the current RMP and the best known

lower bound obtained from the Lagrangian subproblems is reduced below a threshold. A further significant

property of the LP formulation for solving (LD) is that it does not require that we solve the subproblems to

optimality. Essentially, any of the feasible solutions (xs
p, β

s
p, θ

s
p), p = 1, . . . , φs, to (LSs) may be employed to

generate a cut to be added to RMP . This is a fundamental advantage that we exploit in our algorithm for

computational speed. We refer to such cuts as suboptimal and discuss the specifics of our implementation in

Section 5.2.

In the multi-cut master problem formulation (66)-(71) above, we approximate the dual function D(λ, µ,u)

by approximating each of its pieces Ds(λ, µs,u), ∀s ∈ S, separately as evident from the set of constraints

(67). Alternatively, we could have employed a single-cut version of the master problem by aggregating all |S|

cuts generated after solving the Lagrangian subproblems via Algorithm 1 and replacing
∑

s∈S ηs by a single

variable η in the formulation as appropriate. The single-cut version results in fast solution times for RMP at

the expense of more iterations overall. From a computational point of view, however, the most demanding step

of SD-SMS is solving the Lagrangian subproblems. Ultimately, the total solution time can only be reduced if

we solve a smaller number of subproblems, and the computational time expended for solving the relaxed master

problems is a small fraction of the overall solution time as long as a proper cut management strategy is adopted

as outlined in Section 5.4. In our preliminary runs, we observed that the multi-cut version outperforms its

single-cut counterpart by significantly reducing the number of iterations until the master problem is solved to

optimality. Therefore, we exclusively employ the multi-cut version (66)-(71) of the master problem throughout

this study.

As a final note, we point out that the Lagrangian dual problem (LD) is a non-differentiable optimiza-

tion problem. Among the several alternate methods available for such problems, we also experimented with

the widely known subgradient optimization and a bundle method (see the ConicBundle library provided by

Helmberg, 2011). However, both approaches exhibited poor convergence in our preliminary analysis, and

we ultimately opted for the LP formulation of (LD) solved by cut generation. The simplicity of updating

the relaxed master formulation as we modify the scenario decomposition as described next, and the ease of

incorporating dual stabilization techniques into this approach – see Section 5.3 – further contributed to this

decision.

4.5 Progressive Tightening of the Scenario Decomposition The master formulation (66)-(71) does

clearly illustrate a well-known fact about Lagrangian relaxation. The value of the best lower bound zLD that

can be attained by the relaxation depends on the sizes of the feasible regions of the subproblems. If we can

shrink Φs then we may be able to eliminate some of the candidate solutions to (LSs) from consideration and

decrease the cardinality of the set of constraints (67). This, in turn, may potentially increase the value of

zLD. The proposed scenario decomposition features a special structure that helps us achieve these goals and

obtain progressively tighter relaxations of (G−VaR) over the course of the algorithm SD-SMS . We reckon

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 20

that this is one of the most interesting aspects of our work.

At each iteration of SD-SMS , we compute a lower bound D(λ, µs,u) =
∑

s∈S Ds(λ, µs,u) on the optimal

value of θ, and the primal heuristic described in Section 4.3 is executed with the hope of improving the best

known upper bound on θ. This all fits into a classical application of Lagrangian relaxation so far. However,

observe that we also deliberately keep a set of lower and upper bounds on θ in the original problem (G−VaR),

and these bounds automatically factor into the feasible regions of the subproblems (LSs) for all s ∈ S through

the constraint (55). This setup presents us with an opportunity to dynamically update the constraint (55)

as the best lower and upper bounds on the optimal value of θ are tightened over the course of SD-SMS . At

first, θLB is trivially set to zero and θUB is set to the VaR associated with an initial primal feasible solution of

(G−VaR) determined during the initialization stage of SD-SMS described in Section 5.1. Then, every time

SD-SMS churns out a better lower or upper bound on the optimal value of θ over its course, this new best

bound is plugged into constraint (55) in every subproblem (LSs) and results in smaller subproblem feasible

regions Φs, ∀s ∈ S. On a related note, the value of the best upper bound on θ is also inserted into the right

hand side of constraint (68) in RMP .

The discussion so far implies that Φs
i+1 ⊆ Φs

i holds for any subproblem (LSs), where Φs
i is the feasible

region of (LSs) in the ith iteration of SD-SMS . Consequently, cuts are generated from progressively smaller

subproblem feasible regions as we iterate, and a cut based on (xs, βs, θs) ∈ Φs
i that is currently present in RMP

may no longer be valid for the modified scenario decomposition because we may have (xs, βs, θs) 6∈ Φs
i+1. Such

cuts must either be deleted from RMP or modified appropriately. We opt for the second option by creating a

feasible solution (xs, βs
′ , θs′) ∈ Φs

i+1 out of (xs, βs, θs), and then replacing the invalid cut with a cut generated

from (xs, βs
′ , θs′). To this end, we keep the job processing sequence xs fixed and update θs to θs′ and βs to βs

′

by solving (LSs) with the duals reset to their initial values and under the restriction that the job processing

sequence xs cannot be modified. This is practically equivalent to applying the logic in lines 5-7 of Algorithm 1

to xs instead of xs
min. This entire procedure may be regarded as a warm start for a new scenario decomposition

with the updated lower and upper bounds on θ and relies on the concept of suboptimal cuts mentioned in the

previous section and detailed in Section 5.2. Overall, solving progressively tighter relaxations of (G−VaR)

as described enhances the solution quality of (LD) to a great extent as demonstrated in Section 6.4.

5. Computational Features and Enhancements Various computational aspects of the proposed solu-

tion approach SD-SMS that are not fundamental to the main discussion are discussed in this section. Among

these, the use of suboptimal cuts and dual stabilization outlined in Sections 5.2 and 5.3, respectively, are

crucial to speeding up the convergence of SD-SMS . Results regarding their impact are reported in Section 6.4.

5.1 Initialization The main task performed during the initialization step of SD-SMS is to solve the

deterministic single-machine problems associated with each scenario to optimality. The resulting optimal

sequences xs
min, ∀s ∈ S, are then evaluated for the original problem (G−VaR), and we pick the best contender

as the initial primal feasible solution. The associated VaR defines the right hand sides of constraint (55) in

the Lagrangian subproblems and constraint (68) in the initial RMP .

All dual variables are initialized to zero, following the common practice. This turns out to be a particularly

good choice for u as we elaborate on in Section 5.3.

5.2 Suboptimal Cuts In Section 4.4, we argued that reducing the number of iterations in SD-SMS is

our main strategy in an effort to decrease the number of subproblems solved and achieve faster overall solution

times. Along with a multi-cut master problem formulation and dual stabilization, the use of suboptimal cuts is

one of our main tools to this end. The fundamental idea was already introduced in Section 4.4. To obtain a cut

from (LSs), we are not restricted to an optimal solution; any of the feasible solutions (xs
p, β

s
p, θ

s
p), p = 1, . . . , φs,

to (LSs) generates a valid cut. We refer to such cuts as suboptimal as introduced previously and append a

number of them to RMP , even when (LSs) is solved to optimality, with the hope of approximating the

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 21

associated dual function more quickly. Moreover, in the early stages of SD-SMS while the optimality gap

between the upper and lower bounds on zLD is still relatively large, it is not crucial that we identify the

deepest cut possible for a scenario subproblem. That is, we may even terminate Algorithm 1 prematurely

and generate cuts based on the currently available solutions. One potential issue here is that if a particular

subproblem is not solved to optimality, then the contribution of this subproblem to the Lagrangian lower

bound must be determined based on a lower bound on its optimal objective value.

In our implementation, we maintain a pool of no more than 10 best solutions for each subproblem not solved

to optimality in Phase I of Algorithm 1 and prescribe that the gap between the best and worst solutions in the

pool does not exceed 40%. The pool may be populated by both the K−assignment algorithm in Phase II and

the mixed-integer solver in Phase III. Furthermore, as long as the optimality gap in (LD) is larger than 1% and

the optimal objective value of RMP has decreased by at least 1% over the last three iterations we skip Phase

III in Algorithm 1. That is, in this case we do not invoke the mixed-integer programming solver even if the

K−assignment algorithm fails to identify the optimal solution for a subproblem. This strategy tends to reduce

the computational effort significantly. However, if we detect that SD-SMS stalls with an improvement less than

1% in the optimal objective value of RMP over the most recent three iterations, then we re-start calling the

mixed-integer solver for a subproblem when the K−assignment algorithm does not return an optimal solution.

Note that if the optimal solution to (LSs) is not determined in Phase II and Phase III is not executed, then the

contribution of (LSs) to the Lagrangian lower bound is computed by bounding the three components of the

subproblem objective independently from below. The resulting expression is (πs+µs)θLB +λπs(α−1)+ z1AP .

We always impose a time limit on the solution time of the mixed-integer solver in Phase III of Algorithm

1. For the first iteration, this time limit is t̄s1 = 1 second for (LSs) for all s ∈ S. We then follow an adaptive

scheme to update these time limits independently depending on the relative difficulty of each subproblem. If

Algorithm 1 only reports a suboptimal solution for (LSs) at the end of Phase III in iteration i with a time limit

of t̄si , then we set t̄si+1 = max(1, t̄si × 2min(2,optgaps)), where optgaps is the optimality gap of (LSs) retrieved

from the solver at termination. Here, the rationale is that the subproblems that terminate with a significant

optimality gap should be allowed more time in the next iteration. Otherwise, if the optimal solution is attained

the same time limit is maintained. If the solver hits the time limit before proving optimality for (LSs), then

the contribution of this subproblem to the Lagrangian lower bound in the current iteration is the currently

best available lower bound from the solver.

5.3 Dual Stabilization The speed of convergence of the Lagrangian methods in integer programming –

including column generation – generally suffers from a phenomenon known as dual instability (Frangioni, 2005;

Ben Amor et al., 2009). Described in our context, SD-SMS would not terminate even if the optimal solution

of (LD) is known at the outset and the initial RMP is constructed with the cuts generated after solving

the Lagrangian subproblems with this information. The algorithm converges only after collecting enough

information “around” the optimal dual solution. However, a good estimate of the optimal dual solution is

generally not available initially. Furthermore, we have no control over the dual solutions provided by RMP

from iteration to iteration, and the successive optimal dual solutions of RMP may wildly differ from each other

offering no option to investigate a particular part of the feasible region of (LD) in detail. Such considerations

give rise to dual stabilization methods which offer mechanisms to explore the region around the current stability

center – an estimate of the optimal dual solution – in depth. The collected information allows the stability

center and the way its neighborhood is traversed to be updated in a dynamic fashion with the goal of eventually

converging to the optimal dual solution. The interested reader may consult Frangioni (2005); Ben Amor et al.

(2009) for further information and references.

Our preliminary studies indicate that the values of u demonstrate high variability between consecutive

iterations of SD-SMS . This slows down the convergence of the algorithm considerably and prompts us to

seek a dual stabilization method. Among the several strategies proposed in the literature, we take the trust-

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 22

region approach of Kallehauge et al. (2006) employed to solve a Lagrangian dual problem in an application

to the vehicle routing problem with time windows and enhance it by an explicit stabilizing penalty term

(Ben Amor et al., 2009). The trust-region method of Kallehauge et al. (2006) itself is an extension of the

boxstep approach of Marsten et al. (1975). Note that we adopt a partial dual stabilization strategy by not

applying any stabilization to λ and µ.

The original boxstep method constrains the dual variables to remain within a fixed radius ∆ around a center

point uc, where uc is believed to be a good approximation of the optimal dual vector u. Alternatively, the

objective of RMP may be augmented with a stabilizing term that penalizes deviations of u from the stability

center uc. Combining these two ideas and encouraged by the computational success of the piecewise linear

stabilizing terms (Ben Amor et al., 2009), we append the following 4-piecewise linear penalty function to the

objective of RMP :

Ψ(u) =
∑

j∈N

∑

k∈N

Ψjk(ujk),

where

Ψjk(ujk) =



















−∞, if ujk < uc
jk −∆

−ζ(uc
jk − ujk), if uc

jk −∆ ≤ ujk ≤ uc
jk

−ζ(ujk − uc
jk), if uc

jk < ujk ≤ uc
jk +∆

−∞ if uc
jk +∆ < ujk

. (72)

The stabilizing term Ψjk(ujk) is symmetric; i.e., Ψjk(ujk) = −ζ|ujk − uc
jk|, where ζ is the penalty per unit

deviation from the stability center. Furthermore, (72) defines the box of width ∆ around uc
jk by setting the

penalty coefficients to −∞ outside the boundaries of the box. During the second stage of our dual stabilization

for SD-SMS described below, the width of the box ∆ and the stability center uc are updated by adopting the

scheme of Kallehauge et al. (2006), but not with all identical parameter values.

We implement a three-stage dual stabilization strategy. As we discussed in Section 4.2, preliminary compu-

tational testing uncovered that many components of the optimal u are frequently identical to zero. Therefore,

we initially fix uc = 0 with ∆ = 0 and collect as many cuts as possible under this restriction. Recall that (LSs)

is solved in constant time for u = 0 once the optimal solution of the associated deterministic single-machine

scheduling problem is available after the initialization step of SD-SMS . Therefore, the main effort here is

solving RMP successively until the optimal objective value of RMP is identical to the best Lagrangian lower

bound which marks the end of the first stage. In the second stage, we allow nonzero values for the components

of u by initially setting ∆ = 1. The value of ζ = 0.1 is kept constant throughout. At every iteration i of

SD-SMS , we compute a metric ρ before solving RMP :

ρ =
D(λi,µi,ui)−D(λi−1

∗ ,µi−1
∗ ,ui−1

∗)

zi−1
RMP −D(λi−1

∗ ,µi−1
∗ ,ui−1

∗)
.

In this expression, zi−1
RMP denotes the optimal objective value of RMP in iteration i − 1, (λi,µi,ui) and

D(λi,µi,ui) represent the dual solution and the value of the Lagrangian lower bound in the current iteration,

respectively, and D(λi−1
∗ ,µi−1

∗ ,ui−1
∗) is the value of the best Lagrangian lower bound obtained until iteration

i − 1. The metric ρ measures the improvement in the Lagrangian lower bound from iteration i − 1 to i with

respect to the estimated improvement at the end of iteration i− 1 as expressed through the denominator of ρ.

If ρ = 1, we just move along one of the pieces of the dual function and obtain no new information. Therefore,

we expand the boundaries of the trust region by increasing ∆ by 25% and allow u to assume values further

away from the stability center. If ρ < 0, then we conclude that our approximation of the dual function around

the current stability center is poor and shrink the size of the trust region by halving ∆. Finally, if ρ > 0.01 we

update the stability center uc to ui because the improvement in D(λ,µ,u) is promising. This is known as a

serious step. Otherwise, if ρ ≤ 0.01 we perform a null step and keep the current stability center. The second

stage of the stabilization scheme continues until the gap between the optimal objective value of RMP and the

best Lagrangian lower bound drops below a threshold or the improvement in this bound tails off. In the final

stage of dual stabilization, we gradually enlarge the trust region and eventually remove all stabilization from

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 23

RMP . SD-SMS terminates once the gap between the best lower and upper bounds on zLD is no more than

0.01% or one of the alternate termination conditions specified in Section 6.3 is satisfied.

5.4 Cut Management Every iteration of SD-SMS introduces at least |S| cuts into RMP . This number

may be considerably larger if we also generate cuts based on the suboptimal subproblem solutions, and the

portion of the solution time attributed to the solution of the master problem may grow fast with an increasing

number of scenarios. To alleviate this performance issue, cuts that are inactive over a number of iterations

are deleted from RMP . In our study, following each re-optimization of RMP we analyze the dual variables

associated with the cuts. If we identify a dual variable that has not assumed a positive value over the most

recent 5 iterations, we declare its associated cut as redundant and remove it from RMP . In addition to this

strategy, we also invoke the presolve ability of the solver each time before solving RMP . Both of these strategies

work well to reduce the size of RMP and prevent a certain deterioration in the computational performance.

5.5 Parallel Processing The advent of more accessible parallel computing architectures and user-

friendly parallel computing libraries makes decomposition approaches even more attractive. In SD-SMS ,

the most demanding step is solving the Lagrangian subproblems and we heavily depend on parallelization to

enhance the scalability of Algorithm 1 for an increasing number of scenarios. The two K−assignment problems

to be solved for s = 1 and s ≥ 2 are tackled simultaneously on two different threads, and in Phase II starting

on line 20 of Algorithm 1 the generated job processing sequences are evaluated for the individual scenarios in

parallel on a fixed number threads. However, we reap the most benefits from distributing the subproblems

that are solved as mixed-integer programs in Phase III over a fixed number of available threads. Here, we also

carefully balance the load of each thread by employing the well-known longest processing time rule in parallel

machine scheduling (Pinedo, 2008, Section 5.1). To this end, we collect average solution time statistics for

each subproblem over the iterations of SD-SMS and assign the subproblems in non-increasing order of these

times to the threads as they become available.

6. Computational Study We designed our computational study with two main goals in mind. From

a modeling point of view, we would like to demonstrate the value of the risk-averse stochastic programming

model (G−VaR) for decision making purposes. To this end, we evaluate and contrast the solutions provided

by SD-SMS and those produced by more traditional modeling approaches under uncertainty in Section 6.2.

The computational effectiveness of the algorithm SD-SMS is investigated in the second part of the study. In

Section 6.3, we report on the overall performance of SD-SMS for TT and TWT . The individual contributions

of some of the fundamental aspects of our solution method are assessed in Section 6.4.

The algorithm SD-SMS was implemented in C++. The linear and mixed-integer linear programs are solved

through the Concert Technology component library of IBM ILOG CPLEX 12.4, and the parallelizations are

carried out by the Boost 1.51.0 library. The Single-Machine Scheduling Problem Solver (SiPS) provided

by Tanaka et al. (2009) – a powerful exact algorithm for minimizing an additive function of job completion

costs in deterministic single-machine scheduling problems without machine idle time – is employed to solve

the deterministic TT andTWT single-machine problems associated with the individual scenarios during the

initialization step of SD-SMS . The K−assignment problems solved in the second phase of Algorithm 1 as part

of the solution method for the Lagrangian subproblems are handled via the algorithm of Pascoal et al. (2003).

The number of assignments to be enumerated is set to κ = 10,000 and 50,000 for the performance measures

TT and TWT , respectively, as a result of a preliminary study with the objective of balancing solution time

and quality. The source code of the K−assignment algorithm of Pascoal et al. (2003) was gracefully provided

by the authors and deployed with no modifications. One disadvantage of this implementation for our purposes

is that it runs for a fixed κ and does not allow for the retrieval of the assignments one by one as intended

in Algorithm 1. This drawback inflates the subproblem solution times to some extent and may be removed

in the future for enhanced performance. All runs were executed on 6 threads of an HP workstation with two

Intel R© Xeon R© W5580 3.20 GHz CPUs and 32 GB of memory running on Microsoft Windows Server 2003 R2

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 24

Enterprise x64 Edition.

6.1 Generation of the Problem Instances While our modeling framework allows for randomness in

all problem parameters, we focus on the uncertainty in the processing times in our computational study as

justified by the discussion in Section 1. For each instance, we generate a set of equally likely scenarios, where

each scenario represents a joint realization of the processing times of all jobs. Each job j ∈ N has an estimated

processing time p̂j drawn from an integer uniform distribution U [10, 90] and perturbed randomly up or down

for each scenario. In particular, if ε represents a random relative perturbation, where εs is the realization

of ε for scenario s, then the processing time of job j under scenario s is given by psj = ⌈p̂j(1 + εs)⌉. We

assume that observing a higher relative deviation is more likely for smaller values of the estimated processing

times. Following this rationale, we partition the jobs into two groups, where the jobs with 10 ≤ p̂j ≤ 60

belong to the first group and the remaining jobs with 60 < p̂j ≤ 90 are assigned to the second group. The

probability distributions of the perturbations are specified in such a way that the random relative perturbation

associated with the first group of jobs has a higher expectation and a higher variance. To this end, we consider

the mixture of two group-specific uniform distributions to generate the perturbations in each group, where a

smaller probability is associated with the uniform distribution that has higher possible values. The parameters

of the mixture distributions and the expectation and the standard deviation of ε are presented in Table 1 for

three different data sets along with the coefficient of variation (CV) of the resulting random processing times.

CV is a normalized measure of dispersion calculated by dividing the expectation of a random variable by its

standard deviation. For the processing times, we obtain CV (p̂j(1 + ε)) = σ(p̂j(1 + ε))/E(p̂j(1 + ε)) = σ(ε)
1+E(ε) .

Furthermore, E(p̂j(1 + ε)) = p̂j(1 +E(ε)) yields the expectation of the processing times which is not reported

separately in Table 1. The purpose of generating three sets of data with different CV values is to analyze the

value of the risk-averse stochastic programming model (G−VaR) under different settings in Section 6.2.

The setup above is consistent with the common observation that in many manufacturing environments the

processing times tend to fluctuate around their estimated values and large deviations from these values occur

with a small probability. These large deviations may be associated with major disruptions, e.g., machine

breakdowns, which result in large delays but occur infrequently. In line with this discussion, the specified

mixture distributions ensure that the processing times fluctuate around their p̂j values with a high probability

and take significantly larger values with a small probability.

Random Relative Perturbations Random Processing Times

Mixture Distribution E(ε) σ(ε) CV (p̂j(1 + ε))

Group 1

Data Set 1 ε ∼

{

U(−0.10, 0.50) w/ prob 0.90

U(2.0, 3.0) w/ prob 0.10
0.43 0.72 0.50

Data Set 2 ε ∼

{

U(−0.10, 0.20) w/ prob 0.90

U(3.0, 4.0) w/ prob 0.10
0.40 1.04 0.75

Data Set 3 ε ∼

{

U(−0.10, 0.20) w/ prob 0.90

U(4.0, 5.0) w/ prob 0.10
0.50 1.34 0.90

Group 2

Data Set 1 ε ∼

{

U(−0.10, 0.50) w/ prob 0.99

U(1.0, 1.5) w/ prob 0.01
0.21 0.20 0.17

Data Set 2 ε ∼

{

U(−0.10, 0.25) w/ prob 0.975

U(1.5, 2.5) w/ prob 0.025
0.12 0.32 0.28

Data Set 3 ε ∼

{

U(−0.10, 0.25) w/ prob 0.95

U(2.0, 3.0) w/ prob 0.05
0.20 0.54 0.45

Table 1: Parameters and information related to the generation of the random processing times.

In the literature, it is well established that the tightness and the range of the due dates are the pri-

mary determinants of the difficulty for due date related problems. Thus, by following the popular scheme

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 25

of Potts and van Wassenhove (1982), we first generate the due dates from a discrete uniform distribution

[⌈(1 − TF−RDD /2) · P̄ ⌉, ⌈(1 − TF+RDD /2) · P̄ ⌉], where P̄ is the sum of the expected processing times,

i.e., P̄ =
∑

j∈N E(p̂j(1+ ε)). The tardiness factor TF is a rough estimate of the proportion of jobs that might

be expected to be tardy in an arbitrary sequence (Srinivasan, 1971) and is set to 0.4 or 0.6. Note that smaller

TF values often lead to easy instances with an optimal VaR of zero. The due date range factor RDD is set

to 0.2 to increase the contention around the average due date. In order to assign the weights for the TWT

instances, we follow a strategy similar to that in Pinedo and Singer (1999). The weights are set randomly to

one of three possible values 3, 2, and 1, which represent high, medium, and low job priority levels, respectively.

The associated respective probabilities are 0.2, 0.6, and 0.2.

6.2 Value of the Risk-Averse Model The value of a risk-averse model depends on its performance

relative to traditional models for decision making under uncertainty which ignore the variability inherent

in the system. Therefore, in this part, we benchmark the solutions produced by our risk-averse stochastic

programming model against those provided by the corresponding risk-neutral and deterministic models. In

the risk-neutral version of our problem, we minimize the expected performance measure by solving the following

formulation:

minimize
∑

s∈S

πsfs(x) (73)

subject to (2)− (4).

The deterministic counterpart of our problem is a conventional single-machine scheduling problem, in which

all processing times take on their expected values. Bonfietti et al. (2014) conduct a study on the performance

of the deterministic model – obtained analogously by replacing the random activity durations by their means

– for minimizing the expected makespan in resource-constrained project scheduling and job shop scheduling

problems. Their empirical results depict a very high correlation between the expected makespan and the

makespan of the deterministic problem. The authors support their empirical findings through mathematical

arguments in their specific setting and finally suggest that the optimal solution of the deterministic counterpart

of a stochastic scheduling problem may yield very good results for the original stochastic problem. In this

section, we also put this claim to test in the context of our risk-averse scheduling problem. For the analyses

in this section, the deterministic model is solved to optimality by the SiPS solver provided by Tanaka et al.

(2009). SD-SMS is invoked with a time limit of 1800 seconds, and CPLEX is allotted the same period of time

for solving the risk-neutral model.

Risk parameter(α)
0.70 0.75 0.80 0.85 0.90 0.95 1.00

V
aR

α
(f
(x
))

0

1000

2000

3000

4000

5000

6000

7000

8000

Risk-averse

Risk-neutral

Deterministic

Risk parameter(α)
0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
(f
(x
))

0

1000

2000

3000

4000

5000

6000

7000

8000

Risk-averse

Risk-neutral

Deterministic

Figure 1: The effect of the risk parameter α on the VaR and the expectation of f(x).

In Figure 1, we zoom into an instance with n = 15 and |S| = 500 from Data Set 1 under the performance

measure TT in order to illustrate how VaR changes as α is varied. The risk-averse model is re-solved via

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 26

SD-SMS for each value of α, but the solutions of the risk-neutral and deterministic models are independent

of α, and these models are only solved once. For each data point in Figure 1(a), we calculate the realization

of the specified performance measure TT under each scenario for the associated job processing sequence and

determine either the α−quantile or the average of these realizations. We observe in Figure 1(a) that the

performance of the risk-neutral and deterministic models deteriorate with increasing levels of α in terms of

the risk measure VaR. Perhaps more importantly, for this instance we obtain risk-averse solutions that do not

sacrifice much from the expected TT as α increases. In particular, according to Figure 1(b) the risk-neutral

and the risk-averse models attain the same expected TT for α ≤ 0.90, and for larger values of α the sacrifice

from the expected TT in the risk-averse solutions is relatively small compared to the gain in VaR.

f(x)
0 1000 2000 3000 4000 5000 6000 7000 8000

C
u
m
u
la
ti
ve

P
er
ce
n
ta
ge

of
th
e
S
ce
n
ar
io
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Risk-averse
Risk-neutral
Deterministic

Figure 2: Empirical CDFs of the random TT .

To further shed light into the behaviors of the deterministic, risk-neutral, and risk-averse models, we analyze

the same specific instance in more depth and calculate the empirical cumulative distribution function (CDF)

of the random TT associated with the best available sequence of each model, where α = 0.95 for SD-SMS .

That is, for each of the three sequences we employ the realizations already calculated for the previous figure to

derive the associated empirical CDFs depicted in Figure 2. The proposed risk-averse approach of minimizing

VaR essentially shapes the CDF of the random performance measure according to the specified confidence

level. In particular, it leads to a left shift in the associated right tail of the CDF; for the risk-averse sequence

the portion of the CDF corresponding to α ≥ 0.95 appears to the left of the related portions of the CDFs of

the sequences provided by the risk neutral and deterministic models. As a trade-off, the expectation increases

and it implies a right shift in the left tail of the CDF associated with the risk-averse sequence.

We also present comparative results under the performance measure TT for several problem instances from

three data sets with different variability in the processing times. See Table 1 for details and note that the

variability increases from Data Set 1 toward Data Set 3. Each instance is solved by SD-SMS with α = 0.95

and by the deterministic and risk-neutral models. For these instances, the entries in the left half of Table 2

indicate the relative percentage increase in VaR for the solutions of the deterministic and risk-neutral models

in comparison to those of the risk-averse model averaged over 10 instances for each pair of n and |S| values.

The instances corresponding to each cell are split equally over TF = 0.4, 0.6. A similar analysis is repeated

in the right half of the table for the expected TT , where the benchmark is the solution from the risk-neutral

model. The risk-averse solutions exhibit significant improvements in VaR over their risk-neutral counterparts,

albeit at times at the expense of the expected TT in order to hedge against the uncertainty. The solutions

of the deterministic model perform well below par with respect to both criteria. We also observe that the

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 27

trade-off between the expectation and the VaR criteria becomes more pronounced when the processing times

have a larger CV.

% Increase in VaRα(f(x)) w.r.t. Risk-Averse % Increase in E(f(x)) w.r.t. Risk-Neutral

Deterministic Risk-Neutral Deterministic Risk-Averse

n |S| Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3

15 300 16.3 24.0 40.5 7.3 12.0 10.1 10.7 8.5 13.7 5.1 3.8 4.4

400 16.7 22.9 37.5 6.9 11.5 10.9 9.2 11.4 15.5 1.6 8.0 5.7

500 16.9 22.1 35.3 6.1 9.6 13.1 11.9 10.2 16.8 4.2 5.5 5.8

750 16.2 20.0 33.4 7.2 8.9 14.5 5.1 4.3 9.1 -1.9† 1.5 0.4

20 300 18.2 28.9 35.7 7.3 11.4 13.1 15.0 17.3 18.7 5.9 6.7 7.1

400 17.0 29.8 33.3 6.2 10.8 13.3 14.4 17.0 18.1 4.2 6.1 5.9

500 16.1 27.3 31.5 6.6 10.0 11.7 14.1 16.8 17.8 4.6 7.0 6.8

Average: 16.79 24.99 35.30 6.79 10.60 12.37 11.49 12.20 15.67 3.38 5.50 5.17
†: Due to the time limit.

Table 2: In-sample tests for benchmarking risk-averse solutions against risk-neutral and deterministic solutions under TT .

In the analysis in Table 2, the solutions are evaluated based on the set of scenarios employed to construct

the risk-averse schedules. One criticism directed at such in-sample testing is that it favors the risk-averse

method. Therefore, it is essential to also assess the out-of-sample performance of the risk-averse solutions by

evaluating them on different samples than were used for finding these solutions. To this end, 10 samples of

1000 new scenarios are generated for each instance in Table 2, and the solutions from the in-sample testing

are re-evaluated on these newly created sets of scenarios. The results are reported in Table 3, where the figure

in a cell denotes the average relative difference over all samples of all instances associated with that cell. The

quantitative difference between the risk-averse and risk-neutral solutions is less striking compared to that in

the previous table; however, the qualitative conclusions still stand. In particular, the deterministic solutions

are inferior.

% Increase in VaRα(f(x)) w.r.t. Risk-Averse % Increase in E(f(x)) w.r.t. Risk-Neutral

Deterministic Risk-Neutral Deterministic Risk-Averse

n |S| Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3

15 300 11.1 13.4 21.5 1.8 3.0 1.4 12.4 11.3 16.1 6.8 6.6 7.9

400 11.5 14.1 22.2 1.8 4.1 2.1 12.3 11.5 15.8 4.4 8.7 7.1

500 12.0 14.5 22.8 2.2 3.6 3.4 12.3 11.5 16.1 4.8 7.5 6.6

750 13.0 13.6 23.1 5.8 4.3 6.1 5.0 3.8 8.5 -1.8† 1.9 1.0

20 300 13.3 17.7 18.6 2.0 1.9 0.3 14.7 16.6 17.4 6.3 7.7 8.4

400 13.4 19.5 19.2 2.4 3.4 1.5 14.4 16.8 17.6 4.5 6.7 6.8

500 14.0 19.1 19.8 2.6 2.9 2.5 14.1 17.1 17.7 4.7 7.7 7.3

Average: 12.6 16.0 21.0 2.6 3.3 2.5 12.1 12.7 15.6 4.3 6.7 6.4
†: Due to the time limit.

Table 3: Out-of-sample tests for benchmarking risk-averse solutions against risk-neutral and deterministic solutions under TT .

The results in this section attest to the value of the risk-averse solutions. A core assumption in this whole

approach is, however, that the specified input distributions and the resulting scenarios are accurate, and in

the next set of experiments we evaluate our scenario-based approach under a bit more stressful conditions.

In particular, we intend to give some measure of its sensitivity to misspecification errors in the parameters

of the input distributions. To this end, we benchmark our risk-averse solutions against the solutions of the

deterministic model – which relies on minimal information about the input distribution – as the accuracy

of the scenario information is varied. More specifically, we repeat the out-of-sample tests in Table 3 in two

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 28

different ways. First, the deterministic and risk-averse sequences retrieved from the in-sample tests for Data

Set 3 are evaluated on the scenarios generated for all three data sets for the purposes of the out-of-sample tests

in Table 3. The same procedure is then repeated starting with the sequences provided by the in-sample tests

for Data Set 1. The results provided in Table 4 yield some evidence that the risk-averse solutions may still

improve on their deterministic counterparts even if the parameters of the input distribution are determined

erroneously.

% Increase in VaRα(f(x)) w.r.t. Risk-Averse

Sequence from Set 3 Sequence from Set 1

n |S| Set1 Set2 Set3 Set1 Set2 Set3

15 300 19.9 16.1 21.5 11.1 13.0 11.9

400 21.4 17.7 22.2 11.5 12.7 11.2

500 21.9 18.0 22.8 12.0 13.2 12.1

750 21.3 17.2 23.1 13.0 13.7 12.6

20 300 17.4 16.2 18.6 13.3 11.3 10.1

400 18.1 17.2 19.2 13.4 10.8 10.0

500 18.5 17.0 19.8 14.0 11.7 12.2

Average: 19.8 17.1 21.0 12.6 12.3 11.4

Table 4: Benchmarking deterministic solutions against risk-averse solutions as the accuracy of scenario information is varied.

6.3 Computational Performance of the Proposed Algorithm The second part of our study demon-

strates that our proposed algorithm SD-SMS provides good lower and upper bounds in short computation

times for the problem of minimizing VaR under the performance measures TT and TWT on a single ma-

chine. Following the specifications for Data Set 1 in Table 1, we generate 5 instances for each combination of

n = 10, 15, 20, 25, 30, |S| = 50, 100, 200, 300, 400, 500, and TF = 0.4, 0.6, as described in Section 6.1. To ensure

a healthy interpretation of the results as the number of scenarios grows for a fixed number of jobs, instances

with |S| < 500 are created from the respective instances with |S| = 500 and otherwise identical instance

generation parameters by simply deleting the required number of scenarios. Furthermore, the TT instances

are identical to the TWT instances except that all weights are set to one so that we are able to contrast the

relative difficulty of minimizing VaR under TT and TWT in a meaningful way. The risk parameter α is set

to 0.90, and the instances are solved under the specified performance measures TT (n = 10 excluded) and

TWT (n = 25, 30 excluded) by both SD-SMS and the state-of-the-art solver CPLEX. For CPLEX, we employ

the formulation LOF per our discussion at the end of Section 3.2 as it outperforms APDF for large instances.

Both CPLEX and SD-SMS are allowed to use up to 6 parallel threads as mentioned at the start of Section 6.

All reported times are elapsed times, and the time limit is set to 1800 seconds for both algorithms. CPLEX is

invoked with its default set of options and parameters. SD-SMS terminates if the relative optimality gap be-

tween the best lower bound D(λ∗,µ∗,u∗) on zLD and the optimal objective value of RMP is reduced to below

0.01% after removing the stabilizing terms from RMP (see Section 5.3) or if SD-SMS verifies that a primal

feasible solution is optimal by comparing its VaR to D(λ∗,µ∗,u∗). If optimality is not proven within the time

allotted, we record both the best lower bound on the optimal VaR and the incumbent solution available for

either method.

The results for the performance measures TT and TWT appear in Tables 5 and 6, respectively. For each

combination of n and |S|, we present the relative gaps of the upper and lower bounds on the optimal VaR

yielded by SD-SMS with respect to their counterparts obtained by CPLEX, as well as the optimality gaps of the

best primal feasible solutions from SD-SMS and CPLEX. The gaps in the bounds are calculated by subtracting

the values provided by CPLEX from those reported by SD-SMS and taking the ratio of this difference with

respect to the value from CPLEX. Thus, the negative relative gaps in the upper bounds and the positive

relative gaps in the lower bounds indicate improvements over CPLEX by SD-SMS . The optimality gap of the

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 29

best primal feasible solution identified by SD-SMS is computed by the expression (θ∗UB −D(λ∗,µ∗,u∗))/θ
∗
UB ,

where θ∗UB denotes the best upper bound obtained by SD-SMS . This is the gap calculated directly based on the

information provided by SD-SMS . Alternatively, we also compute the optimality gap for SD-SMS with respect

to the best known lower bound, where the best known lower bound is determined by taking the maximum

of our lower bound D(λ∗,µ∗,u∗) and the best lower bound retrieved from CPLEX. These latter figures are

reported in parentheses under the heading “Opt. Gap (%)” in Tables 5 and 6 if they differ from the former

gaps. The optimality gaps of the primal feasible solutions of CPLEX are retrieved directly from the solver at

termination. The relative improvements and optimality gaps are given as percentages and all presented results

are averaged over 5 instances.

TF=0.4 TF=0.6

Time (sec.) R-Gap (%) Opt. Gap (%) Time (sec.) R-Gap (%) Opt. Gap (%)

n |S| SD-SMS CPLEX UB LB∗ SD-SMS CPLEX SD-SMS CPLEX UB LB SD-SMS CPLEX

15 50 29.0 1684.8 0.0 0.3 (9.2) 12.3 12.0 59.8 1603.7 0.2 -12.4 (2.9) 14.9 2.7

100 19.1 1800.6 0.3 56.8 17.1 46.8 11.9 1800.4 -0.1 -1.8 (14.8) 16.8 15.4

200 13.3 1800.4 -0.5 394.5 20.7 76.4 13.9 1800.3 -1.0 10.5 18.5 26.9

300 25.6 1800.8 -0.8 837.7 21.9 88.7 44.5 1800.2 -0.9 32.6 18.7 39.1

400 28.3 1800.8 -1.1 7712.6 [1] 20.6 99.8 65.8 1800.2 -2.6 59.8 19.2 50.6

500 28.8 1801.1 -1.6 - 19.5 100.0 56.6 1800.2 -3.3 84.7 18.2 56.8

20 50 36.5 1800.6 -0.3 253.9 16.8 76.5 60.8 1800.4 0.0 9.0 12.3 19.5

100 31.5 1800.5 -0.6 9906.6 16.3 92.8 99.3 1800.2 0.0 14.5 15.9 26.6

200 40.6 1801.0 -1.0 - 18.9 100.0 168.2 1800.1 -2.1 51.1 16.8 45.9

300 122.0 1801.6 -2.8 - 19.6 100.0 161.8 1800.1 -5.2 79.1 17.2 56.0

400 45.7 1801.9 -2.8 - 19.6 100.0 171.9 1800.2 -9.6 113.4 17.4 64.9

500 72.8 1801.8 -5.3 - 19.3 100.0 188.0 1800.2 -11.2 147.8 17.0 70.2

25 50 152.6 1800.7 -0.4 4831.5 [2] 15.3 98.5 216.1 1800.2 -0.4 23.0 14.5 30.8

100 253.9 1801.3 -3.6 - 18.5 100.0 486.0 1800.2 -2.2 38.9 16.3 41.0

200 216.2 1801.8 -5.3 - 22.2 100.0 517.0 1800.1 -7.5 86.0 18.3 59.0

300 200.9 1800.6 -9.8 - 22.6 100.0 388.3 1800.2 -9.6 99.7 18.8 63.0

400 229.4 1801.1 -11.4 - 21.5 100.0 326.6 1800.2 -20.1 128.5 18.8 71.3

500 353.4 1800.6 -15.8 - 21.0 100.0 600.2 1800.3 -26.5 163.1 18.2 76.9

30 50 151.1 1801.7 -1.4 - 17.1 100.0 233.8 1800.3 -4.5 51.7 15.2 46.3

100 254.8 1801.8 -6.0 - 18.5 100.0 709.0 1800.2 -6.2 69.8 18.0 54.2

200 233.1 1800.8 -11.0 - 21.4 100.0 951.2 1800.2 -20.3 110.8 18.7 69.0

300 328.0 1800.4 -22.1 - 20.9 100.0 988.1 1800.3 -25.3 121.8 19.0 72.7

400 312.5 1800.6 -29.5 - 20.4 100.0 982.9 1800.4 -32.0 155.4 18.7 78.3

500 341.4 1800.6 -16.3 - 20.3 100.0 938.3 1800.5 -32.0 195.9 18.5 81.2

∗ A dash (-) indicates that CPLEX yields a trivial lower bound of zero for all five instances.

Otherwise, the # of instances in which CPLEX attains a positive lower bound is presented in square brackets.

No bracket implies a positive lower bound for all five instances.

Table 5: Computational performance of SD-SMS with respect to CPLEX under TT .

We first discuss the results obtained under TT . According to Table 5, CPLEX cannot solve any of the

instances to optimality within the time limit, with the exception of two instances with n = 15 and |S| = 50.

In contrast, SD-SMS terminates in general with better feasible solutions in significantly smaller times. The

improvement in the solution quality becomes increasingly more apparent with the increasing number of jobs

and scenarios as illustrated in Figure 3(a); we observe that the average relative gap between the upper bounds

of SD-SMS and CPLEX can grow up to 30%. The results in Table 5 also indicate that the instances with

TF = 0.6 are more challenging for CPLEX to perform on a par with SD-SMS in constructing good feasible

solutions. The average relative gap over all relevant instances is -9.27% for TF = 0.6 in contrast to -6.21%

for TF = 0.4. An even more substantial conclusion from Table 5 is that the proposed scenario decomposition

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 30

50 100 200 300 400 500
−35%

−30%

−25%

−20%

−15%

−10%

−5%

0%

5%

Number of Scenarios

n = 15
n = 20
n = 25
n = 30

(a) Relative upper bound gaps.

50 100 200 300 400 500
−50%

0%

50%

100%

150%

200%

250%

Number of Scenarios

n = 15
n = 20
n = 25
n = 30

(b) Relative lower bound gaps.

Figure 3: Average relative performance of SD-SMS with respect to CPLEX for TT*.

* The averages are aggregated over TF = 0.4, 0.6. In Figure 3(b), the gaps of the trivial lower bounds of CPLEX and the gaps in

excess of 300% are assumed to be 300%.

scheme is greatly superior to CPLEX in identifying tight lower bounds as illustrated in Figure 3(b). This is also

evident from the optimality gaps of the primal feasible solutions of SD-SMS which are almost never computed

with respect to the best lower bound from CPLEX because it is dominated by D(λ∗,µ∗,u∗). The lower bound

performance of CPLEX degrades notably with an increasing number of jobs and scenarios, and CPLEX fails to

deliver a non-trivial positive lower bound at termination for most of the instances with TF = 0.4. Clearly, the

lower bounds resulting from the proposed scenario decomposition scheme may prove instrumental for future

efforts to develop exact methods to solve the risk-averse scheduling problem under consideration. Furthermore,

assessing the overall quality of the primal feasible solutions generated by SD-SMS through their optimality

gaps we observe that the average gap over the whole data set is approximately 18%. The optimality gaps

tend to increase slightly with the number of scenarios for a fixed number of jobs. However, we reckon that

the performance of SD-SMS is quite robust as the optimality gap generally hovers in the range of 15-20%.

Finally, we note that TF is an important parameter that affects the solution time performance of SD-SMS .

In particular, Table 5 reveals that the elapsed times required to solve the instances with TF = 0.6 can grow

up to 3 times of those required to solve their counterparts with TF = 0.4.

Minimizing VaR under TWT turns out to be significantly more expensive compared to the same task under

TT from a computational point of view, as we may also intuitively project from accumulated practical and

theoretical experience with these performance measures in different problem settings in the literature. Taking

this challenge into account, we experiment with instances of smaller size and only consider n = 10, 15, 20 for

TWT . From Table 6, we can draw observations which are similar to those discussed above for TT . We mainly

elaborate on the differing aspects here. On the one hand, CPLEX struggles even with the instances with 10 jobs

and |S| ≥ 300 as evident from the rapidly growing corresponding elapsed times and hits the time limit quickly

for the instances with n = 15, 20 as it did in Table 5. On the other hand, TWT poses significant difficulties

for SD-SMS as well. The solution times for TF = 0.4 are at least an order of magnitude greater compared to

the respective values for TT , and SD-SMS hits the time limit for the 15- and 20-job instances with TF = 0.6

consistently. However, a very positive takeaway from Tables 5 and 6 is that the performance of SD-SMS is

only affected slightly by an increasing number of scenarios in terms of both the solution time and quality.

SD-SMS reaps the benefits of the subproblem solution algorithm designed in a way that some of its most time

consuming routines are performed twice independent of the number of scenarios, which in turn allows us to

exploit the benefits of scenario decomposition. The main challenge for SD-SMS is an increase in the number

of jobs, rather than in the number of scenarios. The relative lower and upper bound gaps of SD-SMS with

respect to CPLEX in Table 6 exhibit patterns that are similar to those of the same size instances in Table 5

and are also summarized graphically in Figure 4. In contrast to the poor lower bound performance of CPLEX

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 31

TF=0.4 TF=0.6

Time (sec.) R-Gap (%) Opt. Gap (%) Time (sec.) R-Gap (%) Opt. Gap (%)

n |S| SD-SMS†
CPLEX UB LB∗ SD-SMS CPLEX SD-SMS†

CPLEX UB LB SD-SMS CPLEX

10 50 37.8 8.6 0.0 -5.4 (0.0) 5.4 0.0 117.5 4.5 0.0 -9.0 (0.0) 9.0 0.0

100 39.2 42.3 0.0 -7.9 (0.0) 8.0 0.0 58.0 31.7 0.0 -10.1 (0.0) 10.1 0.0

200 33.2 274.6 0.0 -9.5 (0.0) 9.5 0.0 354.3 456.1 0.0 -12.2 (0.0) 12.2 0.0

300 55.5 922.6 0.0 -6.3 (3.8) 11.1 4.6 179.5 1263.5 -0.1 -5.6 (7.4) 12.7 7.5

400 27.2 1148.9 0.0 -11.5 (0.0) 11.5 0.0 220.4 1598.3 -0.2 1.0 (11.3) 13.6 14.1

500 54.8 1237.3 0.0 -9.3 (3.1) 12.3 3.1 105.7 1800.3 -0.3 14.0 (13.5) 14.1 23.5

15 50 841.7 1025.0 0.2 -6.5 (3.0) 10.0 3.2 1855.6 439.5 0.3 -12.9 (0.3) 13.1 0.0

100 708.5 1800.4 0.1 37.4 16.1 38.0 1875.1 1696.6 0.1 -5.2 (9.4) 15.4 10.3

200 1829.1 1800.4 -0.8 327.0 16.2 76.1 1614.5 1800.2 -0.4 18.1 15.8 28.9

300 905.7 1800.6 -0.5 3949.4 [4] 15.5 92.9 1958.3 1800.1 -0.4 39.0 15.1 38.9

400 960.5 1800.3 -0.5 - 14.9 100.0 1605.0 1800.1 -0.4 71.0 15.3 50.5

500 533.3 1800.5 0.0 - 13.6 100.0 1784.2 1800.1 -2.4 118.3 14.5 61.6

20 50 1023.9 1800.5 0.3 328.2 10.1 77.8 2009.7 1800.4 0.0 12.5 9.9 19.8

100 1293.5 1800.5 -0.8 1297.1 12.0 91.9 1771.3 1800.2 0.0 24.0 10.5 27.8

200 1864.8 1800.9 -0.2 - 13.4 100.0 1942.0 1800.1 -1.4 74.9 12.7 49.9

300 1099.5 1801.0 -1.9 - 12.3 100.0 1915.4 1800.3 -4.4 121.0 13.0 61.4

400 1326.6 1801.3 -2.6 - 13.3 100.0 1994.4 1800.2 -9.2 179.2 13.3 71.6

500 1541.8 1801.3 -5.9 - 11.5 100.0 2175.5 1800.1 -12.3 247.0 13.7 78.0

∗ A dash (-) indicates that CPLEX yields a trivial lower bound of zero for all five instances.

Otherwise, the # of instances in which CPLEX attains a positive lower bound is presented in square brackets.

No bracket implies a positive lower bound for all five instances.
† SD-SMS is only terminated after solving RMP . Consequently, the specified time limit may be exceeded

during the last iteration if some Lagrangian subproblems prove to be time consuming to solve.

Table 6: Computational performance of SD-SMS with respect to CPLEX under TWT .

for n = 15, 20, SD-SMS attains reasonably tight lower bounds – in particular for TF = 0.4 – even when

convergence cannot be achieved within the time limit. In addition, somewhat surprisingly, we obtain primal

feasible solutions of higher quality for TWT than for TT . For small instances with 10 jobs, we almost always

identify the optimal solution as verified by the results of CPLEX, and for the larger instances with n = 15, 20

the average optimality gap with respect to the best lower bound stands at 12.31% in contrast to the respective

figure 17.02% for TT .

50 100 200 300 400 500
−10%

−8%

−6%

−4%

−2%

0%

2%

Number of Scenarios

n = 10
n = 15
n = 20

(a) Relative upper bound gaps.

50 100 200 300 400 500
−50%

0%

50%

100%

150%

200%

250%

300%

Number of Scenarios

n = 10
n = 15
n = 20

(b) Relative lower bound gaps.

Figure 4: Average relative performance of SD-SMS with respect to CPLEX for TWT*.

* The averages are aggregated over TF = 0.4, 0.6. In Figure 4(b), the gaps of the trivial lower bounds of CPLEX and the gaps in

excess of 300% are assumed to be 300%.

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 32

6.4 Effectiveness of the Algorithmic Features In this section, we analyze the impact and effec-

tiveness of four essential algorithmic features embedded in the proposed algorithm SD-SMS : the progressive

tightening of the scenario decomposition, dual stabilization, the use of suboptimal cuts, and the subproblem

solution algorithms. We report illustrative results for a subset of the instances from Section 6.3.

TF=0.4 TF=0.6

Rel. Gap (%) Rel. Gap (%)

n |S| UB LB

SD-SMS

Opt. Gap (%) UB LB

SD-SMS

Opt. Gap (%)

15 50 6.0 -38.5 (9.2) 16.9 6.9 -28.5 (2.9) 43.0

100 4.6 -37.9 (17.1) 48.1 7.2 -28.7 (14.8) 44.6

200 3.3 -37.2 (20.7) 51.7 7.4 -28.9 (18.5) 46.1

300 3.0 -37.8 (21.9) 52.8 6.5 -28.9 (18.7) 45.7

400 9.8 -92.9 (20.6) 94.7 4.7 -48.5 (19.2) 59.9

500 1.4 -95.8 (19.5) 96.5 4.3 -57.2 (18.2) 66.0

20 50 8.3 -31.4 (16.8) 47.2 8.9 -25.8 (12.3) 40.2

100 6.3 -34.7 (16.3) 48.4 6.0 -26.4 (15.9) 41.7

200 4.3 -34.5 (18.9) 49.0 4.2 -26.9 (16.8) 41.6

300 3.7 -34.4 (19.6) 49.1 4.3 -26.6 (17.2) 41.7

400 3.2 -90.7 (19.6) 92.6 3.3 -42.3 (17.4) 53.5

500 2.4 -93.2 (19.3) 94.5 3.3 -49.3 (17.0) 59.0

Average: 4.7 -54.9 (18.3) 61.8 5.6 -34.8 (15.7) 48.6

Table 7: The impact of the progressive tightening of the scenario decomposition on the bounds produced by SD-SMS .

We start with the progressive tightening of the scenario decomposition described in Section 4.5. Recall that

during the course of SD-SMS , the feasible regions of the Lagrangian subproblems are shrunk in an effort to

improve the final value of the Lagrangian lower bound as the bounds on the optimal value of θ are tightened.

To evaluate the impact of this feature on the quality of the lower and upper bounds on the optimal VaR

produced by SD-SMS , we run the algorithm on the TT instances with n = 15, 20 in Table 5 when this feature

is disabled. In particular, we set θLB to zero and θUB to the VaR associated with the initial primal feasible

solution in constraint (55) in the Lagrangian subproblems and constraint (68) in RMP and then never update

these bounds at an intermediate iteration. The average percentage changes in the upper and lower bounds on

the optimal VaR with respect to the original results are reported in Table 7 under ‘UB’ and ‘LB’, respectively.

As in Tables 5-6, positive relative changes in the lower bounds and negative relative changes in the upper

bounds designate improvements over the original values. The loss of quality in the bounds across the board

is evident, and the lower bounds are particularly affected. For |S| = 400, 500 and TF = 0.4, the lower bounds

are reduced to about one tenth of their original values on average. Moreover, due to these weak lower bounds,

the average optimality gaps of the best primal feasible solutions identified by SD-SMS – depicted in Columns

‘Opt. Gap’ in Table 7 – appear to be much poorer compared to those in Table 5. For ease of comparison,

the corresponding values in Table 5 are repeated in parentheses. The average optimality gap of the primal

feasible solutions over all instances in Table 7 jumps to 55.2% from 17.0% in Table 5. We can safely assert

that both CPLEX and also SD-SMS without the progressive tightening of the scenario decomposition generate

loose lower bounds, and this feature is fundamental to the promise of SD-SMS as a viable solution method to

our risk-averse scheduling problem.

We proceed by demonstrating the impact of the dual stabilization on the behavior of SD-SMS . As discussed

in Section 5.3, a rudimentary implementation of SD-SMS without dual stabilization suffers from a slow

convergence due to the high variability exhibited by the values of u between the consecutive iterations of the

algorithm. To investigate the role of dual stabilization in the performance of SD-SMS , we run the algorithm

with and without dual stabilization on a particular instance with n = 15 and |S| = 50 from Data Set 1 under

the performance measure TT . Both the stabilized and unstabilized versions attain the optimal solution of

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 33

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Iterat ions

E
u
c
li
d
e
a
n
D
is
ta

n
c
e
to

O
p
ti
m
a
l
D
u
a
ls Stabilized

Unstabilized

Figure 5: The progress of the dual variables over the course of SD-SMS*.

* The y−axis is in log-scale, and the final iteration is omitted because a distance of zero cannot be represented in this scale.

(LD) at the final iteration. To compare and contrast the progress of the dual solutions over the course of the

execution of SD-SMS in either case, we plot in Figure 5 the Euclidean distance ‖(λi,µi,ui) − (λ∗,µ∗,u∗)‖,

where (λi,µi,ui) are the values of the dual variables at iteration i and (λ∗,µ∗,u∗) denote the optimal dual

variables. In these runs, the cut management routine of Section 5.4 is disabled in the unstabilized version

of SD-SMS due its detrimental impact on performance. In this case, the fluctuations in u lead to cuts that

approximate different portions of the dual function, generally not in the proximity of the optimal dual solution,

in an ad hoc manner. Many of these cuts get removed – and then possibly regenerated – until we attain a close

representation of the dual function late in the algorithm. An immediate observation from Figure 5 is that

the unstabilized algorithm requires three times more iterations compared to its stabilized counterpart in order

to converge to the same optimum. The dual variables of the unstabilized algorithm are far away from the

optimum for the better part of the iterations. In fact, the algorithm spends 55 iterations before it can identify

a non-trivial positive Lagrangian lower bound in this case. In contrast, the third iteration of the stabilized

algorithm yields a positive lower bound. This pattern is fairly typical, as illustrated by the statistics in Table

8. Our studies indicate that in many cases, the number of iterations spent by the unstabilized algorithm

before attaining a positive lower bound is higher than the total number of iterations required for its stabilized

counterpart to converge. As a final note related to Figure 5, observe that SD-SMS with dual stabilization

makes sustained progress toward the optimum aside from the fluctuations early in the algorithm. The jumps

halfway through and toward the final iteration mark the transitions from one stage to the next in the dual

stabilization scheme – see Section 5.3.

Stabilized Unstabilized

n |S| = 50 100 Average |S| = 50 100 Average

of Iterations until Positive LB 15 2.0 2.0 2.0 53.5 46.7 50.1

20 2.0 2.0 2.0 86.0 73.7 79.9

Average: 2.0 2.0 2.0 69.8 60.2 65.0

Total # of Iterations 15 57.3 34.9 46.1 442.1 182.0 312.1

20 79.7 46.4 63.1 477.8 348.4 413.1

Average: 68.5 40.7 54.6 460.0 265.2 362.6

Table 8: Impact of dual stabilization on the behavior of SD-SMS illustrated on a subset of 40 TT instances from Table 5.

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 34

|S|

n 50 100 200 300 400 500 Average

15 4.9 18.3 11.5 13.8 85.0 47.9 30.2

20 11.3 8.8 24.6 14.1 164.3 377.3 100.1

Average: 8.1 13.6 18.0 14.0 124.6 212.6 65.2

Table 9: Relative differences (%) in the solution times of SD-SMS when no suboptimal cuts are generated.

Without the two algorithmic features discussed so far in this section, SD-SMS demonstrates a lackluster

performance both in terms of solution time and quality and does not establish itself as a viable solution

method even for small instances. The next two algorithmic features, however, are geared toward enhancing

the scalability of the algorithm to large instances. Table 9 presents the average relative increases in the elapsed

times of SD-SMS for the same instances in Table 7 if we insist that the subproblems are always solved to

optimality and no suboptimal cuts are added to the RMP . The results indicate that the suboptimal cuts

contribute to the computational performance of the algorithm significantly, and the relative improvement

becomes more evident as the number of jobs and the number of scenarios increase, reaching as high as 377%.

50 100 200 300 400 500
40%

50%

60%

70%

80%

90%

100%

Number of Scenarios

n = 15
n = 20
n = 25
n = 30

(a) Average percentage of subproblems solved in Phases I-II.

50 100 200 300 400 500
40%

50%

60%

70%

80%

90%

100%

Number of Scenarios

n = 15
n = 20
n = 25
n = 30

(b) Maximum percentage of subproblems solved in Phases I-II.

Figure 6: Statistics on the percentage of subproblems solved without resorting to CPLEX in Phase III of Algorithm 1.

Next, we delve into the computational details of Algorithm 1 in Section 4.2 for solving the Lagrangian

subproblems. First, we analyze the breakdown of the subproblems solved in each phase of Algorithm 1 and

then assess the computational gain from using Algorithm 1 instead of attacking the subproblems directly

by CPLEX. To complete the earlier task, we calculate the percentage of subproblems solved in each phase of

Algorithm 1 for each TT instance in Section 6.3, except that we skip over the initial iterations with u = 0

to avoid introducing a bias that favors Phase I. Recall that only the first phase of Algorithm 1 is executed if

u = 0. The average percentage of the instances solved in Phases I, II, and III turns out to be 46.2%, 17.6%,

and 36.1%, respectively. A further breakdown of these numbers is provided in Figure 6, where we report the

average and maximum percentage of subproblems solved in the first two phases of Algorithm 1 grouped by n

and |S|. On the one hand, Figure 6 attests to a desired property of SD-SMS that it scales well with |S| for

a fixed n. That is, we generally observe that with increasing |S| a higher percentage of the subproblems are

solved in the computationally less expensive first two phases of Algorithm 1 without having to invoke CPLEX.

On the other hand, the number of job processing sequences grows exponentially with the number of jobs and

leads to a decline in the effectiveness of the rules in Phase I and the enumeration of the assignments in Phase

II. This can partially be attributed to a drawback of our K−assignment implementation which evaluates a

predetermined fixed number of assignments independent of n.

Finally, we investigate the contribution of Algorithm 1 to the computational performance of SD-SMS . To

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 35

|S|

n 50 100 200 300 400 500 Average

Solution Time 15 -17.7 31.7 153.3 140.7 173.3 146.0 104.5

20 -18.8 62.7 82.1 49.1 131.3 132.2 73.1

25 -14.2 20.0 45.5 36.5 46.6 39.0 28.9

30 -2.3 13.2 54.3 30.3 84.3 102.2 47.0

Average: -13.3 31.9 83.8 64.2 108.9 104.8 104.8

of Iterations 15 -4.5 4.2 13.1 10.2 11.0 6.4 6.8

20 -5.6 8.7 6.1 1.1 -3.2 -1.9 0.9

25 -2.4 5.7 5.1 4.3 -1.1 -18.9 -1.2

30 3.4 6.4 18.2 3.4 10.0 8.5 8.3

Average: -2.3 6.2 10.6 4.8 4.2 -1.5 3.7

Time per Iter. 15 -14.2 26.6 117.8 111.2 125.9 119.8 81.2

20 -14.0 44.8 64.4 45.9 118.8 107.7 61.3

25 -12.1 12.0 33.8 29.0 46.7 48.3 26.3

30 -6.6 5.5 27.9 24.5 64.5 73.1 31.5

Average: -11.7 22.2 61.0 52.7 89.0 87.2 50.1

Table 10: Relative differences (%) in the performance of SD-SMS when the subproblems are solved directly by CPLEX.

this end, we re-solve all instances in Table 5 by SD-SMS and employ CPLEX to solve all subproblems directly.

For each instance, we compute the percentage change in the total solution time, the number of iterations,

and the solution time per iteration with respect to the original values. The results are depicted in Table 10,

where each figure denotes an average over ten instances for the corresponding n and |S| values. Algorithm 1

is clearly superior to employing CPLEX directly.

7. Conclusions & Future Work The key contribution of this work is a novel and generic modeling and

solution framework for minimizing a widely popular risk measure known as value-at-risk in single-machine

scheduling problems with uncertain parameters. Our solution methodology is based on a scenario decom-

position obtained through Lagrangian relaxation and successfully provides high quality lower bounds and

near-optimal feasible solutions in reasonable solution times for the very challenging set of problems under con-

sideration. The strength of our solution algorithm is rooted in an efficient mix of state-of-the-art methodolog-

ical and computational tools. Moreover, the solutions obtained from our risk-averse stochastic programming

model are contrasted against those retrieved from the corresponding deterministic and risk-neutral models

and the value of our approach for decision making purposes is illustrated.

As part of our ongoing work, we intend to develop new risk-averse models for machine scheduling problems

in a two-stage setting. In particular, we are currently concentrating on a new chance-constrained mean-risk

two-stage stochastic programming modeling framework. This is a hybrid approach which takes into account

both quantitative and qualitative aspects of risk. A further avenue of research is to enhance and embed our

scenario decomposition-based lower bounding scheme into an exact algorithm. In addition, our preliminary

studies indicate that the L-shaped method of Sarin et al. (2014) for minimizing CVaR in machine scheduling is

akin to gradually incorporating the large number of scenario-dependent constraints of the original monolithic

formulation into the relaxed master problem. CPLEX can emulate this behavior with its lazy constraint feature

(IBM ILOG CPLEX, 2012). Therefore, the computational performance of this L-shaped method is comparable

to that of solving the corresponding monolithic formulation via CPLEX with its lazy constraint feature enabled.

In light of this observation, it seems likely that adapting SD-SMS to handle CVaR bears potential as well.

Acknowledgment. We thank the anonymous referees and the associate editor for their comments which

helped us improve the paper. This work has been partially supported by The Scientific and Technological

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 36

Research Council of Turkey (TUBITAK) under grant 112M864. We are sincerely grateful to Pascoal et al.

and Tanaka et al. for providing us with the C source codes of the K−assignment algorithm and the SiPS

C++ libraries, respectively. We would also like to thank Birce Tezel for her help with an earlier version of

this work and Halil Şen for his coding efforts for some of the preliminary analyses.

Appendix A. VaR versus CVaR in Risk Management and Optimization A substantial amount

of literature focuses on studying and comparing the properties of risk measures based on several criteria such as

compatibility with axiomatic settings, mathematical properties, stability of statistical estimation (robustness),

computational tractability (algorithmic possibilities for the resulting optimization problems), and acceptance

by the regulators and practitioners. The findings imply that each risk measure has its own advantages and

disadvantages. Therefore, one risk measure may be preferred over the other in some decision making context

and vice versa in another setting. In particular, the problem of choice between the two important and popular

risk measures VaR and CVaR has attracted a lot of attention in the literature, especially in financial risk

management (see, e.g., Yamai and Yoshiba, 2002a; Sarykalin et al., 2008; Danielsson and Zhou, 2015; Davis,

2015). In the introduction, we provide arguments supporting the use of VaR in our scheduling context and

discuss certain mathematical properties and issues related to computational tractability. Here, our focus is on

the axiomatic settings – with a particular emphasis on the subadditivity axiom – and robustness.

The main criticism against VaR is that it fails to be subadditive in general and is therefore not coherent

(Artzner et al., 1999). The significance of the subadditivity property stems from financial applications, where

the lack of subadditivity implies that the diversification (of portfolio positions into different assets) might

actually increase risk. However, the concept of diversification in a scheduling context does not have a natural

interpretation because the decisions correspond to constructing an order of jobs. Thus, requiring subaddi-

tivity in a scheduling application does not appear to be inherently justified. Moreover, some recent studies

(Heyde et al., 2006; Kou et al., 2013) question the necessity of the subadditivity axiom in general and suggest

replacing it by the comonotonic subadditivity axiom, which only requires subadditivity to hold for comonotone

random variables; that is, for random variables characterized by a perfect dependence structure. This leads to

a modified coherence concept and provides an axiomatic justification for VaR, which satisfies the comonotonic

subadditivity axiom. Kou et al. (2013) also point to some interesting pieces of research, which conclude that

VaR is typically subadditive in practical applications (see, e.g., Danielsson et al., 2005; Ibragimov and Walden,

2007). A further concern voiced in the literature about the subadditivity axiom stems from its potential conflict

with the robustness of risk measurement procedures (Cont et al., 2010) as we elaborate upon next.

The literature emphasizes that CVaR is statistically less robust than VaR in the sense that it is more

sensitive to the tail behavior of a distribution and statistical estimation errors. In particular, the CVaR

estimate becomes less reliable in the presence of infrequent and large loss events (Yamai and Yoshiba, 2002b).

Consequently, CVaR requires a larger sample size than VaR to provide the same level of estimation accuracy

(Cont et al., 2010; Kou et al., 2013; Danielsson and Zhou, 2015). In this context, the indifference of VaR to

high tail outcomes exceeding VaR – which are usually difficult to measure – is considered as a good property.

This may lead to a superior out-of-sample performance of VaR versus CVaR for some applications (see, e.g.,

Sarykalin et al., 2008). The conclusion from this discussion is that CVaR captures the risks reflected in the tail

and may be preferred to VaR under the availability of a good model for the tail of the distribution. Otherwise,

the CVaR value computed based on a small historical scenario set may not be accurate, and we should then

refrain from adopting CVaR as the risk measure of choice. In this case, one may instead resort to VaR. In

summary, VaR and CVaR focus on different aspects of the distribution, and the appropriate choice of the risk

measure to be incorporated in a risk-averse optimization problem is also contingent on the available data and

a good model for the tail of the distribution of the random outcome.

References

Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical Program-

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 37

ming, 106(3):433–446.

Akker, M. and Hoogeveen, H. (2008). Minimizing the number of late jobs in a stochastic setting using a chance

constraint. Journal of Scheduling, 11(1):59–69.

Alonso-Ayuso, A., Escudero, L., no, M. O., and Pizarro, C. (2007). On a stochastic sequencing and scheduling

problem. Computers and Operations Research, 34(9):2604–2624.

Aloulou, M. A. and Croce, F. D. (2008). Complexity of single machine scheduling problems under scenario-

based uncertainty. Operations Research Letters, 36(3):338–342.

Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. (1999). Coherent measures of risk. Mathematical Finance,

9(3):203–227.

Atakan, S., Tezel, B., Bülbül, K., and Noyan, N. (2011). Minimizing value-at-risk in the single-machine total

weighted tardiness problem. In Proceedings of the 5th Multidisciplinary International Scheduling Conference

on Scheduling: Theory & Applications (MISTA 2011), 9-11 August 2011, Phoenix, Arizona, USA, pages

215-229.

Baker, K. R. and Keller, B. (2010). Solving the single-machine sequencing problem using integer programming.

Computers & Industrial Engineering, 59(4):730–735.

Beck, J. C. and Wilson, N. (2007). Proactive algorithms for job shop scheduling with probabilistic durations.

Journal of Artificial Intelligence Research, 28(1):183–232.

Ben Amor, H. M., Desrosiers, J., and Frangioni, A. (2009). On the choice of explicit stabilizing terms in

column generation. Discrete Applied Mathematics, 157(6):1167–1184.

Birge, J. and Louveaux, F. (1997). Introduction to stochastic programming. Springer, New York.

Bonfietti, A., Lombardi, M., and Milano, M. (2014). Disregarding duration uncertainty in partial order

schedules? Yes, we can! In Simonis, H., editor, Integration of AI and OR Techniques in Constraint

Programming, volume 8451 of Lecture Notes in Computer Science, pages 210–225. Springer.

Burkard, R., Dell’Amico, M., and Martello, S. (2009). Assignment Problems. Society for Industrial and

Applied Mathematics, Philadelphia.

Carøe, C. and Tind, J. (1998). L-shaped decomposition of two-stage stochastic programs with integer recourse.

Mathematical Programming, 83(1):451–464.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations

Research Letters, 24(1-2):37–45.

Cont, R., Deguest, R., and Scandolo, G. (2010). Robustness and sensitivity analysis of risk measurement

procedures. Quantitative Finance, 10(6):593–606.

Daniels, R. and Kouvelis, P. (1995). Robust scheduling to hedge against processing time uncertainty in

single-stage production. Management Science, 41(2):363–376.

Daniels, R. L. and Carrillo, J. (1997). β-robust scheduling for single-machine systems with uncertain processing

times. IIE Transactions, 29(11):977–985.

Danielsson, J., Jorgensen, B. N., Mandira, S., Samorodnitsky, G., and De Vries, C. G. (2005). Subadditivity

re–examined: the case for value-at-risk. Discussion paper, 549. Financial Markets Group, London School of

Economics and Political Science, London, UK.

Danielsson, J. and Zhou, C. (2015). Why risk is so hard to measure. Technical report, Working Paper,

Available at SSRN: http://ssrn.com/abstract=2597563 or http://dx.doi.org/10.2139/ssrn.2597563.

Davis, M. (2015). Consistency of risk measure estimates. Technical report, Working Paper, Available at SSRN:

http://ssrn.com/abstract=2342279 or http://dx.doi.org/10.2139/ssrn.2342279.

de Farias, JR, I. R., Zhao, H., and Zhao, M. (2010). A family of inequalities valid for the robust single machine

scheduling polyhedron. Computers and Operations Research, 37(9):1610–1614.

Dentcheva, D. (2006). Optimization models with probabilistic constraints. In Calafiore, G. and Dabbene,

F., editors, Probabilistic and Randomized Methods for Design Under Uncertainty, pages 49–97. Springer

London.

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 38

Du, J. and Leung, J. Y.-T. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of

Operations Research, 15(3):483–495.

Frangioni, A. (2005). About Lagrangian methods in integer optimization. Annals of Operations Research,

139(1):163–193.

Gaivoronski, A. A. and Pflug, G. C. (2005). Value-at-risk in portfolio optimization: Properties and computa-

tional approach. Journal of Risk, 7(2):1–31.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326.

Gutjahr, W. J., Hellmayr, A., and Pflug, G. C. (1999). Optimal stochastic single-machine-tardiness scheduling

by stochastic branch-and-bound. European Journal of Operational Research, 117(2):396–413.

Helmberg, C. (2011). The ConicBundle library for convex optimization. Last viewed on August 16, 2013.

Heyde, C. C., Kou, S. G., and Peng, X. H. (2006). What is a good risk measure: bridging the gaps between

data, coherent risk measures, and insurance risk measures. Technical report, Columbia University.

IBM ILOG CPLEX (2012). IBM ILOG CPLEX Optimization Studio 12.5 Information Center.

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp. Last viewed on 08/04/2014.

Ibragimov, R. and Walden, J. (2007). The limits of diversification when losses may be large. Journal of

Banking & Finance, 31(8):2551 – 2569.

Jörnsten, K. O., Näsberg, M., and Smeds, P. A. (1985). Variable splitting: A New Lagrangean Relaxation

Approach to Some Mathematical Programming Models. Linköping University, Department of Mathematics,

Sweden.

Kallehauge, B., Larsen, J., and Madsen, O. B. G. (2006). Lagrangian duality applied to the vehicle routing

problem with time windows. Computers & Operations Research, 33(5):1464–1487.

Kanet, J. and Sridharan, V. (2000). Scheduling with inserted idle time: problem taxonomy and literature

review. Operations Research, 48(1):99–110.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E., Thatcher, J. W., and

Bohlinger, J. D., editors, Complexity of Computer Computations, The IBM Research Symposia Series,

pages 85–103. Springer US.

Kasperski, A. (2005). Minimizing maximal regret in the single machine sequencing problem with maximum

lateness criterion. Operations Research Letters, 33(4):431–436.

Kasperski, A., Kurpisz, A., and Zieliński, P. (2012). Approximating a two-machine flow shop scheduling under

discrete scenario uncertainty. European Journal of Operational Research, 217(1):36–43.

Kataoka, S. (1963). A stochastic programming model. Econometrica, 31(1/2):181–196.

Keha, A. B., Khowala, K., and Fowler, J. W. (2009). Mixed integer programming formulations for single

machine scheduling problems. Computers and Industrial Engineering, 56(1):357–367.

Klein Haneveld, W. K. and van der Vlerk, M. H. (1999). Stochastic integer programming: General models

and algorithms. Annals of Operations Research, 85:39–57.

Kou, S., Peng, X., and Heyde, C. C. (2013). External risk measures and Basel accords. Mathematics of

Operations Research, 38(3):393–417.

Laporte, G. and Louveaux, F. (1993). The integer L-shaped method for stochastic integer programs with

complete recourse. Operations Research Letters, 13(3):133–142.

Larsen, N., Mausser, H., and Uryasev, S. (2002). Algorithms for optimization of value-at-risk. In Pardalos,

P. M. and Tsitsiringos, V. K., editors, Financial Engineering, E-commerce and Supply Chain, volume 70 of

Applied Optimization, pages 19–46. Springer US.

Lenstra, J. K., Rinnooy Kan, A. H. G., and Brucker, P. (1977). Complexity of machine scheduling problems.

Annals of Discrete Mathematics, 1:343–362.

Louveaux, F. V. and Schultz, R. (2003). Stochastic integer programming. In Ruszczyński, A. and Shapiro, A.,

editors, Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science,

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 39

pages 213–266. Elsevier.

Lu, C.-C., Lin, S.-W., and Ying, K.-C. (2012). Robust scheduling on a single machine to minimize total flow

time. Computers & Operations Research, 39(7):1682–1691.

Marsten, R. E., Hogan, W. W., and Blankenship, J. W. (1975). The BOXSTEP method for large-scale

optimization. Operations Research, 23(3):389–405.

Noyan, N. (2012). Risk-averse two-stage stochastic programming with an application to disaster management.

Computers and Operations Research, 39(3):541–559.

Ogryczak, W. and Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risks models. SIAM

Journal on Optimization, 13(2):60–78.

Pang, J. and Leyffer, S. (2004). On the global minimization of the value-at-risk. Optimization Methods and

Software, 19(5):611–631.

Pascoal, M., Captivo, M. E., and Cĺımaco, J. (2003). A note on a new variant of Murty’s ranking assignments

algorithm. 4OR, 255(1):243–255.

Pflug, G. C. and Römisch, W. (2007). Modeling, managing and measuring risk. World Scientific Publishing,

Singapore.

Pinedo, M. (2008). Scheduling: Theory, Algorithms, and Systems. Springer, 3rd edition.

Pinedo, M. and Singer, M. (1999). A shifting bottleneck heuristic for minimizing the total weighted tardiness

in a job shop. Naval Research Logistics, 46(1):1–17.

Potts, C. and van Wassenhove, L. (1982). A decomposition algorithm for the single machine total tardiness

problem. Operations Research Letters, 1(5):177–181.

Prékopa, A. (1995). Stochastic Programming. Kluwer Academic, Dordrecht, Boston.

Rockafellar, R. and Uryasev, S. (2000). Optimization of conditional value at risk. The journal of risk, 2(3):21–

41.

Rockafellar, R. T. and Wets, R. J.-B. (1991). Scenarios and policy aggregation in optimization under uncer-

tainty. Mathematics of Operations Research, 16(1):119–147.

Sarin, S. C., Sherali, H. D., and Liao, L. (2014). Minimizing conditional-value-at-risk for stochastic scheduling

problems. Journal of Scheduling, 17(1):5–15.

Sarykalin, S., Serraino, G., and Uryasev, S. (2008). Value-at-risk vs. conditional value-at-risk in risk manage-

ment and optimization. In Tutorials in Operations Research, pages 270–294. INFORMS, Hanover, MD.

Schultz, R. and Tiedemann, S. (2003). Risk aversion via excess probabilities in stochastic programs with

mixed-integer recourse. SIAM Journal on Optimization, 14(1):115–138.

Schultz, R. and Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs with mixed-integer

recourse. Mathematical Programming, 105(2):365–386.

Sen, S. (2005). Algorithms for stochastic mixed-integer programming models. In Aardal, K., Nemhauser,

G. L., and Weismantel, R., editors, Discrete Optimization, volume 12 of Handbooks in Operations Research

and Management Science, pages 515–558. Elsevier.

Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2009). Lectures on Stochastic Programming: Modeling and

Theory, volume 9. SIAM.

Srinivasan, V. (1971). A hybrid algorithm for the one machine sequencing problem to minimize total tardiness.

Naval Research Logistics Quarterly, 18(3):317–327.

Tanaka, S., Fujikuma, S., and Araki, M. (2009). An exact algorithm for single-machine scheduling without

machine idle time. Journal of Scheduling, 12(6):575–593.

van de Panne, C. and Popp, W. (1963). Minimum cost cattle feed under probabilistic protein constraints.

Management Science, 9(3):405–430.

van der Vlerk, M. H. (1996–2007). Stochastic integer programming bibliography. World Wide Web,

http://www.eco.rug.nl/mally/biblio/sip.html.

Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications to optimal control and

http://www.eco.rug.nl/mally/biblio/sip.html

Atakan, Bülbül, Noyan: Risk-Averse Machine Scheduling
c©October 29, 2016 40

stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663.

Wolsey, L. A. (1998). Integer Programming. John Wiley & Sons, New York.

Wozabal, D. (2012). Value-at-risk optimization using the difference of convex algorithm. OR Spectrum,

34(4):861–883.

Wozabal, D., Hochreiter, R., and Pflug, G. C. (2010). A difference of convex formulation of value-at-risk

constrained optimization. Optimization, 59(3):377–400.

Wu, C. W., Brown, K. N., and Beck, J. C. (2009). Scheduling with uncertain durations: Modeling β-robust

scheduling with constraints. Computers and Operations Research, 36(8):2348–2356.

Yamai, Y. and Yoshiba, T. (2002a). Comparative analyses of expected shortfall and value-at-risk: Their

estimation error, decomposition, and optimization. Monetary and Economic Studies, 20(1):87–121.

Yamai, Y. and Yoshiba, T. (2002b). Comparative analysis with expected shortfall (3): Their validity under

market stress. Monetary and Economic Studies, 20(3):181–237.

Yang, J. and Yu, G. (2002). On the robust single machine scheduling problem. Journal of Combinatorial

Optimization, 6(1):17–33.

